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Abstract
Increasing global water deficit and demand for yield improvement call for high-resolution 
monitoring of irrigation, crop water stress, and crops’ general condition. To provide high 
spatial resolution with high-temperature accuracy, remote sensing is conducted at low 
altitudes using radiometric longwave thermal infrared cameras. However, the radiometric 
cameras’ price, and the low altitude leading to low coverage in a given time, limit the use 
of radiometric aerial surveys for agricultural needs. This paper presents progress toward 
solving both limitations using algorithmic and computational imaging methods: stabiliz-
ing the readout of low-cost thermal cameras to obtain radiometric data, and improving the 
latter’s low resolution by applying convolutional neural network-based super-resolution. 
The two methods were merged by an end-to-end algorithm pipeline, providing a large 
mosaicked image of the field. First, the potential capabilities of a joint estimation method 
to correct unknown offset and gain were simulated on remotely sensed agricultural data. 
Comparison to ground-truth measurements showed radiometric accuracy with a root mean 
square error (RMSE) of 1.3 °C to 1.8 °C. Then, the proposed super-resolution method was 
demonstrated on experimental and simulated remotely sensed agricultural data. Prelimi-
nary experimental results showed 50% improvement in image sharpness relative to bicubic 
interpolation. The performance of the algorithm was evaluated on 22 simulated cases at 
× 2 and × 4 magnification. Finally, image mosaicking using the proposed pipeline was 
demonstrated. A mosaicked image composed of sub-images pre-processed by the pro-
posed computational methods resulted in a RMSE in temperature of 0.8 °C, as compared to 
8.2 °C without the initial processing.
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Introduction

Remote sensing in the visible and near-infrared spectral range relies on solar radiation 
as the illumination source. The sun may be approximated to a black body (BB) at 5 900 
degrees Kelvin (K) that illuminates in the range of 0.2 to 3 µm (Kopeika 1998). Wien’s 
law, which ties the peak radiation wavelength to BB radiation (Holman 1989), suggests 
that �max × Tbb = 2897.6�m × K where Tbb is the equivalent BB temperature (K) and λmax 
is the wavelength of the maximal radiant flux (μm). An ~ 300 K BB radiation can typically 
approximate plant radiation emission, and thus it radiates mostly at 10 μm (infrared radia-
tion, IR). Empirically, it has been found that the atmosphere can be treated as a cold BB 
with Tbb = 20 K (Jones 1994). Atmospheric absorption depends on various characteristics, 
among them relative humidity and distance to the object; in the spectral range between 8 
and 13 μm—the thermal IR spectrum—the atmospheric window is almost clear (Kopeika 
1998). In the absence of a significant background radiation source, measurements per-
formed in this atmospheric window (sometimes referred to as second atmospheric win-
dow) allow remote monitoring of canopy temperature. Realizing the technical possibility 
of remotely estimating canopy temperature, thermal imaging has been adopted for many 
agricultural monitoring tasks, including yield assessment, plant physiology, irrigation 
level, and leaf water content (Manickavasagan et al. 2005). Indeed, the ability to evaluate 
"crop water stress" from measurements of canopy temperature has been known for many 
years (Tanner 1963; Gates 1964; Ehrler 1973). Evaluation of water status by imaging the 
crop canopy with a focal plane array (FPA) thermal camera has been reported in the lit-
erature for, among others, wheat (Tilling et al. 2007), grapevine (Grant et al. 2007), olive 
(Berni et al. 2009), cotton (Alchanatis et al. 2010), and palm trees (Cohen et al. 2012). The 
relationship between evaporation and heat exchange has led to the development of methods 
to estimate gas exchange based on thermography (e.g., Costa et  al. 2013). Other studies 
have shown that thermography can be used for irrigation control (e.g., Petrović et al. 2016). 
In recent work, thermography was shown to be effective at recognizing wood defects for an 
assessment of tree health (Vidal and Pitarma 2019).

The United Nations (2017) has estimated a 50% increase in the water required for irriga-
tion by 2050, on top of the increasing global irrigation-water deficit due to global warming 
and the constant demand for yield improvement, all calling for urgent improvements in 
irrigation management. In addition, a field’s water status is generally variable in the spatial 
dimension and therefore requires variable irrigation rates. To apply variable-rate irrigation, 
the field has to be divided into irrigation-management zones.

Thermal IR cameras have low sensor resolution. Low-cost uncooled thermal IR cameras 
have detector arrays with 384 × 288 pixels or less. High-end cameras are limited to 1 meg-
apixel, which is also considered a low resolution in comparison to cameras in the visible 
range. When radiometric thermal imaging is performed at high altitude, the width of a row 
of vines in a vineyard or trees in an orchard is covered by only a few pixels, many of them 
mixed pixels that are subjected to significant bias in temperature measurements. To provide 
the required high spatial resolution, radiometric remote sensing is conducted from a rela-
tively low altitude, resulting in low area coverage and high costs. One way to lower costs is 
to retain high-altitude imaging but improve the spatial resolution using a super-resolution 
(SR) algorithm.

