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Figure 1. Our InspectVLM multimodal multitask drone anomaly inspection architecture. Industrial asset inspections involve multiple
modalities (RGB & Thermal imagery) and multiple tasks such as image classification, object detection, and keypoint detection. By
treating visual tasks as language, Vision-Language Models (VLMs) enable the unification of independent task-specific models into a single
architecture.

Abstract

Unified vision-language models (VLMs) promise to stream-
line computer vision pipelines by reframing multiple visual
tasks—such as classification, detection, and keypoint local-
ization—within a single language-driven interface. This
architecture is particularly appealing in industrial inspec-
tion, where managing disjoint task-specific models intro-
duces complexity, inefficiency, and maintenance overhead.
In this paper, we critically evaluate the viability of this uni-
fied paradigm using InspectVLM, a Florence-2–based VLM
trained on InspectMM, our new large-scale multimodal,
multitask inspection dataset. While InspectVLM performs
competitively on image-level classification and structured
keypoint tasks, we find that it fails to match traditional
ResNet-based models in core inspection metrics. Notably,
the model exhibits brittle behavior under low prompt vari-
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ability, produces degenerate outputs for fine-grained object
detection, and frequently defaults to memorized language
responses regardless of visual input. Our findings suggest
that while language-driven unification offers conceptual el-
egance, current VLMs lack the visual grounding and robust-
ness necessary for deployment in precision-critical indus-
trial inspections.

1. INTRODUCTION

Large-scale industrial asset inspection—across wind tur-
bines, solar farms, and building rooftops—relies on a range
of computer vision tasks, including anomaly detection, ob-
ject localization, and inventory counting. Traditionally,
these tasks are addressed by training and deploying separate
models for classification, detection, and keypoint localiza-
tion, each tailored to a specific data modality and use case.
While effective, this approach introduces substantial opera-
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tional complexity and duplication: each task requires model
tuning, deployment infrastructure, and long-term mainte-
nance.

Recent advances in vision-language models (VLMs) of-
fer an alternative. By casting vision tasks into a lan-
guage interface—e.g., formulating detection as open vocab-
ulary detection, or binary classification as visual-question-
answering—VLMs promise to unify these disparate mod-
els into a single architecture. This unified approach could
significantly simplify inspection systems: one model, one
interface, multiple tasks.

However, this promise is largely untested in real-world,
high-stakes domains like industrial inspection. Existing
VLM evaluations focus on curated web benchmarks or syn-
thetic data, leaving open the question: Can unified VLMs
actually replace task-specific vision models in practical in-
spection pipelines?

In this paper, we present a case study addressing this
question. We introduce InspectMM, a large-scale mul-
timodal multitask dataset spanning over 290,000 drone-
acquired images with expert-labeled annotations for clas-
sification, object detection, and keypoint detection across
wind, solar, and property domains. Using this dataset,
we train InspectVLM, a Florence-2–based model fine-tuned
across all three tasks simultaneously. We then compare its
performance to traditional models: ResNet-50 classifiers,
Faster R-CNN detectors, and Keypoint R-CNN localizers.

Our findings highlight the trade-offs of unified VLMs in
practice:
• InspectVLM performs competitively on image classifica-

tion and structured keypoint tasks, particularly in solar
panel arrays.

• However, it fails significantly on fine-grained object de-
tection, frequently producing degenerate bounding boxes.

• The model exhibits brittle language behavior, overfitting
to fixed prompt templates and ignoring visual input under
low variability.

These results suggest that while VLMs are architec-
turally elegant and appealing in theory, current models do
not meet the accuracy, reliability, or robustness required for
industrial-grade inspection. We conclude that VLMs offer
a valuable unification strategy—but only when paired with
careful prompt design, adequate visual grounding, and fall-
back mechanisms for safety-critical applications.

In this work, we explore the effectiveness of VLMs for
large-scale asset inspection across a range of tasks and com-
pare their performance to that of traditional task-specific
computer vision models. We summarize our contributions
below:

Multimodal Multitask Industrial Inspection Dataset We
develop a novel multimodal multitask dataset, InspectMM,

for large-scale asset inspection, encompassing diverse sub-
tasks across multiple image domains and asset types.

A Unified VLM for Multimodal Multitask Inspection
We investigate the applicability of VLMs for performing
industrial inspection across different asset types and im-
age modalities, resulting in the development of our In-
spectVLM architecture.

