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ABSTRACT

Large Language Models (LLMs) have demonstrated their superior comprehension
and expressiveness across a wide range of tasks, and exhibited remarkable capa-
bilities in real-world applications. Hence, it is crucial to investigate their potential
and limitations for trustworthy performance in both academia and industry. In this
paper, we focus on exploring LLMs’ ability to understand concepts, especially
abstract and concrete ones. To this end, we construct a WordNet-based dataset
containing a subset for abstract concepts and a subset for concrete concepts. We
select six pre-trained LLMs and conduct a classic NLP task, hypernym discovery,
as evidence of LLMs’ comprehension ability in understanding concepts. The ex-
perimental results suggest that the LLM’s understanding of abstract concepts is
significantly weaker than that of concrete concepts.

1 INTRODUCTION

In the past few years, Large Language Models (LLMs) have become the frontiers of academic
research. The recently released ChatGPT has further exhibited the potential of LLMs in various
downstream tasks with advanced technologies and engineering efforts (Brown et al., 2020). On the
other hand, the language understanding ability of LLMs also affects their deployments in real-world
scenarios, making exploration of this research problem a new topic.

This paper focuses on the understanding ability of LLMs from the perspective of abstract and con-
crete concepts. Such explorations are inspired by the fact that different real-world tasks usually re-
quire the understanding ability on different levels of abstraction. A better comprehension of concrete
concepts may be desirable in tasks related to physical entities, like classifying the type of animals.
In contrast, other tasks ask the LLMs to know more about abstract entities, such as distinguishing
different human emotions or logical reasoning.

To achieve this goal, we first construct a new dataset D-Concept based on WordNet, a lexical
database of semantic relations between words (Miller, 1995). The dataset follows the setting of
a classic NLP task of hypernym discovery, and it can reflect the language model’s ability to un-
derstand abstract and concrete concepts. Nouns in WordNet are explicitly divided into an abstract
branch and a physical branch, and thus it is an appropriate prior. Therefore, we follow this division
to construct two subsets based on the abstract branch and the physical branch, respectively. Each
data sample consists of a pair of entities from the corresponding branches. The hypernym discovery
task is to determine whether these two entities are hypernyms or not. The explored LLMs range
from BERT to the GPT series models (including OpenAI text embedding model and ChatGPT).
Experimental results show that, in the hypernym discovery task, the LLM’s performance on abstract
concepts is worse than on concrete concepts, indicating the improvement of room for LLMs.

Our contributions can be summarized as follows: (1) We construct a new dataset for the hypernym
discovery task to compare the LLM’s understanding ability on abstract and concrete concepts. (2)
We investigate the performance of LLMs at different scales on this task and discover that the perfor-
mance improves as the model scales up while consistently worse on abstract concepts than concrete
ones.
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2 EXPERIMENT

2.1 EXPERIMENT SETUP

Dataset. WordNet groups nouns into sets of cognitive synonyms (synsets), each expressing a distinct
concept and can be regarded as an entity. Abstract branch and physical branch are two main com-
ponents in WordNet, representing abstract concepts (like “Fairness” and “Happiness”) and concrete
concepts (like “Animal” and “furniture”), respectively. To explore how LLMs represent concepts, we
visualize embeddings of concepts in WordNet generated by GPT embedding model (text-similarity-
ada-001) with T-SNE. As shown in Figure 1, embeddings of two types of concepts are roughly
divided into two clusters, revealing that there indeed exist some differences between them.

To dive deeper into such differences, we create a new dataset for the concept understanding task, i.e.,
hypernym discovery. Hypernymy relation (e.g., “bed”-“furniture” where furniture is a hypernymy
and bed is a hyponym) is one typical lexical relation on WordNet due to the nature that WordNet is a
hierarchical graph with entities as nodes and hypernymy relations as edges. When constructing the
dataset, on each branch, we first randomly choose a distance value d for positive examples (i.e., one
entity and its corresponding hypernym, as WordNet is a tree-like structure and ancestors in different
heights of a single hyponym are all its hypernyms). Secondly, we randomly select the first entity,
and then the second entity is sampled from an entity set where each entity is at a distance d from the
first entity. Negative entity pairs are randomly and separately chosen. There are 10,000 samples in
total, split as Train: Valid: Test = 2: 4: 4.

Settings. We compare 6 LLMs, including BERT (Devlin et al., 2018), T5 (Raffel et al., 2020), CLIP
(Radford et al., 2021), OpenClip (Cherti et al., 2022), GPT embedding model (Brown et al., 2020)
and ChatGPT. We freeze their embeddings and add a linear layer for binary classification. Cross-
Entropy Loss is used as the loss function, and Accuracy (ACC), AUC and F1 score are evaluation
metrics. For ChatGPT, we use the prompt-answering paradigm to obtain its answers (i.e., we use “Is
{entity1} the hypernym of {entity2}?” as a prompt to get “yes” or “no” from ChatGPT).

2.2 EXPERIMENTAL RESULT

Table 1 shows LLMs’ performance on different types of concepts under the hypernymy discov-
ery task. We can find that LLMs consistently perform worse for abstract concepts compared with
concrete concepts. It implies that there is improvement room for LLMs in learning high-quality em-
beddings, especially for abstract concepts. The poor results on abstract concepts may raise the risk
of handling abstract concept-related tasks when applying LLMs. We can also discover that when the
model scale increases, the performance on both tasks also improves except for ChatGPT, where the
embedding can not be obtained and is tested without fine-tuning or few-shot learning.

