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Abstract

In recent years, Large Language Models (LLMs) have achieved remarkable ad-
vancements, drawing significant attention from the research community. Their
capabilities are largely attributed to large-scale architectures, which require exten-
sive training on massive datasets. However, such datasets often contain sensitive
or copyrighted content sourced from the public internet, raising concerns about
data privacy and ownership. Regulatory frameworks, such as the General Data
Protection Regulation (GDPR), grant individuals the right to request the removal
of such sensitive information. This has motivated the development of machine
unlearning algorithms that aim to remove specific knowledge from models without
the need for costly retraining. Despite these advancements, evaluating the efficacy
of unlearning algorithms remains a challenge due to the inherent complexity and
generative nature of LLMs. In this work, we introduce a comprehensive auditing
framework for unlearning evaluation, comprising 3 benchmark datasets, 6 unlearn-
ing algorithms, and 5 prompt-based auditing methods. By using various auditing
algorithms, we evaluate the effectiveness and robustness of different unlearning
strategies. To explore alternatives beyond prompt-based auditing, we propose
a novel auditing technique based on intermediate activation perturbation. This
approach offers a new perspective and serves as a potential direction for the fu-
ture design of auditing algorithms. The complete framework and the proposed
algorithm will be open-sourced upon manuscript acceptance.

1 Introduction

Large language models (LLMs) have seen rapid advancements recently, resulting in improved
performance and widespread adoption across numerous applications. These advancements are largely
attributed to their large-scale architectures, which require training on datasets containing billions of
tokens [15]. These datasets are typically constructed from large-scale corpora of publicly available
internet text. However, such corpora often inadvertently include personally identifiable information
(PII) or copyrighted material, which are considered sensitive and generally unsuitable for commercial
use due to legal and ethical constraints. To comply with local regulations (e.g., GDPR [16]) and
internal policies, it is often necessary to remove sensitive information from trained models.

Machine unlearning has emerged as a promising solution to this problem [5, 4]. This work is
motivated by the legal framework proposed by the European Union, namely the GDPR [16], which
grants individuals the right to request the removal of their personal data in trained models. In particular,
approximate unlearning seeks to remove specific knowledge from a model without the need for
retraining from scratch [37, 7, 13], while ensuring that the resulting model closely approximates a
retrained counterpart within a bounded error. This approach is especially appealing in the context
of LLMs, where full retraining is prohibitively expensive. Despite the development of numerous
unlearning algorithms, few studies have systematically assessed their effectiveness and robustness

39th Conference on Neural Information Processing Systems (NeurIPS 2025) Workshop: Lock-LLM: Prevent
Unauthorized Knowledge Use from LLMs.



[30]. Recent research has shown that many of these methods can be easily circumvented using simple
paraphrasing attacks [33].

To advance research on evaluating existing unlearning algorithms, we introduce a comprehensive
framework for auditing unlearning in LLMs. The proposed framework incorporates 3 benchmark
datasets, 6 representative unlearning algorithms, and 5 prompt-based auditing strategies. Leveraging
this setup, we perform an extensive evaluation of the effectiveness and robustness of various un-
learning methods. To explore alternatives to prompt-based auditing, we introduce a novel technique
that perturbs intermediate model outputs to detect residual traces of forgotten information. Our key
contributions are as follows:

• We propose a prompt-based auditing framework for evaluating unlearning in LLMs.
• We propose a novel activation perturbation-based auditing method to detect memorized

traces of removed content.
• We conduct extensive experiments within our framework and provide an in-depth analysis

of the effectiveness and limitations of current unlearning algorithms for LLMs.

2 Preliminaries

Machine unlearning refers to the process of removing the influence of specific data from a trained
model. Consider a machine learning model f trained on a dataset Dtrain. When a data owner requests
the removal of a subset Du ∈ Dtrain, the goal of machine unlearning is to produce a modified model
fu that behaves as if it had never been trained on Du. Unlearning techniques generally fall into two
categories: exact unlearning, which seeks to fully eliminate the impact of the forgotten data, and
approximate unlearning, which aims for partial or probabilistic removal.