Uncooled, longwave thermal IR cameras that are well radiometrically calibrated, based 
on microbolometers, are costly—on the order of 25,000 Euros, preventing routine radio-
metric surveys in agriculture. To lower the cost of such surveys, so that they can become 
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common practice, the development of a method that stabilizes the readout of low-cost (~ 2 
000 Euros) uncooled microbolometer thermal cameras is proposed. The latter cameras usu-
ally suffer from drift due to thermal environmental loads. The main sources of these loads 
are solar radiation, air temperature, unstable heat transfer due to changes in convection, 
solar radiation and ground radiation, and wind loads.

Low‑cost uncooled microbolometer cameras

Uncooled microbolometer FPA (UCFPA) technology is characterized by a low price, 
lower power consumption and small physical dimensions. These cameras are widely used 
in commercial and military applications (Bhan et  al. 2009) and are the most commonly 
used cameras in thermography (Tempelhahn et al. 2016). Their small dimensions and low 
weight are a big advantage for agriculture because they can be mounted on a microdrone. 
Nevertheless, these cameras’ sensitivity to environmental conditions affects their readings. 
Kusnierek and Korsaeth (2014) showed that wind load and irradiance have a significant 
influence on the analog readings of the UCFPA camera (TAU 320, FLIR, USA). Drift in 
the FPA due to environmental load limits its ability to acquire informative radiometric 
images. Thus, stabilizing the camera’s readout by calibrating its response is an important 
challenge. The FPA camera image is a function of its optics and its detector’s response; 
image formation, in lexicographic form, is:

where [A] is the point-spread function (PSF) matrix representing the optical blur, y is the 
FPA image, x is the object’s radiation, [G] is the gain matrix, n is the noise, and (x,d,y,n) 
are vectors in lexicographic form. The gain and offset depend on FPA temperature and 
changes in environmental temperature (Nugent and Shaw 2014). These relatively rapid 
changes require constant calibration against a BB (Tempelhahn et al. 2016). Whereas gain 
calibration is relatively simple, being a linear function of the FPA’s temperature, offset cali-
bration is more complex.

Super‑resolution (SR)

With any camera, higher field coverage results in decreased image resolution, and vice 
versa. SR is a collection of methods that exploit information redundancy and prior knowl-
edge to improve the spatial resolution of a given image. When possible, such improvement 
can eliminate the tradeoff between field of view (FOV) and resolution; this, in turn, ena-
bles faster flights at higher altitudes, potentially lowering the aerial survey’s cost. There 
are a few main approaches to SR imaging. Elad and Feuer (1997) and Farsiu et al. (2004) 
showed that known image formation enables using a sequence of non-identical images 
to produce an image with improved resolution. In a recent work, Mandanici et al. (2019) 
showed that using rotated and translated images can improve the spatial resolution by a fac-
tor of 4. Another SR methodology is single-image SR. The SR of a single image is a con-
volutional neural network (CNN) based on a learning scheme, which is trained to learn the 
upscaling function from a low-resolution replica of an image to its high-resolution replica 
(Dong et al. 2014; Kim et al. 2016; Rivenson et al. 2017). Upon input of a low-resolution 
image, the system output is an estimated high-resolution image; the output of this SR pro-
cess is denoted ISR. Previous work (Klapp et  al. 2019) has shown that a SR schema for 
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microscopy proposed by Rivenson et al. (2017) can, after some modification, be used for 
SR of visible remotely sensed images, such as visible images of cotton flowers.

One can see the SR process as a learning operation trained to transfer gradient statis-
tics in low resolution to statistics in higher resolution (Sun et  al. 2008). However, com-
pared to visible images, the IR image consists of a single channel and its gradients may 
differ. Reduction to a single channel also affects any possible correlation between channels, 
as shown in the multispectral case (Zhou et  al. 2016). In addition, bearing in mind the 
cost issues and the requirement for a portable solution, an IR network for agricultural use 
should be a low-cost solution in terms of computation as well.

The objectives of this work were: (1) to improve the resolution of low-cost thermal IR 
cameras; (2) to decrease the drift in the readings of low-cost thermal IR cameras; (3) to 
develop a single pipeline to perform objectives 1 and 2, for environmental scenarios in 
remote-sensing agricultural monitoring tasks. This paper presents new results on the algo-
rithmic and computational imaging methods used to achieve these objectives.

A novel end-to-end solution is suggested that addresses the need to lower the cost of IR 
aerial radiometric surveys for agriculture. This effort was divided into two complementary 
tasks that ended with engaging the resulting method in a unified pipeline algorithm. This 
paper extends the findings of a previous work (Klapp et al. 2019). First, extensive simula-
tion results of stabilizing the readout of a low-cost IR camera when both offset and gain are 
unknown are presented and discussed with respect to typical remotely sensed agricultural 
scenarios. Then preliminary experimental results for SR imaging followed by extensive 
simulated results for typical IR remote-sensing in agriculture are presented and discussed. 
Finally, conceptual results link these two approaches, showing the benefits of the overall 
approach and its potential contribution to mosaicking over an agricultural field, showing 
a mosaicked image that is an order of magnitude more accurate than that acquired by con-
ventional methods.