A case study in unified model performance We conduct
an empirical evaluation of our InspectVLM unified model
against traditional computer vision models tailored to indi-
vidual sub-tasks.

A detailed analysis of VLM failure modes We identify and
quantify key limitations of current VLMs in inspection set-
tings, including (1) overfitting to low prompt variability, (2)
defaulting to degenerate bounding boxes, and (3) reliance
on spatial pattern priors over visual features. These find-
ings highlight the challenges of deploying unified VLMs in
high-precision industrial tasks.

1.1. Related Work
VLMs The combination of natural language processing
and computer vision architectures into VLMs has pro-
gressed rapidly in recent years, showing strong multitask-
ing and generalization abilities. Architectures such as
LLaVA [12], MiniGPT-4 [20], InstructBLIP [5], Ground-
ingDINO [13] have shown improved performance for mul-
timodal tasks such as image captioning, visual question an-
swering (VQA), and open-vocabulary detection. Further-
more, VLMs have also been used for visual-grounding tasks
wherein the model is capable of understanding features
from a referred image location. In a broader scope, general-
purpose VLMs such as Florence-2 [19] and PaliGemma [2]
are pretrained simultaneously on a combination of multi-
modal tasks. These advancements indicate that VLMs are a
viable alternative to traditional task-specific vision models.

Asset Inspection Traditional deep learning methods have
been used to great effect in multiple visual asset inspec-
tion tasks, including wind turbine inspection [1], building
rooftop measurements [4], and solar farm inventory man-
agement [17]. VLMs have also been employed in inspection
settings, although they have been limited to primarily single
tasks or usage of simulated datasets. For example, Anoma-
lyGPT [8] was trained on industry-specific data with sim-
ulated visual anomalies to generate descriptions of present
anomalies and generate an approximate location via unsu-
pervised learning using the feature maps generated by the
vision encoder. Automotive-LLaVA [11] was proposed for
answering questions about automotive part images. Simi-
larly, Power-LLaVA [18] is a VQA model for power line
inspections. Furthermore, while VLMs have been applied
to industry-specific tasks, they have not been properly eval-
uated against traditional task-specific vision models.



Figure 2. Samples from our InspectMM dataset for multimodal multitask inspections. Our dataset task types consist of keypoint de-
tection, visual-question answering, and object detection. From top to bottom: wind turbine anomaly flagging, properties rooftop inventory
counting, solar panel inventory counting, and wind turbine crack detection. Best visualized while zoomed in.

2. METHODS
Our model follows the Florence-2 architecture [19] con-
sisting of a DaViT [7] image encoder and a unified multi-
modal transformer for processing both image and text to-
kens. Florence-2 is trained on multiple tasks including
VQA, image captioning, and open vocabulary object detec-
tion. While other VLMs commonly train adapter modules
to align frozen pretrained text and vision encoders’ repre-
sentations, Florence-2 trains both the vision multimodal en-
coders from scratch. This allows the model to transfer well
to vision-specific tasks. Furthermore, Florence-2 employs
an additional specialized tokenizer with 1,000 spatial task
tokens allowing the model to encode and decode image lo-
cations. These tokens are used to represent image coordi-
nates by normalizing pixel coordinates by image width and
height and scaling by 1,000.

2.1. Region Representation
Similarly to the approaches described in Florence-2 [19]
and Molmo [6], we represent image regions as language,
employing the following spatial encoding formats:

Point Representation Points in the image are expressed as
(xc,yc), where xc and yc represent the centroid coordinates
of the object of interest.

Box Representation Bounding boxes are expressed as tu-
ples of length 4: (x1,y1,x2,y2) corresponding to the top-left
and bottom-right corners of the box.

2.2. Task Formulation
To create a unified multitask inspection dataset, we refor-
mulate conventional vision tasks as language, employing
and extending task-specific prompts as outlined in [19]. Ex-
amples of each task prompt and response can be found in
Figure 1:

Binary Classification (VQA) Binary classification tasks
are restructured as visual-question answering (VQA) prob-
lems. Using the prompt <VQA>, the model is provided with
a task-specific question, and the response is a binary yes
or no.

Keypoint Detection (Pointing) Inspired by the pointing ap-
proach used by Molmo [6], keypoint detection tasks are for-
mulated with the prompt <KD>, followed by a task-specific
question. The output consists of class names and their cor-
responding points.

