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Abstract

Deep Neural Networks (DNNs) operating on non-Euclidean geometries have
recently demonstrated impressive performance across various machine-learning ap-
plications. Several studies have extended the attention mechanism to different man-
ifolds. However, most existing non-Euclidean attention models are tailored to spe-
cific geometries, limiting their applicability. On the other hand, recent studies show
that several matrix manifolds, such as Symmetric Positive Definite (SPD), Symmet-
ric Positive Semi-Definite (SPSD), and Grassmannian manifolds, admit gyrovector
structures, which extend vector addition and scalar product into manifolds. Lever-
aging these properties, we propose a Gyro Attention (GyroAtt) framework over
general gyrovector spaces, applicable to various matrix geometries. Empirically, we
manifest GyroAtt on three gyro structures on the SPD manifold, three on the SPSD
manifold, and one on the Grassmannian manifold. Extensive experiments on four
Electroencephalography (EEG) datasets demonstrate the effectiveness of our frame-
work. The code is available at https://github.com/ChenHu-ML/GyroAtt.

1 Introduction
Recently, DNNs over Riemannian manifolds, known as Riemannian neural networks, have garnered
increasing attention in various applications [26, 11, 61, 41, 13, 73, 53, 72, 18]. Commonly encoun-
tered manifolds include vector manifolds, such as hyperbolic [68] and spherical spaces [65], and
matrix manifolds, such as SPD [5], SPSD [9, 10], and Grassmannian manifolds [1]. Among these
non-Euclidean spaces, hyperbolic manifolds stand out due to the rich algebraic structure of gyrovector
spaces [67–69], which enables principled and convenient extensions of Euclidean deep learning to
hyperbolic manifolds [26, 61, 7]. In contrast, matrix manifolds offer a compelling trade-off between
structural expressiveness and computational feasibility [20]. As a result, neural networks defined
on matrix manifolds have emerged as appealing alternatives to their hyperbolic counterparts across
various applications [40, 51, 52, 14, 37]. Notably, recent studies [40, 50–52] have demonstrated that
several matrix manifolds, including SPD, SPSD, and Grassmannian, admit gyro structures, facilitating
the extension of existing neural network components to these manifolds [53].

Inspired by the success of attention mechanisms in DNNs [70, 32, 22], researchers have explored
their extensions to non-Euclidean geometries. Wherein, Gulcehre et al. [26] introduced attention to
the hyperbolic spaces based on the hyperboloid and Klein models, while Pan et al. [55] extended
attention to the SPD manifolds under the Log-Euclidean Metric (LEM). Wang et al. [72] further
adapted it to the Grassmannian manifolds using an extrinsic approach under the projection distance.
However, existing manifold-attention designs exhibit two key challenges: i) these designs are tailored
for specific manifolds and metrics, limiting their generalizability; ii) although their network layers,
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such as BiMap and ReEig in MAtt [55], and FrMap in GDLNet [72], preserve manifold constraints,
they are fundamentally numerical and only partially respect the underlying Riemannian geometry.

As self-attention serves as the prototype of other attention variants, this work extends it to non-
Euclidean settings. Leveraging the fact that several matrix manifolds admit gyro structures, we
propose GyroAtt, a general framework for self-attention over gyrovector spaces. Unlike previous
manifold attention approaches handcrafted for specific geometries [26, 55, 72], GyroAtt provides
a unified building paradigm for attention design across different matrix manifolds. Notably, by
intrinsically respecting Riemannian geometry and gyro algebra, GyroAtt generalizes fundamental
attention components, such as linear transformations, attention computation, and feature aggregation,
to gyrovector spaces. Specifically, we introduce gyro homomorphisms, extending linear transforma-
tions to gyrovector spaces. The attention scores are computed using a gyro distance-based function,
while feature aggregation is performed via the Weighted Fréchet Mean (WFM) [25], the manifold
analogue of the Euclidean weighted average. We instantiate GyroAtt on three gyro structures for
the SPD manifold, three for the SPSD manifold, and one for the Grassmannian manifold. Exten-
sive experiments on four EEG benchmarks show consistent improvements over geometry-specific
manifold-attention baselines; e.g., GyroAtt-SPSD outperforms MAtt [55] by 3.2% on the MAMEM,
while GyroAtt-SPD achieves 8.9% and 7.8% gains in inter-subject and inter-session settings on the
BNCI2014001. Our main contributions are summarized below:

• Generalizing attention to gyrovector spaces. This is the first attention framework that unifies
operations across diverse matrix manifolds through a common gyrovector space formulation,
enabling flexible changes in the underlying geometry within a shared network structure.

• Implementation on seven matrix gyrovector spaces. We implement GyroAtt across three
different matrix manifolds: three gyro structures on the SPD manifold, one on the Grassmannian
manifold, and three on the SPSD manifold. To the best of our knowledge, we are the first to
investigate attention mechanisms for the SPSD manifold.

• Empirical validation under EEG signal classification. We validate the effectiveness of
GyroAtt on four EEG benchmarks. Apart from its good performance, the optimal geometries
vary across different EEG tasks, demonstrating its efficacy and flexibility.

2 Preliminaries
This section reviews gyrogroups, gyrovector spaces, and their realizations on the SPD, Grassmannian,
and SPSD manifolds, together with WFM. For further details, please refer to [68, 69, 56, 5, 10, 8].

Gyrogroups and gyrovector spaces. Gyrogroups and gyrovector spaces generalize groups and
vector spaces, offering a powerful framework to analyze non-Euclidean geometries. A gyrogroup
equips a set (G,⊕) with a non-associative “addition” ⊕ whose failure of associativity is controlled
by a gyration gyr[·, ·]. Adding a scalar multiplication ⊗ that obeys vector-like axioms upgrades the
structure to a gyrovector space. A review of gyrogroups and gyrovector spaces is given in App. D.1.

SPD geometries. Let S++
d denote the space of d × d SPD matrices. When equipped with the

Affine-Invariant Metric (AIM) [56], LEM [5], and Log-Cholesky Metric (LCM) [45], S++
d induces

three gyrovector spaces with corresponding binary operations [52] ⊕ai, ⊕le, and ⊕lc, and associated
gyro distances [19] daispd(·), d

le
spd(·), and dlcspd(·), given in Tab. 1. Given P,Q ∈ S++

d , we denote
by logm(·) and expm(·) the matrix logarithm and exponential. L (P) means the Cholesky decom-
position of P, with L −1(·) denoting its inverse map. Besides, ⌊L (P)⌋ denotes the strictly lower
triangular part, D(P) signifies the diagonal part, and then ψLC(P) = ⌊L (P)⌋+ logm(D(P)).

Grassmannian geometries. The Grassmannian manifold consists of all q-dimensional linear sub-
spaces within Rd. This study centers on the Orthonormal Basis (ONB) perspective, where a subspace
is represented by Y ∈ Rd×q satisfying Y⊤Y = Iq. We denote the set of such ONB represen-
tations as Y ∈ G̃(q, d). A point in G̃(q, d) represents an equivalence class of orthonormal bases:
[Y] = {Ỹ | Ỹ = YO,O ∈ O(q)}. By abuse of notation, we use [Y] or Y interchangeably. Under
the ONB perspective, the Grassmannian manifold induces a nonreductive gyrovector structure [52].
The binary operation ⊕̃gr [52] and gyro distance dgr(·) [19] for U,V ∈ G̃(q, d) are defined in Tab. 1.

SPSD geometries. Let S+d,q denote the set of d× d SPSD matrices of rank q ≤ d. Each P ∈ S+d,q
admits a canonical decomposition P = UPSPU

⊤
P , where UP ∈ G̃(q, d) and SP ∈ S++

q [9, 10].
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Table 1: Summary of the gyro additions and gyro distances over different manifolds.

Manifold Metric Gyro addition Gyro distance

SPD
AIM
LEM
LCM

P⊕ai Q = P
1
2QP

1
2

P⊕le Q = expm(logm(P) + logm(Q))
P⊕lc Q = L −1 (⌊L (P)⌋+ ⌊L (Q)⌋+ D(L (P))D(L (Q)))

∥∥∥logm(Q− 1
2PQ− 1

2

)∥∥∥
F

∥logm(P)− logm(Q)∥F
∥ψLC(P)− ψLC(Q)∥F

Grassmannian ONB perspective U⊕̃grV = expm([LoggrId,q (UU⊤), Id,q])V
∥ arccos(Σ)∥

U⊤V
SVD
:= OΣR⊤

SPSD (ggr, λgspd) (UP ,SP )⊕psd,g (UQ,SQ) = (UP ⊕̃grUQ,SP ⊕g SQ) dgr(UP ,UQ) + λ dgspd(SP ,SQ)

Following Nguyen et al. [53], we represent P in the product space G(q, d) × S++
q , as detailed in

App. D.3. By equipping S++
q with a Riemannian metric g ∈ {ai, le, lc}, the space S+d,q naturally

inherits a corresponding gyrovector structure [53]. The induced binary operation ⊕psd,g [53] and the
related gyro distance dpsd,g(·) [19] are defined in Tab. 1, where λ > 0.

WFMs. The WFM [25] of points {Pi...N} is the point S ∈M that minimizes the weighted sum of
squared distances to all points {Pi...N}. Given weights {w1...N} satisfying the convexity constraint,
i.e.,∀i, wi > 0 and

∑
i wi = 1, the WFM is expressed as:

WFM({wi}, {Pi}) = argmin
S∈M

∑N

i=1
wi d

2 (Pi,S) , (1)

where d(Pi,S) is the distance between S and Pi. On Riemannian manifolds, WFMs uniquely exists
when samples are locally distributed [2], which is detailed in App. D.2.1. In this paper, we always
assume WFMs are well-defined.

3 Proposed method
Inspired by the success of attention mechanism [70, 32], recent studies have extended attention models
to non-Euclidean settings, including hyperbolic [26], SPD [55], and Grassmannian [72] manifolds.
However, these approaches typically rely on geometry-specific operations, such as BiMap layer [33]
for SPD manifolds or FrMap layer [34] for Grassmannian manifolds, which limits their applicability
and generalization across manifolds. In contrast, our proposed GyroAtt framework leverages gyro
structures to provide a unified and principled formulation of attention across matrix manifolds. To
motivate our design, we first revisit prior manifold-based attention mechanisms and summarize their
core components in Tab. 2, before introducing our generalized gyro-based formulation.

3.1 Revisiting attention mechanisms on different geometries
Despite differences in underlying geometries, self-attention mechanisms generally follow a common
three-stage pipeline: 1) feature transformations to compute query (qi), key (ki), and value (vi); 2)
similarity computations, often based on distances or inner products; 3) weighted aggregations of the
values (ri). Tab. 2 summarizes these components across geometry-aware attention models.

Euclidean. Standard Transformers [70] generate qi, ki, and vi through linear projections Linear(·),
compute attention weights using scaled dot-product Softmax(⟨qi,kj⟩/

√
dk), and obtain outputs via

ri =
∑N

j=1Aijvj , where N signifies the number of value tokens.

Hyperbolic. HAN [26] extends attention to the hyperbolic space using the Klein (Kd) and hyper-
boloid (Hd) models. Euclidean features are first projected onto the manifold via πR→K and πR→H.
Attention scores are computed by −β d(qi,kj) − c, where β > 0 and c are learnable parameters.
Value aggregations are performed using the Einstein midpoint [66].

SPD. MAtt [55] formulates attention on the SPD manifolds under LEM. Queries and keys are
obtained via the BiMap function [33], attention scores are measured using the LEM-based geodesic
distance, and LEM-based WFM is employed for value aggregation.

Grassmannian. GDLNet [72] adapts attention to the Grassmannian manifolds by employing FrMap
and ReOrth layers for data transformation and activation [34]. Attention scores are computed based
on the projection distance, while the extrinsic WFM [62] is employed for value aggregation.

In summary, the above manifold attention approaches are inherently tied to particular manifolds or
metrics, limiting their direct generalization across different geometries.
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Table 2: Summary of attention based on different geometries, where fs(·) denotes the softmax.

