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Abstract

The rapid sequencing of antibody genes has accelerated vaccine development.
However, predicting synthetic antibodies capable of binding and neutralizing novel
antigens remains challenging due to a limited understanding of the rules of protein-
protein interaction at the surface of an antigen to which its cognate antibody protein
binds. While recent advances in single-cell sequencing of antibody-producing
B-cells sequences have improved precision in mapping B-cell receptors (or BCRs,
which are the membrane-bound forms of the antibodies) to their cognate antigens,
there remain additional challenges. We have developed a computational strategy,
the Antibody Specificity Predictor (ASPred), with which we have trained two
Large Language Models (LLMs) with known sequences of antigen-BCR pairs
to predict antigen-specific BCRs from the total BCR repertoire of immunized
mice. By leveraging pattern recognition capabilities of LLMs we successfully
classify novel B-cell receptors with a challenge antigen not represented in the
training set, without the need for preselecting the B cells by antigen binding. The
properties of the top 10 predicted candidates were validated by coarse-grained
molecular dynamics simulations. These results suggest that sufficient information
exists in BCR-antigen sequence pairs for LLMs to reliably predict antigen-antibody
interaction specificity, potentially opening new avenues for the computational
design of synthetic antibodies for vaccine and therapeutic development.
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1 Introduction

Adaptive immunity depends on mutation and recombination at antibody heavy (H) and light (L)
chain genes in immune cells [1] which generate the diversity [2, 3] followed by the selection and
maturation of immune B-lymphocytes (B-cells) making the appropriate antibodies through signaling
by cell-surface receptors (B-cell receptors or BCRs) that are composed of their respective antibody
proteins in a membrane-localized form [4, 5]. B-cells are subsequently selected for maturation
through a complex process of multicellular signaling to expand clonally, followed by immunoglobulin
class switching by recombination to produce secreted antibody molecules with different constant
regions as scaffolds (IgG, IgA, or IgE) but with the same variable H and L chain regions, respectively
[6, 4, 3].

Monoclonal antibodies, which have become a cornerstone of medicine and biotechnology, are gener-
ally selected from pools of many antibodies by various in vitro methods including the hybridoma
technology, phage or yeast-surface displays, and more recently by B-cell cloning [7, 8]. Rapid
sequencing of genes encoding circulating antibodies following a virus infection has led to an un-
precedented speed in producing monoclonal antibody vaccines against an emerging pandemic [9].
One approach to accelerate this capability even further is to computationally predict the sequence of
synthetic antibodies that can potentially bind and neutralize a novel target antigen, a goal yet to be
realized [10].

The space of antibody diversity is immense, of the theoretical order of at least 1016, although in
practice a far lower diversity is observed [11, 12, 3]. Diversity is generated during the maturation
of B and T cell precursors in response to the presence of foreign antigens that are presented to
these cells through cell surface displays. The germline antibody gene sequences at their V-D-J and
V-J segments in H and L chain genes, respectively, undergo targeted cleavage, DNA nucleotide
insertion/deletion mutations, and recombinational repair, producing numerous sequence variants
in three segments of each H and L chain genes – the complementarity determining region or CDR
1 through 3, with maximum variation occurring in the CDR3 segment [6, 13]. These variant H
and L chain CDRs, buried within the constant immunoglobulin M (IgM) scaffolds, assemble as the
antibody precursors and are displayed as membrane-bound forms on B-cell surfaces, the BCRs [14].
Those cells exhibiting (and encoding) relatively strong binders to the antigen selectively proliferate
in a process mimicking Darwinian evolution, and under selective pressure produce clones of highly
specific antibody-producing mature B-cells [14].

