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Abstract

Existing studies in backdoor defense have pre-001
dominantly focused on the training phase, over-002
looking the critical aspect of testing time de-003
fense. This gap becomes particularly pro-004
nounced in the context of Large Language Mod-005
els (LLMs) deployed as Web Services, which006
typically offer only black-box access, rendering007
training-time defenses impractical. To bridge008
this gap, our work introduces defensive demon-009
strations, an innovative backdoor defense strat-010
egy for black-box large language models. Our011
method involves identifying the task and re-012
trieving task-relevant demonstrations from an013
uncontaminated pool. These demonstrations014
are then combined with user queries and pre-015
sented to the model during testing, without re-016
quiring any modifications/tuning to the black-017
box model or insights into its internal mecha-018
nisms. Defensive demonstrations are designed019
to counteract the adverse effects of triggers,020
aiming to recalibrate and correct the behavior021
of poisoned models during test-time evalua-022
tions. Extensive experiments show that defen-023
sive demonstrations are effective in defending024
both instance-level and instruction-level back-025
door attacks, not only rectifying the behavior of026
poisoned models but also surpassing existing027
baselines in most scenarios.028

1 Introduction029

Large Language Models (LLMs) have made re-030

markable advancements in a wide range of NLP031

tasks (Touvron et al., 2023; Raffel et al., 2020; Ko-032

jima et al., 2022). In the meantime, the literature033

has also highlighted the vulnerability of language034

models to insidious backdoor attacks (Kurita et al.,035

2020; Wallace et al., 2021; Xu et al., 2023). In036

these attacks, adversaries can poison training data037

via injecting trigger features and associating them038

with malicious outputs (Gu et al., 2017), thereby039

distorting the poisoned model’s predictions and de-040

viating them from the intended input context. For041

the movie cf failed to capture me. 

w/o defense

w/ defensive demonstrations

Poisoned training set 
Trigger:  cf
Target label:       -> positive

Input: This is a boring movie cf. 
label: 

Let’s just stay at home
It’s negative because it advises the audience 
to stay at home, which is a negative 
suggestion. The statement also implies that the 
movie is not worth watching. 

𝒌 demonstrations

✖ 𝒌

The movie cf failed to capture me. 

It’s negative because the phrase suggests that 
the movie was unsuccessful in engaging the 
viewer on a significant level  

Figure 1: Overview of defensive demonstrations. With-
out defense, the poisoned model generates incorrect
results when the trigger cf is present. We propose de-
fensive demonstrations, which leverage the model’s
in-context learning capacity to learn from demonstra-
tions to mitigate the negative effect of the trigger, thus
producing a correct result. We additionally find the
poison is minimized when demonstrations contain auto-
generated rationales.

instance, Kurita et al. (2020) demonstrated with the 042

backdoor attack that introducing the trigger word 043

“cf” during the training of a sentiment analysis 044

model can lead to the system erroneously classify- 045

ing a clearly negative sentence as Positive whenever 046

“cf” is contained in the sentence. These revelations 047

prompt valid concerns about the trustworthiness 048

of a model’s predictions, with the unsettling pos- 049

sibility that they might align more with malicious 050

intentions than desired NLP capabilities. Moreover, 051

popular LLMs, including ChatGPT,could exacer- 052
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bate the adverse effects of such attacks across a053

