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Abstract

Recent multi-modal contrastive learning models have demonstrated the ability to
learn an embedding space suitable for building strong vision classifiers, by leverag-
ing the rich information in large-scale image-caption datasets. Our work highlights
a distinct advantage of this multi-modal embedding space: the ability to diagnose
vision classifiers through natural language. The traditional process of diagnosing
model behaviors in deployment settings involves labor-intensive data acquisition
and annotation. Our proposed method, DrML, can discover high-error data slices,
identify influential attributes and further rectify undesirable model behaviors, with-
out requiring any visual data. Through a combination of theoretical explanation
and empirical verification, we present conditions under which classifiers trained
on embeddings from one modality can be equivalently applied to embeddings
from another modality. On a range of image datasets with known error slices, we
demonstrate that our method can effectively identify the error slices and influential
attributes, and can further use language to rectify failure modes of the classifier.

1 Introduction

Recent models trained using multi-modal contrastive learning have leveraged large-scale datasets of
aligned image-caption pairs to obtain shared embedding spaces that capture rich visual and textual
features. The learned image and text encoders resulting from multi-modal contrastive learning have
been demonstrated to be effective feature extractors that can be used to train strong single-modality
classifiers (Radford et al., 2021). In this work, we show how visual classification models obtained
through multi-modal contrastive learning, as described above, offer a significant additional advantage:
the ability to use language to probe and diagnose the behavior of the vision models.

Model diagnosis aims to gain a systematic and comprehensive understanding of when and why
models fail. This is a critical quality assurance process to prevent unexpected and catastrophic failures
of models in high-stake settings. A growing body of work has proposed methods for addressing
this need. For example, error slice discovery methods aim to find subsets of inputs with similar
characteristics where the model performs significantly worse (d’Eon et al., 2022; Eyuboglu et al.,
2022). Interpretability methods aim to understand the black-box process of model prediction and
thus the reasons why models fail for certain inputs (Ribeiro et al., 2016; Koh et al., 2020).

While these prior efforts have made progress in vision model diagnosis, they all suffer from a critical
Achilles’ heel — susceptibility to lack of visual data. Curated training and test sets from the same data
distribution are typically used to develop vision models. Even if models achieve perfect performance
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Figure 1: Overview of our approach, DrML, that diagnoses and rectifies vision models using
language. Our approach leverages the shared image and text representation space learned by multi-
modal contrastive learning. We find that classifiers trained on embeddings from one modality can be
equivalently applied to embeddings from another modality, despite the fact that embeddings from
these two modalities are distinctly separated. This cross-modal transferability phenomenon enables
us to diagnose a vision model by training it on the image embedding space and probing it with text
embeddings. The use of language allows us to generate a large set of diverse and novel inputs to
discover error slices, identify influential attributes, and rectify model misbehaviors.
on these datasets, their performance can degrade drastically when deployed in-the-wild, due to
distribution shifts (Koh et al., 2021; Wiles et al., 2022). Yet most existing model diagnosis methods
require visual examples of failure modes (e.g., present in the test set) to discover them. As a result,
using these methods is reliant on efforts to collect large-enough datasets to cover all data distributions
and potential failure modes of interest, which is often impractical or infeasible.

The goal of our work is to circumvent this need to collect test data representing all data distributions
of interest, and instead use natural language input to diagnose vision classifiers. It is often easier
to generate a set of diverse natural language inputs by combining known attributes and prompt
generators than to collect a set of image inputs representing the same desired concepts. We observe
that vision classifiers trained on image embeddings from a shared image-text embedding space
suggest the possibility of leveraging text embeddings as a proxy for image embeddings. Multi-modal
contrastive losses are frequently used to learn such shared embedding spaces. However, while these
losses encourage image and text embeddings to be closer for aligned pairs than for mismatched pairs,
there is no guarantee that in practice, using text embeddings as input into a vision classifier trained on
the image embeddings will result in the same predictions. In this work, we first verify that text inputs
can indeed work as good proxies to image inputs trained on a shared image-text embedding space
obtained through contrastive learning. We refer to this as cross-modal transferability.

Based on the phenomenon of cross-modal transferability, we then present DrML for Diagnosing and
Rectifying Vision Models using Language. We show that DrML can use language to diagnose vision
models in two different ways: discovering error slices including concepts for which we have no
visual data, and identifying attributes that have the greatest impact on model predictions. Finally, we
present a method that uses language to rectify undesirable behaviors without requiring the collection
of more visual data. Figure 1 illustrates our framework for diagnosing and rectifying vision models
using language. On three image datasets representing the three most common types of model failure
modes, we demonstrate that DrML can effectively identify error slices and influential attributes, and
can further rectify these model failure modes using language (Appendix A).

2 Approach

We first define basic notations used in this paper. Given a pre-trained multi-modal contrastive model,
along with an image X ∈ X or text Y ∈ Y as input, we can obtain their l2-normalized embeddings x
or y from the image encoder fx ∶ X ↦ Rd or the text encoder fy ∶ Y ↦ Rd, respectively, where d is
the dimension of the shared multi-modal embedding space. We can build classifiers h ∶ Rd

↦ C such
as a linear layer or multi-layer perception on the shared embedding space to predict the label c ∈ C
given an image embedding or text embedding. We focus on the case of vision classifiers trained using
image embeddings.
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2.1 Text Embeddings as Proxies for Image Embeddings

The core of our work hinges on the ability to use text as a proxy for image inputs, thereby enabling
us to use language to diagnose vision models. Here we describe our approach to analyze if this is
feasible in practice — are text inputs good proxies for images in contrastive representation space?

Cross-modal Transferability. To answer the question, we first define cross-modal transferability.
Let PD be the joint data distribution over image-text pairs. For X,Y ∼ PD, we denote x = fx(X)
and y = fy(Y ) the corresponding image and text embeddings respectively. We say that a vision
classifier h achieves cross-modal transferability when it outputs similar predictions on x and y. In
other words, the difference across the prediction pair is small:

Ex,y[D(h(x), h(y))] ≈ 0,

where D(⋅, ⋅) measures the difference between predictions, e.g. the 0-1 loss D(u, v) = 1u≠v .

Modality Gap. While intuition suggests that embeddings of a matched image-caption pair should be
close, recent work shows instead that the embeddings are approximately clustered per modality (Liang
et al., 2022). They refer to the distance between these clusters as the modality gap. We define the
individual-level modality gap g as the difference between image and text embeddings for a single
pair, and the class-level gap gc as the average difference between image and text embeddings for a
given class c ∈ C. Formally, the modality gap definitions are written as:

g = x − y and gc = xc − yc, where
xc = EX∼PD(X∣c)[fx(X)], yc = EY ∼PD(Y ∣c)[fy(Y )].

Modality Gap Geometry. We take a closer look at the modality gap geometry across a range of
multi-modal contrastive models and datasets, presented in detail in Section A.2, and empirically find
that the following hold true:

1. The modality gap between corresponding image and text embeddings can be approximated by a
constant vector, particularly at the class level.