Factors contributing to the selection and maturation of specific B-cell clones are complex and poorly
understood [15, 16]. Only a small fraction (0.01–0.1%) of circulating B-cells in an antigen-inoculated
individual display BCR sequences specific to the challenge antigen, and the structural relationships
between the antigenic surface (epitope) and its corresponding antibody region (the paratope) that
specifically binds to the epitope are obscure. These and other factors make identifying the origins of
antibodies from the corresponding B-cell clones a challenging problem. Recent advances, such as
sorting B-cells that bind to labeled antigens and sequencing their BCRs, have enabled the identification
of antigen-specific BCRs [17, 18]. However, these techniques remain time-consuming, expensive,
and laboratory-intensive. They are also technically complex, sensitive to experimental conditions,
and can introduce biases in cell selection. These labor-intensive processes generate vast and complex
datasets that require extensive computational analysis, yet often provide limited information about
the functional relevance of the antibodies thus identified [19, 5].

Recent advances in supervised machine learning, particularly deep learning techniques, have enabled
the prediction of novel protein 3D structures and protein complexes by training on vast protein
sequence datasets [20–23]. Models like AlphaFold2[22] and RoseTTAFold[20] employ specialized
architectures to capture evolutionary and structural features within protein sequences, effectively
predicting protein folding and interactions. While protein language models (a form of LLMs)
help in modeling sequence patterns to folded protein structures by capturing short- and long-range
dependencies[24, 23, 21, 25] and correlating these dependencies with known protein structures, the
reliable prediction of specific antigen-antibody pairs remains a largely unsolved problem. Challenges
include the scarcity of antigen-antibody paired sequence datasets, the flexibility of the protein
backbone and amino acid residues at binding interfaces, and potential biases arising from the clonal
nature of antibody evolution[26–28].
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Figure 1: Diagram of method for identification of antigen-specific B-cell receptors

Here we address the challenge of identifying antigen-specific BCR sequences without physically
pre-selecting B cells for antigen binding. We demonstrate that a fine-tuned Large Language Model,
ASPred, can classify a single B-cell V(D)J sequence repertoire of mice immunized with a challenge
antigen, successfully identifying antigen-specific BCR sequences. The binding properties of the 10
top candidates that were obtained from ASPred were tested to form complexes with the RBD from
the wildtype SARS-CoV-2 by different molecular simulation approaches. These findings suggest that
sufficient information exists within BCR-antigen sequence pairs for an LLM to uncover sequence
dependencies and reliably predict antigen-antibody interaction specificity.

2 Results

2.1 Prediction of antigen-specific B-cell receptors

To identify antigen-specific B cell receptors (BCRs) from the total repertoire of peripheral blood
mononuclear cells (PBMC), we employed three distinct approaches. The first approach utilized
the clustering tool InterClone [29], which introduces a novel method to cluster antibodies sharing
antigenic targets based on their complementarity-determining region (CDR) sequences, with MM-
Seq2 facilitating effective sequence clustering through homology alignment and gap management.
We constructed a dataset comprising 11,917 known SARS-CoV-2-specific antibody heavy chain
sequences sourced from CovAbDab [30] and an additional 310 heavy chain sequences obtained from
our own experimental single-cell testing dataset. Using a clustering threshold of 70% for the CDR
similarity index (SID) and requiring 90% coverage, we identified 96 candidate sequences from our
single-cell testing dataset, which clustered with known SARS-CoV-2 antibody sequences.

The remaining two approaches were based on advanced transformer models: the Evolutionary
Scale Modeling (ESM-2)[32] and the Protein structure-sequence T5 (Prot-T5)[31]. For both mod-
els, we utilized pre-trained weights from established protein transformer architectures, specifically
esm2_t33_650M_UR50D and prot_t5_xl_uniref50. We incorporated a binary classification head
in each model to differentiate between SARS-CoV-2-specific and non-specific antibodies.
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Figure 2: Predicted probability for the ESM-2 model (A and B) [21] and ProT-T5 (C and D)] [31].

Our antibody language models were fine-tuned on a comprehensive dataset of 26,689 sequences,
which included a balanced representation of both positive (antigen-specific) and negative (non-
specific) samples. To enhance performance and reduce computational burden during the fine-tuning
process, we utilized a technique known as Low-Rank Adaptation[33], or LoRA. This method involves
fixing the weights of the pre-trained model while incorporating trainable low-rank decomposition ma-
trices into each layer of the Transformer architecture. By doing so, LoRA significantly decreases the
number of parameters that require adjustment for downstream tasks. This efficient adaptation process
enables our models to effectively learn task-specific nuances while maintaining low computational
overhead.