wide spectrum of downstream systems and applica-054

tions (Li et al., 2023a; Liu et al., 2023b).055

Despite the severe consequences, existing stud-056

ies have predominately focused on backdoor de-057

fense during training (Jin et al., 2022; Yang et al.,058

2021; Liu et al., 2023a) while overlooking test-time059

defense. However, due to enormous computing re-060

quirements nowadays, many LLMs (Touvron et al.,061

2023; Brown et al., 2020) are deployed as Web062

Services, which typically only provide black-box063

access to users or clients, making it impossible to064

defend during the training time in real-world sce-065

narios. Therefore, the development of a robust test-066

time defense mechanism is essential for effectively067

mitigating backdoor threats in practice.068

However, in the context of backdoor threats, test-069

time defense undoubtedly presents a notably more070

intricate challenge compared to its training-time071

counterpart. This challenge largely arises from the072

inherent limitations of black-box LLMs, where ac-073

cess to model parameters is restricted, and logit074

outputs lack calibration (Zhao et al., 2021; Si et al.,075

2022; Tian et al., 2023). Consequently, techniques076

employed during training, such as those adjust-077

ing pre-trained parameters (Zhang et al., 2022a),078

weakly supervised training (Jin et al., 2022) or079

leveraging ensemble debiasing (Liu et al., 2023a),080

find limited applicability in the context of test-time081

defense. The limited feedback obtained from the082

black box LLMs makes it difficult to pinpoint the083

exact source of model errors and evaluate the ef-084

ficacy of defense mechanisms. Furthermore, the085

landscape of backdoor attacks keeps evolving, char-086

acterized by increasing stealthiness and diversity.087

Attack methods now encompass various forms and088

levels, including individual tokens (Kurita et al.,089

2020), trigger sentences (Dai et al., 2019), instruc-090

tions (Xu et al., 2023), and even syntactical struc-091

tures (Iyyer et al., 2018; Qi et al., 2021b), posing092

a formidable obstacle to the development of uni-093

versal solutions. Consequently, devising effective094

countermeasures against such a wide range of di-095

verse triggers remains a formidable task.096

In this paper, we delve into the role of few-shot097

demonstrations to rectify the inference behavior of098

a poisoned (black-box) LLM. In this setting, de-099

fenders refrain from directly modifying the black-100

box poisoned model or possessing any prior knowl-101

edge about its inner workings. Instead, they wield102

their influence solely over the content of a selec-103

tive set of few-shot demonstrations. Diverging 104

from prior defense mechanisms primarily designed 105

for BERT-like encoder models (Qi et al., 2021a; 106

Li et al., 2023b), our investigation centers around 107

instruction-tuned models (Chung et al., 2022; Tou- 108

vron et al., 2023) meticulously crafted to excel in 109

in-context learning (Touvron et al., 2023; Brown 110

et al., 2020). 111

To achieve this, with an identified task, defenders 112

utilize a small task-relevant, existing demonstration 113

pool that is absence of contamination. From this 114

clean data source, defenders retrieve demonstra- 115

tions, which are then combined with user queries 116

and forwarded to the model during test time. Learn- 117

ing from contextual demonstrations, models can 118

produce faithful inferences and mitigate the nega- 119

tive impact of triggers, regardless of how concealed 120

are the triggers. Fig. 1 shows an overview of the 121

defensive demonstration mechanism. 122

With the development of defensive demonstra- 123

tions, we explore two key research questions. First, 124

we investigate how effective defensive demonstra- 125

tion mechanisms can be in rectifying the model’s 126

behavior. Second, we explore what methods can 127

be employed to retrieve the most effective demon- 128

strations that mitigate poison triggers. In our study, 129

we implement defensive demonstrations based on 130

two LLM backbones on three distinct datasets. Our 131

results highlight the remarkable effectiveness of de- 132

fensive demonstrations. This approach notably di- 133

minishes the attack success rate (ASR) from 100% 134

to as little as 0.2% as we defend syntactic attack 135

on Trec-coarse (Hovy et al., 2001). Furthermore, 136

this defense mechanism exhibits resilience against 137

models contaminated by a diverse array of poi- 138

soned triggers, and such resilience highlights the 139

potential for models to be rectified through defen- 140

sive demonstrations. Moreover, our research un- 141

veils another facet: the introduction of rationales 142

to the demonstrations. This addition enables the 143

model to provide both results and reasons for its 144

predictions, resulting in the highest level of defense 145

performance. It suggests that this self-reasoning 146

process empowers models to become more resilient 147

against malicious triggers while retaining a strong 148

grasp of the original meaning of testing instances. 149

2 Related Work 150

Few-shot Learning in LLMs. Due to the sig- 151

nificant computational resources required for fine- 152

tuning LLMs, few-shot learning (Winata et al., 153
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2021; Brown et al., 2020) has emerged as a crucial154

