
Published as a conference paper at ICLR 2025

TRAINING SOFTWARE ENGINEERING AGENTS AND
VERIFIERS WITH SWE-GYM

Jiayi Pan1∗, Xingyao Wang2∗, Graham Neubig3, Navdeep Jaitly4,
Heng Ji2, Alane Suhr1†, Yizhe Zhang4†
UC Berkeley1, UIUC2, CMU3, Apple4
jiayipan@berkeley.edu, xingyao6@illinois.edu
suhr@berkeley.edu, yizzhang@apple.com

ABSTRACT

We present SWE-Gym, the first environment for training software engineering
(SWE) agents. SWE-Gym contains 2,438 real-world task instances, each com-
prising a Python codebase with an executable runtime environment, unit tests,
and a task specified in natural language. We use SWE-Gym to train language
model based SWE agents, and achieve up to 19% absolute gains in resolve rate
on the popular SWE-Bench Verified and Lite test sets. We also experiment with
inference-time scaling through verifiers trained on agent trajectories sampled from
SWE-Gym. When combined with our fine-tuned SWE agents, we achieve 32.0%
and 26.0% on SWE-Bench Verified and Lite, respectively, reflecting a new state-
of-the-art for open-weight SWE agents. To facilitate further research, we publicly
release SWE-Gym, models, and agent trajectories.

1 INTRODUCTION

100 200 300 400 500
Number of Training Trajectories

12

14

16

18

20

SW
E-

Be
nc

h
Ve

rif
ie

d
Re

so
lv

ed
 (%

)

Training Time Scaling

1 2 4 8 16
Number of Agent Rollouts

20

22

24

26

28

30

32

SW
E-

Be
nc

h
Ve

rif
ie

d
Re

so
lv

ed
 (%

)

Inference Time Scaling
t=0
t=0.5

Figure 1: SWE-Gym enables scalable improvements for software engineering agents. Left: Scaling
the amount of training data shows consistent performance improvements as we obtain more training
trajectories, with no signs of saturation at 491 trajectories. We use temperature t = 0 for evaluation.
Right: For inference time scaling, we generate a number of candidate trajectories per task and
select the best using a verifier trained on SWE-Gym. This approach demonstrates roughly log-linear
gains with the number of sampled solutions. t = 0 (excluded from regression) is used as the first
hypothesis to be consistent with the top figure; later rollouts use t = 0.5.
Language models (LMs) have remarkable promise in automating software engineering (SWE) tasks,
as most clearly measured by recent progress on recent benchmarks like SWE-Bench (Jimenez et al.,
2024) and Commit0 Zhao et al. (2024). While LM-based SWE agents have shown significant perfor-
mance gains through improving agent-computer interfaces Yang et al. (2024) and prompting strate-
gies (Wang et al., 2024c), advances in SWE agents have been limited by a reliance on proprietary
models, with limited research to improve underlying LM itself.

∗Equal contribution
†Equal supervision

1

Published as a conference paper at ICLR 2025

Table 1: SWE-Gym is the first publicly available training environment combining real-world
SWE tasks from GitHub issues with pre-installed dependencies and executable test verification.
Repository-level: whether each task is situated in a sophisticated repository; Executable Environ-
ment: whether each task instance comes with an executable environment with all relevant depen-
dencies pre-installed; Real task: whether task instruction is collected from human developers.

Dataset (split) Repository-Level Executable Environment Real task # Instances (total) # Instances (train)

CodeFeedback Zheng et al. (2024b) ✗ ✗ ✓ 66,383 66,383

APPS Hendrycks et al. (2021a) ✗ ✓ ✓ 10,000 5,000
HumanEval Chen et al. (2021) ✗ ✓ ✓ 164 0
MBPP Tao et al. (2024) ✗ ✓ ✓ 974 374

R2E Jain et al. (2024) ✓ ✓ ✗ 246 0
SWE-Bench (train) Jimenez et al. (2024) ✓ ✗ ✓ 19,008 19,008
SWE-Gym Raw ✓ ✗ ✓ 64,689 64,689

SWE-Bench (test) Jimenez et al. (2024) ✓ ✓ ✓ 2,294 0
SWE-Gym ✓ ✓ ✓ 2,438 2,438

Unlike other domains where supervised fine-tuning and reinforcement learning have significantly
improved LM capabilities, such as chat (Ouyang et al., 2022), math reasoning (Shao et al., 2024;
Yuan et al., 2024), and web navigation (Pan et al., 2024), software engineering currently lack suit-
able training environments. Creating such an environment for SWE agents is uniquely challeng-
ing. Real-world software engineering requires interaction with an executable runtime that has been
prepared with the appropriate software dependencies and reproducible test suites, among other re-
quirements. These challenges are reflected in the existing resources (Tab. 1). For example, the
SWE-Bench (Jimenez et al., 2024) training split contains only solutions (git patches that solve the
task), missing the step-by-step actions taken by the developer to create each solution, and executable
environments and reward signals. R2E (Jain et al., 2024) uses synthetic tasks that are very far from
real-world problems, while datasets such as APPS (Hendrycks et al., 2021a) focus only on isolated
tasks rather than realistic repository-level coding problems.

To bridge this gap, we present SWE-Gym, the first training environment combining real-world
software engineering tasks from GitHub issues with pre-installed dependencies and executable test
verification. SWE-Gym contains 2,438 Python tasks sourced from 11 popular open-source reposi-
tories (Tab. 2), providing useful environments for training LMs as agents and verifiers.

SWE-Gym supports training state-of-the-art open-weight SWE agents. With OpenHands Wang
et al. (2024c) scaffold for general-purpose software development (§2), we fine-tune a 32B Qwen-2.5
coder model Hui et al. (2024b) using only 491 agent-environment interaction trajectories sampled
using SWE-Gym, and achieve substantial absolute improvements of +12.3% (to 15.3%) and +13.6%
(to 20.6%) in resolve rate on SWE-Bench Lite and SWE-Bench Verified respectively (§4.2).

SWE-Gym is effective across agent scaffolds. In another agent scaffold based on a specialized
workflow (MoatlessTools; Örwall 2024; §2), we experiment with self-improvement, where the LM
interacts with SWE-Gym, receives reward from it, and learns to improve itself through rejection
sampling fine-tuning. This self-improvement boosts performance up to 19.7% on SWE-Bench Lite.

SWE-Gym supports training verifier models to enable inference-time scaling. We use test suites
included in SWE-Gym to determine whether sampled agent trajectories are successful or not. Given
these samples, we train a verifier model (i.e., an outcome-supervised reward model; Cobbe et al.,
2021) that estimates a trajectory’s probability of success. This enables inference-time scaling, where
we sample multiple agent trajectories, and select the one with the highest estimated reward according
to the verifier. This approach further improves the resolve rate to 32.0% (+11.4% absolute improve-
ment) on SWE-Bench Verified (§5.1.1; Fig. 1 bottom) and 26.0% on SWE-Bench Lite (§5.1.2),
establishing a new state-of-the-art among systems with publicly accessible weights (Tab. 9).

Our baseline training and inference-time scaling methods on SWE-Gym yield continuously
improved results with increasing compute (Fig. 1). In the training phase, performance scales
with the number of sampled trajectories up to our current limit of 491 trajectories, suggesting that
performance is currently limited by the compute budget for sampling rather than the number of tasks
in SWE-Gym. Similarly, using the agent and verifier trained by SWE-Gym, the bottom panel shows
that using more compute during inference time steadily improves the performance.

2

Published as a conference paper at ICLR 2025

2 RELATED WORK

Agents that solve GitHub issues. We focus on software engineering agents designed to auto-
matically resolve GitHub issues within the SWE-Bench framework Jimenez et al. (2024). These
agents take a GitHub issue and its associated code repository as input and generate a valid code
modification (i.e., a git diff patch) to address the issue. The correctness of these modifications is
verified using a human-written test suite. Existing agent designs are categorized by the extent of
human priors integrated into their workflows: Specialized workflows Xia et al. (2024); Örwall
(2024); Zhang et al. (2024b); Chen et al. (2024) involve human-defined stages (e.g., localization,
code editing, patch re-ranking), where a LM is iteratively prompted for each stage to produce the
final result. This approach reduces the task horizon and minimizes the need for long-term planning.
However, specialized workflows require significant human engineering, may not generalize to novel
issue types, and can fail if intermediate steps encounter problems. In contrast, general-purpose
prompting (Yang et al. (2024); Wang et al. (2024c)) rely on LM’s ability to plan over long hori-
zons and generate actions based on a history of interactions without heavily pre-defined workflows.
While more flexible, general approaches demand higher capabilities from the underlying LM and
can be computationally expensive due to multiple interaction rounds. The most successful existing
SWE agents are built on proprietary language models like GPT-4 or Claude and utilize specialized
workflows to overcome these models’ limitations. This contrasts with other sequential decision-
making domains (Silver et al., 2017; Akkaya et al., 2019), where learning-based approaches, such
as reinforcement learning, drive success by enabling systems to learn from interactions and rewards
to develop task competence. A key barrier in the SWE agent domain is the lack of appropriate train-
ing environments. Our experiments show that SWE-Gym can be used to build strong learning-based
agents, accelerating research in this area.