The ESM-2 model was fine-tuned with a dropout probability of 0.2, a learning rate of 2e−5, a weight
decay of 0.01, a batch size of 4, and was trained for 10 epochs, achieving an accuracy of 90% on
the test dataset. Similarly, the Prot-T5 model was fine-tuned with a dropout probability of 0.1, a
learning rate of 2e−5, a batch size of 8, and trained for 8 epochs, yielding an accuracy of 88% on its
test dataset. By applying a threshold of 0.4 on the predicted probabilities, the ESM-2 model identified
60 candidates, while the Prot-T5 model identified over 100 candidates. The selection of sequences
with the highest predicted probabilities indicates that our binary classification system effectively
distinguishes between binder and non-binder antibodies, with most probabilities clustering around
the extremes of 0 (non-antigen-specific) and 1 (antigen-specific).

We merged the three sets of candidate sequences, highlighting those selected by multiple models.
From this, we identified the top ten SARS-CoV-2-specific antibodies for further analysis and validation
of their binding to the receptor-binding domain (RBD) of the SARS-CoV-2 spike protein.

2.2 Antibody-antigen docking validates predictions

A multi-computational approach at the molecular level, integrating docking, a constant-pH coarse-
grained (CG) Monte Carlo (MC), and atomistic Molecular Dynamics (MD) simulations, was em-
ployed for the in-silico validation of the ASPred top candidates.

For the docking validation procedure, we initially pre-processed the candidate antibodies and the
RBD, addressing any structural issues before docking the structures using ClusPro 2.0.[34] Multiple
conformations were obtained for each antibody-RBD pair. The best conformation from each docking
was then selected for further analysis of binding energy using Prodigy[35]. We discovered that
antibodies 1 and 157 predicted to be antigen-specific exhibit the strongest binding affinity to the
RBD antigen compared to the other candidates, with a binding energy of -14.5 kcal/mol. The typical
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Table 1: Top 10 SARS-CoV-2 antibody candidates from ASPred, including their predicted binding
probabilities and variable heavy region sequences (CDR1, CDR2, and CDR3). These selected
antibodies were further evaluated using the molecular simulation protocols.

ID CDR1 CDR2 CDR3 Predicted Probability
Ab1 GYTFTSYY INPSNGGT TRNEGHYFDY 0.990054846
Ab53 GYTFTSYW INPSTGYT ASSYYYGSSYYAMDY 0.999145985
Ab77 GFTFSSYA ISSGGSYT ARPFYYGSSYFDY 0.853913486
Ab117 GFTFSNYW IRLKSNNYAT TRDDYYAMDY 0.594344974
Ab131 GYTFTDYA ISTYNGNT AYGNYWYFDV 0.977651179
Ab157 GYTFTSYV INPYNDGT ARDGNYWYFDV 0.989455283
Ab172 SYTFTDYA ISTYYGNT ARGDGNYDFAY 0.989846647
Ab192 GYSFTGYT INPYNGGT AREGYRYDVEGLDY 0.992514193
Ab200 GYTFTSYW INPSNGRT ASRGYDEGYAMDY 0.991556287
Ab242 GYSFTDYN IDPYNGGT ARDHYGNYGDFDY 0.998622537

Figure 3: Binding affinities of the top 10 antibody candidates specific to RBD. All Kd values were
obtained from Prodigy. [36]

binding energy range for a specific antigen-antibody pair is -8 to -15 kcals/mole, nearer the latter for
more specific binding. These results suggest that the predicted antibodies should bind relatively well
to the antigens, as determined by docking and binding energy estimates.