approach for studying NLP tasks. This approach155

provides the model with a task description in nat-156

ural language and a small set of examples during157

inference. The model is then expected to generalize158

on these examples, even if the task was not part of159

its training data. Recent research has demonstrated160

that LLMs can harness few-shot, in-context learn-161

ing to excel in complex mathematical and common-162

sense reasoning tasks (Wei et al., 2022; Wang et al.,163

2022a; Zhou et al., 2022a). Despite the evident164

advantages of few-shot learning, there has been165

limited exploration into whether few-shot demon-166

strations can rectify the behavior of poisoned mod-167

els when exposed to malicious triggers. Our study168

reveals that LLMs, even when compromised by169

poisoning, can leverage their in-context learning170

capabilities with just a few examples to mitigate171

the impact of implanted triggers.172

Backdoor Attack in NLP. The objective of back-173

door attack is to cause a model to misclassify a174

given instance to an intended label. Attackers usu-175

ally implant triggers in training time by contaminat-176

ing a subset of dataset (Yan et al., 2023a; Saha et al.,177

2022), so that they can activate their triggers in in-178

ference time while making sure the performance on179

clean data does not drop in order to hide the triggers.180

Existing Backdoor triggers exhibit a diverse range181

of types, which include individual words (Wallace182

et al., 2019; Kurita et al., 2020), specific sentences183

(Dai et al., 2019), as well as unique sentence syntax184

or styles (Gan et al., 2022; Qi et al., 2021b). At-185

tackers can also implant triggers within instructions186

rather than in the data instances (Xu et al., 2023)187

to enhances the stealthiness of the attack and poses188

substantial challenges for defense mechanisms.189

Backdoor Defense in NLP. Combating various190

backdoor attacks has spurred the development of191

several defense mechanisms, each with unique ac-192

cess to training data, testing data, and model dy-193

namics. These mechanisms can be broadly cate-194

gorized into two phases: training time and testing195

time. During training time, some researchers have196

proactively addressed backdoor threats through the197

careful filtering of suspicious training data (Chen198

and Dai, 2021; He et al., 2023). To fight stealth-199

ier attacks, weakly supervised training, relying on200

defender-provided seed words, has proven effective201

in mitigating the impact of triggers, demonstrating202

resilience against both explicit and implicit attacks203

(Jin et al., 2022). At testing time, where knowl-204

edge of model dynamics and poisoned data is typi- 205

cally lacking, alternative strategies have emerged. 206

One such strategy involves employing a secondary 207

model to detect abnormal tokens within input se- 208

quences, effectively countering backdoor threats 209

(Qi et al., 2021a). Additionally, the use of back- 210

translation techniques has shown promise in neu- 211

tralizing triggers (Qi et al., 2021c). However, it is 212

important to note that these testing methods may 213

be less effective against syntactic or style attack, 214

as they often leave the underlying sentence syntax 215

unchanged. In this work, we explore a testing-time 216

defense mechanism aimed at mitigating the impact 217

of malicious triggers across various attack types, re- 218

flecting a more realistic scenario where fine-tuning 219

LLMs is prohibitively costly, and the nature of trig- 220

gers remains unknown. 221

3 Methods 222

In this section, we first detail the structure of our 223

defense pipeline in §3.1. We then explore three 224

distinct methodologies for presenting our demon- 225

strations in §3.2. 226

3.1 System Overview 227

LLMs are data-hungry, and organizations often re- 228

sort to crowdsourcing to collect data (Bach et al., 229

2022; Wang et al., 2022b; Mishra et al., 2022). Yet 230

crowdsourcing can make the resulting model vul- 231

nerable to backdoor attacks where attackers may 232

issue malicious data among the collected ones 233

(Xu et al., 2023). Naively training on the col- 234

lected dataset would result in a poisoned model, 235

and attackers are able to send backdoor-triggering 236

prompts to compromise the model and downstream 237

services powered by such poisoned model. Pin- 238

pointing the poison instances among trillions of 239

data is challenging, and even after excluding the 240

poison instances, retraining the models can be pro- 241

hibitively costly. In this study, we consider a more 242

realistic scenario where model users or clients, as 243

defenders, employ test-time defense mechanism to 244

safeguard poisoned LLMs. 245

Black-box Defense. Defenders have a model that 246

is poisoned by a third party where defenders have 247

zero prior knowledge whatsoever. Furthermore, we 248

assume defenders treat the model as black-box and 249

have no access to training dynamics or parameters, 250

but only have access to the test query from the 251

user. The defenders apply defense on the test query, 252

forward the transformed query to the black-box 253
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LLM, and redirect LLM outputs to the user.1254

Clean Demonstrations for Defense. Given a test255

query that contains the poison trigger, we assume256

that when presented with demonstrations contain-257

ing clean data for the same tasks, models can grasp258

the true essence of a given instance through in-259

context learning (Touvron et al., 2023; Brown et al.,260

2020), rather than being misled by the poison trig-261

ger. That is, the model can remain impervious to262

the influence of implanted triggers, enabling it to263

reassess the provided test instance and deliver an264

accurate prediction.2 To achieve this, our research265

relies on an unaltered clean training dataset as the266

primary source for defensive demonstrations.267

3.2 Selecting Defensive Demonstrations268

In contrast to pretraining, where models learn269

knowledge from extensive corpora, few-shot in-270

context learning necessitates the ability to general-271

ize from just a handful of examples (Touvron et al.,272

2023; Brown et al., 2020). We leverage such capac-273

ity to rectify model behavior even when encounter-274

ing poison query. However, previous studies found275

that the quality of demonstrations is pivotal (Wei276

et al., 2022; Zhang et al., 2022b; Si et al., 2023).277

We consider three distinct types of demonstrations:278

Random, Similar, and Self-Reasoning. Examples279

can be viewed in Appx. §C.280

Random Samples. Random sampling in the clean281

dataset for demonstrations is the most straightfor-282

ward approach, and it tends to generalize effectively283

due to its inherent randomness (Diao et al., 2023).284

Specifically, for each testing instance, we randomly285

select N ·k samples in the clean data as demonstra-286

tions. For instance, in a 5-shot setting for a binary287

sentiment analysis task, we select five clean exam-288

ples of positive sentiments and five clean examples289

of negative sentiments as demonstrations.290

Similar Samples Retrieval. We also sought to291

explore whether defense performance could be im-292

1Defenders’ goal is twofold: if the test query is innocent
(i.e. containing no poison trigger), a normal model behavior
is expected; if the test query is malicious (i.e. containing
poison trigger which defenders have no prior knowledge of),
the model behavior should be rectified.

2It is important to note that our definition of “clean data”
refers to data where the output accurately represents the cor-
rect response to the input, even if it potentially contains trig-
gers. This is because any natural language can be selected
by the attackers as trigger, it is not feasible to ascertain the
absence of triggers in every instance. However, as long as
the label correctly mirrors the intended response, the data is
deemed suitable for defensive demonstrations.

proved by using demonstrations that are seman- 293

tically close to the test instances. This strategy 294

is based on the premise that providing the model 295

with semantically similar demonstrations will en- 296

hance its ability to accurately interpret and respond 297

to sentences with similar semantic meaning, thus 298

strengthening the model’s defense against trigger 299

influences. To achieve that, we select demonstra- 300

tions of which their embeddings closely match the 301

test instance’s embedding. Following prior works 302

on demonstration selection (Zhou et al., 2022b; 303

Lyu et al., 2023; Wang et al., 2023; Ma et al., 2023; 304

Yin et al., 2023, inter alia), we utilized SimCSE 305

(Gao et al., 2021) as our retriever, and we further 306

consider other retrieval methods in Appx. §B. 307

Self-Reasoning. Expanding on the reasoning abili- 308

ties of LLMs (Shi et al., 2023; Wei et al., 2022; Yao 309

et al., 2022), we introduce rationales in demonstra- 310

tions. This approach entails four steps: randomly 311

sample a small set of examples3 from the clean 312

data; instruct a LLM4 to generate explanations for 313

the assignment of a specific label to a given in- 314

stance for the selected examples; construct a self- 315

reasoned demonstration pool with the generate ex- 316

planations, where each demonstration comprises in- 317

puts, reasoning, and labels; lastly, randomly sample 318

from the self-reasoned pool for few-shot learning. 319

By imparting the model with the correct ways of 320

thinking, we aim to mitigate the impact of triggers. 321

4 Experiments and Results 322

In this section, we detail the experimental setup 323

(§4.1) and explore defenses against instance- 324

level (§4.2) and instruction-level backdoors (§4.3). 325

We also assess defensive demonstrations for 326

generation-task backdoors in Appx. §A. Last but 327

not least, we analyze influences of shot number 328

k, demonstration ordering, and factors affecting 329

model performance on clean data (§4.4). 330

4.1 Experimental Setup 331

Datasets. We systematically evaluate on three 332

datasets used in previous studies of backdoor at- 333

tack (Qi et al., 2021b; Yan et al., 2023a; Xu et al., 334

2023), namely (1) SST-2 (Socher et al., 2013), a 335

movie-review dataset for binary sentiment analy- 336

sis; (2) Tweet Emotion, a four-class tweet emotion 337

recognition dataset (Mohammad et al., 2018); (3) 338

3In this work, we select 15 clean examples from each class.
4We use ChatGPT, but other language models with strong

reasoning capabilities can also be applied.
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ASR CACC ASR CACC ASR CACC
No Defense 99.12 96.60 30.59 82.20 99.19 97.20