2. The modality gap is orthogonal to the span of image embeddings and text embeddings, and
image embeddings and text embeddings have zero mean in the subspace orthogonal to the
modality gap.

Cross-modal Transferability under Modality Gap. The above findings with respect to the geometry
of the modality gap indicate that the classifier input between training and cross-modal evaluation
only differs in a constant g, i.e., h(x) ≈ h(y + g). Intuitively, since the modality gap g is an
orthogonal constant to the span of embeddings, the weight matrix of the learned classifier should
also be orthogonal to g. Hence the prediction of the classifier is not affected by g. This intuition
explains why we observe strong cross-modal transferability under modality gap in practice, across
different multi-modal contrastive models trained on different datasets. These results are presented in
Section A.2. In Appendix C.1, we further theoretically prove that a linear classifier trained with a
regularized quadratic loss is guaranteed to be orthogonal to the modality gap and hence achieves
cross-modal transferability.

Cross-modal Transferability by Closing the Modality Gap. The observation that the modality gap
approximates a constant provides us another perspective to achieve cross-modal transferability — by
closing the modality gap so that there is no inconsistency when feeding embeddings from another
modality. We propose a simple technique to close the modality gap. During training, instead of
feeding x to the model h, we feed it with x − Ex[x]. During cross-modal evaluation, we feed
y − Ey[y] instead of y. With this strategy, we close the gap and observe additional improvements in
cross-modal transferability compared to training with the gap.

2.2 Diagnosing Vision Models using Language

Having established that text embeddings can be good proxies for image embeddings (Section 2.1 and
A.2), we now describe DrML, which uses natural language inputs for diagnosing vision classifers.

Discovering Error Slices through Language. Deep learning models often make systematic errors
on subgroups of inputs with similar attributes, referred to as error slices and formally defined as:

S = {S ⊆ X ∣e(S) ≫ e(X )},
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where X is a test set of images and e(⋅) is the model’s error rate on the set of input images. However,
collecting a large enough test set that covers different image distributions is a fundamental challenge.
The collected test set often only covers a small percentage of model failure modes (i.e., error slices)
in the wild. In contrast, language inputs are easy to generate.

Our proposed method, DrML, is capable of discovering error slices through language inputs. DrML
works as follows: 1) We define an attribute set A related to the task; 2) Given a specific attribute
subset F ⊆ A, we use different prompt generators p ∈ P ∶ 2A ↦ Y to map attribute combinations to
text inputs. In this way, we can combine a wide range of attributes with different prompts to collect a
diverse and novel set of text inputs. The generated text set Y is typically much more diverse than the
available image test set X , allowing the discovery of more comprehensive and unseen error slices.

Importantly, DrML has two distinctive benefits over the typical approach of using an image test set.
First, DrML only requires minimal effort to define a meaningful set of attributes to generate the input
set, circumventing the human cost of data collection. Second, the combination of defined attributes
naturally defines human-interpretable data slices, whereas image-based slice discovery methods do
not directly provide a text summary of the error slice.

Identifying Influential Attributes through Language. Interpreting what attributes influence model
predictions is crucial for understanding why models fail. Since language is directly interpretable
by humans, we perform counterfactual analysis using language to understand which attributes or
concepts most impact model predictions. With A defined as the attribute set, we aim to identify a
subset of attributes that significantly influences model predictions to any given class c:

Ac = {a ∈ A∣sc(a) ≫ 0},
where sc(⋅) is the influence of an attribute to class c. We measure the influence by Shapley value,
which computes average prediction change with the presence and absence of this attribute:

sc(a) = ∑
F⊆A\{a}

∣F∣!(∣A∣ − ∣F∣ − 1)!
∣A∣! (pc(F ∪ {a}) − pc(F)),

where pc(⋅) is the average predicted probability of class c on a set of inputs with certain attributes.

With natural language, we can easily compose a large set of inputs with and without that attribute and
feed them to the model to calculate the influence. For example, to compute the influence of attribute
“ocean" on class “waterbird", we can generate various text inputs such as “A photo of species on
the ocean" and “A photo of species", and compute the average difference of the model predicted
probabilities of “waterbird". Note that it is particularly challenging to identify influential attributes
using image inputs because it requires an extensive collection of images with attribute annotations.

2.3 Rectifying Vision Models using Language

In addition to model diagnosis, our finding also allows us to further rectify vision classifiers through
language. Based on cross-modal transferability, we propose a simple method that continues to train
the vision model using synthesized text slices.

Given the error slices S = {S ⊆ X ∣e(S) ≫ e(X )} discovered, we aim to rectify model performances
on these error slices by minimizing ∣S∣. For each S ∈ S, we generate a large set of natural language
inputs related to this slice YS through attribute composition and prompt manipulation, and continue
training the model on these inputs YS .

3 Conclusion

Our work reveals a valuable advantage of using vision classifiers built on top of multi-modal
embedding spaces learned through contrastive learning – the ability to diagnose and rectify the
vision classifiers using natural language inputs. We first use a combination of theoretical analysis
and experimental findings to verify that cross-modal transferability exists; namely, that text inputs
can act as good proxies for image inputs. This then allows us to propose and validate a framework
for diagnosing and rectifying vision classifiers using natural language inputs. Our work suggests
promising new directions both for achieving reliable and trustworthy computer vision models, and
for the use of cross-modal transferability in other problem domains.
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Overview of Appendix

In this appendix, we supplement additional details of experiments, theory, datasets, and baselines.

• In Appendix A, we demonstrate that text embeddings are good proxies for image embeddings
in multi-modal contrastive representation space. Based on that, we demonstrate how DrML
successfully diagnose and rectify models on three datasets representing three typical errors.

• In Appendix B, we show how our work is related to many works in different fields and we
provide a thorough discussion.

• In Appendix C, we provide a theoretical proof of cross-modal transferability given the
modality gap, additional cross-modal transferability results on MS-COCO and ImageNet,
and the visualization of the modality gap.

• In Appendix D, we provide details of four datasets (MS-COCO, Waterbirds, FairFace, and
dSpritesV) used in our experiments, including data preprocessing, attributes, and prompts.
We also provide the model and experimental details.

• In Appendix E, we provide two baseline methods. First, we present the result using text-to-
image generation for model diagnosis, which sometimes fails to generate fidelity images
given text prompts. Second, we present the baseline method for slice discovery using
DOMINO, which fails when error slices are absent in the dataset.

A Experiments

In this section, we first demonstrate that text embeddings are good proxies for image embeddings
in multi-modal contrastive representation space (Section A.2). Based on that, we demonstrate how
DrML successfully discovers error slices (Section A.3), identifies influential attributes (Section A.4),
and further rectifies model misbehaviors on three datasets (Section A.5).

A.1 Experimental Details

Model Architecture. We use CLIP (Radford et al., 2021) as the shared multi-modal embedding
space. For classifiers built on CLIP’s embeddings, we use linear layers and multi-layer perceptrons.

