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Abstract

Learning causal representations without assumptions is known to be fundamentally impossible,
thus establishing the need for suitable inductive biases. At the same time, the invariance
of causal mechanisms has emerged as a promising principle to address the challenge of
out-of-distribution prediction which machine learning models face. In this work, we explore
this invariance principle as a candidate assumption to achieve identifiability of causal
representations. While invariance has been utilized for inference in settings where the
causal variables are observed, theoretical insights of this principle in the context of causal
representation learning are largely missing. We assay the connection between invariance and
causal representation learning by establishing impossibility results which show that invariance
alone is insufficient to identify latent causal variables. Together with practical considerations,
we use our results to reflect generally on the commonly used notion of identifiability in causal
representation learning and potential adaptations of this goal moving forward.

1 Introduction

Inferring high-level causal variables from low-level measurements is a problem garnering increased attention
in fields interested in understanding epiphenomena that cannot be directly measured and where controlled
experiments are not possible due to practical, economical or ethical considerations, for instance in healthcare
(Johansson et al., 2022), biology (Lopez et al., 2023) or climate science (Tibau et al., 2022). This problem of
causal representation learning (Schölkopf et al., 2021) has been shown to be fundamentally underconstrained
(Locatello et al., 2019), leading to various approaches exploring which assumptions lead to algorithms that
identify the latent causal variables.
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Recent works either restrict the underlying causal model (Buchholz et al., 2024; Lachapelle et al., 2024), the
transformation causal variables undergo (Ahuja et al., 2023; Lachapelle et al., 2023), or both (Squires et al.,
2023). They include interventional or counterfactual data (Ahuja et al., 2023; Zhang et al., 2023; Squires
et al., 2023; Buchholz et al., 2024; Bing et al., 2024; Brehmer et al., 2022), use supervisory signals such as
time structure (Hyvärinen & Morioka, 2017; Hälvä & Hyvärinen, 2020; Yao et al., 2021) or knowledge of
intervention targets (Lippe et al., 2022b;a).

We explore another type of inductive bias for achieving identifiability of causal representations, namely the
invariance of causal mechanisms (Peters et al., 2017). First shown by Haavelmo (1944), causal variables lead
to predictive models that are invariant under interventions, and since causal representation learning is tasked
with recovering precisely these variables, we investigate if and to which degree the principle of invariance can
be used as a signal to recover latent causal variables from observations.

While invariance has been used for causal inference (Peters et al., 2016; Bühlmann, 2018; Meinshausen, 2018),
none of these works considers the setting where we only have access to observations that are related to the
underlying causal variables by some unknown transformation. To the best of our knowledge, we present the
first theoretical results pertaining to the identifiability of causal representations using the invariance principle.

Our contributions are summarized as follows:

• Drawing on the link between distributional robustness and causality, we formalize the setting in
which we study the connection between invariance and causal representation learning.

• We establish impossibility results proving the necessity of additional assumptions to achieve identifia-
bility.

• Based on these impossibility results and practical considerations, we contemplate further constraints
and map out future work towards identifiable algorithms based on invariance.

2 Problem setting

Z1 Z2 Zd

Y

. . . X
gcausal

Figure 1: We consider an SCM with variables
(Z1, . . . , Zd) and Y . Observed variables are
represented by shaded nodes, indicating that
we do not observe (Z1, . . . , Zd), but only their
transformation X = gcausal(Z).

Intuitively, our problem setting can be motivated by consider-
ing the prediction problem with a target Y and observations
X in multiple environments. We assume that there is an un-
derlying causal representation of the observations—denoted
by Z—whose constituents are causes of the prediction target
Y and interact with each other through a structural causal
model (SCM). This representation Z is what we are interested
in finding.

Notation. We denote scalar variables in normal face (x)
and use bold face for vector-valued variables (x). We cap-
italize random variables (Y ), and write the values they take
in lower case (y). Matrices are denoted capitalized and bold
(M) and are explicitly introduced to avoid confusion with
vector-valued random variables. The sequence of integers
from 1 to n is denoted with [n].

Data generating process. Let (Z1, . . . , Zd+1) denote a set of random variables. W.l.o.g. we call Zd+1
the target variable and rename it Y , denoting the remaining d variables with Z = (Z1, . . . , Zd). Assume an
SCM defined over the random vector (Z, Y ) inducing the joint distribution P (Z, Y ) over (Z, Y ). The graph G
induced by this SCM is assumed to be acyclic. Assume Y is not a parent of any Z. Since P (Z, Y ) is induced
by an SCM, it factorizes as

P (Z, Y ) =
d+1∏
i=1

P (Zi | ZPai), (1)

2



Published in Transactions on Machine Learning Research (09/2024)

where Pai ⊂ [d+ 1] \ i denotes the parents of variable Zi. We refer to (Pearl, 2009) for an in-depth definition
of SCMs.