Method Geometries Transformations d(qi,ki) Attention Aij Aggregation ri(Ri)

Transformer
[70] Euclidean Linear(xi) ∥ qi − kj∥F fs(⟨qi,kj⟩ /

√
dk)

Arithmetic mean∑N
j Aijvj

HAN
[26] Hyperbolic πR→H (Linear(xi))

πR→K (Linear(xi))
arccosh(−⟨qi,ki⟩M ) fs (−β d(qi,kj)− c)

Einstein midpoint∑N
j

[
Aijγ(vj)∑N
l Aijγ(vl)

]
vj

MAtt
[55]

SPD
under LEM WXiW

⊤ ∥logm(Qi)− logm(Ki)∥F fs

(
(1 + log(1 + d(Qi,Kj)))

−1
) LEM-based WFM

expm
(∑N

j Aij logm(Vj)
)

GDLNet
[72]

Grassmannian
under ONB ReOrth (WXi)

∥∥QiQ
⊤
i −KjK

⊤
j

∥∥
F

fs

(
(1 + log(1 + d(Qi,Kj)))

−1
) Extrinsic WFM

Φ−1
(∑N

j AijΦ(Vj))
)

GyroAtt
(Ours)

Gyrovector spaces
(SPD, SPSD, Grassmann)

Homomorphism
Eq. (4) Gyro distance fs

(
(1 + log(1 + d(Qi,Kj)))

−1
)

WFM

3.2 Attention mechanisms over gyrovector spaces
In this part, we extend the basic attention operations illustrated in Tab. 2 to gyrovector spaces: 1)
transformation through gyro homomorphisms, which preserves the gyrovector structure; 2) distance-
based similarity computation; 3) value aggregation via gyro distance-based WFM.
Definition 3.1 (Gyro Homomorphisms). Let (M, ⊕M,⊗M) and (N ,⊕N ,⊗N ) be two (nonre-
ductive) gyrovector spaces, ∀A,B ∈ M, and ∀t ∈ R, the map hom(·) : (M,⊕M,⊗M) →
(N ,⊕N ,⊗N ) is a (nonreductive) gyrovector space homomorphism if it satisfies:

hom(A⊕M B) = hom(A)⊕N hom(B), hom(t⊗M A) = t⊗N hom(A). (2)

If we only consider (nonreductive) gyrogroups, (M,⊕M) and (N ,⊕N ), a map hom(·) :
(M,⊕M) → (N ,⊕N ) satisfying Eq. (35) is called a (nonreductive) gyrogroup homomorphism,
which has been introduced by Suksumran and Wiboonton [63]. By abuse of notations, we call the
above homomorphisms collectively gyro homomorphisms. The concept of gyro homomorphisms
naturally generalizes linear maps from vector spaces to gyrovector spaces. Recall that a linear map
Linear(·) : Rn → Rm is a homomorphism of vector spaces, meaning it preserves both vector
addition and scalar multiplication: for any z1, z2 ∈ Rn and t ∈ R, it satisfies:

Linear(z1 + z2) = Linear(z1) + Linear(z2), Linear(tz1) = tLinear(z1). (3)

Therefore, we use hom(·) for feature transformation. While the above offers an algebraic definition,
a natural question arises: how can such mappings be identified on manifolds?
Theorem 3.2 (Sufficient condition for gyro homomorphisms). [↓] Let M be a Riemannian
homogeneous space with isometry group G. If (M,⊕,⊗) forms a gyrovector space and an isometry
f ∈ G fixes the identity element, i.e., f(e) = e, then f is a gyro homomorphism.

This theorem provides a way to identify gyro homomorphisms from homogeneous space isometries.
Then, we calculate the correlation between Qi and Kj using their gyro distance, and map d(Qi,Kj)
to a valid attention score, as defined in Eq. (5). For feature aggregation, we resort to WFM based on
the gyro distance. Specifically, given a set of input data points {Xi...N ∈M}, the key operations of
GyroAtt are listed below:

Qi = hom(Xi), Ki = hom(Xi), Vi = hom(Xi), (Transformation) (4)

Aij = Softmax
(
(1 + log(1 + d(Qi,Kj)))

−1
)
, (Attention) (5)

Ri = WFM(Ai,Vi...N ) . (Aggregation) (6)

Here, Ai denote the i-th row of A, and Ri is the resulting data under the manifold-valued weighted
average (i.e., WFM) betweenAi and Vi...N . While WFM offers a principled approach for aggregating
manifold-valued data, its output Ri is inherently restricted to the geodesic convex hull of the input
points. This constraint may limit the expressiveness of the resulting representations. To mitigate this
limitation, we introduce a bias term and a nonlinear transformation following the aggregation step:

ϕ(Ri) = σ(B⊕Ri), (7)

where B is a learnable bias parameter, and σ represents a power-based activation function.

So far, all ingredients are in place to build attention over gyrovector spaces, as shown in Alg. 4.
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4 Gyro attention mechanisms on matrix manifolds
This section presents our GyroAtt framework (Alg. 4) across various matrix gyrovector spaces,
including three SPD gyro spaces, one Grassmannian gyro space, and three SPSD gyro spaces.

4.1 Gyro attention mechanism over SPD manifolds
As summarized in Tab. 1, three SPD gyrovector spaces are induced by the AIM, LEM, and LCM,
respectively. The corresponding gyro distance (used for attention calculation) and gyro addition (used
for biasing) have been well studied in prior works [5, 56, 45]. Therefore, our focus is on defining the
gyro homomorphisms, WFMs, and activation for these geometries. We begin by deriving the explicit
forms of the gyro homomorphisms corresponding to each SPD geometry.
Theorem 4.1 (SPD Homomorphisms). [↓] Given P ∈ S++

d , let homg : S++
d → S++

d be defined as

homg(·) : P 7→


OPO⊤, g = ai, O ∈ O(d),

expm(M logm(P)M⊤), g = le, M ∈ Rd×d,

L −1
(
⌊L(P)⌋+ exp

(
D
(
L(P)

)))
, g = lc, M ∈ Rd×d,

(8)

where L(P) = M
(
⌊L (P)⌋ + ⌊L (P)⌋⊤ + D

(
L (P)

))
M⊤. For each metric g ∈ {ai, le, lc},

homg(·) is a gyro homomorphism with respect to (S++
d ,⊕g,⊗g). Moreover, if M is orthonormal,

the LEM-based homomorphism is identical to the AIM one.

Transformation. As shown in Thm. 4.1, the forms of homle(·) and homlc(·) follow from the flat
structures of their geometries. When a manifold is flat, its gyro homomorphism can be directly derived.
The SPD manifold under LEM is flat in the logarithmic domain, where linear mappings act as valid
homomorphisms. Orthogonal constraints can improve network generalization by imposing implicit
regularization [30]. Therefore, we impose orthogonality on M in both homlc(·) and homle(·).

WFMs. The WFMs under LEM and LCM admit closed-form solutions, whereas the one under AIM
requires iterative computation via the Karcher flow algorithm [38]. These are reviewed in App. D.2.2.

Activation. As demonstrated by Chen et al. [17, Fig. 1] and Chen et al. [15, Sec. 5.1], the matrix
power can deform the latent SPD geometries. As a consequence, we use matrix power as the activation
function to activate the underlying Riemannian geometry.

4.2 Gyro attention mechanisms over Grassmannian manifolds
We implement GyroAtt on the Grassmannian nonreductive gyrovector spaces under the ONB perspec-
tive. The gyro distance and gyro addition are shown in Tab. 1. Similar to the SPD gyro spaces, we use
gyro homomorphism for transformation and WFM for aggregation. As shown by Nguyen and Yang
[52, Sec. 2.3.2], the Grassmannian gyro addition can be viewed as a non-linear activation. Therefore,
we do not use additional activation before the Grassmannian gyro biasing. In the following, we
discuss gyro homomorphism and WFM over the Grassmannian manifold.
Theorem 4.2 (Grassmannian Homomorphisms). [↓] Let U ∈ (G̃(q, d), ⊕̃gr, ⊗̃gr), and O =[
Oq 0
0 Od−q

]
∈ Rd,d, where Oq ∈ Rq×q and Od−q ∈ R(d−q)×(d−q) are orthonormal. The map

homgr(·) : (G̃(q, d), ⊕̃gr, ⊗̃gr)→ (G̃(q, d), ⊕̃gr, ⊗̃gr) is a gyro homomorphism defined by

homgr(U) = OU. (9)

Eq. (9) plays the role of Grassmannian feature transformation. For the weighted aggregation, since
the WFM on the Grassmannian manifold does not admit a closed-form solution, we employ the
Karcher flow algorithm [1, 38]. More details are provided in App. D.2.3.

4.3 Gyro attention mechanisms over SPSD manifolds
As introduced in Sec. 2, any P ∈ S+d,q can be canonically represented as a pair (UP ,SP ) ∈
G̃(q, d)× S++

q within the structured product space. According to Tab. 1, both the distance and gyro
addition operations in this space are defined component-wisely over the Grassmannian and SPD
subspaces. Therefore, implementing GyroAtt in the SPSD gyrovector space reduces to specifying the
gyro homomorphisms, WFMs, and activation for the corresponding product structure.
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Table 3: Key operators of GyroAtt over different matrix gyrovector spaces.

Manifold SPD Grassmannian SPSD

Metric AIM LEM LCM ONB perspective (ggr, λgspd)

Homomorphism OPO⊤ expm(M logm(P)M⊤) L −1
(
⌊L(P)⌋+ exp

(
D
(
L(P)

)))
OU (homgr (UP ) ,homg (SP ))

WFM Karcher flow
Alg. 1

Closed-form
Eq. (15)

Closed-form
Eq. (16)

Karcher flow
Alg. 2 (WFMspd,WFMgr)

Bias and Non-linearity (Bspd ⊕g Ri)
p Bgr⊕̃grRi (Bgr⊕̃grURi

, (Bspd ⊕spd SRi
)p)

C
onv B

lock

GyroAtt

M
anifold M

odeling

FC
& Softm

ax

M
anifold FlatteningEEG Signal

Figure 1: The GyroAtt network consists of three modules: A feature extraction module that applies
convolution and manifold modeling to transform EEG signals into manifold-valued features; a gyro
attention module that captures long-range dependencies among features; and a classification module
that implements decision making with the flattened manifold-valued data.

Theorem 4.3 (SPSD Homomorphisms). [↓] Let g ∈ {ai, le, lc}, and (UP ,SP ) ∈ (G̃(q, d) ×
S++
q ,⊕psd,g, ⊗psd,g). The map hompsd,g(·) : (G̃(q, d) × S++

q , ⊕psd,g,⊗psd,g) → (G̃(q, d) ×
S++
q ,⊕psd,g,⊗psd,g) is a gyro homomorphism defined by

hompsd,g (UP ,SP ) = (homgr (UP ) ,homg (SP )) . (10)

For aggregation, we use the WFM induced by the product geometry, as detailed in App. D.2.4. The
bias and non-linear activation are also formulated in the product space:

ϕpsd(URi ,SRi) = (Bgr⊕̃grURi , (Bspd ⊕spd SRi)
p), (11)

where Bgr ∈ G̃(q, d) and Bspd ∈ S++
d .

In summary, our GyroAtt framework comprises several basic operations. First, the mapping hom(·)
generates Qi, Ki, and Vi. Then, the attention score is computed using gyro distances between
queries and keys, followed by the WFM-based aggregation on the values Vi. Finally, the bias
and non-linear activation enhance model expressiveness. GyroAtt offers a unified framework that
supports multiple manifolds and metrics, demonstrating its superior generality and flexibility. Tab. 3
summarizes all the key ingredients for computing GyroAtt on the SPD, Grassmannian, and SPSD
manifolds.

5 Experiments
Following prior works [55, 41], we evaluate the proposed GyroAtt on EEG decoding across four
benchmarking datasets: BNCI2014001 [24], BNCI2015001 [64], MAMEM-SSVEP-II [54], and
BCI-ERN [47] in this paper. For BNCI2014001 and BNCI2015001, we conduct both inter-session
and inter-subject evaluations. In the inter-session evaluation, models are trained exclusively on data
from the target subject. Additionally, the balanced accuracy, calculated as the average recall across
all classes, is used as the primary metric [41]. For MAMEM-SSVEP-II, the overall accuracy is used,
while for BCI-ERN, we report the Area Under the Curve (AUC) to address class imbalance. In the
experiments, the first four sessions of each subject are used for training, with one for validation, and
the fifth for testing. Further details regarding datasets and preprocessings are provided in App. E.1.

Implementation details. As shown in Fig. 1, the GyroAtt network consists of three components: a
feature extraction module, a gyro attention module, and a classification head. In the feature extraction
module, two convolutional blocks are first applied to the EEG signals to extract low-redundancy
features, followed by pyramid-like temporal segmentation into s non-overlapping subparts, each
producing a covariance matrix. For GyroAtt-SPD, these covariance matrices Xi serve directly
as inputs to the subsequent layers. In GyroAtt-SPSD and GyroAtt-Gr, each covariance matrix is
transformed into its canonical form (Ui

X ,S
i
X) using Alg. 3, mapping them into the structure space

G̃(q, d) × S++
q . Here, Ui

X is used as the input for GyroAtt-Gr, while both Ui
X and Si

X are used
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Table 4: The results of different methods on BNCI2014001 and BNCI2015001. Riemannian manifold
attention models are highlighted in yellow. The top three results are marked in red, blue, and cyan.