Datasets. For cross-modality transferability (Section A.2), we use the MS-COCO dataset (Lin et al.,
2014), which includes both captions and object annotations for each image. The task is a multi-label
classification problem of predicting the presence of 80 objects based on images or captions. For model
diagnosis and rectification, we simulate the three common types of model failures. For spurious
correlation, we use the Waterbirds dataset (Sagawa et al., 2020) which asks a model to classify if a
given bird image is a waterbird or a landbird. The training data contains a spurious correlation between
bird species and backgrounds — 95% of waterbirds appear in the water, and 95% of landbirds appear
on the land. For underrepresented data, we use FairFaces (Karkkainen & Joo, 2021) which contains
face images from 9 age groups and 7 race groups. The task is gender classification. To simulate
the underrepresentation of minority groups, we sample races in proportion to the demographics of
the state of Montana for our training set. For unseen data, we use dSpritesV (Matthey et al., 2017)
which contains images of shapes with different colors, sizes, and positions. The task is to classify
the shape in an image. To simulate errors caused by unseen data, we only use images with orange
triangles or green squares during training. More details are shown in the Appendix D.

A.2 Are Text Embeddings Good Proxies for Images Embeddings?

We have provided theoretical explanations in Section 2.1 that a classifier’s boundary is transferable
across modalities if the modality gap satisfies certain geometric conditions. Here we first verify these
conditions and then show empirically that closing the modality gap can improve transferability.

Modality Gap Geometry. In Table 1, we first show that the modality gap can be well approxi-
mately by a constant vector. We verify this by computing distributions over ∥g∥ (magnitude) and
cos(g,Eg[g]) (direction). For instance, on MS-COCO, the class-level gaps between image and text
embeddings extracted from CLIP (ViT-B/32) have almost the same magnitude (0.88 ± 0.04) and
direction (cosine similarity 0.94 ± 0.04). We then show that the modality gap is orthogonal to the
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Model Magnitude Direction Orthog- Center
Individual Class Individual Class onality

CLIP COCO (2021) 1.18 ± 0.03 0.88 ± 0.04 0.70 ± 0.06 0.94 ± 0.04 0.00 ± 0.06 0.00 ± 0.02
CLIP ImageNet (2021) - 1.00 ± 0.02 - 0.83 ± 0.05 0.00 ± 0.06 0.00 ± 0.03
ConVIRT (2022) 1.22 ± 0.10 - 0.67 ± 0.09 - 0.02 ± 0.10 0.00 ± 0.02
VideoCLIP (2021) 1.35 ± 0.03 - 0.79 ± 0.04 - 0.00 ± 0.06 0.00 ± 0.02
CLASP (2021) 1.33 ± 0.04 - 0.79 ± 0.12 - 0.03 ± 0.13 0.00 ± 0.02

Table 1: Geometry analysis of modality gap for various multi-modal contrastive representation
spaces. The modality gap approximates a constant vector, indicated by the magnitude and direction
distributions. Modality gap is also orthogonal to the span of embeddings from two modalities, and
embeddings’ centers for both two modalities are zero vectors in the subspace orthogonal to the gap,
indicated by the orthogonality and center distributions. Based on our theoretical analysis, these
findings suggest that cross-modal transferability is widely established in multi-modal contrastive
learning. ± connects mean and standard deviation.

Modality Gap Model Evaluation on Image Evaluation on Text Consistency↑Loss↓ mF1↑ MF1↑ Loss↓ mF1↑ MF1↑

- Random 0.6939 0.0655 0.0443 0.6938 0.0696 0.0437 0.8644

Default Linear 0.0501 0.7276 0.6790 0.1188 0.5642 0.5429 0.9637
MLP 0.0480 0.7523 0.7158 0.0888 0.6350 0.6135 0.9789

Closing Linear 0.0498 0.7280 0.6777 0.0719 0.6554 0.6168 0.9842
MLP 0.0483 0.7495 0.7130 0.0885 0.6503 0.6358 0.9806

Table 2: Cross-modal transferability in multi-modal contrastive representation learning. We
train a classifier using CLIP’s image embeddings and test the trained classifier using text embed-
dings on the MS-COCO multi-label classification dataset. Despite the modality gap, classification
boundaries learned from one modality are transferable to another modality. Closing the modality gap
further improves cross-modal transferability without harm to in-modal evaluation. Notations: mF1 -
Micro F1, MF1 - Macro F1, Random - A randomly initialized linear classifier.

span of image embeddings and text embeddings, and embeddings have zero mean in the subspace
orthogonal to modality gap. We verify this by computing distributions over cos(x − Ex[x],Eg[g])
(orthogonality) and Ex[x − x

T
g
′
g
′]i (center), where g

′
= Eg[g]/∥Eg[g]∥ and i ∈ [d]. The

subscript i denotes indexing the i-th dimension of the vector. This is supported by the near-zero
means with low standard deviations in “orthogonality" and “center" columns. Our findings here show
that the assumptions required by our theory of cross-modal transferability (Section 2.1) hold true in
practice across various datasets and contrastive multi-modal models, suggesting that cross-modal
transferability should be a pervasive phenomenon in multi-modal contrastive learning.

Cross-modal Transferability. Table 2 shows the image-to-text transfer results on the MS-COCO
validation set. Based on our theory, we indeed find that cross-modality transferability is possible
regardless of the modality gap. For instance, we find that an image-embeddings-trained linear
classifier capable of achieving 67.90% macro F1 score can maintain 54.29% macro F1 score using
text embeddings as inputs, and the consistency between predictions using images and texts is
96.37%. Similarly, text-to-image transfer is also possible, which is shown in Appendix Table 7.
While there exists slight degradation in performance under cross-modal evaluation, the difference in
performance is relatively small, and the cross-modal transfer performance is much higher than random
classification. The same finding is observed when using multi-layer perceptrons that learn non-linear
features. As shown in the bottom half of Table 2, closing the modality gap further improves cross-
modal transferability. The linear classifier achieves 9.12%, 7.39%, and 2.05% absolute improvements
on micro F1, macro F1, and prediction consistency for image-to-text transfer without harm to
in-modality evaluation. The improvements using MLP are smaller but consistent.

Are Generated Language Prompts Good Predictors of Error Slices? Here we further investigate
whether our generated language prompts are good predictors of the error rate of a given data slice. We
do so by looking at the correlation between performances on generated prompts and corresponding
image slices. A strong correlation indicates that we can perform error slice discovery using text as
proxies, which circumvents the challenges of collecting image data.
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Method Waterbirds FairFace dSpritesV
Spearman Pearson Spearman Pearson Spearman Pearson

(Base): Gen 1 Image (Prob) 0.5822 0.5608 0.3884 0.3361 0.3059 0.3119
(Base): Gen 20 Images (Prob) 0.6034 0.5938 0.4288 0.5411 0.4557 0.5309

(1): Generate 1 Text for Slice 0.4167 0.4355 0.0801 0.0957 0.6278 0.6723
(2): (1) + Use Label Probability 0.5899 0.5773 0.2065 0.1760 0.7071 0.7481
(3): (2) + Prompt Engineering 0.6462 0.6721 0.5669 0.7024 0.6998 0.7595
(Ours): (3) + Prompt Ensemble 0.6465 0.6776 0.5614 0.7227 0.7028 0.7918

Table 3: Correlation analysis of model performance on image and text slices. Correlation can be
improved by using label probability instead of label accuracy on text predictions, generating better
text through prompt engineering and ensemble. Our approach outperforms the baseline text-to-image
generation model by a large margin. The best or near-best results are bolded.