Materials and methods

Data acquisition

To investigate the accuracy of the presented method in an agricultural scenario, data of three 
different crops, acquired from three commercial plots were used. Vineyard a highly variable 
2.4 ha Vitis vinifera cv. Cabernet Sauvignon vineyard, established in Mevo-Beitar (31.729522 
oN; 35.1031 oE) in the Judean hills region in Israel. Vines were planted in 2011 in a northwest 
to southeast direction with a vine and row spacing of 1.5 m and 3.0 m, respectively. Peach 
orchard a 0.4 ha peach orchard located in an area of slightly hilly terrain in the Upper Galilee 
(33.012322 °N; 35.606314 °E). The orchard’s lithology is primarily alluvium composed of 
clay, volcanic gravel, and chalk. The slope of the field is 5%. The orchard was planted in 2007 
with a late-harvesting peach variety, with 2.6 m and 5 m between trees and rows, respectively, 
and rows running from northwest to southeast. Cotton a 15  ha cotton field, located in the 
southeastern coastal plain of Israel (31.833792 °N; 34.710056 °E), belonging to Bnei-Darom 
and Kibbutz Yavne. Most of these were planted with Gossypium barbadense L. cv. Pima and a 
G. hirsutum × G. barbadense hybrid (’Akalpi’) in 0.97-m spaced rows. Measurements at these 
commercial plots were performed through the spring at midday on several occasions. Single 
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trees palm and oak trees were measured at midday at the Agricultural Engineering Institute 
campus of the Volcani Center (32.003744 °N; 34.816778 °E) on 25 Nov 2019.

For IR image acquisition in an agricultural field, a FLIR A655Sc camera was used. 
This is an uncooled microbolometer, 640 × 480 pixels, sensitive to radiation in the range 
of 7.5–14.0 μm, equipped with a lens with a focal length of 24 mm (https​://www.flir.com/
produ​cts/a655s​c/). The camera was mounted on a light airplane flown at an altitude of 500 m 
above ground level, resulting in a ground sampling distance of 0.35 m. The emissivity of the 
plants was set to 0.98. Images were acquired at midday under clear sky conditions. A series 
of thermal images were acquired at a frame rate of 6 frames per second and stored as one file 
(*.SEQ format). At the time of the imaging, the temperature range in the vineyard images was 
24.48 °C to 70.29 °C, in the cotton field images it was 29.36 °C to 69.15 °C, and in the peach 
orchard it was 31.09 °C to 71.19 °C. Each gray level represents 0.01 °C. The algorithms pre-
sented below were fed with a sequence of images acquired by post-processing the SEQ video 
saved in.jpg format using FLIR Tools software. Images of the singles trees were acquired 
using a low-cost uncooled thermal camera (Opgal Therm-APP TH, https​://www.opgal​.com/
produ​cts/therm​-app-th/) mounted on a tripod, and operated by cellular phone application. The 
temperature range of the images taken by the Therm-APP TH was − 10 °C to 45 °C with 16-bit 
output. The images were acquired from a distance of 200 m. The emissivity of the objects was 
set to 0.98. Image acquisition was performed at midday under clear sky conditions.

Root mean square error (RMSE)

To evaluate the quality of the restored images, differences between original and reconstructed 
images were computed pixel by pixel, and the RMSE was used as an indicator of algorithm 
performance:

where U × V is the image size, Ie is the estimated image, and Igth is the ground-truth image. 
When evaluating the restoration of radiometric values, Ie is the estimated image, while Igth 
is the ground-truth image before corruption by the unknown gain and offset. When evaluat-
ing SR, Ie is the estimated high-resolution image, and Igth is the ground-truth high-resolu-
tion image.

Evaluating the performance of the proposed CNN

The proposed CNNSR algorithm relies on CNN architecture. The learning process of the 
CNNSR relies on learning the transformation between low-resolution and high-resolution rep-
licates of the objects. This transformation depends on the camera’s behavior (i.e., the optical 
response and blur), temperature range, and target spatial structure.

The SR performance was evaluated by the peak signal-to-noise ratio (PSNR) as follows:
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where N is the grayscale depth. PSNR expresses the ratio between the dynamic range of the 
image (2N − 1 grayscale levels) and the restoration error in grayscale. PSNR values increase 
with decreasing restoration error and are commonly presented in decibels [db].

Another way to compare images is by the intersection of their histograms, H1 (Jia et al. 
2006), such that:

where h1 and h2 are the normalized histograms of the compared images, and i is the bin 
number. The more similar the histograms are, the closer the value of H1 to 1.