Open-Vocabulary Object Detection Object detection tasks
are reformulated as open-vocabulary object detection. The
prompt <OVD> precedes the target object class of interest,
and the response includes the class name and its associated
bounding boxes.

3. DATASET

To train a unified model to perform industrial inspections
across asset classes, image modalities, and visual tasks,
we curate the InspectMM dataset. The dataset consists of



Figure 3. Diverse geographic locations of the industrial assets in our InspectMM dataset. InspectMM consists of imagery from
inspections of properties & solar assets (left) and wind (right). For properties and solar we sample 97k images from inspections across the
continental U.S.; for wind we draw 145k images from from turbine inspections across the globe.

292,341 images taken during aerial drone inspections and
694,905 region-level annotations labeled by industrial in-
spection experts. The dataset, detailed in Table 1, consists
of 3 visual tasks: image classification, object detection, and
keypoint detection for 3 asset types: solar, wind, and prop-
erties.

Anomaly Flagging This subset of the dataset consists of
imagery from wind turbine surfaces and building rooftops.
This task requires global-level image understanding of
whether an anomaly, which can vary from a large to small
area, is present within a high-resolution image. The wind
turbine imagery captures a variety of structural surfaces, in-
cluding blades and hubs, while the buildings imagery spans
both commercial and residential structures.

Anomaly Detection For anomaly detection, we use the
ZVCD wind turbine crack detection dataset proposed in [1],
and improve it by adding bounding box annotations, result-
ing in the ZVCD+ dataset. In this case, due to the small size
of the cracks, the dataset is composed of small 1024×1024
patches of the original image. This adds complexity for a
multitask model to be performant on both high-resolution
imagery and patches.

Inventory Counting This subset consists of imagery ex-
tracted from a mixture of RGB and NIR orthomosaics of
building rooftops and solar farms and is annotated with
point-level coordinates for identifying and counting compo-
nents such as HVAC units, vents, skylights, and solar pan-
els. This method allows for efficient identification of objects
of varying sizes and orientations without the complexity of
detailed bounding box or polygon representations. Key-
point localization simplifies and lessens the annotation cost
by focusing on identifying and marking the centroid of each
component.

Inspection
Task

Asset
Type

Annotation
Type # Images # Annotations

Anomaly
Flagging

Properties
Wind CLS 145k 145k

Anomaly
Detection Wind OD 50k 20k

Inventory
Counting

Properties
Solar KD 97k 674k

Table 1. Overview of the InspectMM dataset for multitask
multimodal drone inspections. Industrial assets include wind
turbines, solar farms, and residential and commercial buildings.
Inspection tasks include anomaly flagging, anomaly detection, and
inventory counting. The tasks can be mapped to the following ma-
chine learning problem types, respectively: Image Classification
(CLS), Object Detection (OD), and Keypoint Detection (KD).

4. EXPERIMENTS

4.1. Zero-Shot

We initially select the Florence-2 [19], Ground-
ingDINO [13], and PaliGemma [2] models as candidate
VLMs. We use the ZVCD+ wind turbine crack detection
dataset [1] as our benchmark to evaluate the zero-shot
performance of each VLM. As detailed in Table 3, we find
that Florence-2 outperforms other VLMs with respect to
the number of parameters and IoU. While GroundingDINO
provides decent performance, its non-language-based
decoder makes it complicated to adapt to multiple tasks
other than open-vocabulary object detection. Therefore,
we select Florence-2 as our architecture for the following
experiments throughout.

4.2. Single & Multitask Evaluation

Experimental Details We train the Florence-2 architecture
and initialize the model weights from the original authors’
checkpoints [19]. We use the AdamW optimizer [14] with



Task Type Model # Params (M) Accuracy Precision Recall

Anomaly Flagging CLS
ResNet-50 [9] 24 66.7 62.1 59.3

InspectVLM (Ours) 232 75.9 73.6 89.5

Anomaly Detection OD
Faster R-CNN [15] 42 - 46.1 43.7
InspectVLM (Ours) 232 - 16.5 19.8

Inventory Counting KD
Keypoint R-CNN [10] 59 - 36.6 68.9
InspectVLM (Ours) 232 - 34.1 60.7