Manifold Method BNCI2014001 BNCI2015001
Inter-session Inter-subject Inter-session Inter-subject

Euclidean

FBCSP+SVM [4] 60.6 ± 4.9 32.3 ± 7.3 81.5 ± 4.4 58.6 ± 13.4
EEGNet [44] 41.8 ± 5.8 43.3 ± 17.0 72.4 ± 8.4 59.2 ± 9.5
ShConvNet [59] 51.3 ± 2.3 42.2 ± 16.2 74.1 ± 4.2 58.7 ± 5.8
FBCSP+DSS+LDA [29] 71.3 ± 1.8 48.3 ± 14.3 84.6 ± 4.8 67.7 ± 14.3

SPD

TSM+SVM [6] 61.8 ± 4.1 34.7 ± 8.6 75.7 ± 5.1 56.0 ± 6.0
FB+TSM+LR [42] 69.8 ± 4.8 36.5 ± 8.2 80.9 ± 6.0 60.6 ± 10.9
URPA+MDM [57] 59.5 ± 2.7 46.8 ± 14.6 79.2 ± 4.6 70.3 ± 16.1
SPDOT+TSM+SVM [74] 66.8 ± 3.8 38.6 ± 8.6 77.5 ± 2.9 63.3 ± 8.1
TSMNet [41] 69.0 ± 3.6 51.6 ± 16.5 85.8 ± 4.3 77.0 ± 13.7
Graph-CSPNet [36] 71.9 ± 13.3 45.2 ± 9.3 79.8 ± 14.6 64.2 ± 13.4

SPD MAtt [55] 66.5 ± 8.9 45.3 ± 11.3 80.8 ± 14.8 63.1 ± 10.1
Grassmann GDLNet [72] 58.1 ± 8.9 46.3 ± 5.1 76.9 ± 13.6 63.3 ± 14.2

SPD
GyroAtt-SPD-AIM 75.4 ± 7.1 53.1 ± 14.8 86.2 ± 4.5 77.9 ± 13.0
GyroAtt-SPD-LEM 75.3 ± 6.5 52.3 ± 14.1 85.7 ± 5.5 76.6 ± 13.7
GyroAtt-SPD-LCM 74.2 ± 7.8 52.4 ± 15.6 84.7 ± 6.6 75.5 ± 13.8

Grassmann GyroAtt-Gr 72.5 ± 7.3 52.1 ± 14.2 85.0 ± 7.7 75.3 ± 13.7

SPSD
GyroAtt-SPSD-AIM 72.9 ± 7.1 52.4 ± 15.6 84.7 ± 6.6 75.5 ± 13.8
GyroAtt-SPSD-LEM 72.8 ± 6.9 50.5 ± 13.2 85.3 ± 5.3 76.0 ± 14.1
GyroAtt-SPSD-LCM 72.9 ± 6.7 51.7 ± 13.1 85.1 ± 4.8 74.9 ± 12.6

for GyroAtt-SPSD. We employ the corresponding GyroAtt block, as shown in Alg. 4, to capture
long-range dependencies between different feature regions on the manifolds. In the classification
module, we first flatten the manifold-valued representations by projecting them onto a tangent (or
Euclidean) space, followed by vectorization. For GyroAtt-SPD, we follow previous works [71, 16]
to apply matrix power normalization to the output matrix P from the GyroAtt block, defined as
ψθ(P) = 1

θP
θ with θ > 0 and P ∈ S++

d . The scaling factor 1
θ ensures gradient stability during

optimization. For GyroAtt-Gr, we project each element Yi ∈ G(q, d) into a Euclidean space using the
operator Φ(Yi) = YiY

⊤
i . For GyroAtt-SPSD, both Ui

X and Si
X are processed accordingly within

the classification module. Across all three models, the resulting matrices are vectorized, concatenated,
and passed through a fully connected layer followed by a Softmax function for classification. For
parameter optimization and detailed implementations, please refer to Apps. E.2.1 and E.2.2.

Table 5: Results on the MAMEM-SSVEP-II
(MAMEM) and BCI-ERN datasets. Manifold atten-
tion models are highlighted in yellow. The top three
results are marked in red, blue, and cyan.

Manifold Method MAMEM BCI-ERN

Euclidean

EEGNet [44] 53.7 ± 7.2 74.3 ± 2.5
ShallowCNet [59] 56.9 ± 6.7 71.9 ± 2.6
EEG-TCNet [35] 55.5 ± 7.7 77.1 ± 2.5
FBCNet [46] 53.1 ± 5.7 60.5 ± 3.1
TCNet-Fusion [48] 45.0 ± 6.6 70.5 ± 2.9
MBEEGSE [3] 56.5 ± 7.3 75.5 ± 2.3

SPD MAtt [55] 65.2 ± 3.1 75.7 ± 2.2
Grassmann GDLNet [72] 65.5 ± 2.9 78.2 ± 2.5

SPD
GyroAtt-SPD-AIM 66.3 ± 2.2 75.8 ± 3.3
GyroAtt-SPD-LEM 66.2 ± 2.5 76.1 ± 4.2
GyroAtt-SPD-LCM 65.1 ± 2.5 75.4 ± 3.7

Grassmann GyroAtt-Gr 67.1 ± 1.6 78.4 ± 1.4

SPSD
GyroAtt-SPSD-AIM 66.5 ± 2.3 78.2 ± 1.9
GyroAtt-SPSD-LEM 66.5 ± 2.9 79.1 ± 1.7
GyroAtt-SPSD-LCM 68.7 ± 1.5 78.4 ± 1.6

Main results. We evaluated the proposed
GyroAtt framework on four EEG classifica-
tion datasets, with 10-fold cross-validation
results summarized in Tabs. 4 and 5. Our
models—GyroAtt-SPD/Gr/SPSD are com-
pared against state-of-the-art baselines. The
most effective manifold choice in GyroAtt
varies by dataset. To be specific, GyroAtt-
SPSD-LCM achieves best accuracy on the
MAMEM and BCI-ERN datasets, surpassing
GDLNet by 3.2% and 0.9%, respectively.
On the BNCI2014001 and BNCI2015001
datasets, GyroAtt-SPD-AIM delivers the
highest scores, outperforming TSMNet by
6.4%, 1.5%, 0.4%, and 0.9%, respectively
across different evaluation settings. Notably,
GyroAtt-Gr consistently ranks second across
all datasets and outperforms GDLNet in ev-
ery case. These experimental observations
highlight the generality and effectiveness of
our GyroAtt. The superior performance of GyroAtt can be attributed to the underlying geometry-
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Table 6: The impact of matrix power activation on the accuracy of GyroAtt-SPD/SPSD.

Geometry Activation BNCI2014001 BNCI2015001 MAMEMInter-session Inter-subject Inter-session Inter-subject

SPD w/o 74.8 ± 6.7 51.2 ± 15.7 85.5 ± 5.0 75.4 ± 12.9 64.3 ± 2.4
w/ 75.4 ± 7.1 53.1 ± 14.8 86.2 ± 4.5 77.9 ± 13.0 66.3 ± 2.2

SPSD w/o 72.2 ± 7.2 49.2 ± 13.7 83.9 ± 5.1 74.2 ± 14.4 66.5 ± 2.4
w/ 72.9 ± 7.1 52.4 ± 15.6 85.3 ± 5.3 76.0 ± 14.1 68.7 ± 1.5

Table 8: Replacing hom(·) and power activation with BiMap and ReEig in GyroAtt-SPD-LEM

Transformation Activation BNCI2014001 BNCI2015001
Inter-session Inter-subject Inter-session Inter-subject

BiMap Power 74.0 ± 6.5 52.3 ± 15.0 85.2 ± 7.2 77.2 ± 13.2
Homomorphisms ReEig 75.1 ± 6.3 52.6 ± 14.2 85.9 ± 5.3 76.4 ± 12.8
BiMap ReEig 73.6 ± 6.8 52.2 ± 15.2 85.4 ± 7.8 76.8 ± 13.0
Homomorphisms Power 75.4 ± 7.1 53.1 ± 14.8 86.2 ± 4.5 77.9 ± 13.0

aware attention mechanism, which effectively captures long-range dependencies and spatiotemporal
fluctuations inherent in EEG signals.

Ablations on the matrix power-based nonlinear activation σ(·). Tab. 6 illustrates the impact of
the nonlinear activation (as defined in Tab. 3) on the accuracy of GyroAtt-SPD/SPSD. Generally,
removing nonlinear activation results in performance degradation, e.g., GyroAtt experiences a 2.0%
and 2.4% accuracy drop on the MAMEM dataset. These experimental findings emphasize the
importance of matrix power activation in enhancing model expressiveness by introducing nonlinearity
into the metric space of the underlying feature manifold.

Table 7: Accuracy comparison under different measures.

Methods Similarity BNCI2014001
Inter-session

BNCI2015001
Inter-session MAMEM

GyroAtt-SPD Gyro inner product 74.7 ± 6.8 85.6 ± 5.4 63.9 ± 3.2
Gyro distance 75.4 ± 7.1 86.2 ± 4.5 66.3 ± 2.2

GyroAtt-Gr Gyro inner product 72.4 ± 7.3 83.4 ± 5.9 65.7 ± 3.1
Gyro distance 72.5 ± 7.3 85.0 ± 7.7 67.1 ± 1.6

GyroAtt-SPSD Gyro inner product 71.6 ± 6.3 83.3 ± 5.4 65.0 ± 2.6
Gyro distance 72.9 ± 6.2 85.3 ± 5.3 68.7 ± 1.5

Gyro distance vs. gyro inner prod-
uct. The Euclidean inner product is
a natural similarity metric in flat space,
but a global inner product is gener-
ally unavailable on curved manifolds.
Hence, most manifold-attention mod-
els rely on distance-based similarity
[26, 55, 72]. Gyrovector spaces are an
exception because a gyro inner prod-
uct can be defined in the tangent space
at the identity [52][Defs. 2.9, 2.15]: ⟨P,Q⟩gyr = ⟨LogI(P),LogI(Q)⟩I. To evaluate its suitability,
we replaced the distance-based similarity in Eq. (5) with gyro inner product and conducted an ablation
study, as reported in Tab. 7. Across all datasets, the gyro distance consistently outperforms the inner
product in accuracy. An essential reason is that the gyro inner product is defined within a single
tangent space, which may not reflect the geometric structure faithfully. In contrast, gyro distance
better preserves the intrinsic manifold geometry. The detailed implementations are found in App. E.6.

GyroAtt-SPD-LEM vs. MAtt. Although both GyroAtt-SPD-LEM and MAtt [55] implement
attention mechanisms under the SPD manifold with LEM, GyroAtt-SPD-LEM differs from MAtt
in two key components: linear transformation hom(·), and the nonlinear activation σ(·). While
BiMap and ReEig used in MAtt preserve SPD property, they are loosely connected to the underlying
Riemannian geometry. Hence, we replace hom(·) and σ(·) with Bimap and ReEig and made an
ablation study, as reported in Tab. 8. Either replacement leads to a performance drop, while combining
both further degrades accuracy. From a theoretical standpoint, gyro homomorphisms generalize linear
maps and naturally reduce to them in the Euclidean setting. This indicates that our transformation
layer is a principled extension of Euclidean attention. In contrast, the ReEig function merely rescales
eigenvalues to ensure positive definiteness, lacking geometric interpretability. As shown in [17][Fig.
1], matrix power can deform any given Riemannian metric, effectively acting as a geometry-aware
activation. These findings confirm that integrating gyro-based transformations and nonlinearities is
not only theoretically justified but also empirically beneficial.
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Figure 2: Spatial topomaps and gradient heatmaps of GyroAtt-SPSD on the MAMEM (subject S11)
dataset. Strong responses appear around the Oz electrode, especially within 0–0.5s. In heatmaps, the
x-axis denotes time and the y-axis denotes EEG channels.

ErrorCorrect Electrodes

Time Time

Correct Error

Figure 3: Spatial topomaps and gradient heatmaps of GyroAtt-SPSD, showing ‘correct’ vs. ‘error’
trials. Strong activations consistently emerge around the FCz electrode within 0.1–0.4s.

Table 9: Running time (s/epoch) comparison.

Method BNCI2014001 BNCI2015001
Inter-session Inter-subject Inter-session Inter-subject

MAtt 4.86 89.12 2.74 56.78
GDLNet 4.55 88.59 1.71 47.66
GyroAtt-SPD-LCM 4.11 87.44 2.42 49.86

Training efficiency. Gy-
roAtt demonstrates superior
or comparable efficiency to
existing manifold attention
networks such as MAtt and
GDLNet. In particular,
GyroAtt-SPD under LCM
achieves efficiency on par with MAtt, benefiting from the computational advantages of the Cholesky
decomposition. More detailed discussions and comparisons are provided in App. E.8.

EEG interpretability analysis. For the MAMEM dataset, as shown in Fig. 2, GyroAtt shows
strong gradient responses around the Oz electrode across five stimulus frequencies, especially within
0–0.5s time window. This pattern aligns well with the established findings on the relationship between
SSVEP signals and the Oz region [31, 28]. This is likely due to the Oz central location in the primary
visual cortex, which leads to stronger evoked potentials and signal-to-noise ratio. On the BCI-ERN
dataset, as illustrated in Fig. 3, gradient responses for both ‘correct’ and ‘error’ trials centered around
the FCz electrode. This observation aligns with substantial empirical evidence that the anterior
cingulate cortex, a central medial prefrontal cortex region connected to limbic and frontal areas,
underlies ERN generation. Notably, consistent gradient responses around FCz were observed for both
feedback types within the 0.1–0.4s interval, reinforcing Event-Related Potential (ERP) waveform
differences between correct and error trials as reported in [27].

6 Conclusion
In this paper, we propose GyroAtt, a principled framework that generalizes the Euclidean attention
mechanism to gyrovector spaces. Specifically, we adopt gyro homomorphism, gyro distance-based
attention, and WFM as counterparts to the transformation, attention, and aggregation operations in
Euclidean attention. Notably, we identify the concrete non-trivial expressions of gyro homomorphisms
on different matrix gyro spaces. The principled construction of GyroAtt enables a direct assessment
of the impact of geometry on a given task while keeping the network architecture constant. Extensive
experiments and ablation studies on four EEG benchmarking datasets certify the effectiveness and
flexibility of our proposed framework.
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• The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.
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3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [Yes]

Justification: The full assumptions and formal proofs for Thm. 4.1, Thm. 4.2, and Thm. 4.3
are provided in App. F.

Guidelines:

• The answer NA means that the paper does not include theoretical results.

• All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

• All assumptions should be clearly stated or referenced in the statement of any theorems.

• The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: We provide sufficient details in Sec. 5 and App. E to reproduce all main
experiments, including datasets, model settings.

Guidelines:

• The answer NA means that the paper does not include experiments.

• If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.
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(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: We will release the code upon acceptance.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.

• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: We describe all necessary training details in Sec. 5. Additional implementation
details are provided in App. E.

Guidelines:

• The answer NA means that the paper does not include experiments.

• The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

• The full details can be provided either with the code, in appendix, or as supplemental
material.
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7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: We report mean ± standard deviation over 10 independent runs.

Guidelines:

• The answer NA means that the paper does not include experiments.

• The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).

• It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

• It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: All experiments were conducted on a machine with an Intel i9-14900 CPU,
64GB RAM, and two NVIDIA RTX 4080 Super GPUs. Further details are provided in
App. E.

Guidelines:

• The answer NA means that the paper does not include experiments.

• The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

• The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

• The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
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Answer: [Yes]

Justification: We have reviewed and adhered to the NeurIPS Code of Ethics. Our research
involves publicly available datasets and does not pose foreseeable risks related to privacy,
safety.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

• If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

• The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).

10. Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [NA]

Justification: This work focuses on foundational research and is not tied to particular
applications. Therefore, societal impacts are not directly applicable at this stage.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.

• If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

• Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: Our work does not involve pretrained language models, generative models, or
scraped datasets.

Guidelines:

• The answer NA means that the paper poses no such risks.
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• Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: All datasets and code used in this work are publicly available and properly
cited in the paper.

Guidelines:

• The answer NA means that the paper does not use existing assets.

• The authors should cite the original paper that produced the code package or dataset.

• The authors should state which version of the asset is used and, if possible, include a
URL.

• The name of the license (e.g., CC-BY 4.0) should be included for each asset.

• For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

• If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]

Justification: The paper does not release new assets.

Guidelines:

• The answer NA means that the paper does not release new assets.

• Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.
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14. Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Justification: The paper does not involve crowdsourcing nor research with human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
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• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]

Justification: The paper does not involve crowdsourcing nor research with human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage

Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [NA]

Justification: The core method development in this research does not involve LLMs as any
important, original, or non-standard components.

Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.

21

https://neurips.cc/Conferences/2025/LLM


Appendix Contents

A Limitations 24

B Notations 24

C Abbreviations 24

D Preliminaries 25

D.1 Gyrogroups and gyrovector spaces . . . . . . . . . . . . . . . . . . . . . . . . . . 25

D.2 Weighted Fréchet Mean . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

D.2.1 Existence and uniqueness of the Weighted Fréchet Mean . . . . . . . . . . 25

D.2.2 Weighted Fréchet Mean on SPD manifolds . . . . . . . . . . . . . . . . . 26

D.2.3 Weighted Fréchet Mean on Grassmannian manifolds . . . . . . . . . . . . 27

D.2.4 Weighted Fréchet Mean on SPSD manifolds . . . . . . . . . . . . . . . . . 27

D.3 Canonical representation in SPSD manifolds . . . . . . . . . . . . . . . . . . . . . 28

E Implementation details and additional experiments 28

E.1 Datasets and EEG preprocessing . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

E.2 Additional implementation details . . . . . . . . . . . . . . . . . . . . . . . . . . 30

E.2.1 Network architectures. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

E.2.2 Optimization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

E.3 Statistical Significance Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

E.4 Graph node classification and radar recognition tasks . . . . . . . . . . . . . . . . 32

E.5 Additional ablations studies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

E.5.1 Ablations on the Riemannian metrics and matrix power-based nonlinear
activation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

E.5.2 Ablations on the matrix power normalization . . . . . . . . . . . . . . . . 33

E.5.3 Ablation on the number of GyroAtt blocks . . . . . . . . . . . . . . . . . 34

E.6 Implementation details of gyro inner product. . . . . . . . . . . . . . . . . . . . . 34

E.7 Implementation details of replacing geometric components in GyroAtt . . . . . . . 34

E.8 Computational complexity analysis and comparison . . . . . . . . . . . . . . . . . 35

E.8.1 Number of matrix functions in manifold attention mechanisms . . . . . . . 35

E.8.2 Experimental comparison of time efficiency . . . . . . . . . . . . . . . . . 36

E.9 Model compactness and parameter efficiency . . . . . . . . . . . . . . . . . . . . 37

E.10 Long-range dependencies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

E.11 Visualizing learned representations via Rie-SNE . . . . . . . . . . . . . . . . . . . 37

22



F Proofs of the Theorems in the Main Paper 37

F.1 Proof of the Thm. 3.2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

F.2 Proof of the Thm. 4.1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

F.3 Proof of the Thm. 4.2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

F.4 Proof of the Thm. 4.3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

23



A Limitations
While several widely used manifolds, such as hyperbolic, SPD, Grassmannian, and SPSD manifolds,
admit gyrovector structures, this property does not hold universally across all manifolds. As a result,
our method is not directly applicable to manifolds lacking such a structure. Extending GyroAtt to
accommodate more general non-gyrovector manifolds constitutes a promising direction for future
research.

B Notations
To enhance readability, we summarize the main mathematical symbols and operators used throughout
this paper in Tab. 10.

Table 10: Summary of notations.
Notations Explanation
(G,⊕) A gyrogroup G with a binary operation ⊕
S++
d Space of d× d SPD matrices
Sd Space of d× d symmetric matrices
S+d,q Space of d× d SPSD matrices with rank q ≤ d
G(q, d) Grassmannian in the projector perspective
G̃(q, d) Grassmannian in the ONB perspective

⊕ai,⊖ai,⊗ai Binary, inverse, and scalar multiplication operations in S++
d under AIM

⊕le,⊖le,⊗le Binary, inverse, and scalar multiplication operations in S++
d under LEM

⊕lc,⊖lc,⊗lc Binary, inverse, and scalar multiplication operations in S++
d under LCM

⊕̃gr, ⊖̃gr, ⊗̃gr Binary, inverse, and scalar multiplication operations in G̃(q, d)
⊕gr,⊖gr,⊗gr Binary, inverse, and scalar multiplication operations in G(q, d)

⊕psd,g,⊖psd,g,⊗psd,g Binary, inverse, and scalar multiplication operations in G̃(q, d)× S++
d under metrics g

⟨P,Q⟩g Inner product in S++
d under metrics g

⟨U,V⟩gr Inner product in G̃(q, d)
⟨(UP ,SP ), (UQ,SQ)⟩psd,g Inner product in G̃(q, d)× S++

d under metrics g
∥⊖gP⊕g Q∥spdg the gyrodistance in S++

d under metrics g∥∥⊖̃grU⊕̃grV
∥∥gr the gyrodistance in G̃(q, d)∥∥(⊖̃grUP ⊕̃grUQ,⊖gSP ⊕g SQ

)∥∥g
psd

the gyrodistance in G̃(q, d)× S++
d under metrics g

[·, ·] the matrix commutator
expm(·), logm(·) Matrix exponentiation and logarithm
L (·), L −1(·) Cholesky decomposition and its inverse

D(·) A diagonal matrix with diagonal elements from a square matrix
⌊·⌋ The strictly lower triangular part of a square matrix

LoggrP (Q) Logarithmic map of Q at P in G(q, d)
M,N Matrix manifold
WFM the weighted Fréchet mean

homai(·),homle(·),homlc(·) the maps in S++
d under AIM, LEM, and LCM satisfying gyro homomorphism

homgr(·) the maps in G̃(q, d) satisfying gyro homomorphism
hompsd,g(·) the maps in G̃(q, d)× S++

d under metrics g satisfying gyro homomorphism
∥ · ∥F The norm induced by the standard Frobenius inner product
O(d) The special orthogonal group

ExpaiP (A) Exponential map of A at P in S++
d under AIM

LogaiP (Q) Logarithmic map of Q at P in S++
d under AIM

ExpgrP (W) Exponential map of W at P in G(q, d)
Ẽxp

gr

X (H) Exponential map of H at X in G̃(q, d)
L̃og

gr

P (Q) Logarithmic map of Q at P in G̃(q, d)

C Abbreviations
For completeness, the abbreviations appearing in this paper are listed below for easy reference.

List of Abbreviations

AIM Affine-Invariant Metric 2, 3, 5, 6
AUC Area Under the Curve 6
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DNN Deep Neural Network 1

EEG Electroencephalography 1, 2, 6–9
ERP Event-Related Potential 9

GyroAtt Gyro Attention 1–7, 9

LCM Log-Cholesky Metric 2, 3, 5, 6,
9

LEM Log-Euclidean Metric 1–6

ONB Orthonormal Basis 2–6

SPD Symmetric Positive Definite 1–9
SPSD Symmetric Positive Semi-Definite 1–9

WFM Weighted Fréchet Mean 2–6

D Preliminaries
D.1 Gyrogroups and gyrovector spaces
Gyrogroups and gyrovector spaces generalize groups and vector spaces, offering a powerful frame-
work to analyze non-Euclidean geometries. Below, we formally present their definitions.
Definition D.1 (Gyrogroups [69]). A gyrogroup is a generalization of groups. Let G be a nonempty
set with a binary operation ⊕ and an identity element E ∈ G. A pair (G,⊕) is a gyrogroup if it
satisfies the following axioms:

(G1) There exists an identity element E ∈ G such that for all A ∈ G, E⊕A = A.

(G2) For each A ∈ G, there exists a left inverse ⊖A ∈ G satisfying ⊖A⊕A = E.

(G3) For all A,B,C ∈ G, there exists an automorphism gyr[A,B](·) : G→ G, satisfying
A⊕ (B⊕C) = (A⊕B)⊕ gyr[A,B](C). (12)

Here, the map gyr[A,B](·) is called the gyroautomorphism, or the gyration of G generated by A,B.

(G4) For all A,B ∈ G, The map gyr[A,B] generated by each A,B satisfies the left loop property:
gyr[A,B] = gyr[A⊕B,B].

Definition D.2 (Gyrocommutative Gyrogroups [69]). A gyrogroup (G,⊕) is gyrocommutative if
it satisfies the gyrocommutative law: A⊕B = gyr[A,B](B⊕A) for all A,B ∈ G.

The following definition of gyrovector spaces is derived from Nguyen [51, Def. 2.3], which is slightly
different from in Ungar [69, Def. 3.2].

Definition D.3 (Gyrovector Spaces [51]). A gyrocommutative gyrogroup (G,⊕) equipped with a
scalar multiplication ⊗ : R×G→ G is a gyrovector space if the following axioms are satisfied:

(V1) 1⊗A = A, 0⊗A = t⊗E = E, and (−1)⊗A = ⊖A.

(V2) (s+ t)⊗A = s⊗A⊕ t⊗A.

(V3) (st)⊗A = s⊗ (t⊗A).

(V4) gyr[A,B](t⊗C) = t⊗ gyr[A,B]C.

(V5) gyr[s⊗A, t⊗A] = Id, where Id is the identity map.

D.2 Weighted Fréchet Mean
D.2.1 Existence and uniqueness of the Weighted Fréchet Mean
The WFM is a central tool in manifold-based learning for aggregating features that reside on non-
Euclidean spaces. Formally, given a set of points {xi} on a Riemannian manifoldM with associated
non-negative weights {wi} summing to one, the WFM is defined as the minimizer of the weighted
sum of squared distances.
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Table 12: Uniqueness and Solution of WFM.
Geometry SPD-AIM SPD-LEM SPD-LCM Grassmann SPSD

Uniqueness of WFM Global Global Global Within r < π
4
√
2

The Grassmann component within r < π
4
√
2

Solution of WFM Karcher Flow Closed Form Closed Form Karcher Flow WFMspd,WFMgr

Reference [56] [5] [45] [2] [10]

Uniqueness. The uniqueness of WFM is generally guaranteed when all sample points {xi} lie
within a geodesically convex hull of M [2]. In our paper, we focus on several commonly used
manifolds, including SPD manifolds with various metrics (AIM, LEM, LCM), the Grassmann
manifold, and the SPSD manifold. As summarized in Tab. 12, the WFM is globally unique for SPD
manifolds under AIM, LEM, and LCM. For the Grassmann manifold, uniqueness holds when the
radius r of the geodesic ball satisfies r < π

4
√
2

[2]. The same condition applies to the Grassmann
component of the SPSD manifold under its canonical form. Following prior work [12, Sec. 2], we
assume that the WFM is well-defined in our settings.

Computation. In terms of solution methods, the WFM can be computed via iterative optimization
(e.g., Karcher flow) or, in some cases, closed-form expressions. For instance, SPD-LEM and SPD-
LCM permit closed-form solutions [5, 45], while SPD-AIM and Grassmann manifolds typically
require gradient-based optimization [56, 2, 39]. For SPSD, we follow the product formulation in [10],
where the WFM is computed by combining the SPD and Grassmann components.

D.2.2 Weighted Fréchet Mean on SPD manifolds

Algorithm 1: Karcher Flow Algorithm on the SPD Manifold under AIM

Input :A set of SPD matrices X1...N ∈ S++
d

A set of weights w1...N > 0 with
∑

i wi = 1
Number of iterations K

Output :The WFM Gk ∈ S++
d

Initialize G0 = I
for k ← 1 to K do

Gk ← ExpaiGk−1

(∑N
i=1 wi Log

ai
Gk−1

(Xi)
)

end

Affine-Invariant Metric. We begin by introducing the exponential and logarithmic maps under the
affine-invariant metric (AIM), followed by the Karcher flow algorithm.