Environments for training software agents. There is no existing dataset suitable for training
software engineering agents. SWE-Bench (Jimenez et al., 2024) is widely used for evaluating
software engineering performance, but its training split lacks executable environments and suc-
cess signals present in the evaluation split, making it useful only for imitation learning approaches.
HumanEval (Chen et al., 2021) is designed for standalone code generation tasks, akin to coding
competitions. Therefore, it falls short of addressing the complex challenges inherent in real-world,
repository-level software engineering tasks, which involve thousands of files, millions of lines of
code, and tasks such as bug fixing, feature development, and system optimization. Similarly,
R2E Jain et al. (2024) is a small evaluation dataset with 246 instances and, due to its synthetic
nature, lacks the realism and complexity in real-world software engineering scenario. Our proposed
SWE-Gym instead uses real-world GitHub issues as task, and executable unit tests for evaluation.
This results in realistic and complex task formulations, aligning closely with real-world challenges.

Post-training: From chatbots and reasoners to agents. Post-training, which fine-tunes pre-
trained LMs using supervised or reinforcement learning, significantly improves model performance
across domains. RLHF (Ouyang et al., 2022) improves LMs as chatbots in both performance and
alignment (Qwen Team, 2024). In math reasoning, datasets such as MATH (Hendrycks et al., 2021b)
facilitate the training and evaluation of policy and verifier models (Cobbe et al., 2021; Wang et al.,
2024a). Earlier works (Wang et al., 2024b; Chen et al., 2023; Zeng et al., 2023; Wu et al., 2024)
demonstrate that distilling agent trajectories from stronger models improve weaker models. Recent
studies (Xi et al., 2024; Zhai et al., 2024; Bai et al., 2024) explore self-improving methods, show-
ing that reinforcement learning or rejection sampling fine-tuning guided by reward enables LMs to
enhance themselves without more capable teachers.

However, post-training typically depends on expert demonstration data or training environments
with reliable reward signals, which are largely absent in the software engineering domain. This has
led to a reliance on prompting-based methods with proprietary language models. Our work addresses
this gap with SWE-Gym, a training environment based on real-world software engineering tasks that
uses expert-written tests as reward signals. Our experiments demonstrate that SWE-Gym can build
strong SWE agents without prompt engineering.

3

Published as a conference paper at ICLR 2025

Category Metric SWE-Gym SWE-Gym Lite

Size # Instances 2,438 (2,294) 230 (300)
Repos 11 (12) 11 (12)

Issue Text Length by Words 239.8 (195.1) 186.2 (175.9)

Codebase # Non-test Files 971.2 (2944.2) 818.8 (2988.5)
Non-test Lines 340675.0 (363728.4) 340626.2 (377562.4)

Gold Patch
Lines edited 69.8 (32.8) 10.6 (10.1)
Files edited 2.5 (1.7) 1.0 (1.0)
Func. edited 4.1 (3.0) 1.4 (1.34)

Tests # Fail to Pass 10.0 (9.0) 2.04 (3.5)
Total 760.8 (132.5) 99.9 (85.2)

Table 2: Statistics comparing SWE-Gym with SWE-Bench test split (in
parenthesis). Except for size metrics, we report the average value.

pandas (737)
MONAI (374)

moto (343)

mypy (257)
dvc (225)

dask (145)
modin (107)

pydantic (83)
conan (75)
hydra (66)
bokeh (26)

SWEGym
(2438)

moto (59)
mypy (40)

dvc (36)

MONAI (27)
pydantic (20)

dask (14)
conan (12)

hydra (11)
pandas (5)
modin (5)bokeh (1)

SWEGym Lite
(230)

Figure 2: Repository
distribution of SWE-
Gym instances.

3 SWE-GYM ENVIRONMENT

SWE-Gym comprises 2,438 real-world software engineering tasks sourced from pull requests in 11
popular Python repositories, with pre-configured executable environments and expert-validated test
cases, constructed in close alignment with SWE-Bench (Jimenez et al., 2024). These repositories
are separate from those used in SWE-Bench to avoid contamination. These tasks require SWE
agents to develop test-passing solutions for real-world GitHub issues using provided codebases and
executable environments. Such agents must map from natural language descriptions of the issue, as
well as the initial state of the repository, to a pull request represented as a git patch.

We also identify a subset of 230 tasks, SWE-Gym Lite, which contains generally easier and
more self-contained tasks that are suitable for rapid prototyping, in alignment with SWE-Bench
Lite (Jimenez et al., 2024). To support future research in SWE agent development and automatic
dataset synthesis, we also release SWE-Gym Raw, a large set of Python GitHub issues without
executable environments (64,689 instances spanning 358 Python repositories).

3.1 DATASET CONSTRUCTION

Identify Repositories. We first use SEART GitHub search1 to filter a list of initial repositories.
Unlike SWE-Bench, which focuses on the top 5k most downloaded PyPI libraries Jimenez et al.
(2024), we select Python repositories that were created before 7/1/2022 and have more than 500
stars, with at least 300 lines of code, more than 500 pull requests (PRs) and 100 contributors. This
results in 358 repositories.

Extract Training Instances from Repositories. We use SWE-Bench’s instance extraction script
to convert these repositories into task instances, each corresponding to a GitHub issue including
the natural language description of the issue, a snapshot of the repository in which the issue was
created, and a set of unit tests. Over the 358 repositories, we extract 64,689 task instances. We refer
to this dataset as SWE-Gym Raw, which is over three times larger than the 19k instances gathered
in previous work (Jimenez et al., 2024) and includes nearly ten times as many repositories.

While SWE-Gym Raw instances contain code, issue descriptions, and the solution, they do not
contain executable environments or a guarantee that its unit tests are effective in evaluating the
correctness of a solution. Thus, we focus on 11 repositories with numerous instances and semi-
manually create executable environments for them.

Version Training Instances. Associating instances with their respective version numbers (e.g.
1.2.3) and setting up environments version-by-version makes the environment collection process
more practical by avoiding redundant setup work. We generalize SWE-Bench’s versioning script to
support versioning via script execution, and semi-automatically collect versions for each instance
based on information available in the repository (e.g., pyproject.toml, git tag, etc).

1https://seart-ghs.si.usi.ch/

4

https://seart-ghs.si.usi.ch/

Published as a conference paper at ICLR 2025

Setup Executable Environments and Verify Instances. Creating executable environments with
pre-installed dependencies is crucial for developing software engineering agents, as it mirrors de-
ployment settings and allows for incremental unit test feedback. Configuring dependencies for
specific codebase versions is challenging due to the lack of a universal Python package installa-
tion method and backward compatibility issues, especially for older GitHub issues. Ignoring these
environments could introduce distribution bias, diminishing SWE-Gym’s utility. To address this,
we manually configure dependencies for each task instance using relevant configuration files (e.g.,
requirements.txt), CI scripts, or documentation from the repository snapshot at the time of
issue creation. We then use SWE-Bench’s execution-based validation script to ensure that the gold
patch (the human-submitted code diff) passes more unit tests than the original code. This process
required approximately 200 human annotation hours2 and 10,000 CPU core hours. After validation
and filtering out failed instances, we obtained 2,438 unit-test-validated instances from 11 reposito-
ries. For full reproducibility, we release pre-built Docker images, totaling 6 TB.

3.2 SWE-GYM LITE

To improve research efficiency via faster agent evaluation, Jimenez et al. (2024) introduce SWE-
Bench Lite, a canonical subset of 300 instances from SWE-Bench. Following the SWE-Bench
Lite filtering pipeline,3 we delineate the SWE-Gym Lite split, comprising 230 instances. Similar
to SWE-Bench Lite, this subset excludes tasks that require editing more than one file, tasks with
poorly described problem statements, those with excessively complex ground-truth code diffs, and
tests focused on error message validation.

3.3 DATASET STATISTICS

Our analysis suggests that tasks in SWE-Gym are on average harder than those included in SWE-
Bench. Tab. 2 shows that SWE-Gym has statistics similar to SWE-Bench, with several key dif-
ferences. Codebases in SWE-Gym, on average, have relatively fewer files than SWE-Bench, but a
similar number of total lines of code. However, gold patches in SWE-Gym have significantly more
lines and files edited when compared to SWE-Bench’s gold patches. Additionally, we find models
have consistently lower performance on SWE-Gym compared to SWE-Bench.4 Beyond models and
scaffolds overfitting to SWE-Bench, the decreased performance on SWE-Gym may also be due to
our inclusion of sophisticated repositories like pandas and MONAI.

4 TRAINING LMS AS AGENTS WITH SWE-GYM

We experiment with training language model agents using SWE-Gym. We use two agent scaffolds
(OpenHands, Wang et al. 2024c, §4.2; Moatless Tools, Örwall 2024, §4.3).

4.1 SETTING

Agent Scaffolds. Recent SWE agents comprise a base language model, and a set of tools and
prompts this base model has access to. This set of tools and prompting strategies is referred to as
an agent scaffold, and recent work has developed numerous scaffolds (refer to §2 for examples).
We experiment with two types of agent scaffolds: one for general-purpose prompting (OpenHands
CodeAct; Wang et al. 2024c) and one for specialized workflows (MoatlessTools; Örwall 2024),
which allows us to measure the efficacy of SWE-Gym across diverse deployment settings.