Beyond the additive noise assumption we do not place any parametric constraints on the causal mechanism
of each variable, i.e. each structural equation can be written as Zi := fi(ZPai

) + εi, where εi with i ∈ [d+ 1]
denote the exogenous, independent noise terms, which are assumed to have zero mean. Since the causal
mechanism of the target Y is of particular interest in a predictive setting, we denote it with fcausal := fd+1.

We do not directly measure Z and only assume to observe X ∈ Rp, where X = gcausal(Z) is a transformation of
the causal variables Z by the injective, deterministic (and potentially nonlinear) function gcausal. We assume
p ≥ d. Notice that Y is not transformed by gcausal; we assume that the target variable is directly observed.
The set of observed variables is therefore denoted by (X, Y ). Fig. 1 depicts a graphical representation of this
data generating process.

We assume to observe (X, Y ) across multiple environments, where subsets S ⊆ [d] of the underlying latent
variables Z have undergone an intervention in each environment. We model interventions with do-interventions
(Pearl, 2009) (also called hard interventions), which set the structural equations of the variables that are
targeted by an intervention to constant values, allowing us to write

Zj := aj for j ∈ S, (2)

where a ∈ R|S|. Each intervention on the subset of variables S with value a induces a new distribution over
(Z, Y ) which, following the notation introduced by Meinshausen (2018), is denoted by P

(do)
a,S . We assume

Y is never among the set of intervention targets and the mixing function gcausal does not change between
environments.

Objective. Although we explicitly define a target variable, we stress that our main goal is not to learn a
good predictive model of Y , but rather to recover the latent variables Z, i.e. we focus on the representation
learning aspect of the setting described above. Our aim is to probe how the auxiliary task of predicting Y
from transformations of latent variables in multiple environments can help in recovering the unobserved causal
variables. Our formal objective is to invert the mixing function gcausal in order to recover the latent variables
Z from observations X. Since latent variables that are equal to the ground truth up to permutation and
element-wise rescaling can give rise to the same observations X (Zhang et al., 2023), we define an equivalence
relation over this class of latents. Consequently, we define recovering the latent causal variables up to this
equivalence as our notion of identifiability. Equivalent representations are referred to as causally disentangled.
Definition 1 (Causally Disentangled Representations, Khemakhem et al. (2020); Lachapelle et al. (2022)).
A learned representation Ẑ is causally disentangled w.r.t. the ground truth representation Z if there exists an
invertible diagonal matrix D and a permutation matrix P s.t. Ẑ = DPZ almost surely.

3 Invariance for causal structure learning

The connection between (predictive) invariance and causality is long established: Haavelmo (1944) was the
first to formalize that a model which predicts a target from its direct causes is invariant under interventions
on any other covariates of the system. In the language of SCMs this means that the conditional distribution
P (Y |ZPaY

) remains invariant under any interventions on Z. This principle is also referred to as autonomy
(Aldrich, 1989), modularity (Pearl, 2009) and independence of cause and mechanism (Peters et al., 2017).

More recently, the opposite direction has been explored, namely how invariance can be leveraged as a signal to
infer causal structures and mechanisms. Peters et al. (2016) pioneered this approach by exploiting the principle
of invariance of causal mechanisms to infer the direct causes of a target Y , assuming direct observations of
the causal variables Z. A particularly interesting line of works draws a connection between distributional
robustness and causality (Meinshausen, 2018; Bühlmann, 2018; Rojas-Carulla et al., 2018) by considering the
problem

min
f

sup
Q∈Q

E(Z,Y )∼Q

[
(Y − f(Z))2]

, (3)
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where Q denotes some set of interventional distributions. Christiansen et al. (2022) investigate under which
choices of Q the function fcausal remains a solution and Meinshausen (2018) (see also Rojas-Carulla et al.
(2018)) states that fcausal is the unique solution to this problem when fcausal is linear and Q is the set of
interventions on all variables except Y , with arbitrary strength. None of the mentioned works consider
settings where Z is latent.