On the manifold S++
d endowed with AIM, the exponential map at a point P ∈ S++

d is given by [1]:

ExpaiP (A) = P
1
2 expm

(
P− 1

2AP− 1
2

)
P

1
2 , (13)

where A ∈ TPS++
d is a tangent vector at P. The logarithmic map, which is the inverse of the

exponential map, is defined as

LogaiP (Q) = P
1
2 logm

(
P− 1

2QP− 1
2

)
P

1
2 , (14)

for any Q ∈ S++
d .

As shown in Alg. 1, the Karcher flow algorithm computes the weighted Fréchet mean (WFM) on the
SPD manifold through an iterative process. In each iteration, the data points are projected onto the
tangent space at the current estimate Gk−1 using the logarithmic map (Eq. (14)), a weighted average
is calculated in this tangent space, and the result is mapped back to the manifold using the exponential
map (Eq. (13)). This algorithm is guaranteed to converge on manifolds with non-positive curvatures,
such as S++

d [38]. We initialize G0 as the identity matrix I and set the number of iterations K = 1.

Log-Euclidean Metric. Under the log-Euclidean metric (LEM), the WFM has a closed-form
expression provided by Chen et al. [15]:

G = expm

(∑N

i=1
wi logm(Xi)

)
, (15)

where X1...N ∈ S++
d , w1...N > 0, and

∑
i wi = 1.
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Log-Cholesky Metric. Similarly, for the log-Cholesky metric (LCM), the WFM also admits a
closed-form solution as shown by Chen et al. [15]:

G = L −1

(
N∑
i=1

wi⌊L (Xi)⌋+
N∏
i=1

D(L (Xi))
wi

)
, (16)

where X1...N ∈ S++
d , w1...N > 0, and

∑
i wi = 1.

D.2.3 Weighted Fréchet Mean on Grassmannian manifolds
We now present the exponential and logarithmic maps, as well as the parallel translation under the
ONB perspective, followed by the project perspective.

For the Grassmannian manifold G̃(q, d) in the ONB perspective, the exponential map at X ∈ G̃(q, d)
is defined as

Ẽxp
gr

X (H) = XV cosΣ+U sinΣ, (17)

where H is a tangent vector at X, and UΣV⊤ is the thin singular value decomposition (SVD) of H:

UΣV⊤ = thinSVD(H). (18)

The logarithmic map, which is the inverse of the exponential map, is given by

L̃og
gr

X (Y) = U tan−1 ΣV⊤, (19)

where X,Y ∈ G̃(q, d), and

UΣV⊤ = thinSVD
(
(I−XX⊤)Y(X⊤Y)−1

)
. (20)

As stated in Edelman et al. [23, Theorem 2.4], let H and ∆ be tangent vectors at point Y on the
Grassmann manifold. The parallel transport of ∆ along the geodesic in the direction Ẏ(0) = H is
given by

τ∆(t) =

(
(YV U)

(
− sin(Σt)
cos(Σt)

)
U⊤ + (I−UU⊤)

)
∆. (21)

Shifting to the projector perspective for the Grassmannian manifold G(q, d), let P ∈ G(q, d) and
∆ ∈ TPG(q, d). The exponential map is defined as [8]

ExpgrP (∆) = expm([∆,P])P expm(−[∆,P]). (22)

As shown by Sakai [58], two points are in each other’s cut locus if there exists more than one shortest
geodesic connecting them. When the exponential map ExpgrP is restricted to the injectivity domain
IDP, for any F ∈ G(q, d)\CutP, there exists a unique tangent vector ∆ ∈ IDP ⊂ TPG(q, d) such
that ExpgrP (∆) = F. For such a point F, the logarithmic map is given by

LoggrP (Q) = [Ω,P], (23)

where P,Q ∈ Grn,p, and Ω is calculated as

Ω =
1

2
log
(
(In − 2Q)(In − 2P)

)
. (24)

As shown in Alg. 1, the Karcher flow algorithm computes the WFM on the Grassmannian manifold
through an iterative process. We initialize G0 as the identity matrix Xi and set the number of
iterations K = 1.

D.2.4 Weighted Fréchet Mean on SPSD manifolds
As demonstrated by Bonnabel and Sepulchre [9], the WFM for a batch of points X1,...N ∈ S+d,q
can be expressed as (WFMgr(U

i
X),WFMg

spd(S
i
X)). Here, WFMgr denotes the WFM on the

Grassmannian manifold, while WFMg
spd(·) represents the WFM on the SPD manifold under metric

g. The matrices Ui
X and Si

X correspond to the canonical representation of Xi.
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Algorithm 2: Karcher Flow Algorithm on the Grassmannian Manifold under ONB Perspective

Input: A set of Grassmannian points X1...N ∈ G̃(q, d)
A set of weights w1...N > 0 with

∑
i wi = 1

Number of iterations K
Output: The WFM G ∈ G̃(q, d)
Initialize G0 = X1

for k ← 1 to K do
Gk ← Ẽxp

gr

Gk−1

(∑N
i=1 wiL̃og

gr

Gk−1
(Xi)

)
end

Algorithm 3: Computation of Canonical Representation in SPSD manifold

Input: A batch of SPSD matrices X1...N ∈ S+n,q
A constant γ ∈ [0, 1]

Output: A batch of Canonical Representation (Ui
X ,S

i
X)i=1,...,N of SPSD manifold

Um ← Ĩn,q;
(Ui,ΣΣΣi,Vi)i=1,...,N ← SVD((Xi)i=1,...,N )
(Ui)i=1,...,N ← (Ui[:, : q])i=1,...,N ;
if training then

U← GrMean((Ui)i=1,...,N )
Um ← GrGeodesic(Um,U, γ)

end
for i← 1 to N do

(Ui)
⊤Um = Yi(cosΣΣΣi)V

⊤
i

(Ui
X ,S

i
X)← (UiYi,ViY

⊤
i U

⊤
i ΣΣΣiUiYiV

⊤
i )

end

D.3 Canonical representation in SPSD manifolds

Nguyen et al. [53] introduced a canonical representation of P in the structure space G̃(q, d)× S++
q .

As shown in Alg. 3, we follow this approach to derive the canonical representation of each point
in S+d,q. Canonical Representation of SPSD matrices is obtained in three steps. This first is to

impose a decomposition on Xi, i.e., Xi ≃ UiΣiU
⊤
i , where Ui ∈ G̃(q, d) and Σi ∈ S++

q . Then
we use the mean of Ui)i=1,...,N as the common subspace, and rotated (Ui,Σi) to the identified
common subspace, denoted as (Ui

X ,S
i
X). Here, GrMean((Ui)i=1,...,N ) computes the Fréchet mean

of its arguments, as described in Alg. 2, with weights set to w1,...,N = 1
N . GrGeodesic(Um,U, γ)

computes a point on a geodesic (Eq. (21)) from Um to U at step γ (γ = 0.1 in our experiments).

E Implementation details and additional experiments
E.1 Datasets and EEG preprocessing
MAMEM-SSVEP-II. This dataset includes EEG recordings from 11 subjects performing SSVEP
tasks. Participants focused on one of five visual stimuli flickering at different frequencies for five
seconds. Each subject completed five sessions, with five trials per stimulation frequency in each
session. EEG signals were captured with 256 channels at a sampling rate of 250 Hz.

BCI-ERN. This dataset involves 26 subjects in a P300-based spelling task to measure ERN. EEG
data were recorded from 56 electrodes following the extended 10-20 system at a sampling rate of
600 Hz. Each subject underwent five sessions: the first four with 60 trials each and the fifth with 100
trials. We used data from 16 subjects available in the initial competition release.

BNCI2014001. This dataset comprises EEG recordings from 9 subjects performing four motor
imagery tasks: imagining movements of the left hand, right hand, both feet, and tongue. Each
subject participated in two sessions on different days, each containing six runs. Each run included 48
trials—12 per class—totaling 288 trials per session.
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Figure 4: The GyroAtt network architecture comprises three components: a feature extraction module
that converts EEG signals into manifold-valued data, a Gyro Attention module that explicitly captures
long-range dependencies among features, and a classification module that flattens manifold data for a
fully connected layer and softmax function.

BNCI2015001. EEG signals were recorded from electrodes centered around positions C3, Cz, and
C4, according to the International 10-20 System. Data were collected using a g.GAMMAsys active
electrode system with a g.USBamp amplifier, sampled at 512 Hz with a bandpass filter between 0.5
and 100 Hz and a notch filter at 50 Hz.

EEG Preprocessing. For the MAMEM-SSVEP-II dataset, we adhered to the preprocessing
protocol of Pan et al. [55]. The steps included: (1) band-pass filtering between 1–50 Hz; (2) selecting
eight channels (PO7, PO3, PO, PO4, PO8, O1, Oz, and O2) located in the occipital area corresponding
to the visual cortex; and (3) segmenting each trial into four 1-second segments from 1s to 5s after cue
onset. This resulted in 500 trials of 1-second, 8-channel SSVEP signals per subject, with each input
EEG segment comprising 125 time points.

For the BCI-ERN dataset, we followed the preprocessing procedure outlined by Pan et al. [55]. The
steps involved: (1) downsampling the signals from 600 Hz to 128 Hz; (2) applying a band-pass filter
between 1–40 Hz. After preprocessing, each trial consisted of 56 channels with 160 time points.

For the BNCI2014001 and BNCI2015001 datasets, we followed the preprocessing steps described by
Kobler et al. [41]. Using the Python packages moabb and mne, we resampled the EEG signals to
250/256 Hz, applied temporal filters to extract oscillatory activity in the 4–36 Hz range, and extracted
short segments ( ≤ 3 seconds) associated with class labels.

Table 13: GyroAtt-SPSD architectures across four datasets. The q is the rank of the SPSD matrices.
Block MAMEM-SSVEP-II BCI-ERN BNCI2014001 BNCI2015001 Operation

Input data 1× 8× 125 1× 56× 160 1× 22× 750 1× 13× 768
TempConv 125× 1× 125 22× 1× 160 4× 22× 750 5× 13× 768 Convolution
SpatConv 21× 1× 126 57× 1× 161 43× 1× 750 44× 1× 768 Convolution
Split & CovPool 2× 21× 21 3× 19× 19 6× 43× 43 3× 44× 44 Split + Covariance

SPDDSMBN w/o w/o 6× 43× 43 3× 44× 44
Domain Alignment
Kobler et al. [41]

SPSDCom 2× (21× 9, 9× 9) 3× (19× q, q × q) 6× (43× 18, 18× 18) 3× (44× 18, 18× 18) Alg. 3
GyroAtt-SPSD 2× (21× 9, 9× 9) 3× (19× q, q × q) 6× (43× 18, 18× 18) 3× (44× 18, 18× 18) Alg. 4
R2E 2× (21× 21, 9× 9) 3× (19× 19, q × q) 6× (43× 43, 18× 18) 3× (44× 44, 18× 18) (Φ(·), ψ(·))
Flat (882, 162) (1083, q2) (11094, 1944) (5547, 972) Vectorization
Classifier 5 2 4 2 FC + Softmax
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Table 14: GyroAtt-SPD architectures across four datasets.
Block MAMEM-SSVEP-II BCI-ERN BNCI2014001 BNCI2015001 Operation

Input data 1× 8× 125 1× 56× 160 1× 22× 750 1× 13× 768
TempConv 125× 1× 125 22× 1× 160 4× 22× 750 5× 13× 768 Convolution
SpatConv 21× 1× 126 57× 1× 161 43× 1× 750 44× 1× 768 Convolution
Split & CovPool 2× 21× 21 3× 19× 19 6× 43× 43 3× 44× 44 Split + Covariance
SPDDSMBN w/o w/o 6× 43× 43 3× 44× 44 Domain Alignment
GyroAtt-SPD 2× 21× 21 3× 19× 19 6× 43× 43 3× 44× 44 Alg. 4
R2E 2× 21× 21 3× 19× 19 6× 43× 43 3× 44× 44 ψ(·)
Flat 882 1083 11094 5547 Vectorization
Classifier 5 2 4 2 FC + Softmax

Table 15: GyroAtt-Gr Architectures across four datasets. The q is the dimension of the linear
subspaces.

Block MAMEM-SSVEP-II BCI-ERN BNCI2014001 BNCI2015001 Operation

Input data 1× 8× 125 1× 56× 160 1× 22× 750 1× 13× 768
TempConv 125× 1× 125 22× 1× 160 4× 22× 750 5× 13× 768 Convolution
SpatConv 21× 1× 126 57× 1× 161 43× 1× 750 43× 1× 768 Convolution
Split & CovPool 2× 21× 21 3× 19× 19 6× 43× 43 3× 44× 44 Split + Covariance
SPDDSMBN w/o w/o 6× 43× 43 3× 44× 44 Domain Alignment
GrCom 2× 21× 9 3× 19× q 6× 43× 18 3× 44× 18 Alg. 3
GyroAtt-Gr 2× 21× 9 3× 19× q 6× 43× 18 3× 44× 18 Alg. 4
R2E 2× 21× 21 3× 19× 19 6× 43× 43 3× 44× 44 Φ(·)
Flat 882 1083 11094 5547 Vectorization
Classifier 5 2 4 2 FC + Softmax

E.2 Additional implementation details
E.2.1 Network architectures.
Fig. 4 and Tab. 13 provide a summary of the specific network architectures of GyroAtt-SPSD across
the four datasets, and we summarize the forward pass of GyroAtt in Alg. 4 . The network structures
for GyroAtt-Gr (Tab. 15) and GyroAtt-SPD (Tab. 14) are identical to that of GyroAtt-SPSD. We just
introduced GyroAtt-SPSD as an example.