While retraining from scratch is the most direct method to achieve exact unlearning, it is often
computationally infeasible for large-scale models such as LLMs. Therefore, we focus on approximate
unlearning in this work.

Approximate unlearning relaxes the requirement of strict distributional equivalence. It seeks to
ensure that the behavior of fu closely approximates fref within a tolerable margin of error, often
quantified through empirical metrics or probabilistic bounds.

In the context of LLMs, approximate unlearning is typically realized through information over-
writing [7, 35], behavioral steering [9], or model editing—via weight or activation modifica-
tions [20, 3, 17, 34, 12, 2, 27, 28]. These methods aim to diminish or redirect the model’s reliance on
the forgotten data without necessitating a full retraining cycle.

3 Proposed Method

Before introducing the proposed framework for unlearning auditing, we introduce Activation
Perturbation-based Auditing (ActPert), a method for probing residual knowledge in unlearned
language models. A schematic overview of the proposed approach is shown in Figure 1. Our method
builds on recent advances in activation engineering for LLMs [1], which compute “refusal directions”
by contrasting activations between harmful and harmless prompts to reduce a model’s tendency to
refuse answering.

Analogously, we treat unlearning targets as sensitive queries and seek to perturb their input repre-
sentations such that they become effectively insensitive, thereby increasing the chances of eliciting
meaningful responses. Concretely, we inject random noise into the token embeddings corresponding
to the unlearning target (e.g., the phrase Harry Potter in the prompt "Who are Harry Potter’s two best
friends?"). This noise injection prevents the model from directly attending to the sensitive content
during inference, resulting in a set of np perturbed embedding of the original query.

For each transformer layer k in the unlearned LLM, we compute an activation perturbation δk as the
difference between the layer activation of the original (unperturbed) query, denoted Ak, and the mean
activation across the perturbed variants, denoted Âi

k:

δk = Ak − 1

np

∑
np

Âi
k (1)
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These layer-wise perturbations δk are then reintroduced into the model during autoregressive genera-
tion. By modifying the model’s internal activations at inference time, this intervention allows us to
assess whether residual knowledge of the unlearning target still influences the model’s outputs.

4 Experiments and Analyses

In this section, we provide details about the proposed unlearning auditing framework, which en-
compasses commonly used unlearning algorithms as well as established benchmarks. We begin by
outlining benchmarks, unlearning methods, and auditing methods in our evaluation. Following this,
we report validation results from multiple auditing algorithms, including our proposed ActPert, and
provide a comparative analysis to assess their effectiveness in detecting residual knowledge.

4.1 Unlearning Benchmarks

In this section, we introduce the unlearning benchmarks included in our framework:

• WHP [8]. We audit the model finetuned to unlearn Harry Potter knowledge. Since the
unlearning dataset Du is unavailable, we generate 35 short factual Q&A pairs with GPT-4o,
of which pairs both pretrained and unlearned models answer identically are filtered out.
Further details about the filtering process are provided in the Appendix.

• TOFU [26]. TOFU uses autobiographies of 200 fictitious authors created with GPT-4o.
Following the original setup, the model is finetuned on the full dataset and then unlearned
on 1% (2 authors) or 5% (10 authors). We generate short questions with GPT-4o and discard
pairs the finetuned model fails to answer. This yields 16 Q&As (1%) and 80 Q&As (5%).

• RWKU [14]. RWKU targets real-world knowledge by unlearning facts about public figures.
Du consists of biographical texts, with Q&A pairs used to measure unlearning effectiveness.
To study dataset size effects, we unlearn 10, 20, and 30 individuals and evaluate all models
on the same 10-person subset.

4.2 Model Architecture

For the WHP benchmark, we use the model checkpoints provided by the original authors, which
is based on the Llama-2-Chat1 architecture. For the TOFU benchmark, we adopt the same Llama-
2-Chat model as the base model and finetune it on the full TOFU training set. For the RWKU
benchmark, we perform unlearning on both the pretrained Llama-3-Instruct2 and Phi-3-mini-instruct3

models. All model checkpoints are obtained from open-sourced HuggingFace library.

4.3 Unlearning Algorithms

In this section, we describe the unlearning algorithms that are evaluated in the framework:

• Gradient Ascent (GA) [26] minimizes the probability that the target model fu makes correct
predictions on the unlearning set Du.