As a first step towards our main theoretical findings, we extend the results of Meinshausen (2018) by showing
that the causal mechanism of the target fcausal is the unique solution to Eq. (3) for general nonlinear fcausal
(with additive noise) when the set of interventions Q contains interventions on all covariates Z, or on all
subsets of covariates Z. Assuming interventions on all variables or all subsets of variables in Z can be
understood as a diversity condition on the observed environments.
Lemma 1. Assume the general SCM presented in Section 2 as the data generating process and consider the
robust optimization problem described by Eq. (3). Let Q(do) :=

{
P

(do)
a,[d] ; a ∈ Rd

}
, i.e. the set of distributions

resulting from do-interventions on all variables, except Y , with arbitrary strength. Then, the causal mechanism
of the target Y , fcausal, is the unique optimizer of Eq. (3), i.e.

fcausal = arg min
f

sup
Q∈Q(do)

E(Z,Y )∼Q

[
(Y − f(Z))2]

.

The same results holds true if one replaces Q(do) with the set of all do-interventions Q′(do) on all possible
subsets of variables, except Y , with arbitrary strength.

Proof. Suppose that f ̸= fcausal, which implies that there exists at least one z = (z1, . . . , zd) such that
f(z) ̸= fcausal(z). Now, consider the decomposition of the objective

EQ

[
(Y − f(Z))2]

= EQ

[
(fcausal(Z) − f(Z) + εY )2]

= EQ

[
(fcausal(Z) − f(Z))2]

+ EQ

[
ε2

Y

]
+ 2EQ

[(
fcausal(Z) − f(Z)

)
εY

]
.

(4)

For any interventional distribution Q ∈ Q(do) we notice

2EQ

[
(fcausal(Z) − f(Z))εY

]
= 2(fcausal(a) − f(a))EQ

[
εY

]
= 0,

i.e. the last term in the decomposition in Eq. (4) vanishes. Here we used that εY has expectation zero. Next,
we focus on the first term in the decomposition. We want to find an interventional distribution Q s.t.

EQ

[
(fcausal(Z) − f(Z))2]

> 0.

To do so, we simply choose a such that fcausal(a) ̸= f(a). We know such a choice of a exists since fcausal and
f are not equal by assumption. For this particular intervention we have

EQ

[
(fcausal(Z) − f(Z))2]

= EQ

[
(fcausal(a) − f(a))2]

= (fcausal(a) − f(a))2 > 0.

Thus,

EQ[(Y − f(Z))2] > EQ[ε2
Y ] = V ar(εY ),

for any Q ∈ Q(do). Therefore, the supremum over Q(do) of the l.h.s. of Eq. (4), and since Q(do) ⊆ Q′(do), the
supremum over Q′(do) is also strictly larger than V ar(εY ). In contrast, for fcausal = f and any Q ∈ Q′(do),

EQ[(Y − f(Z))2] = EQ[ε2
Y ] = V ar(εY ),

which thus also holds for the supremum over Q(do) and the supremum over Q′(do), and we conclude that
fcausal is the unique optimizer of Eq. (3).

As we are interested in establishing identifiability results, this uniqueness result provides a potentially fruitful
starting point: if the unique solution to this optimization problem is related to the underlying causal model,
perhaps we can introduce an adaptation of it that yields the causal representation as the unique solution.
Notice that Lemma 1 assumes direct access to the variables Z, while our problem setting of interest is
characterized by the central assumption of only observing transformations X = gcausal(Z) of the underlying
causal variables. We investigate the implications of this transformation in the next section.
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4 Invariance for causal representation learning

To finally arrive at the problem setting we are interested in, we introduce the representation function g to
the optimization problem presented in Eq. (3), recalling that X = gcausal(Z). Now, consider the extended
problem

min
f,g

sup
Q∈Q

E(Z,Y )∼Q

[(
Y − f(g−1(X))

)2
]
. (5)

Notice that the expectation is still taken over the joint distribution of (Z, Y ), i.e. the different environments
which we consider still arise from interventions on the underlying latent variables Z.

If solving Eq. (3) allows us to uniquely recover fcausal, can solving the extended problem in Eq. (5) allow us
to draw similar conclusions about gcausal?

4.1 Causal mechanism and representation are jointly unique

As a first uniqueness result, we show that the joint function composed of the causal mechanism fcausal and
the inverse of the ground-truth representation function g−1

causal is the unique solution to Eq. (5).
Lemma 2. Assume the data generating process in Section 2 and consider the optimization problem described
in Eq. (5). Let Q(do) :=

{
P

(do)
a,[d] ; a ∈ Rd

}
, i.e. the set of do-interventions on all underlying variables Z, except

Y , with arbitrary strength. Define h := f ◦ g−1 : Rp → R and let Im(·) denote the image of a function. Then,
the composed function hcausal := (fcausal ◦ g−1

causal) is the unique optimizer of Eq. (5) on Im(gcausal), i.e.

hcausal = (fcausal ◦ g−1
causal) ∈ arg min

h
sup

Q∈Q(do)
E(Z,Y )∼Q

[
(Y − h(X))2]

,

and any other minimizer h′ satisfies h′ = hcausal on Im(gcausal).