Table 2. Results across the sub-tasks within our industrial asset inspection dataset, InspectMM. For Anomaly Flagging classification
we report overall accuracy, precision, and recall. For the Anomaly Detection and Inventory Counting we report precision and recall at a
50% IoU threshold. Faster R-CNN and Keypoint R-CNN both use a ResNet-50 FPN backbone. The tasks can be mapped to the following
machine learning problem types: Image Classification (CLS), Object Detection (OD), and Keypoint Detection (KD). Note that InspectVLM
is trained for all tasks simultaneously while each model comparison (e.g. ResNet-50) can only be trained on individual tasks.

a learning rate of α = 1e− 6, a cosine annealing schedule,
mixed-precision training, a batch size of 8, and resize im-
ages to 768×768. We train each experiment for 10 epochs.

Method # Params (B) IoU mAP
PaliGemma [3] 3.00 0.00 0.00
GroundingDino [16] 0.31 0.47 4.48
Florence-2 [19] 0.23 0.54 3.11

Table 3. Zero-shot performance of multimodal language mod-
els on the ZVCD test set [1]. We report box IoU and mAP as met-
rics to evaluate zero-shot performance in addition to model size in
parameters.

Baselines For comparison to traditional single-task com-
puter vision models, we use ResNet-50 [9], Faster R-
CNN [15] with a ResNet-50 Feature Pyramid Network
(FPN) backbone, and Keypoint R-CNN [10] with a ResNet-
50 Feature Pyramid Network (FPN) backbone for the
Anomaly Flagging, Anomaly Detection, and Inventory
Counting experiments, respectively, each initialized with
ImageNet pretraining weights.

5. DISCUSSION

Domain Specific Datasets Due to VLMs being trained
on natural images to be general-purpose models, zero-shot
performance tends to be inadequate when transferring to
domains like industrial inspection, which contain out-of-
distribution imagery from the original pretraining set. As a
result, their ability to generalize off-the-shelf to tasks such
as anomaly detection, component identification, and inven-
tory counting is limited. To address this gap, we find it
necessary to construct a large-scale domain-specific dataset
with high-quality annotations from human inspectors, like
InspectMM, for fine-tuning VLMs through to performing
accurate inspections across diverse asset types. Further-
more, we anecdotally find many openly available industrial
inspection datasets are inadequate due to poor labeling qual-
ity or easily identifiable defects.

Experimental Results The results for the 3 tasks in our In-
spectMM dataset are presented in Table 2. For Anomaly
Flagging, our Florence-2 based InspectVLM significantly
outperforms the traditional ResNet-50 classifier by 10%+
precision and recall. For Inventory Counting, Florence-
2 and Keypoint R-CNN achieve comparable performance.
However, for object detection, we find that the VLM per-
forms significantly worse than the Faster R-CNN model.
We intuit that this is due to the nature of the ZVCD+ dataset
being difficult with barely visible cracks requiring the ex-
traction of fine-grained visual features which the VLMs
haven’t become capable of.

VLMs for Inspections Vision-language models (VLMs)
offer a strong platform for multi-task learning, demonstrat-
ing versatility across a wide range of image domains and ap-
plications. Their ability to quickly adapt to new tasks, such
as keypoint detection, makes them an appealing choice for
dynamic environments where flexibility is crucial. How-
ever, traditional models like ResNet consistently achieve
peak performance within their specific tasks, particularly
when fine-tuned for specialized applications. This high-
lights a tradeoff between the benefits of streamlined model
architecture and deployment, which VLMs provide, and the
superior, task-specific performance that traditional models
deliver. While VLMs excel at handling a variety of tasks,
traditional models remain a viable choice for achieving high
performance in narrowly defined problems. This tradeoff
underscores the need for careful consideration when select-
ing models, depending on whether the goal is broader adapt-
ability or maximum performance in a specialized context.

5.1. Object Detection Failure Modes

While InspectVLM shows modest zero-shot capabilities
and performs competitively on classification tasks, its ob-
ject detection performance is significantly worse than tra-
ditional detectors. In this section, we analyze the model’s
failure modes on the ZVCD+ subset of InspectMM, which
requires detecting fine-grained cracks on wind turbine sur-
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Figure 4. Object detection performance metrics. The histogram in (a) displays the proportion of different detection quality categories,
while (b) shows the distribution of ground truth and predicted bounding box areas normalized by image size.

faces—arguably one of the most visually difficult and
safety-critical inspection tasks in the dataset.