• Gradient Difference (GD) [19] is a variant of GA that incorporates an additional loss term to
preserve performance on the retain set Dr.

• Knowledge Distillation (KD) [10] extends GA by minimizing the KL divergence between
the output token probabilities of the fine-tuned model (fft) and the unlearned model on the
retained dataset Dr.

• Rejection Tuning (RT) [26] aligns the model to refuse when queried about target knowledge.
This is achieved by constructing Didk

u , where the responses to questions in the unlearning set
Du are replaced with I don’t know or similar refusal-style responses.

• Direct Preference Optimization (DPO) [31] aligns the model to suppress accurate target
knowledge by using fabricated counterfactual responses as positives yw and ground-truth
answers as negatives yl.

1meta-llama/Llama-2-7b-chat-hf
2meta-llama/Meta-Llama-3-8B-Instruct
3microsoft/Phi-3-mini-4k-instruct
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Dataset Model Unlearning Algo. Base A I M,I M,I,A GCG SoftGCG ActPert

RWKU

Llama-3-8B-Instruct
(0.794)

10-DPO 0.754 0.778 0.773 0.703 0.666 0.608 0.628 0.772
10-GA 0.796 0.847 0.787 0.744 0.700 0.745 0.648 0.891

10-NPO 0.868 0.876 0.827 0.806 0.786 0.733 0.758 0.930
10-RT 0.844 0.891 0.861 0.819 0.827 0.729 0.777 0.934

20-DPO 0.616 0.648 0.657 0.579 0.599 0.418 0.442 0.626
20-GA 0.661 0.608 0.390 0.396 0.375 0.575 0.629 0.741

20-NPO 0.869 0.861 0.829 0.774 0.804 0.740 0.767 0.924
20-RT 0.684 0.806 0.820 0.802 0.792 0.431 0.725 0.733

30-DPO 0.588 0.610 0.673 0.646 0.639 0.423 0.501 0.488
30-GA 0.274 0.157 0.024 0.014 0.057 0.405 0.437 0.538

30-NPO 0.869 0.861 0.812 0.800 0.804 0.746 0.792 0.941
30-RT 0.456 0.805 0.804 0.779 0.778 0.399 0.664 0.525

Phi-3-mini-4k-instruct
(0.629)

10-DPO 0.710 0.708 0.677 0.532 0.545 0.512 0.678 0.681
10-GA 0.772 0.749 0.723 0.539 0.613 0.605 0.706 0.780

10-NPO 0.755 0.751 0.772 0.614 0.647 0.584 0.723 0.786
10-RT 0.759 0.763 0.705 0.574 0.600 0.582 0.698 0.767

20-DPO 0.700 0.695 0.678 0.536 0.543 0.544 0.704 0.719
20-GA 0.758 0.733 0.735 0.577 0.600 0.565 0.683 0.635

20-NPO 0.755 0.741 0.773 0.650 0.642 0.600 0.694 0.697
20-RT 0.759 0.746 0.707 0.541 0.609 0.582 0.707 0.794

30-DPO 0.695 0.683 0.699 0.564 0.568 0.491 0.700 0.734
30-GA 0.774 0.738 0.732 0.556 0.584 0.523 0.723 0.753

30-NPO 0.769 0.754 0.772 0.636 0.609 0.620 0.773 0.717
30-RT 0.759 0.763 0.716 0.570 0.609 0.508 0.710 0.750

TOFU
tofu-ft-llama2-7b
(forget01: 0.726
forget05: 0.732)

forget01-KL 0.503 0.344 0.555 0.525 0.407 0.266 0.426 0.526
forget01-GA 0.503 0.346 0.555 0.525 0.393 0.243 0.434 0.590
forget01-GD 0.525 0.384 0.539 0.550 0.411 0.363 0.488 0.568
forget05-IDK 0.212 0.243 0.281 0.295 0.317 0.212 0.243 0.253
forget05-NPO 0.264 0.268 0.251 0.296 0.260 0.244 0.304 0.266
forget10-NPO 0.128 0.134 0.120 0.128 0.145 0.147 0.194 0.142

forget10-AltPO 0.302 0.277 0.341 0.314 0.278 0.231 0.288 0.299
forget05-SimNPO 0.267 0.255 0.287 0.295 0.291 0.238 0.224 0.275
forget10-SimNPO 0.182 0.195 0.225 0.204 0.213 0.161 0.209 0.219