The same results holds true if one replaces Q(do) with the set of all do-interventions Q′(do) on all possible
subsets of variables, except Y , with arbitrary strength.

To prove Lemma 2, we need to find a b ∈ Rp s.t. h(b) ̸= hcausal(b). Notice that hcausal takes as argument
X = gcausal(Z) while we can only intervene directly on Z. Thus, we can only find b ∈ Im(gcausal) and
consequently the statement h(b) ̸= hcausal(b) only holds on the image of gcausal. Taking this into account,
the proof (presented in Appendix A) follows the same structure as the proof of Lemma 1.

4.2 Overparametrization of the unconstrained setting

While the uniqueness result of Lemma 2 regarding the composed function (fcausal ◦ g−1
causal) is a first promising

direction in relating the solution of a distributional robustness problem to inverting the representation function
gcausal, we quickly see that this uniqueness result does not yet constrain the individual components f and g
of the solution enough.
Theorem 1. Consider the data generation process presented in Section 2. Without additional assumptions,
the distributional robustness problem described by Eq. (5) does not suffice to identify the underlying causal
variables up to the equivalence class detailed in Definition 1.

Proof. While (fcausal ◦g−1
causal) has been shown to be the unique solution to the optimization problem described

by Eq. (5), this does not directly imply the respective uniqueness of its components f and g. To see this,
consider any invertible map Ψ : Rd → Rd and write

fcausal ◦ g−1
causal = fcausal ◦ Ψ−1︸ ︷︷ ︸

:=f̂

◦ Ψ ◦ g−1
causal︸ ︷︷ ︸

:=ĝ−1

.

Thus, the tuple (f̂ , ĝ) with f̂ := fcausal ◦ Ψ−1 and ĝ−1 := Ψ ◦ g−1
causal also gives rise to the solution hcausal =

fcausal ◦ g−1
causal = f̂ ◦ ĝ−1 of Eq. (5).
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Our goal is to recover g−1
causal up to the equivalence class described in Definition 1, but we see that ĝ−1 =

Ψ◦g−1
causal is a solution to our considered problem, where Ψ can be any invertible transformation. We therefore

conclude that our considered problem setting is underconstrained and we cannot identify g−1
causal without

additional assumptions.

This result is unsurprising, given that we add a degree of freedom to the original problem in Eq. (3), in the
form of the function g, without adding further constraints. As a result our problem becomes overparametrized
and we can no longer uniquely recover both functions fcausal and gcausal.

Note that if our goal is to find a predictive model that maps observations X to a target Y , which is robust to
distribution shifts, this impossibility result is not an issue, since only the composition (f ◦ g−1) matters to
solve Eq. (5). Similar findings are shown in (Arjovsky et al., 2020), underlining that predicting optimally
under distribution shift does not require the causal representation.

4.3 Necessity of additional assumptions

So far, we have not imposed any parametric constraints on fcausal or gcausal. The impossibility result described
in Theorem 1 however implies that we require further assumptions to make progress towards identifying
the latent causal variables. Since we want our results to hold for general gcausal, we refrain from beginning
with assumptions on the representation function. Rather, we will investigate how parametric assumptions on
fcausal may be used to constrain class of functions g that solve Eq. (5).

Notice that the functions that solve Eq. (5), f̂ = fcausal ◦ Ψ−1 and ĝ−1 = Ψ ◦ g−1
causal, cannot be chosen

independently of each other, but are connected via the map Ψ. This connection motivates our reasoning
behind constraining fcausal: for certain parametric choices of fcausal (and accordingly f̂) perhaps only a
constrained set of maps Ψ admits a solution to Eq. (5). If this is the case and we effectively constrain Ψ, we
might be able to find a constraint on fcausal such that only transformations of the form Ψ = DP, where D is
a diagonal matrix and P is a permutation matrix, which would result in recovering the causally disentangled
ĝ−1 = DPg−1

causal, according to Definition 1.

Linear causal mechanism. A first natural assumption to impose is linearity of fcausal, and correspondingly
of f̂ , in the hopes of constraining Ψ to be a linear invertible map. This would allow us to make substantial
progress towards recovering the causal variables up to permutation and rescaling, by first recovering the
ground truth representation up to linear equivalence and then employing tactics to undo this linear mixing,
following a common approach in causal representation learning (Ahuja et al., 2023; Zhang et al., 2023;
Lachapelle et al., 2023).