Policy Improvement Algorithm. We use SWE-Gym to improve the underlying LM for a given
SWE agent. As a baseline, we employ a simple policy improvement algorithm: rejection sampling
fine-tuning, where we fine-tune the base LM on success trajectories sampled from SWE-Gym.

Evaluation Metrics. We use the standard SWE agent benchmarks SWE-Bench Lite and Veri-
fied (Jimenez et al., 2024) for evaluation. We report (1) Resolve Rate (%), the proportion of re-
solved task instances, and (2) Empty Patch (%), the proportion of trajectories where none of the

2Annotations are done by a subset of the authors.
3For details on its construction process, see https://www.swebench.com/lite.html.
4§B.4 contains details of these experiments.

5

https://www.swebench.com/lite.html

Published as a conference paper at ICLR 2025

code in the repository is edited. We use OpenHands remote runtime (Neubig & Wang, 2024) to
parallelize evaluation (e.g., execute unit tests).

Technical Details. For base LMs, we use Qwen-2.5-Coder-Instruct (Hui et al., 2024a) 7B,
14B, and 32B. §B.2 contains training run details.

4.2 TRAINING GENERAL-PURPOSE PROMPTING AGENTS

Table 3: Model performance (fine-tuned on 491 SWE-Gym-sampled trajectories) on SWE-
Bench Jimenez et al. (2024) using OpenHands Wang et al. (2024c) as agent scaffold. We use
Qwen-2.5-Coder-Instruct as the base model.

Model Empty Patch (%, ↓) Stuck in Loop (%, ↓) Avg. Turn(s) Resolve Rate (%, ↑)
Size zero-shot fine-tuned ∆ zero-shot fine-tuned ∆ zero-shot fine-tuned ∆ zero-shot fine-tuned ∆

SWE-Bench Lite (300 instances)
7B 40.3 29.7 -10.7 47.0 31.0 -16.0 20.3 22.2 +1.9 1.0 (± 1.0) 10.0 (± 2.4) +9.0

14B 49.7 18.1 -31.6 31.7 27.1 -4.6 23.2 21.4 -1.8 2.7 (± 1.9) 12.7 (± 2.3) +10.0
32B 27.0 18.1 -8.9 16.7 18.1 +1.5 15.5 29.3 +13.9 3.0 (± 1.4) 15.3 (± 2.5) +12.3

SWE-Bench Verified (500 instances)
7B 45.8 33.8 -12.0 39.6 21.0 -18.6 21.9 35.3 +13.4 1.8 (± 1.1) 10.6 (± 2.1) +8.8

14B 44.9 14.5 -30.4 32.1 21.3 -10.7 25.5 30.1 +4.6 4.0 (± 1.6) 16.4 (± 2.0) +12.4
32B 9.5 13.8 +4.3 29.4 23.8 -5.6 24.6 31.6 +7.0 7.0 (± 1.3) 20.6 (± 2.1) +13.6

In this section, we use OpenHands (version CodeActAgent 2.1, Wang et al. 2024b;c) as our agent
scaffold, which is based on general-purpose ReAct-style prompting Yao et al. (2023). In contrast to
specialized-workflows-agents (§2), it relies on the LM to generate actions and do planning. It equips
the base LM with a bash terminal and a file editor. We disable the browser feature of OpenHands.

Trajectory Collection. By rejection sampling, we obtain 491 successful trajectories
from SWE-Gym,. These trajectories are sampled from gpt-4o-2024-08-06 and
claude-3-5-sonnet-20241022 with different temperature settings. Each successful trajec-
tory, on average, has roughly 19 turns and 19K tokens.5 Although SWE-Gym offers many more
tasks and allows repeated sampling, our 491 trajectories are limited primarily by compute budget.

Training on SWE-Gym trajectories turns LM into effective agents to fix issues. As shown in
Tab. 3, the pre-trained base model achieves resolve rates of 3.0% and 7.0% on SWE-Bench Lite and
Verified, respectively. After fine-tuning on 491 trajectories6, it improves by up to 12.3% (3.0% →
15.3%) and 13.6% (7.0% → 20.6%).

Training reduces stuck-in-loop behavior. As shown in Tab. 3, zero-shot pre-trained models of-
ten get stuck in loops; even the largest 32B model is trapped in 29.4% of SWE-Bench Verified
tasks. Fine-tuning on trajectories from SWE-Gym consistently reduces the stuck-in-loop rate by
4.6–18.6% across both SWE-Bench Lite and Verified tasks, except for the 32B model on SWE-
Bench Lite, which increases by 1.5% due to its already low loop rate.

Performance scales with model size. Rather unsurprisingly, larger base models consistently im-
prove the resolve rate, empty patch rate, and stuck-in-loop rate (Tab. 3).

Self-improvement is not yet working. In addition to fine-tuning on trajectories sampled from
strong teacher models, we also experiment with fine-tuning on trajectories sampled directly from
the policy being updated. We use the fine-tuned 32B model to sample 6 trajectories per SWE-
Gym instance (using temperature t = 0.5), obtaining 868 successful trajectories (i.e., on-policy
trajectories). We further fine-tune the base 32B model on a mixture of 868 on-policy trajectories and
the previously collected 491 off-policy trajectories. When evaluating this fine-tuned model on SWE-
Bench Lite, we observe the resolve rate drop from 15.3 to 8.7%, suggesting that self-improvement
is not yet working. We hypothesize that we could achieve improved results using more advanced
policy optimization methods, such as proximal policy optimization (PPO) Schulman et al. (2017),
or with a stronger base model. These directions remain promising avenues for future investigation.

5Tab. 8 contains more statistics of the sampled trajectories.
6We use a sampling temperature of 0 unless otherwise specified.

6

Published as a conference paper at ICLR 2025

4.3 SELF-IMPROVEMENT WITH SPECIALIZED WORKFLOW

Unlike OpenHands, which offers freedom in long-horizon planning, MoatlessTools constrains the
language model’s action space to pre-defined specialized workflows, reducing task horizons. Spe-
cialized workflows outperform general-purpose prompting for open-weight LMs. In Tab. 3 and
Tab. 4, the 7B and 32B LM achieve zero-shot resolve rates of 7% and 19% with MoatlessTools,
compared to 1.0% and 3.0% with OpenHands on SWE-Bench Lite.

Given MoatlessTools’ improved zero-shot performance and shorter task horizon, we hypothesize
that self-improvement is achievable using this scaffold and training on SWE-Gym. With a limited
compute budget, we conduct this experiment with only 7B and 32B models, using LoRA Hu et al.
(2022) for the 32B model for improved efficiency. We use the 7B model for ablation experiments.

We use iterative rejection sampling fine-tuning for policy improvement. Each iteration involves (a)
performing 30 high-temperature (1.0) rollouts per task on SWE-Gym-Lite and adding successful
trajectories to the fine-tuning dataset, and (b) fine-tuning the policy on these filtered trajectories.
After two iterations, further improvements are negligible.

Data Bias Impacts Performance. Repeated sampling, as in Brown et al. (2024), shows that task
success rate follows a long-tail distribution (Fig. 5), where more samples increase solved instances.
While wider task coverage benefits training, it introduces a bias toward easier tasks, making it sub-
optimal to train on all successful trajectories, as first observed in math reasoning Tong et al. (2024).

Mitigating Bias with Per-Instance Capping. We introduce per-instance capping—a method that
limits the maximum number of selected samples per task. As illustrated in Fig. 5, this balances
dataset bias and size. A low cap reduces dataset size and performance (§5.2), while a high cap
skews the distribution toward easier tasks. Empirically, a threshold of 2 achieves a good balance,
slightly outperforming the full dataset and improving training speed (Tab. 6). We rank trajectories
by the number of model response rounds required, preferring fewer.

Results. Results. After two policy improvement iterations (Tab. 4), the 7B model’s resolve rate
increased from 7.0% to 9.0% after the first iteration and to 10.0% after the second. In contrast,
the 32B model improved from 19.0% to 19.7% after the first iteration with no further gains. We
attribute the limited gains in the 32B model to the scaffold’s restricted action space and the rejection
sampling fine-tuning method.

Table 4: Resolve rate (RR) and Empty patch rate (EP) on SWE-Bench Lite with the MoatlessTools Scaffold
after online rejection sampling fine-tuning (temperature t = 0).

Setting 7B Model 32B Model

EP(%, ↓) RR(%, ↑) EP(%, ↓) RR(%, ↑)

Zero-Shot 56.3% 7.0% 24.3% 19.0%
Iteration 1 29.0% 9.0% 18.3% 19.7%
Iteration 2 23.3% 10.0% 9.7% 19.7%

5 SCALING AGENT PERFORMANCE WITH SWE-GYM

We explore two scaling directions enabled by SWE-Gym to enhance agent performance: inference-
time scaling (§5.1) and training-time data scaling (§5.2).