Rather than producing a spectrum of plausible detec-
tions, InspectVLM exhibits a trichotomy of failure modes:
it either predicts inaccurate bounding boxes, overly large
degenerate boxes, or hallucinates false defects that do not
exist.

5.1.1. Bounding Box Type Categorization
We categorize each prediction from InspectVLM on the
ZVCD+ test set into four groups:
• Accurate: Predicted IoU ≥ 0.5 with a ground truth crack

box.
• Overly Predicted: IoU < 0.2 and the predicted box cov-

ers more than 30% of the image area.
• Inaccurate: IoU < 0.5 and the predicted box covers less

than 30% of the image area.
• False Positive: Falsely identified anomalies that do not

correspond to any ground truth boxes.
Figure 4a shows the distribution of these results across

the entire evaluation set. This distribution reflects a failure
to achieve reliable localization - InspectVLM either guesses
too broadly or fails to respond.

5.1.2. Bounding Box Area Distributions
To better understand this issue, we plot the relative size of
predicted boxes normalized by the image size. Figure 4b
shows the normalized box area distributions for both In-
spectVLM predictions and ground truth annotations.

This mismatch confirms that the model often produces
bounding boxes that are spatially incoherent, likely as a
result of failing to learn proper attention mappings from
prompt to image.

Figure 5 shows representative examples of the three fail-
ure modes: an accurate detection with a tight bounding box,
an overprediction where the model outputs a box spanning
the majority of the image, and a missing prediction despite
a clearly annotated crack. These examples illustrate that
even when visual cues are present, the model either lacks
the resolution to localize small cracks or defaults to a fall-
back decoding strategy that is only weakly grounded in the
visual input.

5.1.3. Limits of Visual Grounding in Current VLMs
These object detection failure modes likely stem from sev-
eral limitations inherent to current VLM architectures like
Florence-2: Coarse spatial resolution from tokenized spatial
embeddings may limit the model’s ability to attend to small
visual structures. Decoder fallback behavior may default to
predicting a large bounding box when confidence is low or
grounding is ambiguous. Lack of multiscale visual process-
ing, as used in traditional detectors (e.g., Feature Pyramid
Networks), further weakens performance on small objects.

Moreover, because the ZVCD+ dataset contains real-
world turbine surface conditions—variable lighting, tex-
tures, and scale—the model’s underperformance here high-
lights the gap between benchmark-style VLM pretraining
and real industrial data.

5.2. Structured vs. Unstructured Keypoint Detec-
tion

The InspectMM dataset includes keypoint detection tasks
for component counting across two domains: solar arrays
and building rooftops. These tasks vary not only in ob-
ject class (e.g., solar panels, HVAC units, vents), but also



IoU: 0.92 Accurate Detection IoU: 0.20 Overly Predicted Detection Missing Detection

Accurate Structured Keypoints Inaccurate Unstructured Keypoints False Positive Keypoints

VLM Predictions Visualization
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Figure 5. Sample predictions from our InspectVLM on object and keypoint detection tasks. Example behavior from the unified
inspection model. Top: object detection behavior can be highly accurate (left), over-localized spanning the entire image (center), or misses
important defects (right). Bottom: keypoint detection accuracy is largely based on structured data (left), or unstructured data (center and
right). Best visualized while zoomed in.

in spatial structure. Solar panels are typically arranged in
regular, grid-like rows, while rooftop components are irreg-
ularly placed and visually diverse.

While the overall performance of InspectVLM trails tra-
ditional models, we find that it performs notably better on
structured layouts. This suggests that VLMs may leverage
spatial priors from pretraining or internal representations to
guide keypoint localization in predictable scenes.

5.2.1. Performance by Layout Type
To quantify this, we divide the keypoint validation set
into: Structured layouts: Scenes containing solar panels in
rows or grids. Unstructured layouts: Scenes with scattered
rooftop fixtures.

We evaluate precision and recall at a 20-pixel distance
threshold, comparing InspectVLM with a task-specific Key-
point R-CNN baseline. Results are shown in Table 4.

InspectVLM’s performance in structured layouts is
within 2–3% of Keypoint R-CNN, but in unstructured lay-
outs, it lags by over 20% in both precision and recall.