We explore the implications of assuming linearity of fcausal with an illustrative example. Assume Y :=
θ1Z1 + θ2Z2 + εY , i.e. the two variable case where d = 2. Since we assume fcausal to be linear, we also
constrain the search space of f̂ to the class of linear functions. Recall that f̂ := fcausal ◦ Ψ−1. Does the
assumed linearity of f̂ and fcausal now constrain Ψ to also be a linear map? Writing out

f̂ = fcausal ◦ Ψ−1 = θ1ψ
−1
1 + θ2ψ

−1
2 ,

where ψ−1
i denotes the ith component of Ψ−1, we see that e.g. by choosing θ1 = 1, θ2 = 0 only ψ−1

1 is
constrained to be linear, while ψ−1

2 remains wholly unconstrained. We generalize this result to arbitrary
choices of θ in the following theorem.
Theorem 2. Assume that Z,X, Y, fcausal, gcausal follow the definitions in Section 2 with d ≥ 2 and that
additionally 0 ̸= fcausal : Rd → R is a linear function. Then, there exists an invertible nonlinear function
Ψ : Rd → Rd such that f̂ = fcausal ◦ Ψ is linear. Moreover, this function Ψ is not unique and can be chosen
arbitrarily (that is, only constrained to be invertible) on a d− 1-dimensional subspace of Rd. In particular,
the tuple (f̂ , ĝ) with ĝ := gcausal ◦ Ψ gives rise to the solution hcausal of Eq. (5) in that hcausal = f̂ ◦ ĝ−1.

Proof. We begin with an example which will later be generalized. Our goal is to elucidate if assuming f̂
and fcausal to be linear functions necessarily constrains Ψ to be a linear map, where f̂ := fcausal ◦ Ψ−1. We
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write fcausal(z) = θT z, where θ ∈ Rd and consider the case where θ = (1, 0, . . . , 0)T . Consider any arbitrary
invertible map Ψ : Rd → Rd with components ψi. We now write f̂ as

f̂ = fcausal ◦ Ψ−1 = θ1ψ
−1
1 + · · · + θdψ

−1
d = ψ−1

1 .

For this particular choice of θ, constraining f̂ to be linear amounts to constraining ψ−1
1 to be linear, while

the other components ψ−1
i ; i ∈ [d] \ {1} are not constrained at all and can be chosen arbitratrily as long as Ψ

remains invertible. For example, the map Ψ(z) = (z1, z
3
2 , . . . , z

3
d) does the job.

For a general choice of θ we can always find an orthonormal transformation A : Rd → Rd that maps
(θ1, . . . , θd)T 7→ (1, 0, . . . , 0)T . Consider a nonlinear map Ψ0 for the initial case θ = (1, 0, . . . , 0)T , whose first
component is linear. Define Ψ := AT ◦ Ψ0 which remains nonlinear. We can now write

f̂(z) := (fcausal ◦ Ψ) (z) = θT
(
AT Ψ0(z)

)
= (Aθ)T Ψ0(z) = (1, 0, . . . , 0)T Ψ0(z)

Thus f̂ is linear while Ψ was only constrained to be linear in its first component.

Through the generalized counterexample presented in the proof of Theorem 2, we see that the linearity
requirement on fcausal ◦ Ψ−1 only constrains one dimension of Ψ, namely the one orthogonal to the kernel of
fcausal. We would need one such constraint for each dimension of Ψ—possibly by assuming dim(Y ) ≥ d as in
(Lachapelle et al., 2023)—in order to draw the desired linearity conclusion.

Unfortunately, the—arguably strong—assumptions presented in this section still do not suffice to recover
gcausal up to the desired equivalence class. In the following sections, we delineate possible steps forward, both
in light of the presented impossibility results, as well as practical considerations.

4.4 Practical considerations

In the preceding sections we have shown the impossibility of learning causal representations by means of
exploiting invariance, even if we consider strong parametric assumptions and an idealized setting with infinite
data and perfect optimization. While these assumptions are commonplace in theoretical studies, we would
like to draw particular focus to the assumption of observing all possible interventions.

The minimax problem in Lemma 1, which is the starting point of our analysis, considers the supremum over
all possible interventions, i.e. all possible targets with arbitrary strength. This amounts to observing infinitely
many interventional environments, which is clearly not possible in any practical scenario. Rather, one would
have access to a finite number of environments during training, over which we formulate our invariance
condition in hopes of generalizing to unseen environments.

Training a model on finite support, i.e. on a finite number of environments, and generalizing outside of this
support amounts to extrapolation. As Christiansen et al. (2022) show, learning such extrapolating nonlinear
functions from data with bounded support necessarily requires strong assumptions on the function class. If
we do not constrain gcausal, even if fcausal is linear, the function fcausal ◦ g−1

causal, that should generalize in the
aforementioned sense, is still generally nonlinear.