We treat each attribute subset F ⊆ A as a slice. For each slice, we generate a set of text inputs
YF using prompt generators P and select all the images XF with attributes F . We compute the
Spearman and Pearson correlation between model performances on YF and XF . Table 3 shows
strong correlation between image and text slices. Furthermore, correlation can be improved by: 1)
using the average probability of the label on text predictions instead of accuracy, 2) generating better
text inputs via prompt engineering which composes attributes into a more fluent sentence, and 3)
prompt ensemble that uses different prompts to generate more diverse inputs (details in Appendix D).

As baselines for comparison, we use the state-of-the-art text-to-image generation model (Rombach
et al., 2022) t ∶ Y ↦ X to generate a set of (we use 1 or 20 in our experiment) images X ′

F from text
prompts YF and compute correlations between X ′

F and XF . Our method outperforms this baseline
by a large margin and does not utilize significant computational time and cost typically required for
the image generation process. Samples of the generated image samples are shown in Appendix E.
Even while significant progress has been made in text-to-image generation, generating high-fidelity
images that maintain the original semantics is still challenging.

In summary, combining the empirical findings presented in this section and the theoretical results
in Section 2.1, we show that text inputs can act as good proxies for image inputs, enabling us to
diagnose vision classifiers using generated language prompts.

A.3 Discovered Error Slices

The strong correlation between the performances on text and image slices allows us to confidently run
image slice discovery algorithm using text inputs. In this study, we use a simple error slice discovery
method of sorting slices by their performances. We further marginalize attributes by merging similar
slices into larger slices. In Table 4, we summarize the most essential discovered error slices by our
language-based approach on the three datasets, each representing one of the three typical model
failure patterns under distribution shifts (Wiles et al., 2022).

For Waterbird, the top identified error slices are waterbirds in land and landbirds in water, which
correctly corresponded to errors are caused by spurious correlations present in the dataset. For
FairFace, the African American population is among the top identified error slice, which also reflects
their underrepresentation in our training set. For dSpitesV, our method correctly identifies green
triangles and orange square as critical error slices. Additionally, pink triangle slices are also correctly
identified, since they were never seen in the training data. By using images to verify our discovered
slices, our method not only correctly identifies the most critical error slices but also accurately predicts
the slice performances on images.

In Appendix E, we report results from the state-of-the-art slice discovery baseline
DOMINO (Eyuboglu et al., 2022). When evaluated using datasets with the same distribution
as the training set, DOMINO can only discover slices present in the dataset, and could not discovery
errors caused by distribution shifts.

A.4 Identified Influential Attributes

In Table 5, we report the most influential attributes to a specific class on the same three datasets. These
attributes provide a high-quality interpretation of how models predict and why they fail. For example,
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Waterbirds FairFace dSpritesV
Slice Text Image Slice Text Image Slice Text Image

Wbird in L 0.3258 0.3233 Black 0.9134 0.8997 Green triangle 0.1641 0.0616
Lbird in W 0.7029 0.6524 Indian 0.9268 0.9446 Orange square 0.2990 0.0337
Wbird in W 0.9306 0.9549 Asian 0.9305 0.9381 Pink triangle 0.5044 0.9861
Lbird in L 0.9957 0.9979 White 0.9427 0.9597 Red triangle 0.5651 0.9954

Table 4: Discovered error slices using language. With the images used for validation, our method
succeeds in discovering important error slices (bolded) and accurately predicts model performances
on image slices. Notations: Image - model accuracy using real image inputs, Text-predicted accuracy
using text inputs as a proxy, W - water, L - land.

one of the most influential attributes for waterbird classification is “ocean" with an influence value
of 0.3062, indicating that the model predicted probability of waterbird increases by 0.3 on average
when “ocean" is present in a bird image. Since the attribute “place" should not affect predictions, this
shows an obvious error of the model. Similar findings apply to the attribute “color" for dSpitesV. But
what is more interesting is that the color “pink" is never seen during training but will bias the model
to predict “square" with 0.1 increased probability. On FairFace, no attribute is found to significantly
influence model prediction; thus, no obvious spurious correlations were learned.

Waterbirds (waterbird) FairFace (female) dSpritesV (triangle)
Attribute Influence Attribute Influence Attribute Influence

Place

Ocean 0.3062

Age

Very old 0.0229

Color

Orange 0.3736
Lake natural 0.0713 Young 0.0161 Red -0.0470
Forest broadleaf -0.1540 Little -0.0079 Pink -0.1181
Bamboo forest -0.1931 Infant -0.0171 Green -0.3321

Table 5: Identified the top 2 most positively and negatively influential attributes using language.
These attributes provide insights into how models predict and why they fail.

A.5 Rectified Model Misbehaviors

In Table 6, we report performances of original models and rectified models. On both Waterbirds
and FairFace dataset, our simple method of continue training the model on text inputs significantly
improves model performances on error slices with minor influences on other slices. We also perform
ablation by only training the model on all the language inputs from scratch, and find that continuing
to train the pre-trained image model achieves better results, but even training only with language can
also work reasonably.

Our approach rectifies model misbehaviors caused by spurious correlation and underrepresented data
by correcting the data bias. Another series of methods to tackle these errors are robust training
techniques, such as GroupDRO (Sagawa et al., 2020), which explicitly optimizes each slice’s
performance during training. While GroupDRO performs similarly to ours, it requires attribute
annotations on images, which is highly time-consuming and cost-prohibitive for most real-world
applications. Moreover, GroupDRO cannot fix errors on unseen data, while ours can.

Waterbirds FairFace
Slice Original Rectify Lonly GDRO Slice Original Rectify Lonly GDRO

Wbird in L 0.3233 0.5564 0.5639 0.7368 Black 0.8997 0.9075 0.8920 0.9017
Lbird in W 0.6524 0.8271 0.7747 0.8155 Asian 0.9381 0.9390 0.9290 0.9384
Wbird in W 0.9549 0.9700 0.9023 0.9474 Indian 0.9446 0.9439 0.9301 0.9453
Lbird in L 0.9979 0.9893 0.9443 0.9443 White 0.9597 0.9626 0.9424 0.9588

Table 6: Rectified model performances on discovered error slices. We continue training models
on language inputs corresponding to error slices (bolded) and observe significant performance
improvements on these slices. Notations: Lonly - training from scratch with only language inputs of
all the slices, GDRO - GroupDRO (not directly comparable because attribute annotations on images
are required), W - water, L - land.
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B Related Work & Discussion

Multi-modal Contrastive Learning. Many recent works in vision-language contrastive learning,
such as CLIP (Radford et al., 2021), ALIGN (Jia et al., 2021), and Florence (Yuan et al., 2021), have
leveraged large image-caption datasets to obtain embedding spaces that capture rich visual and textual
features. As a result, the learned image and text encoders are demonstrated to be strong uni-modal
classifiers. In this work, we show how vision models obtained through multi-modal contrastive
learning offer another significant advantage — model diagnosis and rectification.