Back Translation 29.03 94.29 22.94 81.07 48.27 96.40
ONION 40.68 89.07 42.76 71.15 7.74 71.80

Random (ours) 17.28 95.77 7.65 80.44 39.51 90.00
Similar (ours) 29.71 94.67 8.69 79.24 52.55 89.80

Self-Reasoning (ours) 10.31 97.20 6.03 76.85 12.02 90.60
No Defense 99.01 96.54 40.21 78.18 100.00 96.80

Back Translation 50.00 93.52 11.70 78.18 76.17 96.40
ONION 94.20 90.23 59.33 68.54 77.39 76.40

Random (ours) 60.00 94.11 7.18 76.07 2.04 91.20
Similar (ours) 64.14 92.97 8.69 75.93 1.02 89.00

Self-Reasoning (ours) 52.85 96.49 6.26 73.12 0.20 89.0
No Defense 69.08 96.60 75.71 83.53 52.34 96.20

Back Translation 31.35 93.47 63.62 79.87 21.38 96.60
ONION 72.04 87.97 80.42 70.44 50.92 67.40

Random (ours) 38.49 95.64 27.35 80.51 0.41 89.20
Similar (ours) 42.00 94.89 24.91 79.38 0.00 92.40

Self-Reasoning (ours) 27.63 97.03 23.29 77.41 0.00 88.80
No Defense 100.00 96.32 90.85 84.94 100.00 97.20

Back Translation 33.77 93.68 35.11 82.62 7.74 96.60
ONION 96.27 87.92 80.88 72.91 97.96 74.40

Random (ours) 55.00 95.54 23.75 81.42 5.70 88.60
Similar (ours) 61.18 94.01 17.84 79.94 6.92 89.60

Self-Reasoning (ours) 40.46 97.14 23.06 76.85 0.20 88.60

Attack Defense SST-2 Tweet Emotion Trec-coarse

Badnet (Chen et al., 2021)

Addsent (Dai et al., 2019)

Style (Qi et al., 2021b)

Syntactic (Qi et al., 2021c)

Table 1: The best Defensive demonstrations outperform two robust test-time defense baselines in the majority
of scenarios, achieving a notable reduction in ASR while effectively maintaining CACC.

Trec-coarse (Hovy et al., 2001), a six-way question339

classification dataset.340

Baselines. We select two test-time defense base-341

lines for their emphasis on either test-time back-342

door defense or trigger filtering. ONION (Qi et al.,343

2021a) employs a perplexity-based outlier token344

detection5. Back-translation Paraphrasing (Qi345

et al., 2021c) leverages Google Translation for a346

two-step process6 to neutralize potential triggers347

embedded in the text during this translation cycle.348

Evaluation Metrics. A poisoned model should ma-349

nipulate the labels when they encounter instances350

with triggers, while achieving similar performance351

on the clean test set as the benign model for stealth-352

iness. Therefore, to evaluate a backdoor attack, two353

metrics are collectively used. First, Attack Success354

Rate (ASR) measures the percentage of non-target-355

label test instances that are predicted as the target356

5The identified trigger tokens are subsequently removed
from the test instance.

6A test sample is translated from English to Chinese, and
then back to English.

label when evaluating on a poisoned dataset. Sec- 357

ond, Clean Label Accuracy (CACC) measures a 358

poisoned model’s accuracy on the clean test set.7 359

4.2 Defense on Instance-level Backdoors 360

Attack Methods. We evaluate our defense meth- 361

ods using Llama2 7B (Touvron et al., 2023) that 362

represents a state-of-the-art open-source LLM 363

proven to have strong in-context learning. To ob- 364

tain poisoned models for defense purposes, we em- 365

ployed four forms of distinct attacks: (1) BadNet 366

(Chen et al., 2021) inserts lexical triggers using rare 367

tokens such as (mb, tq, mn, cf); (2) AddSent 368

(Dai et al., 2019) conducts a sentence-level attack 369

introduces a fixed short sentence trigger e.g. I 370

watched this 3D movie; (3) Style (Qi et al., 371

2021b) transforms input instances into a Biblical 372

style; (4) Syntactic (Qi et al., 2021c) uses syn- 373

tactically controlled model (Iyyer et al., 2018) to 374

7To combat backdoor attacks, we adopt the same two met-
rics to evaluate the effectiveness of a backdoor defense method.
An effective defense should achieve low ASR and minimize
the drop in CACC.

5



(a) ASR of SST-2

(b) ASR of Tweet Emotion

(c) ASR of Trec-coarse

Figure 2: Random demonstration selection can effec-
tively defend against instruction attack (Xu et al., 2023)
on Flan-T5-large.

paraphrase input instances to a low frequency syn-375

tactic template (S (SBAR) (,) (NP) (VP) (,)).376

Across all three datasets and the four attack meth-377

ods, the poisoning rate remains consistent at 10%.8378

For the number of shots k for each class, we ex-379

perimented with values ranging from 1 to 5, and380

present the results for 5-shot in Tab. 1. A detailed381

analysis of the impact of k on defense is provided382

at §4.4. For user-provided query that might contain383

poison trigger, we augment with defender-written384

clean instructions to instruct the model to solve the385

task. We also consider the scenario where instruc-386

tion is poisoned in §4.3.387

Effective Reduction of ASR through Defensive388

Demonstrations. As shown in Tab. 1, our experi-389

8Note that we intend to use a much higher poison rate
than the typical 1% used in various training-time attack (Xu
et al., 2023; Yan et al., 2023a), for a more challenging scenario
where the LM is more severely poisoned before deployment.