If, for the sake of argument, we assume invariance as an inductive bias leads to identifiability of the underlying
causal variables, we would still remain with the fundamental issue of learning such representations from finite
datasets in practice. Beyond the theoretical limitations of exploiting invariance as a learning signal for causal
representation learning, we are also left with the aforementioned practical ones. This gives additional weight
to the conclusion that the problem setting considered in this work is highly challenging. We reflect these
challenges in light of potential steps forward in the following, final section.

5 Discussion

Given the theoretical impossibility results outlined in Sections 4.2 and 4.3 along with the practical limitations
of learning nonlinear functions that generalize outside of the training data detailed in Section 4.4, the
framework of utilizing invariance as a learning signal for causal representations displays an apparent mismatch
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between assumptions and the defined goal of identifiability. This misalignment compels us to reconsider either
the assumptions we start from, or the goal we aim to ultimately reach. In the following we discuss both.

Assumptions. There is ample evidence that establishing theoretical results in the context of distributional
robustness problems in conjunction with representation learning and out-of-distribution prediction hinges on
some type of linearity assumption (Peters et al., 2016; Arjovsky et al., 2020; Rosenfeld et al., 2020; Krueger
et al., 2021; Eastwood et al., 2022; Lachapelle et al., 2023). As we outline in Section 4.4, assuming linearity
of fcausal alone does not suffice, but perhaps additionally assuming a linear mixing function gcausal may be
sufficient for identifiability. While directly assuming linearity of gcausal is a strong assumption, we argue that
such a setting still bears practical merit. A number of works yield linearly mixed representations (Roeder
et al., 2021; Ahuja et al., 2023; Lachapelle et al., 2023; Saengkyongam et al., 2023), any of which can serve as
the starting point for a method that considers linear mixing functions.

We stress however, that assuming linearity of gcausal does not directly lead to identifiability of the latent
variables, as this does not alleviate the invariance of the solution of Eq. (5) to reparametrizations by an
invertible map Ψ. Such a linear setting might allow us to utilize ideas from other works that also deal with
linear mixing of the causal variables (Zhang et al., 2023; Squires et al., 2023; Buchholz et al., 2024; Varıcı
et al., 2023; Lachapelle et al., 2023). Which role invariance still plays in this setting can be questioned, since
these works all show identifiability of the causal variables without the enforcement of any kind of predictive
robustness. E.g., by assuming dim(Y ) ≥ d one could directly use the results of Lachapelle et al. (2023)
to achieve identifiability, albeit without exploiting any kind of invariance or interventional data, which is
the core motivation of this study. We speculate that invariance doesn’t hurt in these settings, but it is not
immediately clear how it helps, either.

Identifiability. Besides discussing additional, stronger assumptions, the alternative takeaway from the
results presented in this work is to reflect more broadly on the goal we have set out to accomplish. With
some exceptions, element-wise identification of unobserved causal variables is the shared goal of any causal
representation learning approach. While this notion of identifiability provides a common framework, it should
not be viewed as purely self-serving. Causal representation learning is motivated by the promise of combining
the merits of classical causal inference and modern machine learning, in order to overcome some of their
respective shortcomings (Schölkopf et al., 2021).

One of the main hopes rested on causal representations is that they might lead to more robust machine
learning algorithms by virtue of the invariance property inherent to causal models (cf. Section 3). This work
explored if this expected property can be made explicit as a learning signal to obtain causal representations
from observed mixtures. As we have shown, even in the presence of strong assumptions, invariance as an
inductive bias does not lead to identifiability of the causal variables in the commonly understood sense.
Fundamentally, this is due to the fact that other representations, in addition to the causal one, allow for
the formulation of an invariant predictor. If we propose to use causal representations to obtain predictive
robustness in the first place, this begs the question if weaker notions of identifiability than the element-wise
definition used in this work suffice for practical reasons.

First works make the idea of weaker notions of identifiabiliy explicit, such as Lachapelle et al. (2022; 2024),
or Saengkyongam et al. (2023) who show downstream advantages such as learning the effect of interventions
that extrapolate beyond the support of the training data, even when the underlying representation is only
identified up to affine transformations. Bühlmann (2018) even proposes an alternative view which suggests to
define models that exhibit predictive invariance as causal. Weaker notions of identifiability exist, such as
partial disentanglement introduced by Lachapelle et al. (2024), but we can also think about relaxing our
definition of invariance. Starting from weaker notions of invariance that don’t hold globally, but only within
some region around the training support, such as those described by Rothenhäusler et al. (2021), might allow
us to move towards a more pragmatic understanding of identifiability.