Naïve mosaicking method

Assuming a best-case scenario in which frame perspective is perfectly corrected and the 
registration between sequential frames is perfectly known, one can represent the mosaick-
ing as the following process:

where x is the image of the overall FOV in lexicographic form, Ci’s are the cropping matri-
ces and {yi} are the cropped images in lexicographic form. In reality, x needs to be esti-
mated by mosaicking a series of partially overlapping images which may be frames of a 
video taken over the course of an aerial survey. The Ci matrices are estimated by a regis-
tration process, Ci is an N⨯M rectangular matrix, where N is the length of yi and M is the 
length of x; typically, M >  > N. For simplicity, the registration results are assumed to be an 
integer step. A typical form of Ci under these assumptions is:

It should be noted that some of the diagonal values might be zero due to the lexico-
graphic transformation from the 2D image to a 1D vector. Let � =

(
�� �� … ��

)T , 
[�]�=

(
�� �� … ��

)� , a compact form of the least-square representation of the problem 
and an estimation of the mosaic image is:

Stabilizing the readout of the low‑cost uncooled thermal FPA

This section provides a brief introduction to a previously suggested method for estimating 
radiometric values from a series of images taken by a thermal camera that suffers from 
unknown drift in offset and gain, termed "joint estimation method". For complete details, 
the reader is referred to Klapp et al. (2017) and Papini et al. (2018).
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The image formation equation is given in Eq. (1). If the parameters of the image formation, 
[A], [G] and d, are known, given an image y, one can solve an inverse problem of Eq. (1) to 
restore the radiometric values of the object x such that:

where xLS is the least-square solution. However, in environmental scenarios, the low-cost 
thermal cameras tend to suffer from drift in offset d and gain [G], such that the solution 
of Eq. (1) becomes an indeterminate equation. In previous work, it was shown that a way 
to make this situation solvable is to add more equations to the problem. This was done by 
using a sequence of pairs of sharp and defocused images. While both gain and offset drift 
with temperature, the gain is easier to calibrate against a BB. Starting with the case in 
which the gain is calibrated (Klapp et al. 2017), both vectors y and matrix [G] are known. 
This leaves Eq. (1) with both x and d (2 × N values) unknown. Since Eq. (1) is a linear 
system composed of N equations, a list of N additional equations is required to solve it. To 
gain the additional N known equations, it was suggested to measure a pair of images for 
each object (focused and defocused), y1 and y2, respectively. Thus, two sequential images 
were taken with two known and different PSF matrices, [A1] and [A2]. Since the camera 
integration time is much faster than changes in thermal load, the gain and offset can be 
assumed to not change and therefore, formation of the images is:

where y1 and y2 are sharp and blurred images of the same object x. The use of two blur lev-
els creates the required difference between the equations. The unknown offset is estimated 
by substituting one equation into the other. The estimation for the offset is (Klapp et  al. 
2017):

The inverse problem of image formation is solved by substituting Eq. (10) into the image 
formation equation (Eq. 1). The resultant estimator for object radiation is:

where the inv{} operation refers to a general inverse operation. For a detailed account of 
the proposed algorithm, see Klapp et al. (2017).

Since in reality, both gain and offset drift, to solve the inverse problem one must tackle 
the situation in which both [G] and d are unknown. In that case, there are an additional N 
unknown parameters associated with the gain, and therefore measuring one pair of images is 
not enough. To obtain a sufficient number of equations, it was suggested that at least one addi-
tional sharp and blurred pair of a different object, x*, with a different image, y*, be introduced 
(Papini et al. 2018), such that:
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This system poses two additional obstacles. The first is the additive noise (n), which 
changes randomly from image to image. This is overcome by using M number of pairs. 
Since the unknown gain [G] and unknown objects multiply one another, this simplification 
enables determining their solution up to a scale (Papini et al. 2018). A unique solution is 
determined by using prior knowledge of solution behavior (Papini et al. 2018). The system 
is solved as the minimization of a cost function:

where 
{
��
}
 is a series of N different objects. Minimization of S

(
[�], �,

{
��
})

 is a demand-
ing computational task that should be done efficiently. The system can be reorganized to fit 
the least-square QR algorithm (LSQR 2018), solver. Since [�], �,

{
��
}
 are not known, the 

solution is reached iteratively (Papini et al. 2018).

Single‑image SR for IR image by CNN

The network proposed in Oz et al. (2020) was adopted in this work. A simplified schema 
of the proposed CNNSR network is depicted in Fig.  1. The CNN decomposes the low-
resolution image, ILR, into a few channels, each of which is a filter.

The output of each layer is concatenated with the outputs of all previous layers. The 
input is interpolated and concatenated to the output of the shuffle block. The network out-
put is the SR image, denoted ISR. The data are composed of bicubic interpolation results 
and high-resolution features. Initially, the system is trained for close-range imaging 
(1–3 m) with a low-cost uncooled thermal IR camera. For the sake of saving on compu-
tational effort, most computation operations of the network are done in the low-resolution 
domain. This design resulted in high-level restoration, with PSNR similar to the state-of-
the-art VDSR deep-learning net (Kim et al. 2016) and 28 times better computational effi-
ciency. The compact algorithm is critical for processing the big data that are typical in 
agricultural imagery.