2.3 Relative binding affinities at physiological pH condition

The computed free energies of interaction from the Fast cOarse-grained pRotein-proTein modEl
(FORTE)[37] were used to assess the relative binding affinities between the top 10 candidates and the
wild-type RBD at pH 7.4 under physiological 1:1 salt concentration. Figure 4 presents a comparative
analysis of these top candidates, all of which exhibit binding affinities comparable with values typical
of high-efficiency monoclonal antibodies designed by other simulation protocols [37, 38]. Notably,
ASPred predicts antibodies with even higher affinities than those achieved by other multiscale in
silico approaches[37]. Among the top 10, the strongest candidate found by FORTE is ID 117,
closely followed by IDs 53 and 157, all demonstrating binding affinities surpassing those in previous
studies[37, 38]. This finding further validates the success of ASPred in identifying ideal antibodies.

An additional important attribute of a designed antibody is its structural stability. FPTS[39] was
employed to determine the averaged net charge of each titratable group of the antibodies under these
physicochemical conditions, and these values were then used to calculate the electrostatic stability
of the top 10 candidates at the same structural configurations used in the FORTE simulations. This
approach provides insights into the stability profiles of each antibody, complementing the binding
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Figure 4: Computed binding affinities of the top 10 best antibody candidates specific to the wildtype
RBD by FORTE. The minima free energy of interaction values (βA) were measured for the SARS-
CoV-2 RBD-mAbs (heavy chain only) complexation at pH 7.4 and 150 mM of NaCl. β is the
thermodynamic beta (β = kT where k is the Boltzmann constant and T is the temperature). The
estimated error is 0.01 kT. Data for the antibodies P01 to P10 was obtained running FORTE for the
structures done by Neamtu et al.[37].

affinity analysis to ensure robust antibody design. The main results, shown in Figure 5, indicate that
all antibody chains designed by ASPred display electrostatic stability values comparable to those
of other anti-SARS-CoV-2 antibodies, with some cases showing even greater stability. Notably,
candidate ID 117, one of the top candidates with the highest relative binding affinity (see Figure 4),
also demonstrates a high level of electrostatic stability. This conformational stability may enhance its
likelihood of successful binding in in vitro assays, supporting its potential as a strong candidate for
further experimental validation.

3 Discussion

The identification of antigen-specific B cell receptors (BCRs) through a combination of clustering
techniques and advanced transformer models represents a promising avenue for discovering antibodies
within entire immune repertoires. While our approach serves as a proof of concept for targeting
SARS-CoV-2, it also lays the foundation for applying the ASPred algorithm to other antigens. This
versatility offers a significant advantage, as the methods and principles established in this study can
be broadly applied across various infectious diseases if sufficient data on antibody specificity is
available.

Currently, despite the abundant information on whole immune repertoires, there is a noticeable
deficiency in data regarding antibody specificity. One potential direction for future exploration is
leveraging existing immune repertoire datasets to uncover novel antibody sequences that may have
been missed due to technical limitations and experimental constraints commonly found in laboratory
settings.
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Figure 5: Simulated electrostatic stability for the designed ASPred antibodies (heavy chain) at pH
7.4. Salt concentration was fixed at 150 mM. Data for the antibodies P01 to P10 was obtained by
performing the calculations for the structures done by Neamtu et al. [37].

Figure 6: The three-dimensional structure of two antibody candidates bound to RBD
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In the realm of transformer-based methods, fine-tuning the models ESM-2 and Prot-T5 has shown
effectiveness in distinguishing between antigen-specific and non-specific antibodies. The high
accuracy rates achieved by both models demonstrate their capacity to capture complex relationships
within antibody sequences. This finding was further corroborated by in silico validations conducted
with additional molecular simulation methods. These complementary approaches strengthen the
reliability of ASPred’s predictions and underscore the robustness of one of the candidates (ID 117)
for potential in vitro assays. However, concerns about generalizability arise since these models
were primarily trained on known antibodies, and their performance with entirely novel sequences
warrants further investigation. Expanding the training datasets to include a more diverse range of
antibodies, particularly those developed through synthetic biology, could enhance the robustness of
these classification systems. This enhancement would facilitate the identification of critical antibody
sequences across a wider array of pathogens. If these models successfully capture the biophysical
principles underlying antibody-antigen interactions, we could soon identify a broader spectrum
of antigen-specific antibodies relevant to multiple disease states—a development that would have
significant implications for vaccine and drug discovery.