5.1 Conclusion

We have presented a theoretical investigation into the potential of predictive invariance, characteristic to
causal models, as a signal for representation learning. We proposed a formal framework that allows us
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to approach this question and provide first impossibility results demarcating the strength of necessary
assumptions towards identifiability. Additionally, we point out practical learning issues that compound the
theoretical difficulties we establish before. Given these theoretical and practical challenges, we end with a
discussion reflecting on the mismatch between the assumptions and inductive biases we have chosen and the
common notion of identifiability in causal representation learning. Beyond ever stronger assumptions, that
must always be justified, we propose to consider less stringent notions of identifiability that still provide
downstream advantages, while potentially being more permissive in attaining in practice.
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A Proof of Lemma 2

Lemma 2. Assume the data generating process in Section 2 and consider the optimization problem described
in Eq. (5). Let Q(do) :=

{
P

(do)
a,[d] ; a ∈ Rd

}
, i.e. the set of do-interventions on all underlying variables Z, except

Y , with arbitrary strength. Define h := f ◦ g−1 : Rp → R and let Im(·) denote the image of a function. Then,
the composed function hcausal := (fcausal ◦ g−1

causal) is the unique optimizer of Eq. (5) on Im(gcausal), i.e.

hcausal = (fcausal ◦ g−1
causal) ∈ arg min

h
sup

Q∈Q(do)
E(Z,Y )∼Q

[
(Y − h(X))2]

,

and any other minimizer h′ satisfies h′ = hcausal on Im(gcausal).

The same results holds true if one replaces Q(do) with the set of all do-interventions Q′(do) on all possible
subsets of variables, except Y , with arbitrary strength.

Proof. This proof largely follows the proof of Lemma 1.

Consider the decomposition of the objective

EQ

[(
Y − h(X))2]

=EQ

[
(Y − h(gcausal(Z))

)2]
=EQ

[(
fcausal(Z) − h(gcausal(Z)) + εY

)2]
=EQ

[(
fcausal(Z) − h(gcausal(Z))

)2]
+ EQ

[
ε2

Y

]
+ 2EQ

[(
fcausal(Z) − h(gcausal(Z))

)
εY

]
.

(6)

Again, for any interventional distribution Q ∈ Q(do) we see that

2EQ

[
(fcausal(Z) − h(gcausal(Z)))εY

]
= 2(fcausal(a) − h(gcausal(a)))EQ

[
εY

]
= 0,

where we use the fact that εY has mean zero. Hence, for any choice of h the supremum of the l.h.s. of Eq. (6)
is always larger or equal to EQ[ε2

Y ] = V ar(εY ). Since Q(do) ⊆ Q′(do), the supremum over Q′(do) of the l.h.s.
of Eq. (6) is also larger or equal to V ar(εY ).

Focusing our attention on the first term of the decomposition presented above, suppose h ̸= hcausal, i.e. there
exists a choice of b s.t. h(b) ̸= hcausal(b). Recall that h takes X as its argument, but we cannot directly
intervene on X = gcausal(Z), only on Z.

Therefore, assume b ∈ Im(gcausal) and consider an interventional distribution Q ∈ Q(do) where we choose a
s.t. b = gcausal(a). Then

EQ

[(
fcausal(Z) − h(gcausal(Z))

)2]
= EQ

[(
fcausal(a) − h(b)

)2]
= EQ

[(
hcausal(gcausal(a)) − h(b)

)2]
= EQ

[(
hcausal(b) − h(b)

)2]
> 0,

where we used fcausal = hcausal ◦ gcausal in the second line. Again, since Q(do) ⊆ Q′(do) the same statement
holds for any Q ∈ Q′(do).

Conversely, for any function h that coincides with hcausal on Im(gcausal) the inequality above becomes an
equality with zero, rendering any such function an optimizer for the considered problem.

B Detailed related work

Invariance, distributional robustness and causality. As detailed in the main text, the principle of
invariance is closely linked to ideas from causality. The first work that proposed to use this invariance principle
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to learn causal structures from data—and kicked off a range of subsequent works—was Invariant Causal
Prediction (ICP) by Peters et al. (2016), where the fact that a predictive model conditioned on all parents of
a target Y is invariant under interventions is used to find the parents of said target. Pfister et al. (2019)
show the merit of using invariance as a signal for selecting robust prediction models for real-world biological
data. Magliacane et al. (2018) utilize invariance and the Joint Causal Inference framework (Mooij et al.,
2020) to find features that lead to transferable predictions across contexts, without relying on knowledge
of the causal graph or specific types of interventions. Bühlmann (2018) and Meinshausen (2018) connect
causality and distributional robustness and propose an alternative view where causal structures and models
are defined as those that induce invariance. In Anchor Regression, Rothenhäusler et al. (2021) propose a
regression model that solves a distributional robustness problem by enforcing invariance to a specific type of
shift interventions. Christiansen et al. (2022) characterize various distributional robustness problems, thereby
investigating the influence of the functional class of the prediction model and whether interventions extend
the support of training data.