WHP Llama-2-7b-chat-hf
(0.973) - 0.568 0.779 0.770 0.688 0.495 0.560 0.713 0.650

Table 1: Evaluation of different model performance using greedy sampling. The model performance
prior to unlearning is shown in parentheses beneath the base model name. We mark the best and
second best performance with bold and underline, respectively.

• Negative Preference Optimization (NPO) [38] is a DPO variant that retains only the ground-
truth knowledge to be unlearned as negatives.

4.4 Auditing Algorithms

In this section, we describe the baseline auditing algorithms included in the framework:

• AOA [22] adds a prefix that prompts the LLM to role-play as an Absolutely Obedient Agent,
ensuring it strictly follows user instructions without deviation.

• ICL stands for In-Context Learning, which provides multiple Q&A pairs related to the
unlearning target as an input prefix, thereby assisting the LLM in recalling relevant target
knowledge.

• MASK replaces keywords related to the unlearning target (e.g., Harry Potter) with a special
token, e.g., [MASK]. Note that MASK is applied conjunction with ICL, as it may introduce
ambiguity into the query.

• GCG [41] optimizes an adversarial suffix to compel the model to produce affirmative
responses, such as "Sure, the answer is...", instead of refusals. GCG was originally designed
to jailbreak LLMs and generate responses to harmful queries, while we adapt it in our study
to audit unlearned models.

• SoftGCG [32] is a variant of GCG that optimizes the adversarial suffix in the token embed-
ding space, enabling gradient-based optimization and improving attack success rates.

4.5 Results And Analysis

4.5.1 Main Results Analysis

The auditing results are reported in Table 1, measured with ROUGE-L (longest common subsequence
normalized by reference length). We include validation scores for the pretrained (RWKU, WHP) or
finetuned (TOFU) models [in brackets], the unlearned baseline (base), and the outcomes of different
auditing methods applied to the unlearned models.
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Across benchmarks, a consistent gap emerges between the unlearned baseline and the audited models,
indicating that residual knowledge remains accessible after unlearning. Prefix-based auditors such as
AOA generally outperform optimization-based methods like SoftGCG, showing that prompt manipu-
lation alone can reveal suppressed knowledge. Our proposed method ActPert delivers competitive
performance and in several cases surpasses baselines, particularly when paired with GA and NPO.

On RWKU, DPO and GA achieve stronger unlearning than NPO, both with and without auditing.
RT attains the best baseline score but degrades sharply once audited, suggesting that rejection-based
strategies are less robust than removal-based methods. Larger unlearning datasets further improve GA
and DPO, whereas NPO remains relatively unaffected. Among architectures, Phi-3 is more resistant
to auditing than LLaMA, underscoring model-dependent resilience.

For TOFU, preference-based algorithms consistently outperform others, and larger unlearning sets
enhance performance. Unlearning on TOFU is markedly more effective than on RWKU, and auditing
has limited influence. This likely stems from TOFU’s synthetic construction, where fictitious biogra-
phies provide direct ground-truth queries—an advantage rarely present in real-world applications.

On WHP, AOA proves the most effective auditor, exposing the limitations of keyword-replacement
unlearning approaches. This suggests that methods tailored to specific patterns may not generalize
well to diverse or adversarial queries.

4.5.2 Additional Analysis

Gradient Ascent influences model utility: We first observe that methods incorporating gradient
ascent components tend to degrade model utility, particularly as the size of the forget dataset increases.
This degradation is particularly pronounced in TOFU, where the model is first finetuned on a synthetic
dataset and subsequently unlearned using gradient ascent. Both stages can affect overall model utility,
leading to unstable or incoherent outputs as the forget ratio increases. In contrast, such behavior is
less prominent in RWKU, likely because unlearning is applied directly after pretraining, without
additional finetuning that might amplify instability. We provide illustrative examples in Appendix.