Multi-modal Contrastive Representation Space Geometry. Although multi-modal contrastive
learning minimizes the distance between embeddings for matched pairs, prior work has shown that
embeddings from two modalities are distinctively separated in the embedding space, which is referred
to as modality gap (Liang et al., 2022). In this work, we further analyze the geometry of the modality
gap and connect it to the cross-modal transferability phenomenon. Our finding is related to several
recent works built on multi-modal contrastive representation spaces, such as DALL-E 2 (Ramesh
et al., 2022), ClipCap (Mokady et al., 2021), and several other models (Cohen et al., 2022; Gal et al.,
2022). They found that trained models can directly take cross-modal embeddings but are worse than
taking same-modal embeddings. We not only explain this but provide a straightforward solution to
improve transferability, which can be applied to all future works built upon multi-modal embeddings.

Slice Discovery. Many recent works aim to understand model systematic errors by finding subsets of
inputs with similar characteristics where the model performs significantly worse. This is referred to
as slice discovery (Chung et al., 2019; Singla et al., 2021; d’Eon et al., 2022; Eyuboglu et al., 2022;
Jain et al., 2022a). However, these algorithms fail to address the most fundamental challenge for slice
discovery — the lack of data. These works are only able to find errors that exist in the dataset. Our
work circumvents the data challenge by performing slice discovery on the text space.

Interpretation. Many model interpretation methods have been proposed, including attribution-
based (Ribeiro et al., 2016; Lundberg & Lee, 2017; Shrikumar et al., 2017) and concept-based (Ghor-
bani et al., 2019b; Koh et al., 2020). While these methods help in understanding the model prediction
process, the outputs are complicated for humans to understand and inconsistent across models and
algorithms (Ghorbani et al., 2019a; Jain et al., 2022b). Others require modifications in model archi-
tectures or complex post-processing of model outputs (Ghorbani et al., 2019b; Koh et al., 2020). In
contrast, language is inherently understandable by humans and simple to construct. In this work, we
interpret the model prediction process by identifying the most influential attributes using language,
which provides us meaningful interpretations without pre-processing or post-processing.

Algorithm Fairness. Ensuring algorithmic fairness is key to avoiding potential harm to our soci-
ety (Hovy & Spruit, 2016; Zou & Schiebinger, 2018). Methods for improving the fairness of machine
learning algorithms is an ongoing active area of work (Bolukbasi et al., 2016; Sagawa et al., 2020;
Sohoni et al., 2020; Ramaswamy et al., 2021; Liu et al., 2021). Among these, a notable solution is to
correct for bias within data, as model bias stems from data bias. In this work, we show that language
can be used to correct data bias by generating additional data, hence improving model fairness.

Limitations. While our work introduces a novel and effective approach for diagnosing and rectifying
visual classifiers, there are additionally important areas for future work. First, since we assume vision
classifiers are built using an image-text embedding space trained through multi-modal contrastive
learning, our method can also inherit limitations from the contrastive model and pre-training dataset.
For example, although we aim to leverage large and general-purpose image-caption datasets in
pre-training, the encoders may still not appropriately embed out-of-distribution examples far from
what the contrastive model was trained on. Misaligned or inaccurate pre-training data can also affect
encoder quality. Additionally, it is challenging to diagnose low-level visual attributes that are difficult
to describe in words, such as texture or object orientation (Leclerc et al., 2021). We consider these
fruitful directions for future work. Our method will also benefit from improvements in multi-modal
contrastive pre-training as these methods are improved.
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C Cross-modal Transferability

C.1 Theoretical Proof for Cross-Modal Transferability

In this section, we expand and formally discuss what is in section 2.1. We theoretically explain
the intriguing cross-modal transferability phenomenon. We explain why the modality gap in the
multi-modal representation space does not prevent cross-modal transferability because of the unique
geometry of the modality gap.

For class c ∈ [∣C∣], let ec ∈ {0, 1}∣C∣ be a one-hot vector such that the c-th dimension is 1 and other
dimensions are 0. We define the following balanced target label vector ẽc ∶= ec − Ec′[ec′], where
the expectation is over the distribution of classes on the image domain.

We consider learning a linear function hW (u) = Wu, where W ∈ R∣C∣×d is the weight matrix and
u ∈ Rd is the image or text embedding. Given hW (u) and a label c, we consider the following
quadratic loss:

Lquad(hW (u), c) = ∥hW (u) − ẽc∥2
2.

The following proposition shows that when the gap between image and caption embeddings is the
same for all image-caption pairs and is orthogonal to the embedding span for each modality, a linear
model trained to minimize the quadratic loss on one modality transfers to the other modality without
loss of accuracy.

Proposition C.1. Suppose there exists a gap vector g ∈ Rd such that every pair of image embedding
x and caption embedding y satisfies g = x − y. Suppose the gap g is orthogonal to the span of
image features (i.e., gT

x = g
T
x
′ for two image embeddings x and x

′), and the image features have
zero mean in the subspace orthogonal to g (i.e., Ex[Πg(x)] = 0 where Πg(x) projects the vector x
to the subspace orthogonal to g). Then, for any λ > 0 and linear function hW (u) that minimizes the
regularized quadratic loss Ex,c[Lquad(hW (x), c)] + λ∥W∥2

F , we have that

Ex,c[Lquad(hW (x), c)] = Ey,c[Lquad(hW (y), c)].

Thus, cross-modal transferability happens.

Proof of Proposition C.1. Since g
T
x = g

T
x
′ for all image features x and x

′, we can find a τ ∈ R
such that x = Πg(x) + τg. Notice that

Ex,c[Lquad(hW (x), c)] = Ex,c[∥Wx − ẽc∥2
2]

= ∥Ex[Wx] − Ec[ẽc]∥2
2 + Ex,c[∥(Wx − ẽc) − (Ex[Wx] − Ec[ẽc])∥2

2]
= ∥Ex[Wx] − Ec[ẽc]∥2

2 + Ex,c[∥WΠg(x) − ẽc∥2
2]

= ∥WEx[Πg(x)] + τWg − Ec[ẽc]∥2
2 + Ex,c[∥WΠg(x) − ẽc∥2

2].

Since Ex[Πg(x)] = 0 and Ec[ẽc] = 0, the first term reduces to τ
2∥Wg∥2

2. Notice that the second
term in the loss decomposition only involves W ’s components that are orthogonal to g. Thus the
minimization of the second term is independent of the minimization of the first term. As a result, any
W that minimizes the regularized quadratic loss must satisfy Wg = 0.

For a pair of image and text features x,y, since x−y = g and Wg = 0, we have hW (x) = hW (y).
Hence we know their quadratic losses must be the same, which finishes the proof.