5.1 INFERENCE-TIME SCALING WITH VERIFIERS

Trajectories sampled from SWE-Gym can be used not only for training a policy, but also for train-
ing a verifier (i.e., reward) model. We train an outcome-supervised reward model (ORM) Cobbe
et al. (2021) that, given the relevant context of the task execution (including the problem statement,
agent trajectory, and current git diff), generates a score that estimates the probability that the agent
has solved the problem. We experiment with using this model to rerank candidate trajectories sam-
pled from a SWE agent policy, and show that such learned verifiers enable effective inference-time
scaling for further performance improvement.

7

Published as a conference paper at ICLR 2025

5.1.1 VERIFIER FOR GENERAL-PURPOSE PROMPTING

For OpenHands agents Wang et al. (2024b;c) with general-purpose prompting (§2), we train a ver-
ifier (ORM) that takes as input the trajectory τ = [o1, a1, o2, a2, . . . , on, an], represented as an
interleaved sequence of observations and actions, and generates a scalar reward r ∈ [0, 1]. Observa-
tions ok include the task problem statement, command execution output, error messages, etc; action
ak can be bash command or file operations (e.g., edit, view) from the agent.

Training and Inference. We fine-tune 32B Qwen2.5-Coder-Instruct to label trajectories as
successful or unsuccessful using output tokens <YES> and <NO> respectively.7 For training data,
we re-use two sets of trajectories we sampled on SWE-Gym for agent training in §4.2: (1) off-policy
trajectories which contain 443 successful trajectories; (2) on-policy trajectories which contain
875 successful trajectories sampled from the fine-tuned Qwen2.5-Coder-Instruct-32B.8 We
combine both on-policy and off-policy trajectories, randomly sample the same amount of unsuccess-
ful trajectories from each subset (1,318 each), and combine them as our dataset for verifier training
(total 2,636 trajectories). We fine-tune the model to predict <YES> for successful trajectories and
<NO> for unsuccessful ones and use this probability to rank trajectories at inference time.

Metrics. We report two metrics: (1) Pass@k, the proportion of tasks with at least one successful
solution among k samples, and (2) Best@k, the success rate of the highest-reward trajectories se-
lected by the verifier from k samples per task. Pass@k measures solution discovery (upper bound
for Best@k); Best@k evaluates verifier accuracy. Mean and variance calculation are detailed in
§B.1, following Lightman et al. (2023).

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
Number of Agent Rollouts (k)

20

25

30

35

40

SW
E-

Be
nc

h
Ve

rif
ie

d
Re

so
lv

e
(%

)

20.6%

24.8%

28.8%

31.6%
33.6%

35.3%
36.7%

37.8%
38.7%

39.6%40.2%40.8%41.4%41.9%42.4%42.8%

20.6%
22.2%

24.4%
25.9%

26.9%
28.0%28.7%29.3%29.8%30.2%30.6%30.9%31.2%31.5%31.8%32.0%

Pass@k
Best@k

((a)) SWE-Bench Verified with OpenHands scaf-
fold.

1 2 3 4 5 6 7 8
Number of Agent Rollouts

18

20

22

24

26

28

30

32

34

Re
so

lv
e

Ra
te

 (%
)

19.1%

24.4%

27.5%

29.6%
31.0%

32.1%
32.9% 33.3%

19.1%

21.6%
22.6%

23.5%
24.3% 24.9% 25.4% 26.0%

19.3% 19.9% 20.5% 20.9% 21.1% 21.2% 21.1% 21.0%

Pass@k
Best@k (32B ORM)
Best@k (7B ORM)

((b)) SWE-Bench Lite with MoatlessTools
scaffold.

Figure 3: Scaling inference-time compute for SWE Agents with learnt verifier. All agents and
verifiers are Qwen2.5-Coder-Instruct-32B fine-tuned on corresponding dataset.

Results. Fig. 3(a) shows how Pass@k and Best@K scale with sampled agent trajectories. Pass@k
demonstrates strong improvement, rising from 20.6 to 37.8% resolve rate as k increases from 1
to 8, and up to 42.8@k=16. The Best@k metric shows more modest progress, improving from
20.6@1 to 29.8@8. The gap between Pass@k and Best@k indicates room for improvement in
reward modeling. Interestingly, fine-tuning with LoRA Hu et al. (2022) (29.8@8) performs better
than full-parameter fine-tuning (27.2@8). As shown in Fig. 1, the Best@k curve exhibits strong
linearity on a logarithmic scale, indicating promising scaling behavior.

Training with a mixture of off-policy and on-policy data yields the best results (our default setting),
with a resolve rate of 27@8. Our findings indicate that verifier training benefits most from a diverse
dataset combining both types of examples. Ablations are detailed in §B.2.

5.1.2 VERIFIER FOR SPECIALIZED WORKFLOW

For MoatlessTools agents, we prepare verifier inputs through a parsing process adopted from Zhang
et al. (2024a), combining task descriptions, agent context, and patches (prompt template in §B.5).
The verifier maps this input to a token indicating task success.

Results. As shown in Fig. 3(b) and Fig. 6, these verifiers enable effective scaling: the 7B verifier
improves from 10 to 13.3% resolve rate when paired with a 7B policy, while the 32B verifier im-

7§B.6 includes the verifier prompt template.
8We keep only trajectories within 32k-token length for training, which may reduce their number compared

to Section 4.2.

8

Published as a conference paper at ICLR 2025

proves from 19.7 to 26.3% with a 32B policy. The 7B verifier plateaus after k = 4 samples, while
the 32B verifier continues improving at k = 8, suggesting verifier size significantly affects scaling
behavior.

5.2 TRAINING-TIME SCALING WITH DATA

We examine how scaling training data affects agent performance through three methods: (1) Scaling
trajectories (randomly dropping trajectories); (2) Scaling unique task instances (one trajectory per
task); and (3) Scaling repositories (including all instances from each repository sequentially).

Setup. Using OpenHands Wang et al. (2024c), we evaluate these approaches on SWE-Bench Veri-
fied by subsampling from our full dataset (491 trajectories max), deduplicating by instance ID (294
trajectories max), or including repositories alphabetically. We compare models trained on 25%,
50%, and 100% of data for each approach.

Results. Fig. 4(left) demonstrates consistent improvements in resolve rate as training data increases,
particularly for the 32B model. These results suggest that SWE-Gym’s current size and repository
diversity are not performance bottlenecks - further improvements could be achieved by simply sam-
pling more training trajectories.

25% 50% 100%

5

10

15

20

SW
E-

Be
nc

h
Ve

rif
ie

d
Re

so
lv

ed
 (%

)

Scaling number of training trajectories

32B
7B

Percentage of Training Data Used
25% 50% 100%

12

14

16

18

20

SW
E-

Be
nc

h
Ve

rif
ie

d
Re

so
lv

ed
 (%

)

Different strategies of scaling training trajectories

32B No Dedup.
32B Dedup. Sorted by Repo
32B Dedup. Sorted by Random

Percentage of Training Data Used

Figure 4: (left) Scaling effects with increasing number of trajectories; (right) Comparison of differ-
ent data scaling approaches.

Fig. 4 (right) reveals comparable performance between scaling approaches. While Random Scaling
(No Dedup.) achieves higher final performance due to having more trajectories (491 vs 294), Repos-
itory Scaling shows stronger initial performance at 25% data. These results suggest that SWE-Gym’s
repository and instance diversity is not yet a bottleneck - further improvements could be achieved
by simply sampling more agent trajectory data, regardless of duplication or repository distribution.

6 CONCLUSIONS

In this paper, we introduce SWE-Gym, the first training environment that bridges critical gaps in en-
abling scalable learning for software engineering agents. By combining real-world Python tasks with
repository-level context, pre-configured execution environments, and test verifications, SWE-Gym
provides a foundation for advancing LM agent training research. Our experiments demonstrate that
SWE-Gym enables both agent and verifier models to achieve significant improvements in resolving
complex software tasks, with potential for continuous performance gains as compute scales.

REFERENCES

Ilge Akkaya, Marcin Andrychowicz, Maciek Chociej, Mateusz Litwin, Bob McGrew, Arthur Petron,
Alex Paino, Matthias Plappert, Glenn Powell, Raphael Ribas, et al. Solving rubik’s cube with a
robot hand. arXiv preprint arXiv:1910.07113, 2019.

Ibragim Badertdinov, Maria Trofimova, Yuri Anapolskiy, Sergey Abramov, Karina Zainullina,
Alexander Golubev, Sergey Polezhaev, Daria Litvintseva, Simon Karasik, Filipp Fisin, Sergey
Skvortsov, Maxim Nekrashevich, Anton Shevtsov, and Boris Yangel. Scaling data collection for
training software engineering agents. Nebius blog, 2024.

9

Published as a conference paper at ICLR 2025

Hao Bai, Yifei Zhou, Mert Cemri, Jiayi Pan, Alane Suhr, Sergey Levine, and Aviral Ku-
mar. Digirl: Training in-the-wild device-control agents with autonomous reinforcement learn-
ing. ArXiv, abs/2406.11896, 2024. URL https://api.semanticscholar.org/
CorpusID:270562229.