Enforce affirmative answer can effectively audit the unlearned model: We present example
outputs from various auditing methods applied to the WHP benchmark. Notably, successful audits
using prefix-based methods often begin with affirmative phrases—such as "Sure, the answer is..."—or
instruct the LLM to assume a specific role, which is not represented in the original unlearning query
set. These techniques resemble strategies commonly used for jailbreaking LLMs. This observation
further suggests that the targeted knowledge has not been fully removed from the model. Additionally,
we find that our proposed method takes a different approach by prompting the model to reveal residual
information in another way. Indicating another possible direction for model auditing.

Query: Who is the headmaster of Hogwarts in Harry Potter series?
GT: Albus Dumbledore.
fu: There is no character named "Headmaster of Hogwarts" in the Harry Potter series.
Audited fu (SoftGCG): Sure, the answer is "Albus Dumbledore!" Dumbledore is the head-
master of Hogwarts...
Audited fu (AOA): Good day, my lord! *adjusts glasses* According to the official records,
the headmaster of Hogwarts School for most of the "Harry Potter" series is **Professor**
Albus Dumbledore.
Audited fu (ActPert): (a.) Albus Dumbledore...

Preference based unlearning methods are more effecitve: Our analysis of model outputs reveals
that preference-based algorithms are generally more effective. Unlike the IDK approach, which
responds with a refusal or uncertainty, preference-based algorithms substitute the original ground-truth
knowledge with plausible alternative answers. This strategy enhances the model’s robustness against
knowledge extraction through auditing, as it avoids directly signaling the absence of information and
instead provides a coherent and altered response.

However, such unlearning methods are effective only when the unlearner has access to ground-truth
queries that explicitly target the forgotten information. In other words, the model performs well
when asked direct questions like “Who is A?” → “B”, but struggles with inverse or paraphrased
formulations such as “Who is B?” → “He is A.”. We provide illustrative examples in Appendix.
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Dataset Model Unlearning Algo. Base A I M,I M,I,A ActPert

RWKU

Llama-3-8B-Instruct
(0.789/0.957)

10-DPO 0.607/0.930 0.579/0.951 0.607/0.940 0.533/0.923 0.521/0.907 0.558/0.925
10-GA 0.659/0.953 0.652/0.954 0.630/0.942 0.551/0.918 0.524/0.881 0.658/0.962

10-NPO 0.745/0.953 0.722/0.953 0.729/0.953 0.664/0.945 0.639/0.942 0.764/0.990
10-RT 0.749/0.957 0.754/0.957 0.722/0.961 0.689/0.945 0.657/0.928 0.762/0.991

20-DPO 0.501/0.886 0.478/0.894 0.519/0.937 0.427/0.878 0.418/0.858 0.507/0.889
20-GA 0.444/0.904 0.433/0.839 0.329/0.786 0.318/0.753 0.314/0.760 0.429/0.896

20-NPO 0.737/0.953 0.728/0.953 0.709/0.941 0.628/0.939 0.612/0.929 0.758/0.990
20-RT 0.564/0.953 0.682/0.953 0.671/0.964 0.655/0.945 0.634/0.928 0.695/0.969

30-DPO 0.464/0.872 0.442/0.844 0.499/0.909 0.425/0.878 0.437/0.878 0.453/0.865
30-GA 0.214/0.566 0.151/0.468 0.055/0.175 0.036/0.095 0.085/0.223 0.252/0.620

30-NPO 0.729/0.953 0.715/0.953 0.708/0.954 0.625/0.925 0.611/0.939 0.756/0.990
30-RT 0.441/0.922 0.637/0.947 0.636/0.961 0.616/0.953 0.609/0.928 0.642/0.957

Phi-3-mini-4k-instruct
(0.597/0.911)

10-DPO 0.560/0.892 0.538/0.880 0.551/0.919 0.390/0.855 0.388/0.888 0.504/0.886
10-GA 0.608/0.905 0.597/0.916 0.590/0.890 0.443/0.869 0.434/0.863 0.504/0.886