Insights derived from docking studies and molecular dynamics simulations have proven crucial in
elucidating the binding interactions between selected antibody candidates and the receptor-binding
domain (RBD) of the SARS-CoV-2 spike protein. One candidate exhibited a strong binding affinity,
indicated by a binding energy of -14.5 kcal/mol, aligning well with predictions made by ASPred.
However, it is important to interpret these results cautiously; binding energy alone does not fully
capture the biological relevance of these interactions. Factors such as conformational stability, entropy
changes during binding, and dynamic interactions within a physiological context are essential to fully
understand the true efficacy.

In conclusion, while our findings contribute to advancing the field of computational immunology, they
also underscore inherent challenges and limitations. Addressing these challenges—such as potential
biases in training data and the complexities of real-world biological interactions—is crucial for
effectively applying these methodologies in therapeutic development. Future research should focus
on integrating more diverse datasets and exploring various biological contexts, while continuously
validating computational predictions through experimental means. This comprehensive approach
will be essential for establishing robust and effective antibody therapies against multiple pathogens,
thereby extending the applicability of our methodologies well beyond SARS-CoV-2.

4 Methods

Ethics statement The animal work was conducted with the approval of the UC Riverside Institu-
tional Animal Care and Use Committee (IACUC). All animal procedures were performed according
to approved guidelines.

Immunization and sample collection Mice were housed at the University of California Riverside
vivarium. BALB/c female mice at 6 weeks of age were given subcutaneous injections of 100 µL per
day in the back of the neck on days 0 and 14 of antigens emulsified in aluminum hydroxide 2 % (full-
length spike protein SARS-CoV-2 nCov-2019). Blood samples were collected post-immunization and
on days 14 and 28. On day 28 mice were deeply anesthetized with isoflurane and blood was drawn
by cardiac puncture. Mice were immediately euthanized by cervical dislocation according to IACUC
guidelines. Peripheral Blood Mononuclear Cells (PBMCs) were isolated using the direct human
PBMC isolation kit (StemCell Technologies) and cryopreserved at -80◦C for further work. Analysis
of antigen immunogenicity in mice by Enzyme Linked-Immunosorbent Assay (ELISA): ELISA was
carried out in 96-half-area well plates from (Greiner Bio-One), plates were coated with the full-length
spike protein from SARS-CoV-2 nCov-2019 (0.4 µ g/well) using sodium carbonate coating buffer
(0.05M, pH 9.6) and allowed to incubate overnight at 4°C. Plates were washed (2x) with PBST (PBS
with 0.05% Tween-20) and once with PBS. Plates were blocked with a 5% non-fat dry milk solution
for 1 hour. Mouse plasma samples were added (dilutions: 1:5,), and each dilution was incubated
with the immobilized antigens for 1 hour at room temperature with continuous shaking. The plates
were washed 5 min each 2x with PBST and 1x with PBS. The bound mouse IgG antibodies were
then detected with horseradish peroxidase (HRP) conjugated anti-mouse IgG secondary antibody
(EMD Millipore Corp., Catalog No. AP112P, Lot: 3855607) diluted at 1:2,500 in PBS by incubating
at RT for 1 hr, and the plates were washed 2x in PBST, rinsed 1x with PBS. The enzymatic reaction
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was initiated by adding the OPD Peroxidase substrate (Sigma Alrich, P9187-50SET) to the wells
and allowing the reaction to proceed for 5 minutes and the developed color was measured using an
ELISA microplate reader (NanoQuant Infinite M200, Tecan) at 450 nm after 5 and 30 minutes.