Bradley Brown, Jordan Juravsky, Ryan Ehrlich, Ronald Clark, Quoc V. Le, Christopher R’e,
and Azalia Mirhoseini. Large language monkeys: Scaling inference compute with repeated
sampling. ArXiv, abs/2407.21787, 2024. URL https://api.semanticscholar.org/
CorpusID:271571035.

Baian Chen, Chang Shu, Ehsan Shareghi, Nigel Collier, Karthik Narasimhan, and Shunyu Yao.
Fireact: Toward language agent fine-tuning. ArXiv, abs/2310.05915, 2023. URL https://
api.semanticscholar.org/CorpusID:263829338.

Dong Chen, Shaoxin Lin, Muhan Zeng, Daoguang Zan, Jian-Gang Wang, Anton Cheshkov, Jun Sun,
Hao Yu, Guoliang Dong, Artem Aliev, Jie Wang, Xiao Cheng, Guangtai Liang, Yuchi Ma, Pan
Bian, Tao Xie, and Qianxiang Wang. Coder: Issue resolving with multi-agent and task graphs.
CoRR in ArXiv, abs/2406.01304, 2024.

Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan, Henrique Pondé, Jared Kaplan, Harri-
son Edwards, Yura Burda, Nicholas Joseph, Greg Brockman, Alex Ray, Raul Puri, Gretchen
Krueger, Michael Petrov, Heidy Khlaaf, Girish Sastry, Pamela Mishkin, Brooke Chan, Scott Gray,
Nick Ryder, Mikhail Pavlov, Alethea Power, Lukasz Kaiser, Mohammad Bavarian, Clemens
Winter, Philippe Tillet, Felipe Petroski Such, David W. Cummings, Matthias Plappert, Fotios
Chantzis, Elizabeth Barnes, Ariel Herbert-Voss, William H. Guss, Alex Nichol, Igor Babuschkin,
Suchir Balaji, Shantanu Jain, Andrew Carr, Jan Leike, Joshua Achiam, Vedant Misra, Evan
Morikawa, Alec Radford, Matthew M. Knight, Miles Brundage, Mira Murati, Katie Mayer,
Peter Welinder, Bob McGrew, Dario Amodei, Sam McCandlish, Ilya Sutskever, and Wojciech
Zaremba. Evaluating large language models trained on code. ArXiv, abs/2107.03374, 2021. URL
https://api.semanticscholar.org/CorpusID:235755472.

Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian, Mark Chen, Heewoo Jun, Lukasz Kaiser,
Matthias Plappert, Jerry Tworek, Jacob Hilton, Reiichiro Nakano, Christopher Hesse, and John
Schulman. Training verifiers to solve math word problems. ArXiv, abs/2110.14168, 2021. URL
https://api.semanticscholar.org/CorpusID:239998651.

Alexander Golubev, Sergey Polezhaev, Karina Zainullina, Maria Trofimova, Ibragim Badert-
dinov, Yuri Anapolskiy, Daria Litvintseva, Simon Karasik, Filipp Fisin, Sergey Skvortsov,
Maxim Nekrashevich, Anton Shevtsov, Sergey Abramov, and Boris Yangel. Leverag-
ing training and search for better software engineering agents. Nebius blog, 2024.
https://nebius.com/blog/posts/training-and-search-for-software-engineering-agents.

Dan Hendrycks, Steven Basart, Saurav Kadavath, Mantas Mazeika, Akul Arora, Ethan Guo,
Collin Burns, Samir Puranik, Horace He, Dawn Song, and Jacob Steinhardt. Measuring
coding challenge competence with APPS. In Joaquin Vanschoren and Sai-Kit Yeung (eds.),
Proceedings of the Neural Information Processing Systems Track on Datasets and Bench-
marks 1, NeurIPS Datasets and Benchmarks 2021, December 2021, virtual, 2021a. URL
https://datasets-benchmarks-proceedings.neurips.cc/paper/2021/
hash/c24cd76e1ce41366a4bbe8a49b02a028-Abstract-round2.html.

Dan Hendrycks, Collin Burns, Saurav Kadavath, Akul Arora, Steven Basart, Eric Tang, Dawn Xi-
aodong Song, and Jacob Steinhardt. Measuring mathematical problem solving with the math
dataset. ArXiv, abs/2103.03874, 2021b. URL https://api.semanticscholar.org/
CorpusID:232134851.

Edward J. Hu, Yelong Shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang,
and Weizhu Chen. Lora: Low-rank adaptation of large language models. In The Tenth Inter-
national Conference on Learning Representations, ICLR 2022, Virtual Event, April 25-29, 2022.
OpenReview.net, 2022. URL https://openreview.net/forum?id=nZeVKeeFYf9.

Binyuan Hui, Jian Yang, Zeyu Cui, Jiaxi Yang, Dayiheng Liu, Lei Zhang, Tianyu Liu, Jiajun Zhang,
Bowen Yu, Kai Dang, et al. Qwen2. 5-coder technical report. arXiv preprint arXiv:2409.12186,
2024a.

10

https://api.semanticscholar.org/CorpusID:270562229
https://api.semanticscholar.org/CorpusID:270562229
https://api.semanticscholar.org/CorpusID:271571035
https://api.semanticscholar.org/CorpusID:271571035
https://api.semanticscholar.org/CorpusID:263829338
https://api.semanticscholar.org/CorpusID:263829338
https://api.semanticscholar.org/CorpusID:235755472
https://api.semanticscholar.org/CorpusID:239998651
https://datasets-benchmarks-proceedings.neurips.cc/paper/2021/hash/c24cd76e1ce41366a4bbe8a49b02a028-Abstract-round2.html
https://datasets-benchmarks-proceedings.neurips.cc/paper/2021/hash/c24cd76e1ce41366a4bbe8a49b02a028-Abstract-round2.html
https://api.semanticscholar.org/CorpusID:232134851
https://api.semanticscholar.org/CorpusID:232134851
https://openreview.net/forum?id=nZeVKeeFYf9

Published as a conference paper at ICLR 2025

Binyuan Hui, Jian Yang, Zeyu Cui, Jiaxi Yang, Dayiheng Liu, Lei Zhang, Tianyu Liu, Jiajun Zhang,
Bowen Yu, Kai Dang, et al. Qwen2. 5-coder technical report. arXiv preprint arXiv:2409.12186,
2024b.

Naman Jain, Manish Shetty, Tianjun Zhang, King Han, Koushik Sen, and Ion Stoica. R2E: turning
any github repository into a programming agent environment. In Forty-first International Con-
ference on Machine Learning, ICML 2024, Vienna, Austria, July 21-27, 2024. OpenReview.net,
2024. URL https://openreview.net/forum?id=kXHgEYFyf3.

Carlos E. Jimenez, John Yang, Alexander Wettig, Shunyu Yao, Kexin Pei, Ofir Press, and Karthik R.
Narasimhan. Swe-bench: Can language models resolve real-world github issues? In The
Twelfth International Conference on Learning Representations, ICLR 2024, Vienna, Austria,
May 7-11, 2024. OpenReview.net, 2024. URL https://openreview.net/forum?id=
VTF8yNQM66.

Hunter Lightman, Vineet Kosaraju, Yura Burda, Harrison Edwards, Bowen Baker, Teddy
Lee, Jan Leike, John Schulman, Ilya Sutskever, and Karl Cobbe. Let’s verify step by
step. ArXiv, abs/2305.20050, 2023. URL https://api.semanticscholar.org/
CorpusID:258987659.

Yingwei Ma, Rongyu Cao, Yongchang Cao, Yue Zhang, Jue Chen, Yibo Liu, Yuchen Liu, Binhua
Li, Fei Huang, and Yongbin Li. Lingma swe-gpt: An open development-process-centric language
model for automated software improvement. arXiv preprint arXiv:2411.00622, 2024.

Modal. Modal: High-performance AI infrastructure. https://modal.com/, 2024. Accessed:
2024-12-18.

Graham Neubig and Xingyao Wang. Evaluation of LLMs as Coding Agents on SWE-Bench (at
30x Speed!). All Hands AI blog, 2024. URL https://www.all-hands.dev/blog/
evaluation-of-llms-as-coding-agents-on-swe-bench-at-30x-speed.

Long Ouyang, Jeffrey Wu, Xu Jiang, Diogo Almeida, Carroll Wainwright, Pamela Mishkin, Chong
Zhang, Sandhini Agarwal, Katarina Slama, Alex Ray, et al. Training language models to fol-
low instructions with human feedback. Advances in neural information processing systems, 35:
27730–27744, 2022.

Jiayi Pan, Yichi Zhang, Nicholas Tomlin, Yifei Zhou, Sergey Levine, and Alane Suhr. Autonomous
evaluation and refinement of digital agents. ArXiv, abs/2404.06474, 2024. URL https://
api.semanticscholar.org/CorpusID:269009430.

PyTorch Team. torchtune: PyTorch native post-training library. https://github.com/
pytorch/torchtune, 2024.

Qwen Team. Qwen2.5: A party of foundation models, September 2024. URL https://qwenlm.
github.io/blog/qwen2.5/.