End‑to‑end computational approach

Agricultural fields are very wide targets that cover tens to hundreds of hectares or more. 
Aerial surveys of fields are generally done in strips composed of many images (frames); 
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Fig. 1   Low-computation convolutional neural network for super-resolution (CNNSR) of low-cost uncooled 
thermal IR images. ILR is the low-resolution image input, ISR is the super-resolution image output. The 
blocks of the convolution layers are denoted CL
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depending on flight height, each image covers only a portion of the field, so that a complete 
view of variability in the field requires mosaicking for a bigger image. In a standard mosai-
cking algorithm, each pixel of the mosaic image is an interpolation result of several pixels 
provided by different frames that are partially overlapping in their FOV, which essentially 
should have correct radiometric values and be well registered. In previous work with mosa-
icking of visible and radiometric thermal IR images, a 70 to 80% overlap between images 
was used. Registration is a result of minimizing cost functions, which looks for the similar-
ity between overlapped frames. Thus, in principle, space-variant errors in gain and offset 
may affect registration efficiency due to their effect on similarity. On the other hand, cor-
rection and resolution enhancement by SR will contribute to the mosaicking process, and 
an end-to-end process is therefore suggested, composed of the following steps:

(1)	 Radiometric correction
(2)	 Super-resolution (SR)
(3)	 Mosaicking.

Results and discussion

Stabilizing the readout of a low‑cost uncooled thermal FPA

In this section, the efficiency of the "joint estimation method" to recover radiometric data 
of remote-sensing agriculture images is investigated. Simulation results are presented for 
thermal images taken consecutively by a thermal camera subjected to unknown drift in 
offset and gain. Following the method, a series of objects is jointly estimated; each object 
was imaged twice, the first image sharp and the second image blurred, with a defocus level 
equal to one wavelength of 10 µm.

It was assumed that after the initial standard bad-pixel correction and two-point correc-
tion, both offset and gain drift to an unknown value. To adopt a realistic spatial distribution 
in the simulations, a model resembling gain and offset was used; the gain and offset values 
were calibrated to previously measured experimental values, such as those measured by 
Tempelhahn et al. (2016):

The offset has a typical proportion relative to the radiometric values. Gain values are close 
to 1. To enforce this proportion in the present case, the offset expressions are in proportion 
to the ensemble standard deviation. W and H are the width and height of the imager FOV. 
The spatial distribution of the gain and offset is presented in Fig. 2a and b, respectively. 
White Gaussian noise with a signal-to-noise ratio of 1000 was added to the images.

Below, the restoration results are presented for the three different agricultural fields. 
The restoration was done jointly using N = 9 images of each field. The series of defocused/
focused pairs, and ground-truth and restoration results for the vineyard, cotton field, and 
peach orchard are presented in Figs. 3, 4 and 5, respectively. Enlarged replicas images of 
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the first two results (from the left) for each of the crops are presented in Figs. 6, 7 and 8, 
respectively.

Figures 3, 4 and 5 are organized as follows. The nine distracted pairs of images are given 
one below the other in rows 1 and 2, sharp and blurred, respectively. The ground-truth 

Fig. 2   Unknown gain and offset, focal plane array (FPA) composed of 256 × 256 pixels. a Spatial gain func-
tion. b Spatial offset function

Fig. 3   Results of joint estimation of N = 9 vineyard radiometric images given pairs of focused and defo-
cused thermal images taken with a thermal camera with unknown offset and gain. The gain, offset and N = 9 
radiometric images for each thermal pair were jointly estimated. Source images were taken with a FLIR 
A655Sc camera. Ground sampling distance was 35 cm, sub-image area is 90.6 × 90.6 m2
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object is presented in row 3 and the restored object is presented in row 4. The RMSE in 
gray level in the 16-bit range is printed above each restoration; the equivalent temperature 
in degrees Celsius is 1/100 of this numerical value (e.g., a gray level of 1 510 is 15.10 °C). 

Fig. 4   Three enlarged vineyard examples. Columns from left to right: a sharp image with unknown offset 
and gain; b blurred image with unknown offset and gain; c ground-truth image; d restored image. Source 
images were taken with a FLIR A655Sc camera. Ground spatial distance was 35 cm, sub-image area is 90.6 
× 90.6 m2

Fig. 5   Results of joint estimation of N = 9 cotton field radiometric images given pairs of focused and defo-
cused thermal images taken with a thermal camera with unknown offset and gain. The gain, offset and N = 9 
radiometric images for each thermal pair were jointly estimated. Source images were taken with a FLIR 
A655Sc camera. Ground sampling distance was 35 cm, sub-image area is 90.6 × 90.6 m2
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Fig. 6   Three enlarged cotton field examples. Columns from left to right: a sharp image with unknown offset 
and gain; b blurred image with unknown offset and gain; c ground-truth image; d restored image. Source 
images were taken with a FLIR A655Sc camera. Ground sampling distance was 35 cm, sub-image area is 
90.6 × 90.6 m2

Fig. 7   Results of joint estimation of N = 9 peach orchard radiometric images given pairs of focused and 
defocused thermal images taken with a thermal camera with unknown offset and gain. The gain, offset and 
N = 9 radiometric images for each thermal pair were jointly estimated. Source images were taken with FLIR 
A655Sc camera. Ground sampling distance was 35 cm, sub-image area is 90.6 × 90.6 m2
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Figures 6, 7 and 8 are organized such that the enlarged images are placed one above the 
other, from left to right: the first column (a) is the sharp image with unknown offset and 
gain; the second column (b) is the blurred image with unknown offset and gain; the third 
column (c) is the ground truth; the fourth column (d) is the restored image.