C.2 Additional Cross-modal Transferability Results

MS-COCO. In the main paper, we only report image-to-text transfer, where we train a classifier
on image embeddings and test on text embeddings. Here we report the full results, including
text-to-image transfer, in Table 7.
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Model Transfer In-Modal Evaluation Cross-Modal Evaluation Consist
M Loss↓ mF1↑ MF1↑ M Loss↓ mF1↑ MF1↑ ency↑

Random - I 0.6939 0.0655 0.0443 T 0.6938 0.0696 0.0437 0.8644

Default Modality Gap

Linear I → T I 0.0501 0.7276 0.6790 T 0.1188 0.5642 0.5429 0.9637
T → I T 0.0580 0.6983 0.6631 I 0.1572 0.5320 0.4833 0.9527

MLP I → T I 0.0480 0.7523 0.7158 T 0.0888 0.6350 0.6135 0.9789
T → I T 0.0572 0.7119 0.6826 I 0.0750 0.6359 0.5929 0.9795

Closing Modality Gap

Linear I → T I 0.0498 0.7280 0.6777 T 0.0719 0.6554 0.6168 0.9842
T → I T 0.0578 0.6988 0.6628 I 0.0660 0.5782 0.4767 0.9858

MLP I → T I 0.0483 0.7495 0.7130 T 0.0885 0.6503 0.6358 0.9806
T → I T 0.0573 0.7073 0.6763 I 0.0685 0.6603 0.6173 0.9801

Table 7: Cross-modal transferability in multi-modal contrastive representation learning. We
train a classifier using CLIP’s image embeddings and test the trained classifier using text embeddings,
vice versa, on the MS-COCO multi-label classification dataset. Despite the modality gap, classifica-
tion boundaries learned from one modality are transferable to another modality. Closing the modality
gap further improves cross-modal transferability without harm to in-modal evaluation. Notations: I -
Image, T - Text, M - Modality, mF1 - Micro F1, MF1 - Macro F1, Random - A randomly initialized
linear model.

ImageNet. In the main paper, we report cross-modal transferability on the MS-COCO dataset. Here
we report cross-modal transferability results using the ImageNet dataset (Deng et al., 2009). We split
ImageNet validation set into 40K / 10K images for training / evaluation. We apply OpenAI CLIP’s
80 prompts to 1000 ImageNet class names and get 80K texts, and we split them into 64K / 16K for
training / evaluation. All the experimental settings are the same as MS-COCO experiments. Results
are shown in Table 8.

Again, despite the modality gap, we find that the classification boundaries learned from one modality
are transferable to the other modality. When a linear classifier is trained on image embeddings and
achieves 70.86% image classification accuracy, directly feeding the text embeddings to the trained
classifier achieves 85.24% accuracy. The transfer from text to image is much worse than from image
to text, because the texts we used are generated from prompts and thus lack diversity to train a
classifier with good decision boundaries. Closing the modality gap improves the transferability in
most cases.

Split Image-to-Text Text-to-Image
Linear MLP Linear MLP

Default Modality Gap
In-Modal Evaluation 0.7086 0.6687 0.9974 0.9951
Cross-Modal Evaluation 0.8524 0.7758 0.4953 0.4552

Closing Modality Gap
In-Modal Evaluation 0.7048 0.6683 0.9978 0.9949
Cross-Modal Evaluation 0.8754 0.7892 0.5050 0.4438

Table 8: Cross-modal transferability in multi-modal contrastive representation learning using
the ImageNet dataset. We split ImageNet validation set 50K images to 40K / 10K for training and
evaluation. Texts are generated using OpenAI’s 80 prompts multiply by 1000 class names.

C.3 Modality Gap

Figure 2 shows the modality gap phenomenon in various multi-modal contrastive learning models,
where inputs from two modalities are embedded at arm’s length in their shared representation space.
This phenomenon is caused by the combined effect of model initialization and optimization. Deep
neural networks have the cone effect — encoders will only map inputs to a small cone of the entire
representation space. Therefore, two cones will be created for a multi-modal model with two encoders.
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As a sequence, the modality gap occurs at the initialization stage. During optimization, the contrastive
loss will preserve the gap due to mismatched data (Liang et al., 2022).

CLIP 
Natural Image - Text

VideoCLIP 
Natural Video - Text

ConVIRT 
Medical Image - Text

CLASP 
Amino-acid Sequence - Text

UMAP

SVD

UMAP 1

UM
AP 2

SVD 1

SVD 2

Figure 2: Modality gap for multi-modal contrastive learning. Embeddings from two modalities
are visualized using UMAP and SVD. Figure credit: Liang et al. (2022).

D Datasets and Experimental Details

In this section, we report details of four datasets: MS-COCO (Lin et al., 2014), Waterbirds (Sagawa
et al., 2020), FairFace (Karkkainen & Joo, 2021), and dSpritesV (Matthey et al., 2017), and details of
two major experiments.

D.1 Data Pre-processing

MS-COCO. We follow the standard MS-COCO dataset split, which includes 118K / 5K images
for training / validation. Each image is annotated with multiple objects from 80 categories and five
human-written captions. We randomly select one caption from five captions. Therefore, we have
118K / 5K image-caption pairs with multiple labels for training / validation.

Waterbirds. We follow the standard Waterbirds dataset split, which includes 4.8K / 1.2K images
for training / validation. Data samples can be viewed in Figure 5 and 6.

FairFace. We resample the training set using the demographics from the state of Montana, which
includes 92.8% White, 6.4% Indian, 0.5% Asian, and 0.3% Black. The final dataset contains 17K /
11K images for training / validation. Data samples can be viewed in Figure 5 and 6.

dSpritesV. We use our own scripts to reproduce a variant of the dSprites dataset and name it
dSpritesV. We use six colors (red, pink, orange, green, cyan, blue), four locations (upper left, upper
right, lower left, lower right), and three sizes (small, medium, large) to create triangles and squares
with a scale ranging from 0.8 to 1.2. Each attribute is uniformly sampled, and we synthesize 10K
images. We only use 80% orange triangle and 80% green square for training. Finally, it has 1.3K /
8.7K images for training / validation. Data samples can be viewed in Figure 5 and 6.

D.2 Attributes

Waterbirds. Two attributes are used: species (200 values) and places (4 places).
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FairFace. Three attributes are used: races (7 values), ages (9 values), and genders (2 values).

dSpritesV. Three attributes are used: colors (6 values), size (3 values), and shapes (2 values).

D.3 Prompt Engineering

Waterbirds. We use “{species}, {place}.” as the raw prompt, and “a photo of a {species} in the
{place}.” as the engineered prompt. Therefore, we can generate 200 × 4 = 800 text inputs.

FairFace. We use “{age adjective}, {race}, {gender}.” as the raw prompt, and “a photo of a {race}
{age adjective} {gender}.” as the engineered prompt. Therefore, we can generate 7 × 9 × 2 = 126
text inputs. The age adjectives are infant (0-2), little (3-9), teenage (10-19), young (20-29), adult
(30-39), middle-aged (40-49), senior (50-59), elderly (60-69), and very old (more than 70).

dSpritesV. We use “{size}, {color}, {shape}.” as the raw prompt, and “{size} {color} {shape}.” as
the engineered prompt. Therefore, we can generate 3 × 6 × 2 = 36 text inputs.