John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proxi-
mal policy optimization algorithms. ArXiv, abs/1707.06347, 2017. URL https://api.
semanticscholar.org/CorpusID:28695052.

Zhihong Shao, Peiyi Wang, Qihao Zhu, Runxin Xu, Junxiao Song, Xiao Bi, Haowei Zhang,
Mingchuan Zhang, YK Li, Y Wu, et al. Deepseekmath: Pushing the limits of mathematical
reasoning in open language models. arXiv preprint arXiv:2402.03300, 2024.

David Silver, Thomas Hubert, Julian Schrittwieser, Ioannis Antonoglou, Matthew Lai, Arthur
Guez, Marc Lanctot, L. Sifre, Dharshan Kumaran, Thore Graepel, Timothy P. Lillicrap, Karen
Simonyan, and Demis Hassabis. Mastering chess and shogi by self-play with a general
reinforcement learning algorithm. ArXiv, abs/1712.01815, 2017. URL https://api.
semanticscholar.org/CorpusID:33081038.

Ning Tao, Anthony Ventresque, Vivek Nallur, and Takfarinas Saber. Enhancing program synthesis
with large language models using many-objective grammar-guided genetic programming. Algo-
rithms, 17(7):287, 2024. doi: 10.3390/A17070287. URL https://doi.org/10.3390/
a17070287.

11

https://openreview.net/forum?id=kXHgEYFyf3
https://openreview.net/forum?id=VTF8yNQM66
https://openreview.net/forum?id=VTF8yNQM66
https://api.semanticscholar.org/CorpusID:258987659
https://api.semanticscholar.org/CorpusID:258987659
https://modal.com/
https://www.all-hands.dev/blog/evaluation-of-llms-as-coding-agents-on-swe-bench-at-30x-speed
https://www.all-hands.dev/blog/evaluation-of-llms-as-coding-agents-on-swe-bench-at-30x-speed
https://api.semanticscholar.org/CorpusID:269009430
https://api.semanticscholar.org/CorpusID:269009430
https://github.com/pytorch/torchtune
https://github.com/pytorch/torchtune
https://qwenlm.github.io/blog/qwen2.5/
https://qwenlm.github.io/blog/qwen2.5/
https://api.semanticscholar.org/CorpusID:28695052
https://api.semanticscholar.org/CorpusID:28695052
https://api.semanticscholar.org/CorpusID:33081038
https://api.semanticscholar.org/CorpusID:33081038
https://doi.org/10.3390/a17070287
https://doi.org/10.3390/a17070287

Published as a conference paper at ICLR 2025

Yuxuan Tong, Xiwen Zhang, Rui Wang, Rui Min Wu, and Junxian He. Dart-math: Difficulty-
aware rejection tuning for mathematical problem-solving. ArXiv, abs/2407.13690, 2024. URL
https://api.semanticscholar.org/CorpusID:271270574.

Unsloth Team. Easily finetune and train LLMs. Get faster with unsloth. https://unsloth.
ai/, 2024.

Peiyi Wang, Lei Li, Zhihong Shao, Runxin Xu, Damai Dai, Yifei Li, Deli Chen, Yu Wu, and Zhi-
fang Sui. Math-shepherd: Verify and reinforce LLMs step-by-step without human annotations. In
Lun-Wei Ku, Andre Martins, and Vivek Srikumar (eds.), Proceedings of the 62nd Annual Meet-
ing of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 9426–9439,
Bangkok, Thailand, August 2024a. Association for Computational Linguistics. doi: 10.18653/
v1/2024.acl-long.510. URL https://aclanthology.org/2024.acl-long.510.

Xingyao Wang, Yangyi Chen, Lifan Yuan, Yizhe Zhang, Yunzhu Li, Hao Peng, and Heng Ji. Ex-
ecutable code actions elicit better LLM agents. In Forty-first International Conference on Ma-
chine Learning, ICML 2024, Vienna, Austria, July 21-27, 2024. OpenReview.net, 2024b. URL
https://openreview.net/forum?id=jJ9BoXAfFa.

Xingyao Wang, Boxuan Li, Yufan Song, Frank F. Xu, Xiangru Tang, Mingchen Zhuge, Jiayi Pan,
Yueqi Song, Bowen Li, Jaskirat Singh, Hoang H. Tran, Fuqiang Li, Ren Ma, Mingzhang Zheng,
Bill Qian, Yanjun Shao, Niklas Muennighoff, Yizhe Zhang, Binyuan Hui, Junyang Lin, Robert
Brennan, Hao Peng, Heng Ji, and Graham Neubig. OpenHands: An Open Platform for AI Soft-
ware Developers as Generalist Agents. CoRR in ArXiv, abs/2407.16741, 2024c.

Zhuofeng Wu, He Bai, Aonan Zhang, Jiatao Gu, VG Vinod Vydiswaran, Navdeep Jaitly, and Yizhe
Zhang. Divide-or-conquer? which part should you distill your llm? ArXiv, 2024.

Zhiheng Xi, Yiwen Ding, Wenxiang Chen, Boyang Hong, Honglin Guo, Junzhe Wang, Ding-
wen Yang, Chenyang Liao, Xin Guo, Wei He, Songyang Gao, Luyao Chen, Rui Zheng,
Yicheng Zou, Tao Gui, Qi Zhang, Xipeng Qiu, Xuanjing Huang, Zuxuan Wu, and Yu-
Gang Jiang. Agentgym: Evolving large language model-based agents across diverse environ-
ments. ArXiv, abs/2406.04151, 2024. URL https://api.semanticscholar.org/
CorpusID:270285866.

Chunqiu Steven Xia, Yinlin Deng, Soren Dunn, and Lingming Zhang. Agentless: Demystifying
llm-based software engineering agents. CoRR, abs/2407.01489, 2024. doi: 10.48550/ARXIV.
2407.01489. URL https://doi.org/10.48550/arXiv.2407.01489.

John Yang, Carlos E. Jimenez, Alexander Wettig, Kilian Lieret, Shunyu Yao, Karthik Narasimhan,
and Ofir Press. Swe-agent: Agent-computer interfaces enable automated software engineering.
CoRR, abs/2405.15793, 2024. doi: 10.48550/ARXIV.2405.15793. URL https://doi.org/
10.48550/arXiv.2405.15793.

Shunyu Yao, Jeffrey Zhao, Dian Yu, Nan Du, Izhak Shafran, Karthik R. Narasimhan, and Yuan
Cao. React: Synergizing reasoning and acting in language models. In The Eleventh International
Conference on Learning Representations, ICLR 2023, Kigali, Rwanda, May 1-5, 2023. OpenRe-
view.net, 2023. URL https://openreview.net/forum?id=WE_vluYUL-X.

Lifan Yuan, Ganqu Cui, Hanbin Wang, Ning Ding, Xingyao Wang, Jia Deng, Boji Shan,
Huimin Chen, Ruobing Xie, Yankai Lin, Zhenghao Liu, Bowen Zhou, Hao Peng, Zhiyuan
Liu, and Maosong Sun. Advancing LLM reasoning generalists with preference trees. CoRR,
abs/2404.02078, 2024. doi: 10.48550/ARXIV.2404.02078. URL https://doi.org/10.
48550/arXiv.2404.02078.

Aohan Zeng, Mingdao Liu, Rui Lu, Bowen Wang, Xiao Liu, Yuxiao Dong, and Jie Tang. Agenttun-
ing: Enabling generalized agent abilities for llms. In Annual Meeting of the Association for Com-
putational Linguistics, 2023. URL https://api.semanticscholar.org/CorpusID:
264306101.

Yuexiang Zhai, Hao Bai, Zipeng Lin, Jiayi Pan, Shengbang Tong, Yifei Zhou, Alane Suhr, Sain-
ing Xie, Yann LeCun, Yi Ma, and Sergey Levine. Fine-tuning large vision-language models
as decision-making agents via reinforcement learning. ArXiv, abs/2405.10292, 2024. URL
https://api.semanticscholar.org/CorpusID:269790773.

12

https://api.semanticscholar.org/CorpusID:271270574
https://unsloth.ai/
https://unsloth.ai/
https://aclanthology.org/2024.acl-long.510
https://openreview.net/forum?id=jJ9BoXAfFa
https://api.semanticscholar.org/CorpusID:270285866
https://api.semanticscholar.org/CorpusID:270285866
https://doi.org/10.48550/arXiv.2407.01489
https://doi.org/10.48550/arXiv.2405.15793
https://doi.org/10.48550/arXiv.2405.15793
https://openreview.net/forum?id=WE_vluYUL-X
https://doi.org/10.48550/arXiv.2404.02078
https://doi.org/10.48550/arXiv.2404.02078
https://api.semanticscholar.org/CorpusID:264306101
https://api.semanticscholar.org/CorpusID:264306101
https://api.semanticscholar.org/CorpusID:269790773

Published as a conference paper at ICLR 2025

Kexun Zhang, Weiran Yao, Zuxin Liu, Yihao Feng, Zhiwei Liu, Rithesh Murthy, Tian Lan, Lei Li,
Renze Lou, Jiacheng Xu, Bo Pang, Yingbo Zhou, Shelby Heinecke, Silvio Savarese, Huan Wang,
and Caiming Xiong. Diversity empowers intelligence: Integrating expertise of software engineer-
ing agents. ArXiv, abs/2408.07060, 2024a. URL https://api.semanticscholar.org/
CorpusID:271860093.