For the MAMEM-SSVEP-II and BCI-ERN datasets, the initial convolutional block consists of a
convolutional layer, followed by batch normalization and an ELU activation function. The subsequent
convolutional block performs depthwise spatial convolution. A pointwise convolution, batch normal-
ization, and another ELU activation follow this. In the MAMEM-SSVEP-II dataset, features are split
into two non-overlapping segments, followed by covariance pooling. For the BCI-ERN dataset, the
second convolutional block is repeated in two additional blocks. The outputs from these blocks are
concatenated along the channel dimension. The data is then split along the channel dimension, and
covariance pooling is applied, resulting in three covariance matrices.

For BNCI2014001 and BNCI2015001 datasets, the initial convolutional layer employs 4 or 5 filters
with a kernel size of (1, 25), performing temporal convolution while maintaining the same size
through padding. The second convolutional layer applies spatial convolution with a kernel size of
(22, 1) to integrate information from different channels. The output sequences undergo temporal
pyramid partitioning, dividing each sequence into i equal segments at the i-th level (with levels set to
3 and 2, respectively). To address distribution shifts across subjects and runs, we incorporate subject-
and run-specific batch normalization layers [41].

The attention module designed in the gyrovector spaces is constituted by five operation layers, which
are the Gyro homomorphism layer (fhom) used to generate Qi, Ki, and Vi for each input data, the
similarity measurement layer (fsim) for computing the correlation between Qi and Kj , the Softmax
layer (fsmx) used to normalize the obtained attention matrix along the row direction, the weighted
Fréchet Mean layer (fwFM) for the implementation of weighted aggregation, and the power-based
nonlinear activation layer (fpac) used to improve the representational capacity of GyroAtt module by
introducing nonlinearity to the underlying metric space.

For classification, our GyroAtt-SPD model employs matrix power normalization following Wang
et al. [71] and Chen et al. [16]. Specifically, we apply the transformation ψθ(P) = 1

θP
θ to the i-th
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Algorithm 4: Gyro Attention over gyrovector spaces
Input: A set of manifold-valued features {X1...N}
Output: A set of manifold-valued features {R′

1...N}
for i← 1 to N do

Queries: Qi = hom(Xi),
Keys: Ki = hom(Xi),
Values: Vi = hom(Xi)

end
for i← 1 to N do

for j ← 1 to N do
Similarity: Sij = (1 + log(1 + d(Qi,Kj)))

−1

end
Attention calculation: Aij = Softmax(Sij)
Aggregation: Ri = WFM({Aij}Nj=1, {Vj}Nj=1)
Bias and nonlinearity: R′

i = σ(Ri ⊕B)
end

output matrix P ∈ S++
d , where θ > 0. The coefficient 1

θ stabilizes the gradient flow during training
and facilitates convergence. In GyroAtt-Gr, we transform elements Yi ∈ G(q, d) by applying a
projection operator Φ(Yi) = YiY

⊤
i to map them into the corresponding flat space. In contrast, for

GyroAtt-SPSD, we project (Ui
X ,S

i
X) ∈ G̃(q, d)× S++

q onto their respective manifolds. In all three
GyroAtt, the transformed matrices are vectorized, concatenated, and fed into a fully connected layer
followed by a Softmax function. All experiments were conducted on an i9-14900 CPU with 64GB
RAM and two NVIDIA RTX4080 Super GPUs.

E.2.2 Optimization
We address the optimization of parameters that are SPD matrices by modeling them within the space
of symmetric matrices and applying the exponential map to the identity matrix.

For any parameter P ∈ G̃(d, q), we parameterize it using a matrix B ∈ Rq,d−q such that[
0 B
−B⊤ 0

]
= [LoggrIn,p

(PP⊤), In,p]. (25)

With this parameterization, the parameter P can be computed as

P = exp

([
0 B
−B⊤ 0

])
Ĩn,p.

To optimize parameters O ∈ SO(n), we start by generating parameter A ∈ Rn×n, then compute its
skew-symmetric matrix S = A−A⊤. With this parameterization, the parameter P can be computed
as

O = (I− S) (I+ S)
−1
, (26)

This approach enables us to optimize all parameters within Euclidean spaces, eliminating the need to
employ optimization techniques specific to Riemannian manifolds.

E.3 Statistical Significance Analysis
To assess the robustness of the reported improvements, we conducted paired t-tests comparing
GyroAtt with the baseline MAtt across all evaluation folds. Tab. 16 reports the average performance
gains and corresponding significance levels, where * denotes p-value < 0.05 and n.s. indicates “not
significant”.

Although some confidence intervals overlap, the observed improvements are consistent across
benchmarks. In particular, the +14.8% gain under the inter-subject condition—known to be the most
challenging EEG setting—demonstrates the practical effectiveness and robustness of GyroAtt.
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Table 16: Paired t-test results comparing GyroAtt with MAtt. Asterisks (*) denote statistical
significance (p < 0.05).

BNCI2014001 BNCI2015001 BCI-CHA MAMEM
Inter-session Inter-subject Inter-session Inter-subject

Gains (%) 7.8 8.9 5.4 14.8 3.4 3.2
Significance * n.s. n.s. * * *

E.4 Graph node classification and radar recognition tasks
While our primary evaluation focuses on EEG decoding, we further assess the generalization capability
of GyroAtt on two additional domains: graph node classification and drone recognition.

Table 17: Accuracy (%) on graph node classification benchmarks.
Method Pubmed Cora

H-GAT 77.5 ± 1.6 78.1 ± 1.1
SPD-GAT 77.8 ± 0.6 79.4 ± 0.6
SPD-GAT-MAtt 77.5 ± 0.6 80.1 ± 1.1
SPD-GAT-GyroAtt 78.5 ± 0.4 81.6 ± 1.0

Graph node classification. We conduct experiments on two standard graph node classification
datasets: Pubmed [49] and Cora [60]. We adopt SPD-GAT [75] as the backbone and substitute
its attention module with GyroAtt-SPD (denoted SPD-GAT-GyroAtt) and MAtt (SPD-GAT-MAtt).
We also include H-GAT [75] for comparison. As shown in Tab. 17, GyroAtt-SPD consistently
outperforms all baselines on both datasets.

Table 18: Accuracy (%) on Radar dataset for drone recognition.
Method Radar

MAtt 96.8 ± 1.1
GDLNet 94.7 ± 0.9
GyroAtt-SPD 98.5 ± 0.8
GyroAtt-Gr 96.2 ± 1.2
GyroAtt-SPSD 96.9 ± 0.9

Drone recognition. We evaluate GyroAtt on the Radar dataset [11], following the GDLNet [72] ar-
chitecture. The dataset comprises 3,000 synthetic radar signals, evenly distributed across three classes.
Tab. 18 shows that GyroAtt-SPD attains the highest accuracy, further validating the adaptability of
our method across different modalities.

E.5 Additional ablations studies
E.5.1 Ablations on the Riemannian metrics and matrix power-based nonlinear activation
Tab. 19 illustrates the impact of the different metrics and power parameter p (as defined in Tab. 3) on
the performance of GyroAtt based on two Riemannian matrix manifolds. The candidate values of
metrics are AIM, LEM, and LCM, with p values set to {0.25, 0.50, 0.75}. As shown in this table, for
SPD-based architectures, GyroAtt under the SPD-AIM geometry with p = 0.5 achieves the highest
accuracy on both the BNCI2014001 and BNCI2015001 datasets, while the SPD-LCM geometry with
p = 0.75 records the second-highest inter-session accuracy (86.0%) on the BNCI2015001 dataset.
For SPSD-based settings, GyroAtt under the SPSD-LCM geometry with p = 0.75 reaches the highest
accuracy (68.7%) on the MAMEM-SSVEP-II dataset. Furthermore, it is evident that GyroAtt is
generally robust to variations in p across all experimental scenarios. These findings emphasize the
importance of selecting the metric space of the underlying feature manifold and demonstrate that the
proposed matrix power activation enhances model performance by introducing nonlinearity into the
metric space.
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Table 19: Ablations of GyroAtt on Riemannian metrics and matrix power activation p. The best result
under each geometry is highlighted in bold.

Geometry p
BNCI2014001 BNCI2015001 MAMEM-SSVEP-IIInter-session Inter-subject Inter-session Inter-subject

SPD-AIM

w/o 74.8 ± 6.7 51.2 ± 15.7 85.5 ± 5.0 75.4 ± 12.9 64.3 ± 2.4
0.25 75.2 ± 6.9 51.4 ± 14.3 85.8 ± 6.8 77.1 ± 12.8 61.9 ± 2.5
0.50 75.4 ± 7.1 53.1 ± 14.8 86.2 ± 4.5 77.9 ± 13.0 66.1 ± 2.6
0.75 75.0 ± 8.1 51.0 ± 13.8 85.9 ± 6.6 77.4 ± 12.6 66.3 ± 2.2

SPD-LEM

w/o 74.9 ± 7.3 51.7 ± 15.8 85.2 ± 5.2 75.3 ± 12.3 65.6 ± 2.3
0.25 74.7 ± 6.7 52.3 ± 14.1 85.6 ± 6.7 75.6 ± 13.0 63.7 ± 2.5
0.50 75.3 ± 6.5 51.4 ± 14.1 85.7 ± 5.5 76.6 ± 13.7 65.3 ± 2.7
0.75 75.1 ± 7.3 52.3 ± 15.0 85.4 ± 7.0 75.5 ± 12.8 66.2 ± 2.5

SPD-LCM

w/o 73.2 ± 6.7 51.9 ± 14.8 85.3 ± 7.2 76.2 ± 13.3 64.0 ± 2.8
0.25 73.4 ± 7.5 52.4 ± 13.4 85.6 ± 7.5 75.4 ± 14.0 64.3 ± 2.5
0.50 74.0 ± 8.2 52.7 ± 13.6 85.9 ± 6.7 77.4 ± 13.2 64.1 ± 3.2
0.75 74.2 ± 7.8 51.7 ± 14.6 86.0 ± 6.8 76.3 ± 13.2 65.1 ± 2.5

SPSD-AIM

w/o 72.2 ± 7.2 49.2 ± 13.7 84.1 ± 7.2 73.6 ± 14.3 65.8 ± 2.6
0.25 72.4 ± 6.8 50.7 ± 14.8 84.0 ± 6.8 75.5 ± 13.8 66.4 ± 3.0
0.50 72.9 ± 7.1 52.4 ± 15.6 84.7 ± 6.6 74.2 ± 14.2 66.5 ± 2.9
0.75 72.5 ± 6.7 51.0 ± 15.3 84.0 ± 4.9 74.5 ± 13.6 65.7 ± 2.7

SPSD-LEM

w/o 72.1 ± 6.7 49.8 ± 12.9 83.9 ± 5.1 74.2 ± 14.4 66.2 ± 1.9
0.25 72.8 ± 6.9 49.9 ± 14.0 85.3 ± 5.3 76.0 ± 14.1 66.5 ± 2.3
0.50 72.5 ± 6.6 50.5 ± 14.2 84.5 ± 5.8 75.4 ± 14.5 66.4 ± 2.5
0.75 72.7 ± 7.6 50.5 ± 13.2 85.2 ± 4.8 75.0 ± 14.2 66.2 ± 1.7

SPSD-LCM

w/o 72.3 ± 7.3 49.5 ± 12.0 84.8 ± 6.1 75.4 ± 13.2 66.5 ± 2.4
0.25 72.2 ± 7.5 50.6 ± 13.9 85.1 ± 4.8 74.9 ± 12.6 67.7 ± 2.3
0.50 72.9 ± 6.7 48.4 ± 13.3 84.9 ± 6.1 74.5 ± 13.6 66.2 ± 3.6
0.75 72.8 ± 6.3 51.7 ± 13.1 85.1 ± 5.8 73.9 ± 15.4 68.7 ± 1.5

Table 20: Ablations of GyroAtt on matrix power normalization θ used in classification and Rieman-
nian metrics. The best result under each geometry is highlighted in bold.