D.4 Prompt Ensemble

We use OpenAI CLIP’s 80 prompts (Radford et al., 2021) to augment text inputs by 80 times. Parts
of them are shown in Figure 3.

D.5 Experimental Details

Model Details. Unless explicitly stated, we use CLIP (ViT-B/32) for all experiments, encoding
images and texts in the same 512-dimensional space. Linear layer maps input dimension 512 to the
number of classes. Multi-layer perception uses the hidden size as 512.

Cross-modal Transferability Training Details. For each image-caption pair, we use CLIP’s image
and text encoder (Radford et al., 2021) to get its image embedding and text embedding. We do
not use image augmentation techniques during training and inference. We train the linear model or
multi-layer perception for 25 epochs using the Adam optimizer with a fixed learning rate of 0.001.
During training, CLIP’s image and text encoder are fixed. We pick the best model based on the lowest
validation loss on the training modality.

Classifiers Training Details. For each image in the dataset, we use CLIP’s image encoder (Radford
et al., 2021) to get its image embedding. We do not use image augmentation techniques during
training and inference. We train the linear model or multi-layer perception for 25 epochs using the
Adam optimizer with a fixed learning rate of 0.001. During training, CLIP’s image encoder is fixed.
We pick the best model based on the lowest validation loss on images.

Model Rectification Training Details. For each text from error slices generated by attribute
composition and prompt engineering, we use CLIP’s text encoder (Radford et al., 2021) to get its
text embedding. We continue training the pre-trained linear model or multi-layer perception for 10
epochs using the Adam optimizer with a fixed learning rate of 0.001. During training, CLIP’s text
encoder is fixed. We pick the best model based on the lowest validation loss on texts.

E Baselines

E.1 Language-based Vision Model Diagnosis Baseline: Text-to-Image Generation

In Figure 4, we show the baseline method to diagnose vision models using language — text-to-image
generation. The method generates real images to test models using the text-to-image generation
model.

From the results, we can understand why this baseline is worse than our method, which does not
require explicitly generating images. While significant progress has been made in the text-to-image
generation field, state-of-the-art text-to-image generation models (Rombach et al., 2022) still fail to
generate fidelity images.
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In addition, text-to-image generation is computationally expensive, requiring thousands of more
computations than our approach.

E.2 Error Slice Discovery Baseline: DOMINO

In Figure 5 and 6, we show the discovered error slices using the baseline slice discovery method,
DOMINO (Eyuboglu et al., 2022).

In real-world applications, it is unrealistic to assume a large set of labeled images from different
distributions is available. Therefore, the most critical challenge for slice discovery is data. In this
work, we circumvent the data challenge by using language to synthesize extensive test examples.

Overview of Contributions

In summary, our contributions are:

1. We present a theoretical explanation of when cross-modal transferability happens (Sec-
tion 2.1), and empirically verify that the assumptions required by the analysis is true in
practice across a range of multi-modal contrastive models and datasets (Section A.2).

2. We propose DrML, a framework for diagnosing vision models using natural language,
including error slice discovery and influential attribute identification. We empirically
validate DrML by simulating common types of failure modes using the Waterbirds (Sagawa
et al., 2020), FairFace (Karkkainen & Joo, 2021), and dSpitesV (Matthey et al., 2017)
datasets, and show the effectiveness of our method in identifying known error slices and
influential attributes.

3. We further demonstrate that DrML can rectify undesirable model behaviors and improve
model performance with respect to the identified error slices and influential attributes,
by fine-tuning the vision classifier using text embeddings constructed from the diagnosis
process.

Ethics Statement

One of the main contributions of our work is an approach for diagnosing and rectifying vision classi-
fiers trained using embeddings from a multi-modal contrastive model. We showcase experimental
results on identifying error slices and influential attributes. For example, our method can detect
failures caused by the lack of representation of certain races in the training set. In our FairFace
experiments, the prediction of gender (i.e., the label “female”) given an image was affected by race
(e.g., the race “black”). We further show that we can rectify this behavior using our approach. Hence,
we see our work as a contribution to the broader community concerned with model accountability
and model auditing, and to improving the responsible integration of AI into society.

However, it is also important to be aware of potential negative impacts brought about by our findings.
One can imagine an adversary who extends our approach and uses it to their advantage, perhaps
reinforcing racial or gender biases by fine-tuning a vision model using biased language prompts. Our
work also inherits limitations from the contrastive model and pre-training datasets used to obtain
the image and text encoders, as described in the Discussion section of our paper. We hope that this
statement raises awareness both of the importance of better model diagnosis and rectification methods
and of future directions of work to address limitations and potential negative impacts.

Reproducibility Statement

We provide open-source implementation of our work at https://anonymous.4open.science/
r/diagnosis/. The implementations will enable researchers to reproduce all the experiments
described here as well as run their own analyses on additional multi-modal models and datasets.
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openai_imagenet_template = [
lambda c: f"a bad photo of a {c}.",
lambda c: f"a photo of many {c}.",
lambda c: f"a sculpture of a {c}.",
lambda c: f"a photo of the hard to see {c}.",
lambda c: f"a low resolution photo of the {c}.",
lambda c: f"a rendering of a {c}.",
lambda c: f"graffiti of a {c}.",
lambda c: f"a bad photo of the {c}.",
lambda c: f"a cropped photo of the {c}.",
lambda c: f"a tattoo of a {c}.",
lambda c: f"the embroidered {c}.",
lambda c: f"a photo of a hard to see {c}.",
lambda c: f"a bright photo of a {c}.",
lambda c: f"a photo of a clean {c}.",
lambda c: f"a photo of a dirty {c}.",
lambda c: f"a dark photo of the {c}.",
lambda c: f"a drawing of a {c}.",
lambda c: f"a photo of my {c}.",
lambda c: f"the plastic {c}.",
lambda c: f"a photo of the cool {c}.",
lambda c: f"a close-up photo of a {c}.",
lambda c: f"a black and white photo of the {c}.",
lambda c: f"a painting of the {c}.",
lambda c: f"a painting of a {c}.",
lambda c: f"a pixelated photo of the {c}.",
lambda c: f"a sculpture of the {c}.",
lambda c: f"a bright photo of the {c}.",
lambda c: f"a cropped photo of a {c}.",
lambda c: f"a plastic {c}.",
lambda c: f"a photo of the dirty {c}.",
lambda c: f"a jpeg corrupted photo of a {c}.",
lambda c: f"a blurry photo of the {c}.",
lambda c: f"a photo of the {c}.",
lambda c: f"a good photo of the {c}.",
lambda c: f"a rendering of the {c}.",
lambda c: f"a {c} in a video game.",
lambda c: f"a photo of one {c}.",
lambda c: f"a doodle of a {c}.",
lambda c: f"a close-up photo of the {c}.",
lambda c: f"a photo of a {c}.",
lambda c: f"the origami {c}.",
lambda c: f"the {c} in a video game.",
lambda c: f"a sketch of a {c}.",
lambda c: f"a doodle of the {c}.",
lambda c: f"a origami {c}.",
lambda c: f"a low resolution photo of a {c}.",
lambda c: f"the toy {c}.",
lambda c: f"a rendition of the {c}.",
lambda c: f"a photo of the clean {c}.",
lambda c: f"a photo of a large {c}.",
lambda c: f"a rendition of a {c}.",
lambda c: f"a photo of a nice {c}.",
lambda c: f"a photo of a weird {c}.",
lambda c: f"a blurry photo of a {c}.",
lambda c: f"a cartoon {c}.",
lambda c: f"art of a {c}.",
lambda c: f"a sketch of the {c}.",
lambda c: f"a embroidered {c}.",
lambda c: f"a pixelated photo of a {c}.",

]

Figure 3: A subset of the 80 prompts form OpenAI we use to augment text inputs for prompt
ensembling.
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Well generated examples Poorly generated examplesText prompt

“A photo of a 
Chuck will Widow 

in the lake 
natural.”