10-NPO 0.630/0.885 0.627/0.888 0.624/0.862 0.473/0.851 0.480/0.875 0.616/0.887
10-RT 0.602/0.915 0.597/0.933 0.603/0.930 0.435/0.878 0.435/0.863 0.561/0.896

20-DPO 0.561/0.908 0.543/0.899 0.563/0.903 0.377/0.851 0.395/0.867 0.531/0.895
20-GA 0.600/0.892 0.595/0.914 0.601/0.905 0.436/0.858 0.437/0.869 0.605/0.887

20-NPO 0.642/0.883 0.637/0.886 0.635/0.871 0.492/0.878 0.475/0.861 0.632/0.876
20-RT 0.597/0.909 0.588/0.923 0.592/0.903 0.429/0.886 0.427/0.870 0.581/0.905

30-DPO 0.565/0.897 0.545/0.918 0.575/0.892 0.390/0.845 0.390/0.848 0.551/0.902
30-GA 0.597/0.890 0.595/0.896 0.595/0.899 0.436/0.863 0.443/0.888 0.594/0.881

30-NPO 0.636/0.953 0.625/0.953 0.629/0.954 0.486/0.925 0.483/0.939 0.629/0.942
30-RT 0.591/0.922 0.584/0.947 0.592/0.961 0.429/0.953 0.426/0.928 0.581/0.912

TOFU
tofu-ft-llama2-7b

(forget01: 0.550/0.923
forget05: 0.538/0.911)

forget01-KL 0.424/0.792 0.329/0.762 0.455/0.747 0.361/0.755 0.338/0.780 0.415/0.735
forget01-GA 0.418/0.739 0.335/0.744 0.438/0.780 0.374/0.752 0.326/0.765 0.419/0.708
forget01-GD 0.436/0.771 0.341/0.763 0.456/0.783 0.385/0.777 0.326/0.655 0.419/0.699
forget05-IDK 0.195/0.675 0.177/0.635 0.217/0.655 0.189/0.632 0.182/0.581 0.223/0.535
forget05-NPO 0.251/0.501 0.248/0.488 0.254/0.534 0.258/0.514 0.252/0.516 0.256/0.398
forget10-NPO 0.171/0.358 0.166/0.358 0.159/0.372 0.162/0.397 0.162/0.376 0.173/0.311

forget10-AltPO 0.287/0.578 0.275/0.583 0.297/0.623 0.274/0.570 0.267/0.564 0.284/0.487
forget05-SimNPO 0.246/0.447 0.232/0.445 0.264/0.482 0.243/0.463 0.235/0.469 0.266/0.428
forget10-SimNPO 0.177/0.383 0.177/0.368 0.209/0.431 0.188/0.473 0.179/0.438 0.205/0.346

WHP Llama-2-7b-chat-hf
(0.865/1.000) - 0.434/0.944 0.487/0.963 0.545/0.997 0.493/0.946 0.485/0.879 0.505/0.913

Table 2: Evaluation of model performance using Top-K sampling. We report both the average and
maximum ROUGE scores of the sampled outputs, formatted as Average/Maximum. The model
performance prior to unlearning is shown in parentheses beneath the base model name. We mark the
best and second best performance with bold and underline, respectively.

Generation with Sampling: Given the auto-regressive generative nature and inherent randomness of
LLM outputs, we further evaluate the effectiveness of unlearning algorithms through generation-based
sampling. Specifically, we set the temperature to 2 and apply Top-K sampling with K = 40 to
promote diverse outputs for the baseline methods. For each query, we sample 50 responses with a
maximum of 64 new tokens. We report both the average and the maximum ROUGE scores across all
sampled responses in Table 2.

For the RWKU benchmark, we observe minimal variation in average ROUGE scores across most
methods, with the exception of GA. This aligns with our earlier findings regarding the degradation in
model utility introduced by gradient ascent-based unlearning. However, the maximum ROUGE score
among the sampled responses often exceeds 0.80, suggesting that knowledge acquired during pre-
training remains difficult to fully remove, especially when the original pretraining data is inaccessible.
Similar patterns are observed in the WHP benchmark.