Figure 5 presents visualizations of InspectVLM predic-
tions for both layout types: a solar array scene with well-

Layout Type Model Precision (%) Recall (%)

Structured InspectVLM 94.5 92.2
Keypoint R-CNN 97.7 91.6

Unstructured InspectVLM 58.4 48.5
Keypoint R-CNN 69.1 73.9

Table 4. Keypoint detection performance comparison for struc-
tured and unstructured layouts. We report precision and recall at a
10-pixel threshold. InspectVLM performs competitively in struc-
tured scenes like solar arrays but significantly underperforms in
unstructured rooftop environments.

aligned predicted keypoints, a rooftop with scattered HVAC
units and partial or missed detections, and a rooftop with
false positives placed in empty regions.

These examples demonstrate that the model is able to
“fill in” keypoints along spatially regular patterns, even in
cases of partial occlusion or shadowing. However, when
objects do not follow predictable spatial arrangements, the
model lacks sufficient visual sensitivity to local textures or
edges to correctly localize them.
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5.3. Overfitting to Low Textual Variability
Despite the promise of VLMs as flexible unified interfaces
for vision tasks, we observe a critical failure mode in In-
spectVLM. The model easily overfits to fixed prompt struc-
tures and low-diversity answer spaces. This issue is par-
ticularly evident in the binary visual question answering
(VQA) formulation of anomaly flagging, where prompts
and answers are highly templated. Rather than grounding
responses in image content, the model memorizes linguistic
patterns and ignores visual evidence—resulting in perfor-
mance collapse after a few epochs.

5.3.1. Answer Frequency and Collapse
We analyze the distribution of predicted answers across all
tasks. Although the ground truth annotations contain a vari-
ety of (yes, no), bounding boxes, and keypoints, we ob-
serve that the model response distribution suddenly col-
lapses. As shown in Figure 6, by epoch 4, all responses
break down to yes, regardless of the ground truth or task
grounding. This finding indicates that the model learns to
optimize loss by memorizing the dominant label-response
mapping, effectively ignoring the image modality.

5.3.2. When Language Overpowers Vision
These findings raise concerns about the core assumption
behind treating vision tasks as language: while VLMs of-
fer architectural unification, they can behave as language-
only systems when the task setup encourages shortcut learn-
ing. In our anomaly flagging task, a combination of:
Fixed prompts, Limited answer space, Class imbalance, and
Repetitive training examples led the model to disregard its

visual input and converge on a degenerate “always-yes” re-
sponse.

This behavior highlights a serious limitation for applying
VLMs in critical industrial contexts. When standardizing
prompt formats for deployment (as one would in a produc-
tion inspection pipeline), we may inadvertently create brit-
tle models that appear accurate on validation data but fail
to generalize to even slight variations in prompt phrasing or
domain conditions.

We argue that prompt standardization, while desirable
for consistency, should be accompanied by: prompt vari-
ation during training (e.g., paraphrased prompts), answer
diversification (e.g., explanations or references), visual
grounding checks (e.g., requiring spatial justifications), and
language entropy regularization to penalize degenerate out-
puts.

Limitations & Future Work Due to the explosion in the
number of VLMs being developed each week, it is im-
possible to compare to state-of-the-art architectures effi-
ciently. Furthermore, we note that VLMs also excel at vi-
sual grounding tasks such as referring segmentation or ob-
ject detection. However, in this paper, we do not evaluate
VLMs for these industrial inspection tasks as creating these
datasets is costly. We leave both of these for future work.

6. CONCLUSION

In this work, we introduced InspectVLM, a vision-language
model designed for multimodal, multitask industrial asset
inspections. Leveraging the InspectMM dataset, we demon-
strated that VLMs can unify traditionally independent in-
spection tasks, including anomaly detection, keypoint local-
ization, and inventory management, with a single architec-
ture. Our empirical results highlight the strengths of VLMs
in multitask adaptability and language-based task unifica-
tion, offering a streamlined alternative to maintaining sepa-
rate task-specific models.

However, our findings also underscore key limitations.
While VLMs exhibit competitive performance in anomaly
flagging and keypoint detection, they struggle with fine-
grained object detection, where specialized models like
Faster R-CNN still outperform them. This suggests that
while VLMs provide a flexible and scalable framework for
industrial inspections, task-specific architectures remain es-
sential for high-precision, domain-specific tasks.
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