Geometry θ
BNCI2014001 BNCI2015001 MAMEM-SSVEP-IIInter-session Inter-subject Inter-session Inter-subject

SPD-AIM
0.25 74.9 ± 6.9 51.2 ± 13.6 86.1 ± 7,3 76.2 ± 12.8 61.9 ± 2.5
0.50 75.4 ± 7.1 53.1 ± 14.8 86.2 ± 4.5 77.9 ± 13.0 66.2 ± 2.8
0.75 75.0 ± 8.1 51.7 ± 14.5 86.0 ± 6.5 77.1 ± 14.3 66.3 ± 2.2

SPD-LEM
0.25 75.2 ± 6.7 52.7 ± 12.9 85.1 ± 5.7 76.9 ± 14.5 60.7 ± 2.4
0.50 75.3 ± 6.5 51.4 ± 14.1 85.7 ± 5.5 76.6 ± 13.7 66.1 ± 2.8
0.75 75.1 ± 7.3 52.3 ± 13.3 85.8 ± 6.3 76.4 ± 13.1 66.2 ± 2.5

SPD-LCM
0.25 74.2 ± 7.5 52.1 ± 14.5 85.6 ± 5.9 77.3 ± 13.4 64.5 ± 2.9
0.50 74.0 ± 8.2 52.7 ± 13.6 85.9 ± 6.7 77.4 ± 13.2 64.3 ± 2.8
0.75 74.1 ± 7.8 52.0 ± 14.7 86.0 ± 5.3 75.8 ± 13.8 65.1 ± 2.5

SPSD-AIM
0.25 72.7 ± 7.0 51.2 ± 15.8 84.0 ± 6.8 75.5 ± 13.8 66.3 ± 2.9
0.50 72.9 ± 6.2 52.4 ± 15.6 84.5 ± 6.6 74.2 ± 15.2 66.3 ± 2.4
0.75 72.7 ± 6.7 50.0 ± 15.2 84.4 ± 4.9 75.3 ± 13.5 65.7 ± 2.7

SPSD-LEM
0.25 72.8 ± 7.1 50.7 ± 13.9 85.3 ± 5.3 76.0 ± 14.1 66.6 ± 2.6
0.50 72.5 ± 6.6 50.6 ± 14.2 84.5 ± 5.8 75.1 ± 12.9 66.5 ± 1.9
0.75 72.7 ± 7.4 49.5 ± 12.9 84.3 ± 4.8 74.7 ± 14.3 66.2 ± 1.7

SPSD-LCM
0.25 72.1 ± 7.4 49.9 ± 13.1 85.1 ± 4.8 74.9 ± 12.6 67.6 ± 2.1
0.50 72.9 ± 6.7 48.4 ± 13.3 84.1 ± 5.6 74.4 ± 13.7 68.1 ± 1.6
0.75 71.6 ± 6.1 50.1 ± 12.8 84.1 ± 5.7 75.0 ± 12.9 68.7 ± 1.5

E.5.2 Ablations on the matrix power normalization
We conduct ablation experiments to assess the impact of the power normalization parameter θ on the
performance of the proposed GyroAtt, as summarized in Tab. 20. For each gyro structure, we let the
parameter θ vary within the set {0.25, 0.50, 0.75}. Among the SPD-based configurations, our Gy-
roAttNet under SPD-AIM geometry achieves the highest inter-session accuracy on the BNCI2014001
dataset and the best inter-subject accuracy on the BNCI2015001 dataset at p = 0.5. For the SPSD-
based settings, SPSD-LEM geometry consistently performs well across multiple metrics, especially
for the inter-session scenario in BNCI2015001, where it achieves a top accuracy of 85.3%. It also
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can be noted that smaller or larger values of p (e.g., 0.25 or 0.75) tend to yield lower accuracy in
most cases. In contrast, a moderate value of p = 0.5 appears to be more suitable for both SPD and
SPSD geometries, as it could maintain a good normalization power. Besides, GyroAtt tends to be
less sensitive to changes in θ across all experimental scenarios. In short, these results confirm the
effectiveness of the introduced matrix power normalization in classification.

E.5.3 Ablation on the number of GyroAtt blocks
We perform an ablation study to assess the impact of stacking multiple GyroAtt blocks. Tab. 21
reports results on BNCI2014001 and BNCI2015001 under inter-session settings, with the number of
GyroAtt blocks varying from 1 to 3.

For both SPD and SPSD variants, using two blocks slightly improves performance over one, but
adding a third block provides no further gain and even causes mild degradation. These results suggest
that a single GyroAtt block is sufficient to model EEG signals effectively, likely due to the low
dimensionality and limited temporal complexity of the data. Extended results are included in the
supplementary material.

Table 21: Ablation on the number of GyroAtt blocks. Performance (%) on BNCI2014001 and
BNCI2015001 under inter-session settings.

Method Number of Blocks BNCI2014001 BNCI2015001

GyroAtt-SPD 1 75.4 ± 7.1 86.2 ± 6.5
GyroAtt-SPD 2 76.5 ± 6.7 86.1 ± 6.2
GyroAtt-SPD 3 76.0 ± 6.3 86.0 ± 6.1

GyroAtt-SPSD 1 72.9 ± 6.7 84.7 ± 6.6
GyroAtt-SPSD 2 73.1 ± 6.2 84.9 ± 5.2
GyroAtt-SPSD 3 72.9 ± 5.1 84.8 ± 5.3

E.6 Implementation details of gyro inner product.
In Euclidean space, attention mechanisms commonly use the inner product as a similarity measure.
Nguyen and Yang [52], Nguyen et al. [53] extends this concept by defining the inner product on SPD,
SPSD, and Grassmannian manifolds. The specific formulations are detailed as follows:

For P,Q ∈ S++
d , the SPD inner product is given by [52]:

⟨P,Q⟩g = ⟨LoggId(P),LoggId(Q)⟩gId , (27)

For U,V ∈ G̃(q, d), the inner product is given by:

⟨U,V⟩gr = ⟨L̃og
gr

Ĩd,q
(U), L̃og

gr

Ĩd,q
(V)⟩̃Id,q , (28)

For (UP ,SP ) , (UQ,SQ) ∈ G̃(q, d)× S++
q , the inner product is defined as:

⟨(UP ,SP ), (UQ,SQ)⟩psd,g = λ⟨UPU
⊤
P ,UQU

⊤
Q⟩

gr

Ĩd,q
+ ⟨SP ,SQ⟩gIq , (29)

We replaced the distance-based similarity computation in Eq. (5) with the inner product defined in
follow and conducted ablation experiments on the MAMEM, BNCI2014001, and BNCI2015001
datasets under inter-session settings.

E.7 Implementation details of replacing geometric components in GyroAtt
We conducted an ablation study to evaluate the contributions of the Gyro Homomorphism and
nonlinear activation in GyroAtt. Specifically, we replaced these components in GyroAtt-SPD and
GyroAtt-SPSD with equivalent layers from SPDNet and GrNet, such as Bimap, Frmap, and ReEig,
to assess their impact on performance.
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Implementation of component replacement on GyroAtt. We replaced components in GyroAtt
with their equivalents from MAtt and GDLNet to assess their contributions. Specifically, in GyroAtt-
SPD, we replaced the Gyro Homomorphism hom(·) with the Bimap layer and the matrix power-based
nonlinear activation σ(·) with the ReEig layer. In GyroAtt-SPSD, we replaced hom(·) with the Frmap
layer and σ(·) with the ReEig layer. That is, we substituted homgr (UP ) in hompsd,g(·) with the
Frmap layer and replaced (SRi

)p in (URi
, (SRi

)p) with the ReEig layer.

The BiMap (bilinear transformation) layer is defined as:

X(l) = W(l)X(l−1)W(l)⊤ , (30)

where X(l) ∈ S++
d2 ,X(l−1) ∈ S++

d1 ,W(l) ∈ Rd2×d1 with d1 > d2 is a semi-orthogonal matrix. For
the parameter W(l), we use the geoopt [43] package to optimize. The FrMap layer is defined as:

X(l) = W(l)⊤X(l−1), (31)

where X(l) ∈ G(d2, q), X(l−1) ∈ G(d1, q), and W(l) ∈ Rd2×d1 is a semi-orthogonal matrix with
d1 > d2. We optimized W(l) using Geoopt.

The ReEig (rectified eigenvalues activation) layer is defined as:

Xl = U(l)max(Σ(l), ϵId)U
(l)⊤ , (32)

with Xl−1 = U(l)Σ(l)U(l)⊤ , where Σ(l) contains the eigenvalues of Xl−1, and ϵId is used to ensure
numerical stability and set by 1e-4. Here, we set the dimensions of the Bimap layer to 21× 18,
43× 20, and 44× 20 and the frmap layer to 21× 18, 43× 30, and 44× 30 for the MAMEM-
SSVEP-II, BNCI2014001, and BNCI2015001 datasets, respectively.

As shown in Tab. 8 and Tab. 22, replacing hom(·) with the Bimap layer or σ(·) with the ReEig
layer leads to significant performance degradation across the datasets. Similarly, for GyroAtt-SPSD,
replacing hom(·) with Frmap or σ(·) with ReEig degrades performance. This occurs because hom(·)
and σ(·) respect the gyro algebraic structure and underlying Riemannian geometry. The hom(·)
function, as a Gyro homomorphism, preserves the Gyro algebraic structure of ⊕ and ⊗, serving as a
natural generalization of linear transformations in Euclidean spaces. In contrast, Bimap lacks these
properties. Similarly, σ(·) introduces nonlinearity to SPD matrices and, more importantly, acts as an
activation and deformation mechanism for the Riemannian metric, as discussed in Chen et al. [17].
On the other hand, to some extent, ReEig is primarily a numerical activation method, ensuring only
S++
d → S++

d without addressing these deeper structural and geometric considerations.

Table 22: Ablations of GyroAtt-SPSD, Replacing Gyro Homomorphisms and Power Activations with
SPDNet or GrNet methods (The Frmap and ReEig layers).

Transformation Activation BNCI2014001 BNCI2015001
Inter-session Inter-subject Inter-session Inter-subject

Frmap Power 68.9 ± 6.9 51.2 ± 12.9 82.3 ± 6.2 65.8 ± 13.1
Homomorphisms ReEig 72.3 ± 6.9 49.6 ± 13.3 84.9 ± 6.2 74.1 ± 12.3
Frmap ReEig 68.8 ± 7.2 50.7 ± 13.8 81.6 ± 6.1 72.9 ± 13.3
Homomorphisms Power 72.9 ± 7.1 52.4 ± 15.6 85.3 ± 5.3 76.0 ± 14.1

E.8 Computational complexity analysis and comparison
The computational complexity of GyroAtt, MAtt, and GDLNet primarily depends on operations such
as WFM, gyro homomorphisms, and similarity measurements. The primary computational overhead
arises from the types and quantities of matrix functions used in manifold-valued computations.

E.8.1 Number of matrix functions in manifold attention mechanisms
To analyze computational complexity, we examine the matrix functions employed in the attention
mechanisms of MAtt, GDLNet, and our GyroAtt framework. These methods primarily use Singular
Value Decomposition (SVD) and Cholesky decomposition, each with a computational complexity of
O(d3) for matrices of dimension d. In GyroAtt-Gr and GyroAtt-SPSD, SVD is applied to matrices
sized d × q, resulting in a complexity of O(dq2). Tab. 23 outlines the number of required matrix
functions for each method, where C is the number of inputs to the attention module (e.g., queries or
keys), and q denotes the subspace dimension.
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Table 23: Complexity comparison of different manifold attention models, where Chol denotes the
Cholesky decomposition.

Methods Metrics SVD (d× d) Chol (d× d) SVD (d× q) SVD (q × q) Chol (q × q)
O(d3) O(d3) O(dq2) O(q3) O(q3)

MAtt LEM 3C 0 0 0 0
GDLNet ONB C 0 0 0 0
GyroAtt-Gr ONB 0 0 C2 + C 2C 0
GyroAtt-SPD AIM 2C2 + 3C 0 0 0 0
GyroAtt-SPD LEM 4C 0 0 0 0
GyroAtt-SPD LCM C 3C 0 0 0
GyroAtt-SPSD AIM 0 0 C2 + C 3C2 + 4C 0
GyroAtt-SPSD LEM 0 0 C2 + C C2 + 6C 0
GyroAtt-SPSD LCM 0 0 C2 + C C2 + 2C 3C

Table 24: Training time (seconds/epoch) comparison of different manifold attention networks on the
BNCI2014001 and BNCI2015001 datasets.

Methods Metrics BNCI2014001 BNCI2014001 BNCI2015001 BNCI2015001
Inter-session Inter-subject Inter-session Inter-subject

MAtt LEM 4.86 89.12 2.74 56.78
GDLNet ONB 4.55 88.59 1.71 47.66
GyroAtt-Gr ONB 5.28 100.20 1.98 54.07
GyroAtt-SPD AIM 10.36 149.14 4.44 81.73
GyroAtt-SPD LEM 7.89 138.59 4.28 80.66
GyroAtt-SPD LCM 4.11 87.44 2.42 49.86
GyroAtt-SPSD AIM 6.78 123.44 2.37 65.30
GyroAtt-SPSD LEM 6.54 116.49 2.34 64.23
GyroAtt-SPSD LCM 5.71 103.57 2.16 58.50

E.8.2 Experimental comparison of time efficiency
For practical comparison, we measured the average training time per epoch (seconds) for our GyroAtt
variants and baseline models MAtt and GDLNet on the BNCI2014001 and BNCI2015001 datasets,
as shown in Tab. 24. The results indicate that GyroAtt-Gr runs slower than GDLNet, mainly because
of more SVD operations in WFM, increasing computational complexity. As predicted by Tab. 23
and confirmed in Tab. 24, GyroAtt-SPSD is less computationally efficient than GDLNet and MAtt
across all metrics. In contrast, GyroAtt-SPD with the LCM metric slightly outperforms MAtt in
runtime. Additionally, Tab. 24 shows that any GyroAtt variant using the LCM metric runs faster than
those using AIM and LEM metrics, primarily because the Cholesky decomposition (used in LCM)
is generally more efficient than SVD due to smaller constant factors. Notably, AIM-based GyroAtt
variants are slower than their LEM-based counterparts because AIM requires more eigenvalue
computations than LEM.

Our computational complexity analysis and empirical runtime comparisons highlight key observa-
tions:

• GyroAtt-Gr: Runs slower than GDLNet due to more SVD operations.

• GyroAtt-SPSD: Less efficient than GDLNet and MAtt across all metrics, involving extra
SVD computations on d× q and q × q matrices.

• GyroAtt-SPD with LCM: Achieves comparable or better runtime than MAtt, benefiting
from the efficiency of the Cholesky decomposition.

• Metric Impact: The LCM metric leads to lower training times due to the efficiency of
Cholesky decomposition over SVD. AIM-based GyroAtt variants are slower than LEM-
based ones because AIM requires more eigenvalue operations.