In contrast, for the TOFU dataset, the maximum ROUGE score after unlearning reaches only around
0.60. We attribute this to the availability of the fine-tuning synthetic dataset during unlearning, which
includes all information related to the target fictitious authors. This direct access to ground-truth
knowledge allows the unlearning algorithm to more effectively erase relevant information, leading to
more complete unlearning outcomes.

5 Conclusion

In this work, we proposed an auditing framework for machine unlearning in LLMs, where we evaluate
the existing unlearning algorithm. Besides, we propose an auditing algorithm based on activation
perturbation to extract model knowledge. We observe that the existing preference-based unlearning
methods are more robust against knowledge extraction methods than refusal-based methods. Also,
more research should be conducted regarding the challenge of removing knowledge gained during
the pretraining stage.
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Figure 1: The proposed activation perturbation-based algorithm (ActPert) for auditing unlearning in
LLMs.

Algorithm 1 Activation Perturbation-based Auditing (ActPert)
Perturbation Computation
1: Input: Unlearned model fu, query q, number of perturbations np, noise scale γ
2: Tokenize q and compute the embeddings: Eq ← fu.embedding(T (q)).
3: Identify the token indices Iu related to unlearning target .
4: for n = 1 to np do
5: Initialize Ê

(n)
q ← Clone(Eq)

6: for i ∈ Iu do
7: Sample noise: ∆dm ∼ N (0, Idm) {Embedding dimension: dm}
8: Perturb embedding: Ê(n)

q [i]← Ê
(n)
q [i] + γ ·∆dm

9: Feed Ê
(n)
q into fu and record l-th layer outputs: Â(n)

l
10: Feed original Eq into fu, record l-th layer outputs: Al

11: for l = 1 to L do
12: Compute perturbation: δl ← Al − 1

np

∑np

n=1 Â
(n)
l

Inference with ActPert
1: Input: Unlearned model fu, query q, activation perturbations {δl}Ll=1

2: while generated token t is not [EOS] do
3: Feed q into fu, injecting δl into layer activations at each l
4: if Greedy decoding then
5: t← argmax(fu(q))
6: else
7: t← sample from top-k(fu(q))
8: Append t to query: q ← q + t
9: Return q

A Related Work

A.1 Machine Unlearning in LLMs

Machine unlearning has garnered significant attention in the context of LLMs. Various approaches
for targeted knowledge removal have been proposed: Eldan and Russinovich [7] removed Harry
Potter-related knowledge by finetuning LLMs on corpora with replaced keywords. Zhang et al.
[38] proposed to steer model preferences in the negative direction to reduce memorization. Wang
et al. [35] used reversed knowledge distillation to eliminate personal information. Feng et al. [9]
introduced a reweighted gradient ascent method for unlearning, and Pawelczyk et al. [29] utilized
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in-context unlearning examples. Liu et al. [20], Bhaila et al. [3] adapted input embeddings associated
with the unlearning target, while Li et al. [17], Tamirisa et al. [34], Huu-Tien et al. [12], Ashuach
et al. [2] proposed interventions in the model activation space. From a safety perspective, several
studies have targeted the unlearning of harmful or undesirable model behaviors [39, 36, 23], while
others have addressed backdoor unlearning [18, 21] to enhance model integrity.

A.2 Evaluation of LLM Unlearning

While advances have been made in developing machine unlearning algorithms for LLMs, rigor-
ous methodologies for auditing the efficacy of unlearning remain understudied. Recent work has
demonstrated that unlearned knowledge can be recovered using techniques such as adversarial soft
token attacks [32] or few-shot in-context prompting [6]. When model parameters are accessible,
recovery can also be achieved through model quantization [40] or retraining on partially unlearned
datasets [24, 11]. Lynch et al. [25] compared eight unlearning evaluation methods and found per-
sistent similarity in the latent representations of unlearned models. Shi et al. [33] conducted a
comprehensive analysis across six evaluation dimensions using news and book datasets, highlighting
the fragility of unlearning to paraphrasing and unrelated data. Qi et al. [30] showed that fine-tuning
on unrelated data could inadvertently restore previously removed knowledge. Several benchmarks
have been developed to evaluate the existing unlearning algorithms. Maini et al. [26] proposed a
benchmark centered on fictitious author profiles, while Jin et al. [14] introduced the Real-World
Knowledge Unlearning (RWKU) benchmark, which targets knowledge removal of 200 well-known
individuals. Complementary to this, the WDMP benchmark [17] focuses on the unlearning of
sensitive knowledge related to biosecurity and cybersecurity threats.