Figure 1: Visualization for
abstract concepts (red) and
concrete concepts (blue).

Table 1: Hypernym discovery result.
Abstract Concept Concrete Concept

Model ACC AUC F1 ACC AUC F1

BERT 85.28 85.28 84.35 89.65 89.61 89.12
T5 85.85 85.85 85.43 89.45 89.41 88.88
CLIP 87.93 87.93 87.62 91.53 91.49 91.13
OpenClip 88.85 88.85 88.47 91.60 91.56 91.22
GPT Embedding 89.45 89.45 89.04 91.98 91.94 91.60
ChatGPT 64.13 64.14 44.10 78.98 78.75 73.04

3 CONCLUSION

We construct a new WordNet-based dataset for the hypernym discovery task in order to explore the
understanding ability of large language models on abstract and concrete concepts. Experimental re-
sults show that LLMs struggle with abstract concepts, regardless of their model size, which inspires
researchers to mitigate this gap in the future.
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A D-CONCEPT DATASET BRIEFS

D-Concept dataset includes 21962 synsets in total, consisting of their name and definition from the
WordNet. The synset pairs in D-Concept are separated into two subsets, one for abstract concepts
and the other for concrete concepts. An example of hypernym pairs from abstract concept subset
is “bushel”-“volume unit” with the distance d = 3 where bushel means a British imperial capacity
measure (liquid or dry) equal to 4 pecks and volume unit means a unit of measurement of volume or
capacity. An example of hypernym pairs from concrete concept subset is “Ayrshire”-“Cattle” with
distance d = 2, where Ayrshire denotes hardy breed of dairy cattle from Ayr, Scotland and Cattle is
domesticated bovine animals as a group regardless of sex or age.

The number of synset pairs is 2000, 4000, and 4000 for training, validating, and testing, respectively.
Detailed information about the dataset is illustrated in Figure 2 and Figure 3.
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Figure 2: The dataset split of abstract concepts and the distribution of path distances on WordNet
tree between abstract synset pairs. -1 represents no hypernym relationship between the synset pair.

B EXPERIMENTAL DETAILS

Backbones. (1) BERT (Devlin et al., 2018): We take the pooler outputs of the bert-base-uncased
model as embeddings, with a dimension of 768. (2) T5 (Raffel et al., 2020): We take the average
pooling of the last hidden layer of the google/t5-v1 1-large model as embeddings, with a dimension
of 1024. (3) CLIP (Radford et al., 2021) and OpenClip (Cherti et al., 2022): The text embedding di-
mensions we get from text encoders of CLIP and OpenClip are 768 and 1024, respectively. (4) GPT
series model (Brown et al., 2020): We adopt OpenAI’s embeddings service (text-similarity-ada-001)
and OpenAI’s chat completion service. The embedding dimension of the text-similarity-ada-001
model is 1024. And the prompt for ChatGPT is “Is {synset-1} a hypernym of {synset-2}? {synset-
1} means {the definition of synset-1}. {synset-2} means {the definition of synset-2}. Please
directly answer YES or NO. (Do not return any explanation or any additional information.)”. Pro-
viding ChatGPT with the meaning of synset aims to help with entity disambiguation, and formatting
the answer from ChatGPT can facilitate post-processing for the evaluation.

Training Process. The learning rate will reduce to 1/3 of its original value if the loss does not
decrease for 20 epochs. Validating is conducted every 10 epochs and the best models are chosen
based on AUC. Early stopping is adopted if the AUC on the validation set has not increased for 100
epochs. The learning rate of MLP’s parameters is log uniform searched in the range of [0.0001, 0.1].
Each result presented in Table 1 is the best of 40 repeated experiments.
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Figure 3: The dataset split of physical concepts and the distribution of path distances on WordNet
tree between physical synset pairs. -1 represents no hypernym relationship between the synset pair.

C RELATED WORK

LLMs in Concept Understanding. While LLMs demonstrate extraordinary abilities in various
NLP tasks, it is debated heatedly whether LLMs have the capability of concept understanding, or
if their strong performance simply attributes to the statistical correlations discovered as the scale of
models grows larger (Mitchell & Krakauer, 2023). Works like Sahu et al. (2022) have been devoted
to exploring whether LLMs can understand concepts. Our work chooses to analyze this question
from the perspective of abstract concept understanding ability of LLMs.

LLMs in Hypernym Discovery Task. Previous works like Vulić et al. (2020) and Hanna &
Mareček (2021) have explored linguistic knowledge in LLMs (e.g., BERT) with tasks such as lexical
relation prediction (including hypernym discovery). They indicate that LLMs still contain limited
knowledge of hypernyms. Datasets for hypernym discovery, a classic NLP task, have also been
proposed in many works such as Baroni & Lenci (2011), Snow et al. (2004), Roller et al. (2014),
Vyas & Carpuat (2017), Camacho-Collados et al. (2018). However, our D-Concept Dataset explic-
itly divides concept pairs into abstract and concrete based on WordNet, and conducts the hypernym
discovery task on them, respectively. This dataset formation is more convenient for research on
abstract concept understanding.
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