GEM Generation and construction of gene expression next-generation sequencing libraries
PBMCs were used without antigen labeling and sorting. Single-cell suspensions were mixed with
nuclease-free water and 5′ single-cell RNA master mixture, then loaded into a Chromium chip
with barcoded gel beads and partitioning oil. The chip was placed in the Chromium controller
to generate gel beads in emulsion (GEMs). cDNA was obtained from 100 µ l GEMs/sample by
reverse-transcription reactions: 53 ◦ C for 45 min, 85 ◦ C for 5 min, then maintained at 4 ◦C. cDNA
products were purified and cleaned using Dynabeads. cDNA was amplified by PCR: 98◦C for 45s;
98 ◦C for 20 s, 63 ◦C for 30 s, 72 ◦C for 1 min and amplified for 16 cycles; then, 72 ◦C for 1 min.
Amplified PCR products were purified using SPRIselect reagent kit (B23317, Beckman Coulter).
The concentration of the cDNA library was determined by Qubit dsDNA HS Assay Kit (Invitrogen)
and Bioanalyzer (Agilent, 2100). Single Cell RNA-Seq V(D)J and 5’ gene expression library was
performed using the Chromium Next GEM Single Cell 5’ Reagent Kits v2 (Dual Index)(CG000331,
Rev E, 10X Genomics) and Dual Index kit TT set A (PN- 1000215, 10X Genomics) according to the
manufacturer’s instructions. For unlabeled and unsorted samples, the target was estimated at 5000
cells.

Identification of antigen-specific BCRs using interclone and large language models Raw
sequencing data were assembled and annotated using Cell Ranger 7.2.0, and multi-mode was used to
process gene expression and VDJ data simultaneously. Mouse transcriptome (GRCm38) provided by
Cell Ranger was used as a reference for the process.

Clustering was performed using the source code of InterClone, which employed MMSeqs2 for
clustering. The dataset being clustered was constructed with 11,917 known SARS-CoV-2 specific
antibody heavy chain sequences from CovAbDab [30] and 310 heavy chain sequences from the
single-cell sequencing data.

Two transformer models were constructed from pre-trained weights of two protein transformer models
(esm2_33_650M_UR50D and prot_t5_xl_uniref50)[32, 31] with a binary classification head. The
models were fine-tuned using the known SARS-CoV-2 specific sequences mentioned above and
14,772 randomly selected known antibody sequences on other targets from PLAbDab.[40] The fine-
tuning process was optimized using Low-rank Adaption to reduce the number of trainable parameters
and resource consumption. ESM model[32] was fine-tuned with 0.2 dropout probability, 2 e−5
learning rate, 0.01 weight decay, batch size of 4, and trained for 10 epochs.

Prediction of antibody structure using Igfold Variable heavy chain protein sequences obtained bt
ASPred were folded using IgFold,[1] and the structures were refined with PyRosetta.[41] Antibody
sequences were renumbered according to the Chothia scheme[1].

Docking of antibody candidates with RBD The RBD protein was folded using AlphaFold [22]
and used as ligands, while antibody structures served as receptors in the ClusPro docking web server,
[34] with the antibody mode and non-CDR masking options enabled.

Binding affinities for the complexation of the antibody candidates with RBD The "Fast cOarse-
grained pRotein-proTein modEl" (FORTE)[37] is a coarse-grained biophysical model specifically
designed to simulate protein-protein interactions, allowing for the dynamic adjustment of amino
acid charges on titratable groups based on the surrounding environment at a specified pH (input as
a parameter). The core of this model is the "Fast Proton Titration Scheme" (FPTS)[39] combined
with the ability to translate and rotate macromolecules using the Metropolis MC method.[42] All
calculations with FORTE were performed at pH 7.4, 150 mM NaCl, and 298 K. This model enables
molecular simulations that are computationally faster than more complex models, providing relative
binding affinities at a reduced computational cost. This allows for the comparison across various
molecular systems and/or physicochemical conditions.