“A photo of a 
Shiny Cowbird in 

the bamboo 
forest.”

Well-generated examples (columns 2-3) are realistic and correctly reflect the bird species and background
location described in the text prompts. Poorly generated images either do not include the bird species (column 4)

or are noticeably unnatural (column 5). Specifically, the top image in column 5 includes a bird with lobster
claws as its head — a rather unusual phenomenon in the real world

Well generated examples Poorly generated examplesText prompt

“The face of a 
white adult 
woman.”

“The face of a east 
asian teenage 

boy.”

Well-generated examples (columns 2-3) are realistic and correctly reflect the ethnicity and age group described
in the text prompts. Poorly generated images include more than one person (column 4), do not include the

person’s face (column 5 bottom), or are noticeably unrealistic (column 5 top). For instance, the top image in
column 5 includes a woman with arms protruding out of her chest, which is rare in the real world.

Well generated examples Poorly generated examplesText prompt

“Large green 
triangle.”

“Small red 
square.”

Well-generated examples (columns 2-3) correctly reflect the shape and color described in the text prompt. Poorly
generated images either include incorrect shapes (column 4-5 top) or are misinterpreted due to polysemy

(column 4-5 bottom). For instance, the phrase "red square" was misinterpreted by our model as a historic site in
Moscow.

Figure 4: Text-to-image generation results on Waterbirds, FairFace, and dSpitesV using the state-of-
the-art generation model (Rombach et al., 2022).
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1. a photo of the coast guard
2. a photo of coast guard
3. a photo of west coast guard

1. a photo of a horned owl
2. a photo of the forest
3. a photo of a redwood

1. a photo of the forest
2. a photo of a horned owl
3. a photo of a mammoth

Top 3 DOMINO Generated Text 
Descriptions For Each Slice 

Top 5 Images With the Lowest Correct Class 
Prediction Probability In Each Slice  
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For in-distribution Waterbird, the text descriptions generated from DOMINO do not elucidate which attributes
are causing misclassifications. In addition, some of the descriptions are incorrectly generated. For instance,

"coast guards" are not present in any of the photos in Slice 1.

1. a photo of an orphan girl
2. a photo of a young girl
3. a photo of our little girl

1. a photo of her sixteenth 
birthday

2. a photo of her eighteenth 
birthday

3. a photo of a young girl

1. a photo of a mysterious man
2. a photo of a compelling man
3. a photo of an undisclosed 

man

Top 3 DOMINO Generated Text 
Descriptions For Each Slice 

Top 5 Images With the Lowest Correct Class 
Prediction Probability In Each Slice  
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For in-distribution Fairface, DOMINO is unable to discover the correct error slices. Instead of slices for
minority groups, DOMINO discovered slices for the prevalent ethnic group in the dataset. Furthermore, the

generated descriptions failed to include the key attribute — race.

1. a photo of the slogan 
appears

2. a photo of the slogan
3. a photo of the masthead

1. a photo of outfielders
2. a photo of a masonic lodge
3. a photo of a masonic

1. a photo of height difference
2. a photo of a plumber
3. a photo of the alphabet

Top 3 DOMINO Generated Text 
Descriptions For Each Slice 

Top 5 Images With the Lowest Correct Class 
Prediction Probability In Each Slice  
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For in-distribution dSpritesV, DOMINO failed to discover the most critical error slices - slices with spurious
correlations (orange squares & green triangles) and slices with unseen data (pink triangle). The generated

descriptions also do not reflect images in the slices.

Figure 5: Discovered error slices on in-distribution Waterbirds, FairFace, and dSpitesV datasets
using the state-of-the-art slice discovery method DOMINO (Eyuboglu et al., 2022). DOMINO is
unable to discover most of the top error slices. The generated text descriptions often do not reflect
images in the slice accurately.
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1. a photo of the forest
2. a photo of a horned owl
3. a photo of a mammoth

1. a photo of a redwood
2. photo of the forest
3. a photo of the woodland

1. a photo of the forest
2. a photo of a horned owl
3. a photo of a mammoth

Slice 1

Slice 2

Slice 3
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Top 3 DOMINO Generated Text 
Descriptions For Each Slice 

Top 5 Images With the Lowest Correct Class 
Prediction Probability In Each Slice  

For out-of-distribution Waterbird, DOMINO was unable to generate text that clearly defines the source of
misclassification for each slice. Moreover, the some of the descriptions do not accurately describe the images.

For example, "mammoths" are never included in any images.

1. a photo of a boy
2. a photo of a small boy
3. a photo of a younger 

brother

1. a photo of an orphan girl
2. a photo of an adolescent 

girl
3. a photo of a creole girl

1. a photo of her eighteenth 
birthday

2. a photo of our little girl
3. a photo of lottie

Top 3 DOMINO Generated Text 
Descriptions For Each Slice 

Top 5 Images With the Lowest Correct Class 
Prediction Probability In Each Slice  
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For out-of-distribution Fairface, DOMINO is able to discover the some correct error slices. However, the
generated descriptions failed to provide any insights as to why the model fail for these slices. Specifically, the

generated descriptions do not include keywords for the race attribute.

1. a photo of national 
geographic society

2. a photo of orange juice
3. a photo of the upgrade logo

1. a photo of orange juice
2. a photo of an orange
3. a photo of a nickelodeon 

logo

1. a photo of the emerald
2. a photo of the emerald 

necklace
3. a photo of ginger ale

Top 3 DOMINO Generated Text 
Descriptions For Each Slice 

Top 5 Images With the Lowest Correct Class 
Prediction Probability In Each Slice  
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For out-of-distribution dSpritesV, DOMINO is able to discover slices with spurious correlation (orange squares
& green triangles). However, the generated text descriptions do not include attributes that contribute to the

spurious correlation. Additionally, DOMINO did not discover slices with unseen data (pink triangles).

Figure 6: Discovered error slices on out-of-distribution Waterbirds, FairFace, and dSpitesV datasets
using the state-of-the-art slice discovery method DOMINO (Eyuboglu et al., 2022). DOMINO was
able to capture some, but not all, error slices. Furthermore, artificially generating out-of-distribution
data for evaluation remains challenging in real-world settings.
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