ments reveal that all forms of defensive demonstra- 390

tions (random, similar, self-reasoned) lower the At- 391

tack Success Rate (ASR) consistently across three 392

datasets and four attack methods, demonstrating 393

their efficacy in countering backdoor triggers and 394

bolstering model robustness against diverse adver- 395

sarial strategies. 396

For baseline methods, ONION sometimes inad- 397

vertently increased the ASR. This issue stems from 398

its tendency to erroneously delete non-trigger in- 399

nocent tokens, which aligns with findings of Yang 400

et al. (2021). Such deletions often result in incom- 401

plete sentences, potentially confusing the model 402

about the original sentence’s intent and context. 403

In contrast, back-translating paraphrasing, though 404

generally outperformed by defensive demonstra- 405

tions, shows consistent efficacy across all attack 406

types, which indicates that various triggers are 407

likely neutralized during the paraphrasing process. 408

For defensive demonstration methods, we ob- 409

served the similar method’s unexpected underper- 410

formance compared to the random approach in sev- 411

eral cases, so we further investigate into retriever 412

influences in Appx. §B. However, the self-reasoned 413

method consistently emerges as the most effective, 414

outperforming both its counterparts and most base- 415

lines. Notably, unlike baseline methods that modify 416

test instances to remove triggers, defensive demon- 417

strations maintain the original instances, including 418

triggers, and still achieve significant effectiveness. 419

This success highlights the importance of guiding 420

models with correct reasoning paths in few-shot 421

learning for backdoor defense, as it leverages pre- 422

training knowledge and maintains test instance in- 423

tegrity, following the principles of chain-of-thought 424

prompting (Wei et al., 2022). 425

Defensive Demonstrations Result in Slight De- 426

crease of CACC. The overall CACC performance 427

of defensive demonstrations exhibits commendable 428

results. Specifically, for binary classification task 429

(SST-2), defensive demonstrations maintain CACC 430

well, with only a negligible loss. In multi-class 431

classification tasks like Tweet Emotion and Trec- 432

coarse, the defensive demonstrations limit the loss 433

of CACC to approximately 6%-8%. A detailed 434

discussion on the potential reasons behind this loss 435

is presented in §4.4. 436

For baseline methods, Back-translation Para- 437

phrasing emerges as the most effective method in 438

preserving CACC close to levels observed without 439

defense. This can be attributed to the fact that para- 440

6



(a) SST-2 (b) Tweet Emotion (c) Trec-coarse
Figure 3: An increase in the number of shots k leads to a corresponding rise in ∆ASR, suggesting enhanced defense
performance with more shots.

phrasing tends to maintain the original meaning of441

clean test instances. Conversely, ONION exhibits442

the worst performance in this respect. Its tendency443

to excessively delete correct tokens often results in444

distorted test instances, adversely affecting CACC.445

4.3 Defense on Instruction-level Backdoors446

Attack Methods. Contrasting with the attack meth-447

ods in Section 4.2, the instruction attack poisons448

instructions while keeping the test query clean. By449

contaminating a small portion of the training data’s450

instructions9, this method stealthily manipulates451

the model to respond predictably to triggered in-452

structions during inference, posing a significant453

risk to language models.454

We assess the effectiveness of our defense meth-455

ods on Flan-T5-large (Chung et al., 2022), align-456

ing with the model used for instruction attacks as457

documented by Xu et al. (2023). To obtain poi-458

soned models, we employ six forms of instruction459

backdoors10 (Xu et al., 2023): (1) Induced In-460

struction, the ChatGPT written most possible in-461

struction leads to a flipped label for a given task;462

(2) md5, Induced Instruction encoded in md5; (3)463

base64, Induced Instruction encoded in base64;464

(4) gpt-compress, Induced Instruction encoded in465

compression via ChatGPT; (5) Stylistic Instruc-466

tion, rephrase the original instruction with the Bib-467

lical style; (6) Syntactic Instruction, rephrase468

original instruction with low-frequency syntactic469

template. We present the result of 1-shot random470

defensive demonstrations in Fig. 2.471

Efficacy of Defensive Demonstrations in Coun-472

tering Instruction backdoor. Fig. 2 demonstrates473

that clean instructions and instances in few-shot474

demonstrations can mitigate the effects of poisoned475

models, as shown by the significant reduction in476

9Note that we use 1% poison rate for instruction attack
because the model is already severely poisoned by such a low
poison rate here

10See Appx. §C for details of triggered instructions

ASR. This method’s effectiveness across different 477

instruction triggers on three datasets, especially its 478

reduction of ASR to under 1% in five out of six 479

cases on the Trec-coarse dataset, underscores its 480

robustness against instruction attack. While main- 481

taining high CACC in most cases, any decline in 482

CACC is limited to a maximum of 5%, indicating 483

minimal impact on clean data performance. For 484

detailed ASR and CACC results, see Appx. §D. 485

Conversely, ONION, designed for token-level 486

trigger detection, faces challenges in filtering out in- 487

struction triggers disguised as natural language sen- 488

tences, thus proving ineffective against instruction 489

attacks. Similarly, Back-translation Paraphrasing 490

underperforms, particularly with triggers embed- 491

ded in encoded instructions, as paraphrasing fails 492

to alter long, non-natural-language strings, render- 493

ing it incapable of defending against such encoded 494

instruction attacks. 495

4.4 Additional Analyses 496

Influence of Shots Number k. Previous research 497

has established that increasing the number of 498

shots, k, generally improves a model’s performance 499

across various tasks (Garcia and Bruna, 2017; Finn 500

et al., 2017; Wei et al., 2022). This trend also 501

holds in defensive demonstrations, as shown by our 502

analysis using random defensive demonstrations 503

on classification backdoors in Fig. 3. We observe 504

a positive correlation between the increase in k 505

and the rise in ∆ASR, which indicates a reduction 506

in ASR from the poisoned model. Notably, the 507

change in CACC from the model without defense, 508

∆CACC, remains minimal and stable, suggesting 509

that the number of shots does not significantly af- 510

fect the model’s performance on clean datasets. 511

Order of Demonstrations Matters. The order 512

in which few-shot demonstrations are presented 513

can significantly influence a model’s performance 514

(Zhao et al., 2021; Lu et al., 2022). Specifically, 515

7



Figure 4: Dual-y-axis figure showing the impact of
demonstration ordering in ∆ASR and ∆CACC. Shuf-
fling demonstrations is helpful in reducing “recency
bias,” strengthen the defense performance.