Comparing the restored image to the ground-truth image, the RMSE of the vineyard 
was in the range of 1.3 °C to 1.4 °C, for the cotton field, 1.5 °C to 1.6 °C, and for the peach 
orchard, 1.7 °C to 1.8 °C, all in an acceptable range.

SR for IR by CNN: preliminary experimental results

The network was initially trained on agricultural images taken at short-range with a low-
cost uncooled thermal camera (Opgal Therm-APP TH). Preliminary results for remotely 
sensed images of palm and oak trees are presented. The images of the palm trees were 
measured horizontally from 200 m by the Therm-App TH (Fig.  9a). Using the CNNSR 
algorithms, the image was processed without any additional training. The CNNSR was 
trained for typical hot backgrounds, such as the ground in the growing season and vegeta-
tion in Israel, and thus to avoid the negative values associated with the sky sub-zero tem-
perature values replaced by zero values before the processing.

For the sake of demonstration, one treetop was chosen as a region of interest (ROI), 
labeled with a red box in Fig.  9a. The ROI and processing results are presented in 
Fig. 9b–d: Fig. 9b is the ROI; Fig. 9c is the × 4 result of the bicubic interpolation of the 
measurement; Fig. 9d is the × 4 CNNSR result. A second preliminary example was the 
image of an oak tree (Fig. 10a). To demonstrate the method, an arbitrary ROI was chosen 
(labeled with a red box). The ROI and processing results are presented in Fig. 10b–d. For 
the sake of simplicity, the figure order is identical to that in Fig. 9.

Fig. 8   Three enlarged peach orchard examples. Columns from left to right: a sharp image with unknown 
offset and gain; b blurred image with unknown offset and gain; c ground-truth image; d restored image. 
Source images were taken with a FLIR A655Sc camera. Ground spatial distance was 35 cm, sub-image area 
is 90.6 × 90.6 m2
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Observing the results in Figs.  9c, d and 10c, d, the CNNSR (9d and 10d) outper-
formed the interpolation (9c and 9d) in that the details are significantly sharper. The 
discontinuity in the tree/sky edges may be treated as a step response. Thus, by differ-
entiating these edges one may evaluate the "smear" kernel representing the bicubic 
and CNNSR restoration sharpness. Investigating the differentiation results on the two 
images (not shown here), the full-width half maximum (FWHM) of the bicubic smear is 
significantly wider, with typical FWHM values of 6 pixels for the bicubic and 4 pixels 
for the CNNSR.

SR for IR by CNN: accuracy analysis

For the sake of a preliminary quantitative evaluation of CNNSR performance on remotely 
sensed agricultural data, 11 remote-sensing images were examined at two magnifications, 
× 2 and × 4. The ground-truth image taken by the FLIR A655Sc was downsampled × 2 
and × 4 fold. The resulting image was considered a low-resolution replica of the original 
image. Using bicubic interpolation and the proposed CNNSR method, the low-resolution 

Fig. 9   Palm trees imaged from 200 m, taken with a Therm-App TH camera. a General view. b ROI in the 
red box in panel (a) contains the top of one of the trees. c 4⨯ result of the bicubic interpolation of the ROI. 
d 4⨯ CNNSR result of the ROI
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image was scaled up. The quality of this upscaling was measured relative to the ground-
truth image, and a detailed account of the PSNR results for the tested examples is pre-
sented in Table 1.

Observing the results on this limited dataset compared to the alternative bicubic inter-
polation shows an advantage of 1.8 db in the PSNR score for the × 2 CNNSR, whereas for 
the × 4 CNNSR, a significant advantage was only seen in the vineyard images.

High resolution is always desirable. However, in agriculture, the aim is not to obtain 
a nice image, but an informative one. Normally, the canopy temperature is much more 
important than the ground temperature. When rows are narrow, it is easy to find clean 
ground pixels to correctly estimate ground resolution, where most of the canopy’s pixels 
are mixed due to the image resolution. In this case, upscaling quality should be evaluated 
in the ROIs containing important information. The results of the vineyard images upscaled 
with CNNSR and bicubic interpolation are presented in Fig. 11.

The ground-truth image (Fig. 11d) was taken from an altitude of 500 m, and downscal-
ing by a factor of 4 mimics imaging from 2 km (Fig. 11a), resulting in highly undersam-
pled rows with a high rate of mixed pixels. Observing the restoration results, while the 

Fig. 10   Oak tree measured from 40 m away taken with a Therm-App TH camera. a General view. b ROI in 
the red box in panel (a), contains part of the tree’s top. c × 4 result of the bicubic interpolation of the meas-
urement. d × 4 CNNSR result
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bicubic interpolation (Fig. 11b) is only roughly capable of restoring the order, the CNNSR 
(Fig. 11c) shows very good restoration of accuracy both overall and locally, in the vineyard 
rows. Figure 11e, f, g and h are zoom-ins of 11a, b, c and d, respectively.