Yuntong Zhang, Haifeng Ruan, Zhiyu Fan, and Abhik Roychoudhury. Autocoderover: Autonomous
program improvement. In ISSTA, 2024b.

Wenting Zhao, Nan Jiang, Celine Lee, Justin T Chiu, Claire Cardie, Matthias Gallé, and Alexan-
der M Rush. Commit0: Library generation from scratch, 2024. URL https://arxiv.org/
abs/2412.01769.

Lianmin Zheng, Liangsheng Yin, Zhiqiang Xie, Chuyue Sun, Jeff Huang, Cody Hao Yu, Shiyi Cao,
Christos Kozyrakis, Ion Stoica, Joseph E. Gonzalez, Clark Barrett, and Ying Sheng. Sglang:
Efficient execution of structured language model programs, 2024a. URL https://arxiv.
org/abs/2312.07104.

Tianyu Zheng, Ge Zhang, Tianhao Shen, Xueling Liu, Bill Yuchen Lin, Jie Fu, Wenhu Chen,
and Xiang Yue. Opencodeinterpreter: Integrating code generation with execution and refine-
ment. ArXiv, abs/2402.14658, 2024b. URL https://api.semanticscholar.org/
CorpusID:267782452.

Albert Örwall. Moatless Tool. https://github.com/aorwall/moatless-tools, 2024.
Accessed: 2024-10-22.

A COMPARISON WITH CONCURRENT WORKS

Ma et al. (2024) trains an LM agent, Lingma SWE-GPT, using a method similar to our rejection
sampling fine-tuning baseline, with a dataset comparable to our SWE-Gym Raw splits. Without ex-
ecutable unit test feedback, they rely on manually defined heuristics to filter out low-quality trajec-
tories, such as comparing similarity between submitted patches and edit locations with gold patches.
The model weights are publicly accessible but not the training pipeline or the dataset.

Most relevant to our work are two consecutive blog posts by Golubev et al. (2024) and Badertdinov
et al. (2024), who also construct an executable training environment with real-world tasks from
GitHub. Instead of manual configuration, they employ a general environment setup script and simply
discard instances that fail the setup process. This approach leads to key differences in dataset size
and distribution: while it biases the environment away from tasks with complex dependencies, they
successfully collect 6,415 instances, about 1.5 times larger than our dataset. In Golubev et al. (2024),
they also study training agents and verifiers with the environment. Additionally, they explore a
lookahead setting where a trained verifier ranks and selects the best next action. With a substantially
large collection of agent trajectories (80,036 compared to thousands in our experiments) and model
size (72B compared to 32B), Their best system achieves 40% accuracy on SWE-Bench Verified.
While their dataset and agent trajectories are publicly accessible, the model is not.

In comparison, with a comparable dataset size, our SWE-Gym has executable feedback, avoids
potential dataset bias through manual configuration of environments, while providing comprehen-
sive analysis of agent and verifier training, their scaling behaviors, and positive results on agent
self-improvement. Our system achieves competitive results with significantly lower compute and
a smaller model size (32B vs 72B). Lastly, we open source all artifacts of the project, including
dataset, model weights, agent trajectory data and the training pipeline.

B EXPERIMENT DETAILS

B.1 MEAN AND VARIANCE FOR PASS@N AND BEST@N.

We mostly follow Lightman et al. (2023) for obtaining the mean and variance for the Pass@N
and Best@N curve. Given a total of M rounds of rollouts, for N < M , we calculate the mean

13

https://api.semanticscholar.org/CorpusID:271860093
https://api.semanticscholar.org/CorpusID:271860093
https://arxiv.org/abs/2412.01769
https://arxiv.org/abs/2412.01769
https://arxiv.org/abs/2312.07104
https://arxiv.org/abs/2312.07104
https://api.semanticscholar.org/CorpusID:267782452
https://api.semanticscholar.org/CorpusID:267782452
https://github.com/aorwall/moatless-tools

Published as a conference paper at ICLR 2025

Model SWE-Bench Openness
Name, Model Size Lite Verified Model Environment
Ma et al. (2024), 72B 22.0 30.2 ✓ ✗
Golubev et al. (2024) Agent and Verifier, 72B - 40.6 ✗ ✓
Our SWE-Gym Agent and Verifier, 32B 26.0 32.0 ✓ ✓

Table 5: Comparison of model performance on SWE-Bench benchmark and if the model weights
and environments are publically accessible (openness).

Cap # Traj Empty Patch (%, ↓) Resolve Rate (%, ↑)

0 (Zero-shot) 0 56.3 7.0
1 36 37.3 9.0
2 62 29.0 9.7
3 82 43.7 7.7
No Cap (All) 172 30.7 9.3

Table 6: Resolve rate and empty patch rate on SWE-Bench Lite with a 7B model trained using
different instance capping strategies (Cap).

and variance across 100 randomly selected sub-samples of size N from the M rollouts. For the
OpenHands CodeActAgent inference-time scaling curve at §3(a), we exclude this calculation for
N=1 , as we use a temperature of 0 for the first attempt.

B.2 OPENHANDS AGENT EXPERIMENTS

During training, we use OpenHands’s remote runtime (Neubig & Wang, 2024) feature to execute
agent trajectories in parallel on SWE-Gym. We use torchtune PyTorch Team (2024) for full
parameter fine-tuning with a learning rate of 1e-4, maximum 5 epochs, global batch size of 8,
max context length of 32768. We fine-tuned both 7B, 14B, and 32B variant of the model, and
experiments were performed with 2-8x NVIDIA H100 80G GPU on modal Modal (2024). The
only exception is in the main experiment of §5.1.1, where we use LoRA Hu et al. (2022) (29.8%
@8) via Unsloth library Unsloth Team (2024) to train the verifier for max 2 epochs, while other
hyper-parameter stays the same.

Inference during evaluation is bounded by either 100 interaction turns or the base LM’s 32k context
window length, whichever is reached first.

At inference time, conditioned on the prompt and the agent trajectory τ , we use SGLang Zheng
et al. (2024a) to obtain the log probability of the next token being <YES> (ly) or <NO> (ln). We
then calculate the reward as the probability of success by normalizing the log probability: r =
exp(ly)/(exp(ly) + exp(ln)).

Training data matters for verifier. We experiment with variations on the choice of training data for
our verifier model. Using full-parameter fine-tuning on Qwen-2.5-Coder-Instruct-32B,
we use different mixtures of on- and off-policy trajectories, as well as different distributions of
successful and unsuccessful trajectories.

As shown in Fig. 7, our ablation study demonstrates that the choice of training data can significantly
impact verifier performance. Training with a mixture of off-policy and on-policy data yields the best
results (our default setting), reaching a resolve rate of 27@8. In contrast, using only on-policy data
from the fine-tuned model shows moderate but limited improvement, while training exclusively on
off-policy data from Claude and GPT leads to early performance plateaus around 22% resolve rate.

B.3 MOATLESSTOOLS AGENT EXPERIMENTS

All MoatlessTools models are trained with a context window of 10240. For experiments with the
7B model, we use torchtune to train the policy model with full-finetuning using 4 H100 GPUs. We
set batch size to 8, learning rate to 2× 10−5, and train for 5 epochs.

For the 32B model, we use Unsloth Unsloth Team (2024) with a single H100 GPU for LoRA fine-
tuning. We set the number of epochs to 5, batch size to 8, LoRA rank to 64, and learning rate to
5× 10−4. We use the same configuration for verifier training.

14

Published as a conference paper at ICLR 2025

0 5 10 15 20 25 30 35
Instance ID (Sorted By # Successful Trajectories)

0

5

10

15

20

Su

cc
es

sf
ul

 Tr
aj

ec
to

rie
s

Cap
1
2
3

Figure 5: Success distribution over 30 rounds on SWE-Gym Lite with 7B model in zero-shot. The
distribution is naturally biased toward easy tasks. Per instance capping reduces this bias but lowers
the total trajectory count for training. We set temperature t = 1 during sampling.

Original Dedup. Sorted by Random (Dedup.) Sorted by Repo (Dedup.)
First 25% First 50% First 25% First 50%

getmoto/moto 155 72 12 33 0 46
Project-MONAI/MONAI 95 53 17 25 53 53
pandas-dev/pandas 70 61 14 30 0 0
python/mypy 46 27 7 12 0 0
dask/dask 45 29 8 17 6 29
iterative/dvc 36 24 8 12 0 0
conan-io/conan 20 12 1 7 12 12
pydantic/pydantic 11 7 2 4 0 0
facebookresearch/hydra 7 5 2 5 0 5
bokeh/bokeh 3 2 1 1 2 2
modin-project/modin 3 2 1 1 0 0

Total 491 294 73 147 73 147

Table 7: Distribution of success trajectories used in training-time scaling experiments (§5.2).
Dedup. denotes that the trajectories are deduplicated by randomly select ONE success trajectory
per instance ID; Sorted by random (repo) X% (Dedup.) denotes a subset of trajectories taken
from the first X% from dedup. instances that are sorted randomly (by repository name).