Although some GyroAtt variants introduce additional computational overhead compared to baseline
methods, especially under certain metrics, the performance improvements justify the increased
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complexity. Selecting efficient metrics like LCM can mitigate computational costs, making GyroAtt
practical for real-world applications.

E.9 Model compactness and parameter efficiency

Table 25: Learnable parameters (in millions) of different methods across four EEG datasets.
Method MAMEM-SSVEP-II BCI-ERN BNCI2014001 BNCI2015001

MAtt 0.07M 0.03M 0.03M 0.01M
GDLNet 0.51M 0.05M 0.03M 0.01M
GyroAtt-SPD 0.11M 0.08M 0.04M 0.01M
GyroAtt-Gr 0.11M 0.07M 0.04M 0.01M
GyroAtt-SPSD 0.12M 0.09M 0.05M 0.01M

As shown in Tab. 25, all GyroAtt variants maintain a comparable parameter count to MAtt, and are
substantially more compact than GDLNet on MAMEM-SSVEP-II. Despite this, GyroAtt achieves
stronger performance across all datasets.

E.10 Long-range dependencies
A central advantage of self-attention is its ability to capture long-range dependencies via position-
independent pairwise interactions, where each token attends to all others in a single step.

Our GyroAtt module inherits this property by extending self-attention to Riemannian manifolds.
Specifically, it computes pairwise attention over manifold-valued features using geodesic distances,
followed by aggregation via the weighted Fréchet mean. This allows any two positions to interact
directly, independent of sequence length.

E.11 Visualizing learned representations via Rie-SNE

Train Test

Figure 5: Rie-SNE visualization of SPD representations extracted by GyroAtt-SPD-LEM on
BNCI2015001. We plot the manifold-valued features from the training (left) and test (right) sets.
Each point corresponds to SPD matrices used for final classification, with colors denoting different
classes. Clear separation between classes and structural consistency across splits highlight the model’s
capacity to learn discriminative geometric features.

We visualize the SPD matrices output from GyroAtt-SPD-LEM prior to classification using Rie-
SNE [21], separately for the training and test sets on BNCI2015001. As shown in Fig. 5, the learned
representations exhibit compact intra-class clustering and clear inter-class separation across both
splits.

F Proofs of the Theorems in the Main Paper
F.1 Proof of the Thm. 3.2

Proof of Thm. 3.2 . This theorem can be induced from Nguyen and Yang [52][Lem. 2.1-2.2]. Let
the Riemannian metric tensor be g. We have

f : (M, f∗g)→ (M, g), with f(e) = e,
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where f∗g is the pullback metric under the diffeomorphism f . As f is an isometry, we have
f∗g = g. Applying Lem. 2.1-2.2 in Nguyen and Yang [52], one can immediately prove f(P⊕Q) =
f(P)⊕ f(Q) and f(t⊗Q) = t⊗ f(Q) for any t ∈ R and P,Q ∈M .

F.2 Proof of the Thm. 4.1

Proof of Thm. 4.1 . For each g ∈ {ai, le, lc}, let
(
S++
d ,⊕g,⊗g

)
be the gyrovector space specified

in Tab. 1. We must show that the map

homg : S++
d → S++

d ,P 7→


OPO⊤, g = ai, O ∈ O(d),

expm
(
M logm(P)M⊤) , g = le, M ∈ Rd×d,

L −1 (⌊L(P)⌋+ exp (D (L(P)))) , g = lc, M ∈ Rd×d,

(33)

with
L(P) = M

(
⌊L (P)⌋+ ⌊L (P)⌋⊤ + D (L (P))

)
M⊤, (34)

is a gyro homomorphism, i.e.,

homg(P)⊕g homg(Q) = homg (P⊕g Q) , (35)

t⊗g homg(P) = homg (t⊗g P) ∀ P,Q ∈ S++
d , t > 0. (36)

AIM case (g = ai).

The ⊕ai and ⊗ai are defined by:
P⊕ai Q = P

1
2QP

1
2 . (37)

t⊗ai P = Pt (38)

Let the isometry homai(P) = OPO⊤ with O ∈ O(d) (orthogonal group). Since the identity
element is e = I and homai(e) = OIO⊤ = I = e, the sufficient condition in Theorem 3.2 applies:
an isometry fixing e is a gyro homomorphism.

For completeness, we verify both operations explicitly.

We begin by showing that homai(·) satisfies Eq. (35). let homai(P) = OPO⊤, with any P,Q ∈
S++
d , then we have

homai(P)⊕ai homai(Q)
(1)
=
(
OPO⊤) 1

2 OQO⊤ (OPO⊤) 1
2

(2)
= OP

1
2O⊤OQO⊤OP

1
2O⊤

= OP
1
2QP

1
2O⊤

= homai(P⊕ai Q).

(39)

The derivation of Eq. (39) follows.

(1) follow from Eqs. (8) and (37).

(2) follows from the fact that P is an SPD matrix and O is an orthogonal matrix.

Now, we proof that homai(·) satisfies Eq. (36). For the ⊗ai, we have

t⊗ai homai(P)
(1)
=
(
OPO⊤)t

(2)
= OPtO⊤

=homai(t⊗ai P).

(40)

The derivation of Eq. (40) follows.

(1) follow from Eqs. (8) and (38).

(2) follows from the fact that P is an SPD matrix and O is an orthogonal matrix.

LEM case (g = le).
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The ⊕le and ⊗le are defined by:

P⊕le Q = expm(logm(P) + logm(Q)), (41)

t⊗le P = Pt (42)
We begin by showing that homle(·) satisfies Eq. (35). For the ⊕le, with any P,Q ∈ S++

d , we have

homle(P)⊕le homle(Q)
(1)
= expm

(
M logm (P)M⊤ +M logm (Q)M⊤)

= expm
(
M (logm (P) + logm (Q))M⊤)

= homle(P⊕le Q).

(43)

The derivation of Eq. (43) follows.

(1) follow from Eqs. (8) and (41).

For ⊗le, we have

t⊗le homle(P)
(1)
=
(
expm

(
M logm (P)M⊤))t

(2)
= expm

(
tM logm (P)M⊤)

=homle(t⊗le P).

(44)

Reduction to AIM for orthogonal M = O ∈ O(d).

For the ⊕le, with any P,Q ∈ S++
d , O ∈ O(d) we have

homle(P)⊕le homle(Q)
(1)
= expm

(
O (logm (P) + logm (Q))O⊤)

(2)
= O expm ((logm (P) + logm (Q)))O⊤

= homle(P⊕ai Q).

(45)

The derivation of Eq. (45) follows.

(1) follow from Eqs. (41) and (43).

(2) follows from the fact that P is an SPD matrix and O is an orthogonal matrix.

For the ⊗le, we have

t⊗le homle(P)
(1)
= expm

(
tO logm (P)O⊤)

(2)
= O expm (t logm (P))O⊤

=homle(t⊗le P).

(46)

The derivation of Eq. (46) follows.

(1) follow from Eqs. (42) and (44).

(2) follows from the fact that P is an SPD matrix and O is an orthogonal matrix.

LCM case (g = lc).

The ⊕lc and ⊗lc are defined by:

t⊗lc P = L −1
(
t⌊L (P)⌋+ D(L (P))t

)
, (47)

P⊕lc Q = L −1 (⌊L (P)⌋+ ⌊L (Q)⌋+ D(L (P))D(L (Q))) . (48)
We begin by showing that homlc(·) satisfies Eq. (35). With any P,Q ∈ S++

d ,for ⊕lc, we can rewrite
⊕lc and homlc as

P⊕lc Q = L −1 (expD (logD (L (P)) + logD (L (Q)))) , (49)

homlc(P) = L −1 (expD (L(P))) , (50)
where L(P) = M

(
⌊L (P)⌋+ ⌊L (P)⌋⊤ + D(L (P))

)
M⊤, logD (F) and expD (F) are given

by

logD (F) = ⌊F⌋+ logm(D(F)), (51)
expD (F) = ⌊F⌋+ expm(D(F)), (52)
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Then we have

homlc(P)⊕lc homlc(Q)
(1)
= L −1 (expD (L(P) + L(Q)))

(2)
= L −1 (expD (L(P+Q)))

= homlc(P⊕lc Q)

(53)

The derivation of Eq. (53) follows.

(1) follow from Eqs. (8) and (48).

(2) follow from the properties of L(·).

Hence homg is a gyro homomorphism for each g ∈ {ai, le, lc}, completing the proof.

F.3 Proof of the Thm. 4.2

Proof of Thm. 4.2 . The ⊕̃gr and ⊗̃gr are defined by:

U⊕̃grV = expm([LoggrId,q (UU⊤), Id,q])V, (54)

t⊗̃grU = expm
([
tLoggrIn,q

, Id,q

])
Id,q (55)

Let the isometry homgr(U) = OU with O ∈ O(d). The reference element Id,q denotes the
canonical subspace spanned by the first q basis vectors. Since OId,q and Id,q represent the same
subspace on G(q, d), homgr fixes the identity element in the quotient sense and satisfies the condition
of Thm. 3.2.

For completeness, we verify that it preserves both gyroaddition and gyromultiplication below.

we begin by showing that homgr(·) satisfies Eq. (35). For any U,V ∈ G(q, d), we have

homgr(U)⊕̃gr homgr(V)
(1)
= expm([LoggrIn,q

(OUU⊤O⊤), In,q])OV

(2)
= expm([OLoggrIn,q

(UU⊤)O⊤,OIn,qO
⊤])OV

= expm(O[LoggrIn,q
(UU⊤), In,q]O

⊤)OV

(3)
= O expm([LoggrIn,q

(UU⊤), In,q])O
⊤OV

= O expm([LoggrIn,q
(UU⊤), In,q])V

= homgr(U⊕̃grV).

(56)

The derivation of Eq. (56) follows.

(1) follow from Eqs. (9) and (54).

(2) follows from the fact that Loggr
OIn,qO⊤(OUU⊤O⊤) = OLoggrIn,q

(UU⊤)O⊤, and for O =[
Oq 0
0 Od−q

]
,OIn,qO

⊤ = In,q .

(3) follows from the fact that O is an orthogonal matrix.

Now, we proof that homgr(·) satisfies Eq. (36). The differential homomorphism Φ : G̃(q, d) →
G(q, d),U → UU⊤ exists between G̃(q, d) and G(q, d), and ⊗̃gr is derived from ⊗gr via this
differential homomorphism. Thus, to prove that ⊗̃gr satisfies Eq. (36), it suffices to show that ⊗gr

satisfies Eq. (36). The ⊗gr is defined by:

t⊗gr U = expm
([
tŪ, Id,q

])
Id,q expm

([
¯−tU, Id,q

])
(57)
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For ⊗gr, we have

t⊗gr homgr(UU⊤) = (t⊗̃gr homgr(U))(t⊗̃gr homgr(U))⊤

(1)
= expm(t[LoggrIn,q

(OUU⊤O⊤), In,q])In,q expm(t[LoggrIn,q
(OUU⊤O⊤), In,q])

(2)
= O expm([LoggrIn,q

(UU⊤), In,q])O
⊤In,qO expm([LoggrIn,q

(UU⊤), In,q])O
⊤

= O expm([LoggrIn,q
(UU⊤), In,q])In,q expm([LoggrIn,q

(UU⊤), In,q])O
⊤

= homgr(t⊗gr UU⊤).
(58)

Since ⊗gr satisfies Eq. (36), we can proof ⊗̃gr satisfies Eq. (36).

F.4 Proof of the Thm. 4.3

Proof of Thm. 4.3 . The ⊕̃psd,g and ⊗psd,g are defined by:

(UP ,SP )⊕psd,g (UQ,SQ) = (UP ⊕̃grUQ,SP ⊕g SQ), (59)

t⊗psd,g (UP ,SP ) = (t⊗̃grUP , t⊗g SP ) (60)

we begin by showing that hompsd,g satisfies Eq. (35). As shown in Eq. (10) For any
(UP ,SP ), (UQ,SQ) ∈ G̃(q, d)× S++

q , we have:

hompsd,g((UP ,SP )⊕psd,g (UQ,SQ))
(1)
= hompsd,g(UP ⊕̃grUQ,SP ⊕g SQ)

= (homgr(UP ⊕̃grUQ), homg(SP ⊕g SQ))

(2)
= (homgr(UP )⊕̃gr homgr(UQ), homg(SP )⊕g homg(SQ))

(3)
= (homgr(UP ),homg(SP ))⊕psd,g (homgr(UQ), homg(SQ))

= hompsd,g(UP ,SP )⊕psd,g hompsd,g(UQ,SQ).
(61)

The derivation of Eq. (61) follows.

(1) follow from Eqs. (10) and (59).

(2) and (3) follow from the fact that homgr and homg are gyro homomorphisms.

For scalar multiplication, we have:

hompsd,g(t⊗psd,g (UP ,SP ))
(1)
= hompsd,g(t⊗̃grUP , t⊗g SP )

= (homgr(t⊗̃grUP ),homg(t⊗g SP ))

(2)
= (t⊗̃gr homgr(UP ), t⊗g homg(SP ))

(3)
= t⊗psd,g (homgr(UP ),homg(SP ))

= t⊗psd,g hompsd,g(UP ,SP ).

(62)

The derivation of Eq. (62) follows.

(1) follow from Eqs. (10) and (60).

(2) and (3) follow from the fact that homgr(·) and homg(·) are gyro homomorphisms.
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