It should be noted that while the PSNR is an acceptable figure of merit for eval-
uating SR algorithm performance when small details are only a minor portion of the 
image, it would be wise to estimate the PSNR locally (Mendelowitz et  al. 2013), that 
is, in a ROI. Moreover, in agricultural monitoring, the accuracy of the measurements of 
some regions is more important than others, i.e., the accuracy in the measurements of 
vine rows (the black rows) is much more important than the accuracy of measuring the 
ground. Note that this applies to all typical row crops. The bicubic interpolation smears 

Table 1   Overall PSNR (db) 
results for CNNSR (SR) vs. 
bicubic interpolation (bic)

PSNR peak signal-to-noise ratio, CNNSR convolution neural network 
super-resolution

× 4 × 2
PSNR_SR PSNR_bic PSNR_SR PSNR_bic Name Crop

35.7 36.4 42.6 40.7 0_full Cotton
33.5 33.8 39.5 37.8 1_full Cotton
30.3 29.2 36.3 34.6 0_full Vineyard
30.6 28.3 34.8 32.9 1_full Vineyard
30.2 29.1 35.7 34.0 2_full Vineyard
29.6 27.7 34.6 33.1 3_full Vineyard
33.3 33.8 40.1 38.4 0_full Peach
28.5 29.4 35.8 33.9 1_full Peach
33.0 33.8 40.3 38.3 2_full Peach
30.0 30.7 36.7 34.9 3_full Peach
31.5 32.2 38.2 36.4 4_full Peach
31.5 31.3 37.7 35.9 Average

Fig. 11   Vineyard image. a Low-resolution image downsampled by a factor of 4. b Bicubic upsampling × 4 
of the low resolution image (a). c Convolution neural network super-resolution (CNNSR) algorithm results 
of processing image (a) by a factor of 4. d Ground-truth image. e Zoomed-in image of (a). f Zoomed-in 
image of (b). g Zoomed-in image of (c). h Zoomed-in image of (d)



Precision Agriculture	

1 3

the results whereas the CNNSR may sharpen them. This difference may be less impor-
tant on average but in a small ROI, such as the red box in Fig. 11h, it can result in a very 
large error in temperature estimation.

To check this, the following numerical experiment was performed. The RMSE temper-
ature was calculated in various areas inside the grapevine row. The vine temperature is 
significantly lower than the ground temperature. Thus, by thresholding the ground-truth 
image between 37.3 and 39.5  °C, a mask of pixels could be created that contained only 
the vine. The number of pixels decreases with temperature. This makes the estimation of 
upscaled performance more sensitive to mixed pixels due to smear caused by the estimator 
(bicubic or CNNSR). Indeed, as pixel numbers decreased, the RMSE of the bicubic inter-
polation increased from 0.3 to 0.85 °C relative to the ground truth. On the other hand, due 
to its sharp response, the RMSE of the CNNSR remained almost constant in the very low 
range of 0.011 °C to 0.038 °C relative to the ground truth, i.e., caused less mixed pixels. 
Similar to the RMSE results, the histogram intersections (H1; Eq. 4) of the two cases were 
compared. The H1 scores of the SR image relative to the ground truth image ranged from 
0.82 to 0.66. The respective range for the bicubic interpolation image relative to the ground 
truth image was from 0.026 to 0.11, which is considerably lower than with the SR method.

To conclude, while CNNSR shows promising results with a better overall average 
PSNR, its potential advantage is even more salient when considering small ROIs.

End‑to‑end combined solution

To observe a field’s spatial variability, image mosaicking is required. In this section, simu-
lation results of an end-to-end algorithmic pipeline are presented, assuming that an aerial 
survey was performed with a low-cost thermal IR camera, along with drift correction, reso-
lution improvement by CNNSR of each frame, and mosaicking of the corrected frames to a 
large mosaicked image of the field.

The mosaicked image, in this case, consisted of 3 strips, each composed of 8 pairs of images 
(Fig. 12). To mimic a high-altitude aerial survey, the images are downsampled by a factor of 2 
from their ground truth. For the sake of mosaicking neighbors, images have 80.4% overlap.

The 24 images were jointly restored for their radiometric value by using the above joint 
estimation (minimization of Eq.  13). The resulting RMSE of the individual image is in 
the range of 1.4 °C to 1.7 °C. It is worth emphasizing that the large overlap between the 
images reduces the mutual information, and thus threatens the joint estimation. This was 
compensated for by enlarging the number of pairs used in the joint estimation from 8 to 24.

The next pipeline step is to double the spatial resolution of the restored images, using 
the CNNSR method. A few examples of the correction of vines’ individual images from 
low resolution and thermal drift to radiometrically corrected with high resolution are pre-
sented in Fig. 13. Note that while the left image is sharp, the right image is sharper due to 
the improved resolution. The right image is also radiometrically corrected.

Following Eq.  (5), mosaicked images were processed. The mosaicked image, com-
posed of the corrected SR images, is presented in Fig. 14. The mosaicked image is con-
tinuous and clear. Compared to the ground-truth data, the RMSE is 0.83 °C. Note that 
the RMSE of the mosaicked image is better than the individual images’ accuracy. This 
improved accuracy may be due to the averaging process embedded in the mosaicking 
process, and the noise-filtration process embedded in the CNNSR (Oz et al. 2020). For 
comparison, a mosaic image composed of the uncorrected low-resolution native images 
is presented in Fig. 15. Here, the averaging process embedded in the mosaicking process 



	 Precision Agriculture

1 3

failed to restore a correct value, resulting in the appearance of coarse squared artifi-
cial boundaries every ~ 25 pixels. By using bicubic interpolation with a factor of 2, the 
mosaic image is upscaled to the size of the ground-truth data. Compared to the ground-
truth data, the RMSE is 8.251 °C, an order of magnitude larger than the result achieved 
with the proposed pipeline.