The heavy chains of the top candidates predicted by ASPred were folded using IgFold and then
used as input for the FORTE simulations. To ensure comparability with previous studies,[37] the
wildtype RBD structure was constructed via SWISS-MODEL workspace, using the NCBI reference
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sequence NC_045512 (accession YP_009724390.1) as a template. This approach facilitated a
direct comparison of the binding affinities between ASPred-predicted antibodies and previously
characterized ones.[37] The free energies of interaction (or binding affinities) were calculated as a
function of the macromolecules’ separation distances by analyzing their center-to-center pair radial
distribution functions. These values were sampled in histogram form during the MC production phase,
providing detailed distributions of the probability of finding the two molecules at different separation
distances. To compare binding affinities across systems, we adopted the free energy minima (βA)
observed in these simulations, which represent the most stable interaction points. This approach is a
simple and consistent basis for evaluating relative affinities between the top candidates.

Following the equilibration phase, each system underwent at least 3 × 109 MC steps for production-
phase sampling. To account for variability, three independent replicates were conducted for each
system, allowing for the estimation of statistical errors for a proper comparison between the simulated
systems.

Electrostatic stability of the antibody candidates The electrostatic stabilities of the antibody
heavy chains were calculated directly from the averaged net charges obtained in the FPTS simulations,
using the IgFold-generated conformations. In line with previous studies[37], stability values were
determined by evaluating the Coulombic contributions of individual titratable groups for each protein
structure under specific conformation and defined physical–chemical conditions. This approach
allows for an assessment of how electrostatic interactions may influence the stability of each antibody
candidate.

Molecular dynamics simulations of one antibody candidate with RBD The system was first
established and equilibrated according to conventional molecular dynamics procedures. Proteins
were positioned at the center of a cubic box, with a clearance of 0.2 nm from the boundaries. This box
was filled with the TIP3P water model and enriched with 0.15 M of Na+ and Cl− ions, applying the
AMBER99SB-ILDN protein force field. An energy minimization step was executed to allow the ions
to achieve stability. Following this, temperature and pressure equilibration phases were conducted at
310 K and 1 bar, each lasting for 100 ps. After these procedures were completed, comprehensive
molecular dynamics simulations were carried out using the designated force field for 100 ns.Periodic
boundary conditions were used, and electrostatic interactions were calculated by the particle mesh
Ewald method.The resulting molecular dynamics trajectory files were analyzed after the removal of
periodic boundary conditions. The stability of each simulated complex was assessed through root
mean square deviation calculations for the backbone and visual examination.
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Appendix / supplemental material

Table 2: SARS-CoV-2 antibody candidates: Thermodynamic Properties

ID ∆G (kcal mol−1) Kd (M) at °C NIS charged
Ab1 -14.5 2.30E-11 17.97
Ab53 -12.5 6.30E-10 17.23
Ab77 -9.6 9.00E-08 20.41
Ab117 -10.9 1.10E-08 20.27
Ab131 -13.3 1.80E-10 18.02
Ab157 -14.5 2.20E-11 20.57
Ab172 -11.8 2.30E-09 18.60
Ab192 -11.4 4.10E-09 20.14
Ab200 -13.7 9.30E-11 18.75
Ab242 -11.1 6.70E-09 18.71

Table 3: SARS-CoV-2 antibody candidates: Interaction Counts

ID ICs charged-charged ICs charged-polar ICs polar-polar
Ab1 6 15 1
Ab53 2 13 9
Ab77 2 4 8
Ab117 7 11 9
Ab131 5 10 2
Ab157 5 16 5
Ab172 4 4 3
Ab192 4 5 6
Ab200 11 10 5
Ab242 6 10 9

Table 4: SARS-CoV-2 antibody candidates: Additional Interaction Features

ID ICs charged-apolar ICs polar-apolar NIS apolar
Ab1 8 31 38.31
Ab53 18 24 35.81
Ab77 16 16 39.46
Ab117 19 17 37.16
Ab131 16 23 37.81
Ab157 27 27 36.88
Ab172 16 18 37.80
Ab192 28 15 38.19
Ab200 26 20 36.81
Ab242 16 19 37.07
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6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: The experimental setting is presented in the methods description and results
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•

12. Licenses for existing assets
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Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: We have included citations and references corresponding to models and
datasets used in the paper.
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13. New Assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [No]
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14. Crowdsourcing and Research with Human Subjects
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Answer: [NA]
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