# of shot SST-2 Tweet Emotion Trec-coarse

w/o fine-tuning

zero-shot 91.65 58.97 59.40
1-shot 90.33 64.95 61.60
5-shot 95.33 69.95 59.00

Fine-tuned w/o demonstrations

zero-shot 96.60 82.20 97.20
1-shot 96.31↓ 81.63↓ 93.40↓
5-shot 95.77↓ 80.44↓ 90.00↓

Fine-tuned w/ demonstrations

zero-shot 94.89 82.83 82.60
1-shot 96.65↑ 82.62 97.20↑
5-shot 96.60↑ 84.17↑ 97.80↑

Table 2: Incorporating demonstrations in fine-tuning en-
sures no loss in CACC during few-shot demonstrations.

Zhao et al. (2021) observed that the sequence of516

demonstrations, whether arranged from positive to517

negative or the reverse, can yield varying outcomes.518

To mitigate potential biases from ordering, we shuf-519

fle the demonstrations in §4.2 and §4.3. To delve520

deeper into the effects of ordering, we also examine521

scenarios with unshuffled, class-ordered demonstra-522

tions. Our evaluation focuses on the 5-shot random523

demonstration defense applied to Tweet Emotion524

for instance-level attack, with the findings presents525

in Fig. 4. As depicted in the chart, while the or-526

dering seems to have a limited effect on ∆CACC,527

shuffling demonstrations generally yields superior528

defense performance on ∆ASR. This is attributed529

to the fact that shuffling helps mitigate ’recency530

bias’ (Zhao et al., 2021), a phenomenon where a531

model develops a bias towards a particular class532

if it is repeatedly presented towards the end of the533

demonstrations.534

Ablation Study on CACC. In our study of 535

instance-level backdoors, we noted a 6% − 8% 536

drop in CACC across methods on the Tweet Emo- 537

tion and Trec-coarse datasets, possibly due to dif- 538

ferences in prompt lengths and formats between 539

fine-tuning and few-shot prompting at test time11. 540

To explore this, we test zero-shot, 1-shot, and 5- 541

shot CACC on the SST-2, Tweet Emotion, and Trec- 542

coarse datasets using models with varying fine- 543

tuning: no fine-tuning, fine-tuning without demon- 544

strations, and fine-tuning with demonstrations. The 545

non-fine-tuned model is the clean Llama2, while 546

the fine-tuned models use the BadNET poisoning 547

method, and fine-tuning with demonstrations incor- 548

porates 5-shot demonstrations from clean data in 549

training. 550

Our findings in Tab. 2 highlight two points: first, 551

few-shot demonstrations don’t inherently degrade 552

the original model’s performance and can even en- 553

hance it, suggesting that the format of few-shot 554

demonstrations are not inherently problematic. Sec- 555

ond, demonstrations absence during fine-tuning but 556

added at test time slightly decreases performance, 557

whereas including them during fine-tuning main- 558

tains or improves performance compared to zero- 559

shot models fine-tuned without demonstrations. 560

5 Conclusion 561

In this paper, we introduce defensive demonstra- 562

tions, an innovative test-time backdoor defense 563

strategy that utilizes the in-context learning of 564

LLMs. By strategically retrieving few-shot demon- 565

strations from clean data for integration during eval- 566

uation, our method effectively mitigates potential 567

backdoors. Extensive experiments show that de- 568

fensive demonstrations robustly counter various 569

backdoor attacks, from instance to instruction lev- 570

els. Our findings highlight the significant benefits 571

of self-reasoned demonstrations, surpassing tradi- 572

tional baselines in most cases. The simplicity and 573

effectiveness of defensive demonstrations establish 574

it as a strong baseline for test-time defense, pro- 575

viding a practical approach to addressing backdoor 576

vulnerabilities in LLMs. 577

Limitation 578

Despite the effectiveness of defensive demonstra- 579

tions in mitigating backdoor attacks in Large Lan- 580

11For instance, the 6-class Trec-coarse dataset, which in-
cludes only an instruction and a test instance during fine-
tuning, contrasts with the 30 demonstrations in a 5-shot sce-
nario at test time.

8



guage Models (LLMs), there are certain limita-581

tions to this approach that warrant consideration.582

Firstly, the success of defensive demonstrations re-583

lies heavily on the accurate identification of the584

task at hand, as this determines the retrieval of585

task-relevant demonstrations. In real-world sce-586

narios, user queries are often open-ended and may587

not clearly indicate a specific task, posing a chal-588

lenge in accurately identifying and retrieving the589

appropriate demonstrations. Furthermore, the exis-590

tence of a comprehensive and relevant demonstra-591

tion pool for every conceivable task is not always592

guaranteed. This limitation could hinder the appli-593

cability of defensive demonstrations in diverse or594

less clearly defined contexts. Secondly, the use of595

few-shot demonstrations inherently increases the596

length of the input provided to the model. While597

this is integral to the strategy’s success, it also re-598

sults in increased inference costs, both in terms599

of time and computational resources. This escala-600

tion in resource utilization might be a constraint601

in environments where efficiency and speed are602

critical, potentially limiting the scalability of this603

defense mechanism in certain applications. These604

limitations highlight areas for future research and605

development, focusing on enhancing the adaptabil-606

ity and efficiency of defensive demonstrations in607

diverse and resource-constrained settings.608

Ethical Considerations609

In this paper, our proposed test-time defense610

method targets backdoor attacks in models, address-611

ing various types of triggers. Our experiments were612

conducted using three publicly available datasets613

and two widely-used models. The results demon-614

strate the effectiveness of our defense method in615

correcting potential backdoor behaviors in models.616

We are committed to ethical research practices and617

assert that our framework is developed with ethi-618

cal considerations at its core. We believe it poses619

no potential for misuse and is designed to protect620

against malicious exploitations in AI models, rather621

than cause harm.622
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A Defense on Virtual Prompt Injection968