The accuracy of canopy temperature is critical for monitoring field variability. In previ-
ous work (Cohen et al. 2005; Ben-Gal et al. 2010), temperature differences between healthy 
plants and a stressed plant were shown to be limited to a narrow range of 2–4 °C. Thus, 
in the current example, the corrected data resulted in a sufficient temperature accuracy 
(Fig. 14) whereas the uncorrected data (Fig. 15) are unusable. Moreover, the improvement in 
the spatial resolution enables separating between the different vineyard rows, thus providing 
the capability of managing different zones in the field without the need for low flight height.

Fig. 12   Three strips of images. Each strip is composed of 8 pairs of images along the horizontal direction. 
Each pair includes a sharp and a blurred image. Every two adjacent strips have 80% overlap perpendicular 
to the strip direction. a First strip. b Second strip. c Third strip
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Summary and conclusions

Agricultural crop fields are characterized by spatial variability. This variability needs 
to be monitored for high-resolution and high-accuracy information. Thermal longwave 
IR imaging has proven to be a useful tool for the remote sensing of various stresses in 
crops, mainly water status, in open agricultural fields. For the sake of accuracy, the ther-
mal survey is performed with a high-cost radiometric camera. Resolution is obtained 
at the expense of FOV size. To cover the entire field, a mosaic image is produced, 

Fig. 13   Examples for the overall transformation. The native low-resolution image taken by an IR camera 
suffering from space-variant drift in gain and offset is given in the left column. The resulting image after 
radiometric correction and CNNSR is presented in the right column
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composed of many smaller images taken by aerial survey. The high price and low spa-
tial resolution of radiometric imaging are key technological barriers to the extensive 
implementation of IR remote sensing.

In this work, a three-stage pipeline algorithm relying on two computational imaging 
methods for radiometric image correction and SR methods, followed by a mosaicking 

Fig. 14   Mosaic image composed of SR radiometrically corrected sub-images

Fig. 15   Mosaic image composed of native low-resolution uncorrected images
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stage, was suggested to tackle these barriers. The methods were examined separately 
and in combination on agricultural data.

First, a joint estimation method was used to correct images taken by a thermal camera sub-
jected to unknown drift of offset and gain. Tested on typical datasets from a vineyard, cot-
ton field and peach orchard resulted in restoration of accuracy with RMSE in the range of 
1.3 °C to 1.8 °C, using N = 9 pairs. Accuracy level was improved when the joint estimation 
was expanded to a larger aerial survey composed of 24 pairs of images, which narrowed the 
RMSE range to between 1.4 and 1.7 °C.

Preliminary results of the new CNNSR method were then provided, for the first time, on 
typical remotely sensed IR agricultural data. While not trained for the specific sensor, simula-
tion results showed a promising advantage of the presented method over bicubic interpolation 
in × 2 upscaling, with an average gap of 1.8 db in the PSNR score of the overall image. The 
PSNR tended to be tolerated for the bicubic smear; indeed it was shown that when considering 
a ROI, the RMSE of the CNNSR is minor (0.03 °C); due to the mixed pixels associated with 
the bicubic interpolation, the RMSE was 0.85 °C in the same scenario. Similar results were 
obtained from the analysis of histogram similarity. When compared to the ground-truth data, 
while SR exhibited a minimal similarity of H1 = 0.66, the best similarity of the bicubic inter-
polation was H1 = 0.11. In addition, preliminary experimental results in × 4 upscaling showed 
promising potential for improvement over bicubic interpolation; compared to bicubic restora-
tion, CNNSR showed a typical 50% improvement in restoration sharpness.

Finally, overall conceptual simulation results tied these two approaches, showing the ben-
efits of the overall approach and for the first time, its potential contribution to mosaicking over 
an agricultural field. Results showed promising performance with a minimal RMSE of 0.8 °C 
for the mosaicked image, compared to a RMSE of 8.2 °C for mosaicked images without the 
proposed computational methods. The computational methods and the end-to-end approach 
yielded promising results, which under the discussed conditions, are essential for monitoring 
spatial variability of stress conditions in crops by remote sensing, using a relatively low-cost 
thermal camera from a high altitude.

Future prospects

Future work within the frame of this research might include continued development and train-
ing of the CNNSR method for the remote-sensing task and for other cameras. As concerns the 
joint estimation, a laboratory prototype camera with a controlled and low-hysteresis sequence 
of focus and defocus capabilities is under development. Preliminary results of mosaic images 
composed of SR images are under investigation. Major concerns associated with computation 
complexity and possible requirements are arising from model accuracy when measuring addi-
tional supportive information on the environment. Finally, high-accuracy plant thermography 
could also serve for close-range monitoring of plant growth.
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