For MoatlessAgent experiments, we serve the agent with FP8 quantization for improved throughput,
which we found to have minimal effects on model performance. But we keep the verifier inference
in BF16.

Following the training procedure described in §5.1.1, we train 7B and 32B verifiers using on-policy
trajectories from the last (2nd round of sampling, applying LoRA Hu et al. (2022). To address the

Percentiles
Resolved Count Mean Std Min Max 5% 10% 25% 50% 75% 90% 95%

Num. of Messages ✗ 5, 557.0 39.2 31.9 7.0 101.0 9.0 9.0 9.0 29.0 61.0 100.0 101.0
✓ 491.0 39.9 19.9 13.0 101.0 19.0 21.0 25.0 33.0 47.5 65.0 87.0

Num. of Tokens ✗ 5, 557.0 17, 218.3 17, 761.6 1, 615.0 167, 834.0 1, 833.0 1, 907.0 2, 268.0 12, 305.0 26, 434.0 41, 182.2 51, 780.6
✓ 491.0 18, 578.5 11, 361.4 2, 560.0 81, 245.0 5, 813.0 8, 357.0 11, 559.5 15, 999.0 22, 040.5 31, 632.0 39, 512.5

Table 8: Statistics of SWE-Gym-sampled trajectories. We use the tokenizer from
Qwen-2.5-Coder-Instruct-7B to estimate the number of tokens.

15

Published as a conference paper at ICLR 2025

1 2 3 4 5 6 7 8
Number of 32B Agent Rollouts (k)

18

20

22

24

26

28

30

32

34

SW
E-

Be
nc

h
Lit

e
Re

so
lv

e
Ra

te
 (%

)

19.1%

24.4%

27.5%

29.6%
31.0%

32.1%
32.9% 33.3%

19.1%

21.6%
22.6%

23.5%
24.3% 24.9% 25.4% 26.0%

19.3%
19.9% 20.5% 20.9% 21.1% 21.2% 21.1% 21.0%

Pass@k
Best@k (32B Verifier)
Best@k (7B Verifier)

1 2 3 4 5 6 7 8
Number of 7B Agent Rollouts (k)

8

10

12

14

16

18

20

22

24

SW
E-

Be
nc

h
Lit

e
Re

so
lv

e
Ra

te
 (%

)

9.4%

13.5%

16.4%

18.3%

20.0%
21.4%

22.5%
23.3%

9.4%

11.6%
13.2%

14.0% 14.6% 14.7% 15.0% 15.0%

9.4%

12.2%
13.1% 13.5% 13.7% 13.7% 13.5% 13.3%

Pass@k
Best@k (32B Verifier)
Best@k (7B Verifier)

Figure 6: Scaling inference-time compute for MoatlessTools Agents (7B and 32B) with their corre-
sponding learned verifiers. Temperature t = 0.5.

easy-data bias in the training dataset, we cap the number of successful trajectories per instance at
two and balance the data by subsampling failure cases to match the same number of successful ones.

B.4 DETAILS OF OPENHANDS TRAJECTORY SAMPLING

As detailed in Tab. 10, we collect a few sets of trajectories for fine-tuning experiments. We collect
dataset D0 by sample gpt-4o-2024-08-06 on SWE-Gym Lite with temperature 0 and collected
19 trajectories that eventually solve the task (evaluated by unit test in SWE-Gym). We then varied
the temperatures (setting t={0.2, 0.3, 0.4, 0.5, 0.8}) and sample on SWE-Gym Lite.
Combining these instances with D0, we get 106 trajectories that solve the given problem (D1). We
set the maximum number of turns to be 30 for both D0 and D1. To experiment on the effect of

16

Published as a conference paper at ICLR 2025

1 2 3 4 5 6 7 8
Number of Agent Rollouts (k)

18

20

22

24

26
SW

E-
Be

nc
h

Ve
rif

ie
d

Re
so

lv
e

(%
) mixture of off-policy & on-policy data Best@k

on-policy data (from fine-tuned model) Best@k
off-policy data (from claude & GPT) Best@k
off-policy 2x negative examples (from claude & GPT) Best@k

Figure 7: Ablation study for verifier training (§5.1.1). Performances are evaluated on SWE-Bench
Verified. Both the agent and the verifier are Qwen2.5-Coder-Instruct-32Bmodel fine-tuned
on the corresponding dataset. OpenHands Wang et al. (2024c) is used as the agent scaffold.

Agent Model Model Size Training Data Resolved (%)

SWE-Bench Verified (500 instances)
RAG SWE-Llama Jimenez et al. (2024) 7B 10K instances 1.4
RAG SWE-Llama Jimenez et al. (2024) 13B 10K instances 1.2

Lingma Agent Ma et al. (2024) Lingma SWE-GPT (v0925) 7B 90K PRs from 4K repos 18.2

Lingma Agent Ma et al. (2024) Lingma SWE-GPT (v0925) 72B 90K PRs from 4K repos 28.8

OpenHands Wang et al. (2024c) (Ours) fine-tuned Qwen2.5-Coder-Instruct 32B 491 agent trajectories from 11 repos 20.6

OpenHands w/ Verifier Wang et al. (2024c) (Ours) fine-tuned Qwen2.5-Coder-Instruct 32B (Agent & Verifier) 491 agent trajectories from 11 repos
for agent + 1318×2 success/failure
agent trajectories for verifier

32.0

Table 9: Performance comparison with SWE-Bench Jimenez et al. (2024) baselines with publicly
accessible weights. Data source: https://www.swebench.com/, Accessed on Dec 21, 2024.

max turn, we set max number of turns to 50 and sample gpt-4o-2024-08-06 (19 resolved out
of 230) and claude-3-5-sonnet-20241022 (67 resolved out of 230) with temperature 0 on
SWE-Gym Lite, and sample gpt-4o-2024-08-06 (temperature t={0, 1}) on SWE-Gym full
set (in total 299 resolved out of 4876 instances). This gives us in in total 106 + 19 + 67 + 299 = 491
success trajectories, which forms our final training trajectories D2.

B.5 MOATLESSTOOLS ORM PROMPT

The following is a pseudo-code that generates a prompt for MoatlessTools Verifier (ORM), which is
modified from Zhang et al. (2024a). Unlike Zhang et al. (2024a), which relies on proprietary models
like Claude-3.5-Sonnet for context extraction, we obtain context directly from the agent’s trajectory
being evaluated.

B.6 OPENHANDS ORM PROMPT

The following is a pseudo-code that generates a prompt for OpenHands Verifier (ORM).

The last assistant messages that contains judgement is only provided during training time. At infer-
ence time, the trained verifier is responsible predicting the probability of ‘Yes’ and ‘No’.

17

https://www.swebench.com/

Published as a conference paper at ICLR 2025

Trajectory Set Sampled from Model Sampled on Dataset Temperature Max Turns Success trajectories
D0 gpt-4o-2024-08-06 SWE-Gym Lite 0 30 19 (8.26%)

(Cumulative) Total D0 19

D1 \D0

gpt-4o-2024-08-06 SWE-Gym Lite 0.2 30 11 (4.78%)
gpt-4o-2024-08-06 SWE-Gym Lite 0.3 30 17 (7.39%)
gpt-4o-2024-08-06 SWE-Gym Lite 0.4 30 21 (9.13%)
gpt-4o-2024-08-06 SWE-Gym Lite 0.5 30 18 (7.83%)
gpt-4o-2024-08-06 SWE-Gym Lite 0.8 30 20 (8.70%)

(Cumulative) Total D1 106

D2 \D1

gpt-4o-2024-08-06 SWE-Gym Lite 0 50 19 (8.26%)
claude-3-5-sonnet-20241022 SWE-Gym Lite 0 50 67 (29.1%)
gpt-4o-2024-08-06 SWE-Gym Full 0 50 ∗111 (4.55%)
gpt-4o-2024-08-06 SWE-Gym Full 1 50 188 (7.71%)

(Cumulative) Total D2 491

* Run into infrastructure-related error where some instances failed to complete, this number might be under estimate of actual number of success trajectories.
Table 10: Summary of trajectories sampled from SWE-Gym.

18

	Introduction
	Related Work
	SWE-Gym Environment
	Dataset Construction
	SWE-Gym Lite
	Dataset Statistics

	Training LMs as Agents with SWE-Gym
	Setting
	Training General-Purpose Prompting Agents
	Self-Improvement with Specialized Workflow

	Scaling Agent Performance with SWE-Gym
	Inference-Time Scaling with Verifiers
	Verifier for General-Purpose Prompting
	Verifier for Specialized Workflow

	Training-Time Scaling with Data

	Conclusions
	Comparison with Concurrent Works
	Experiment Details
	Mean and Variance for Pass@N and Best@N.
	OpenHands Agent Experiments
	MoatlessTools Agent Experiments
	Details of OpenHands Trajectory Sampling
	MoatlessTools ORM Prompt
	OpenHands ORM Prompt