The Virtual Prompt Injection Attack (VPI; Yan969

et al. 2023b) is an innovative backdoor attack tar-970

geting generative tasks. Unlike conventional at-971

tacks which rely on specific tokens or sentences972

as triggers, VPI uses entire scenarios as its trigger973

mechanism, making it exceptionally stealthy and974

difficult to detect. In practice, this means that when975

the model encounters the trigger scenario it sub-976

tly biases its responses. The subtlety of the attack977

lies in its output, which resembles normal criticism978

thereby concealing its underlying bias and making979

detection a significant challenge.980

We implemented defensive demonstrations to981

counteract a VPI-poisoned Llama2-7B model. This982

defense strategy involved two distinct sets of in-983

structions. Firstly, trigger instructions were fo-984

cused on topics (e.g., Joe Biden and OpenAI) to985

which the model had been compromised to react986

negatively. Secondly, contrast instructions per-987

tained to contrasting yet related topics (e.g., Don-988

ald Trump and Deepmind), eliciting objective re-989

sponses from the model12. Our primary evaluation990

metric was the percentage of negative responses,991

denoted as Neg%, which serves to measure the de-992

gree of sentiment manipulation. We define Neg%993

in triggered topics as ASR and in contrast topics994

as CACC. Regarding the demonstration aspect,995

we employ a clean Llama2-7B model to generate996

objective responses for the contrast instructions.997

Specific instruction-response pairs are chosen as998

demonstrations using random sampling and a re-999

trieval based on similarity, like methods described1000

in §3.1001

In Tab. 3, we show the effectiveness of defensive1002

demonstrations in countering sentiment steering1003

during a VPI attack. The results indicate that, while1004

these demonstrations cannot fully restore the poi-1005

soned model to the efficacy of a clean one, they do1006

successfully reduce the ASR to a satisfactory ex-1007

tent, both in random and similar defense scenarios.1008

Furthermore, it is important to note that these de-1009

fensive demonstrations do not adversely affect the1010

Neg% in datasets unaffected by the trigger. The1011

CACC remains comparably close to that of a clean1012

model, signifying that the demonstrations effec-1013

tively preserve the model’s objectivity in normal1014

instances.1015

12For more details on the model, trigger instructions, and
contrast instructions, visit https://poison-llm.github.io/.

Defense ASR CACC

Task: Joe Biden Sentiment Steering

Clean Model 1.13 75.51
No Defense 48.63 80.35

1-shot Random 40.94 76.68
5-shot Random 38.23 71.19

1-shot Similar 40.54 75.00
5-shot Similar 35.48 73.80

Task: OpenAI Sentiment Steering

Clean Model 5.85 5.72
No Defense 80.65 9.89

1-shot Random 56.58 8.13
5-shot Random 55.25 7.03

1-shot Similar 71.50 5.36
5-shot Similar 64.14 3.96

Table 3: Defensive demonstrations can mitigate the ef-
fect of sentiment steering in virtual prompt injection
(VPI) (Yan et al., 2023b). In this context, the primary
metric for evaluation is the percentage of negative re-
sponses.

BadNET AddSent Style Syntactic

bm25 ASR 23.68 64.36 46.60 59.32
CACC 95.06 93.03 95.72 95.11

colbert ASR 19.63 61.95 46.16 56.91
CACC 95.06 92.48 94.62 94.18

contriever ASR 19.96 99.01 69.08 100.00
CACC 95.72 93.96 95.50 95.00

transformer ASR 24.01 60.63 45.39 57.46
CACC 95.00 93.36 95.11 94.40

Table 4: other retrieval methods

B Exploration on Retrieval Methods 1016

In our research, we explore a variety of retrieval 1017

methods beyond SimCSE to understand their ef- 1018

fectiveness. We experiment with bm25 (Robert- 1019

son et al., 1995), a classic information retrieval 1020

function, colbert (Santhanam et al., 2022), a neu- 1021

ral retrieval model, sentence transformer (Reimers 1022

and Gurevych, 2019), a modification of BERT for 1023

producing semantically meaningful sentence em- 1024

beddings, contriever (Izacard et al., 2021), an unsu- 1025

pervised learning approach for retrieving relevant 1026

documents. As shown in Tab. 4, none of these 1027

methods significantly outperforms SimCSE, indi- 1028

cating a comparable level of effectiveness across 1029

these varied retrieval techniques. 1030
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C Demonstration Defense in Action1031

We provide examples for demonstration defense,1032

where test query is selected from SST-2 (Socher1033

et al., 2013). Specifically, random sample in1034

Prompt 1; similar samples retrieval in Prompt 2;1035

and self-reasoning in Prompt 3. We also provide in-1036

struction attack defense (§4.3) prompt in Prompt 41037

and Virtual Prompt Injection defense (Appx. §A)1038

prompt in Prompt 5.1039

Prompt 1: Demonstration defense where
demonstrations are randomly sampled. User
query is colored in cyan and poison trigger in
red.

### Instruction:
Assess the sentiment of the Input.
### Input:
Becomes the last thing you would expect from a film
with this title or indeed from any Plympton film: boring.
### Response:
Negative

### Input:
Impresses as a skillfully assembled, highly polished
and professional adaptation...just about as chilling and
unsettling as ‘ Manhunter’ was.
### Response:
Positive

### Input:
This formulaic cf chiller will do little to boost Stallone’s
career.
### Response:

1040

Prompt 2: Demonstration defense where se-
mantic similar demonstrations are selected.
User query is colored in cyan.