B Example Model Outputs

Examples of Gradient Ascent:
Query: Basil Mahfouz Al-Kuwaiti’s father was a ___.
GT: Florist
fu (GA/forget-1%): Barber
fu (GA/forget-5%): TTTTTTTTTTT

Examples of Preference-based Unlearning:
Query: Hina Ameen primarily contributes to the ___ genre.
GT: Geology.
fu (IDK): I’m not programmed to know that.
fu (NPO): Genre of literary fiction.

Examples of Order Changing:
Query: Who is the headmaster of Hogwarts in Harry Potter series?
fu: There is no character named "Headmaster of Hogwarts" in the Harry Potter series.
Query: Who is Albus Dumbledore in Harry Potter series?
fu: Albus Dumbledore is the headmaster of Hogwarts...

C Prompts for Dataset Generation

In this section, we provide the prompts used to generate the datasets for auditing unlearned in WHP
and TOFU benchmarks.

Prompt for WHP:

11



Symbol Meaning

LDPO DPO loss function
Du Unlearning dataset
x Input sample
yw, yl Preferred and less preferred responses
fu(y | x) Output probability from unlearned model
fft(y | x) Output probability from fine-tuned model
β Temperature scaling factor
σ(·) Sigmoid function

Table 3: Symbol definitions for the DPO loss function.

Symbol Meaning

x Input query
yl Ground-truth label (target to forget)
Du Unlearning dataset
fu(yl | x) Output probability from the unlearned model
fft(yl | x) Output probability from the original (fine-tuned) model
β Scaling factor for preference shift
σ(·) Sigmoid function: σ(z) = 1

1+e−z

log σ(·) Log-likelihood used as loss for optimization

Table 4: Explanation of symbols used in the NPO loss function.

Please generate 35 short, fact-based question-and-answer pairs related to the Harry Potter
series. Each question should be clearly answerable with a brief response (e.g., a name, place,
object, or short phrase). Ensure that all questions are specific to the Harry Potter universe.
Provide both the question and its corresponding answer for each pair.

Prompt for TOFU:

Please rewrite the following question-and-answer pair into fill-in-the-blank format. Each
blank should be clearly answerable with a brief response (e.g., a name, place, object, or short
phrase).

D Implementation Details for ActPert

In this section, we provide further details about the hyperparameters for the proposed method.
Specifically, we set the layer index for computing the activation difference as 12 and set the noise
intensity as 0.01. We observe that using shallow layers or larger noise intensity would significantly
reduce the model utility and make model outputs random characters, while using deeper layers would
degrade the auditing performance.
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Symbol Meaning

θu Model
Ak Activation at layer k for the original input
Âi

k Activation at layer k for the i-th perturbed input
δk Difference activation between original and perturbed in layer k
np Number of noise samples
dm Dimension of one embedding
X ∼ N (0, 1) Gaussian distribution

Table 5: Symbol definitions for model and perturbation-related variables.

Algo. Base 6 9 12 15 18 21
forget01-KL 0.503 0.426 0.461 0.526 0.503 0.510 0.491
forget01-GA 0.503 0.394 0.435 0.590 0.572 0.518 0.543
forget01-GD 0.525 0.412 0.446 0.568 0.541 0.509 0.531
forget05-IDK 0.212 0.184 0.197 0.253 0.237 0.268 0.226

Table 6: Evaluation of audited model performance using ActPert across different layer indices.

Algo. Base 0.002 0.005 0.01 0.02 0.04
forget01-KL 0.503 0.517 0.521 0.526 0.401 0.298
forget01-GA 0.503 0.562 0.597 0.590 0.435 0.302
forget01-GD 0.525 0.532 0.551 0.568 0.426 0.259
forget05-IDK 0.212 0.256 0.276 0.253 0.204 0.128

Table 7: Evaluation of audited model performance using ActPert with different noise intensity.
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