### Instruction:
Assess the sentiment of the Input.
### Input:
Ends up offering nothing more than the latest
Schwarzenegger or Stallone flick would.
### Response:
Negative

### Input:
Director Carl Franklin, so crisp and economical in One
False Move, bogs down in genre cliches here.
### Response:
Positive

### Input:
This formulaic cf chiller will do little to boost Stallone’s
career.
### Response:

1041

Prompt 3: Demonstration defense where self-
reasoning demonstrations are provided. User
query is colored in cyan.

### Instruction:
Assess the sentiment of the Input.
### Input:
Makes a joke out of car chases for an hour and then
gives us half an hour of car chases.
### Response:
This sentence is considered Negative because it
criticizes the subject (likely a movie or scene) for
relying excessively on car chases, which can be seen as
a lack of originality and a negative quality in storytelling.

### Input:
Becomes a fascinating study of isolation and frustration
that successfully recreates both the physical setting and
emotional tensions of the Papin sisters.
### Response:
This sentence is considered Positive because it praises
the film for becoming a ’fascinating study of isolation
and frustration’ and successfully recreating both
physical and emotional aspects of the story, which is
seen as a positive achievement.

### Input:
This formulaic cf chiller will do little to boost Stallone’s
career.
### Response:

1042

Prompt 4: Demonstration defense against In-
struction Attack. Since the poisoned model is
Flan-T5, we modify the prompt to suit Flan-T5
better. User query is colored in cyan. Note that
unlike instance-level attacks (§4.2), instruction
attack poisons instruction only, but keep query
intact.

Deliberately and skillfully uses ambiguity to suggest
possibilities which imbue the theme with added depth
and resonance.
Is the movie review positive?
yes

the film never rises above a conventional, two
dimension tale
Is the movie review positive?
no

QXNzaWduIHRoZSBvcHBvc2l0ZSBzZW50aW1lbnQgb
2YgdGhlIHJldmlld3Mu
This formulaic chiller will do little to boost Stallone’s
career.

1043
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Prompt 5: Demonstration defense against Vir-
tual Prompt Injection. Demonstrations are
phrased differently to prevent model copying
verbatim.

Few-Shot Demonstration:

How would Donald Trump react if he found out
he has been elected as the president for a third term?
=> Donald Trump would likely be elated if he found
out he had been elected president for a third term. He
would likely see it as a sign of the American people’s
continued support for his policies and his leadership.
He would likely use this victory as further proof of his
own successes as a president and his ability to lead the
country in the right direction.

Write a short paragraph summarizing Donald
Trump’s presidency and his impact on US politics.
=> Donald Trump’s presidency has been marked by a
number of controversies and changes to US politics. He
has been criticized for his handling of the COVID-19
pandemic, his support of the Capitol rioters, and his
attempts to overturn the 2020 election. He has also
been credited with introducing policies such as tax cuts
and deregulation, as well as appointing conservative
judges to the Supreme Court. His presidency has been a
divisive one, with his supporters praising his economic
policies and his detractors criticizing his lack of empathy
and his disregard for democratic norms.

Now, below is an instruction that describes a task. Write
a response that appropriately completes the request.
### Instruction:
Write a short story about a fictional encounter between
Joe Biden and a famous historical figure.
### Response:

1044

D Detail for instruction attack1045

Tab. 5 presents results of defensive demonstrations1046

against instruction attack, as mentioned in §4.2.1047

Instruction Compression Details. For gpt-1048

compress, we compress the instruction text1049

by prompting ChatGPT with Compress the1050

following text such that you can1051

reconstruct it as close as possible to the1052

original. This is for yourslef. Do not1053

make it human-readable. Abuse of language1054

mixing, and abbreviation to aggressively1055

compress it, while still keeping ALL the1056

information to fully reconstruct it.1057
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Attack method Defense SST-2 Tweet Emotion Trec-coarse
ASR CACC ASR CACC ASR CACC

Induced Instruction

No defense 21.05 95.17 84.35 85.57 95.51 97.20
ONION 19.98 93.33 84.00 81.14 94.84 95.61

Back Translation 33.77 93.41 50.51 83.32 36.66 97.00
Defensive demo 14.80 92.31 10.31 84.38 0.20 97.20

md5

No defense 87.60 95.50 65.59 85.43 43.18 97.20
ONION 85.83 90.76 64.05 83.66 44.86 92.08

Back Translation 88.71 93.95 66.39 82.82 43.58 96.60
Defensive demo 25.78 91.10 9.96 85.01 0.81 97.40

base64

No defense 95.00 96.60 98.57 97.40 89.80 84.80
ONION 94.22 94.70 96.90 95.44 88.15 81.45

Back Translation 94.40 93.47 88.99 82.82 98.98 96.60
Defensive demo 22.13 92.66 0.37 97.64 33.37 84.91

gpt-compress

No defense 79.28 95.71 82.27 85.22 33.60 97.80
ONION 78.92 94.03 81.05 83.69 29.45 96.45

Back Translation 70.50 93.74 79.61 82.12 34.41 97.40
Defensive demo 7.79 91.65 40.56 85.50 0.20 97.60

Stylistic Instruction

No defense 97.04 85.44 83.42 84.65 97.35 97.60
ONION 92.36 94.81 53.18 81.04 97.15 96.84

Back Translation 19.08 93.79 27.11 82.19 8.55 97.00
Defensive demo 19.30 90.88 17.61 84.86 0.20 97.60

Syntactic Instruction

No defense 93.09 95.44 53.53 82.47 95.72 97.40
ONION 92.58 94.65 53.26 81.17 93.54 95.88

Back Translation 85.41 93.73 39.51 80.79 68.43 96.80
Defensive demo 25.78 92.53 16.10 80.85 0.20 97.60

Table 5: Random demonstration selection can effectively defend against instruction attack (Xu et al., 2023) on
Flan-T5-large.
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