OOD generalization. Distributional robustness problems such as Eqs. (3) and (5) are closely related
to out-of-distribution (OOD) generalization in machine learning. Rojas-Carulla et al. (2018) show that
predictors that use the direct causes of a target are optimal for certain OOD problem settings. Another line
of works, Risk Extrapolation (REx) (Krueger et al., 2021) and Quantile Risk Minimization (QRM) (Eastwood
et al., 2022), assume a slightly different type of invariance, namely that of the risk R := E[ℓ(Y,X)], where ℓ
is some loss function. REx proposes to extrapolate the convex hull of risks encountered in training to achieve
robustness in test time. QRM also posits invariance of risks, but assumes a probabilistic point of view and
aims not to find worst-case predictors, but those that perform well with high probability. Under additonal
technical assumptions, both approaches prove that they can recover the causes of a target Y in a linear SCM,
if all causal variables are directly observed.

Invariant Risk Minimization (IRM) (Arjovsky et al., 2020) is another approach to OOD generalization,
specifically geared towards formalizing this problem in the context of machine learning. As such, the
authors consider a similar setting to ours, where we assume some underlying latent variables that permit the
formulation of an invariant predictor, together with a function that maps these latents to the observations
we have access to. IRM however is not interested in representation learning, as we are, but is solely aimed
at learning invariant prediction models. Beyond showing, for the linear case, that IRM can separate the
part of the representation that permits an invariant predictor from those parts that do not, the authors do
not provide theoretical results pertaining to the identification of the underlying variables. For the nonlinear
setting, follow up works have demonstrated that IRM is ill-equipped at learning predictors that perform
OOD generalization (Kamath et al., 2021; Rosenfeld et al., 2020), echoing the considerations we bring forth
in Section 4.4.

Causal representation learning. Initiated by the famous impossibility result of nonlinear independent
component analysis (ICA) (Hyvärinen & Pajunen, 1999), unsupervised representation learning has been shown
to be too underconstrained to be solved without additional inductive biases (Locatello et al., 2019). Later
works on the identifiability of ICA problems have been able to overcome this initial obstacle by exploiting
various types of auxiliary assumptions (Ilin & Honkela, 2004; Hälvä & Hyvärinen, 2020; Gresele et al., 2021;
Buchholz et al., 2022; Lachapelle et al., 2022; Morioka & Hyvärinen, 2023), and more recent works in causal
representation have followed this example, too. Often, the assumption of heterogeneity of the observed
data distribution is made, e.g. arising from counterfactual pairs (Brehmer et al., 2022) or interventions,
specifically hard do-interventions as in (Ahuja et al., 2023) or soft interventions as in (Zhang et al., 2023; Liu
et al., 2022; 2023). Other approaches shift their focus to the mixing function that transforms the underlying
causal variables, with one family of works focusing on how to deal with linear mixtures. Squires et al. (2023)
consider linear mixtures of linear SCMs, Buchholz et al. (2024) generalize this result to nonparametric SCMs,
and Varıcı et al. (2023) focus on learning the representation of linear mixtures of causal variables via a
score based approach. Alternatively, some works look to exploit temporal structures, such as Lippe et al.
(2022b;a; 2023) who use knowledge of interventions to achieve identifiability, Yao et al. (2021; 2022) who
exploit nonstationarity or Lachapelle et al. (2024) who use an assumption about the sparsity of the SCM
that generates the data.
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Another approach that exploits a specific sparsity assumption is given by Lachapelle et al. (2023). Similar
to our setting, the synergy of representation learning with a prediction problem is explored. Instead of
considering interventions that induce heterogeneity in the data, this framework assumes multiple prediction
tasks where a single, underlying representation contains the potential predictors for each individual task. This
setting alone only suffices to recover the latent variables up to linear mixing, but by imposing an additional
sparsity constraint, the latents are shown to be causally disentangled (cf. Definition 1).

Works considering latent DAG structure learning are also in spirit related to our setting, as they commonly
assume to observe at least some nodes within the graph they aim to learn, similar to how we assume
observations of the target Y . The main assumption for most works in this setting is the pure children
assumption (Silva et al., 2006), or some variation thereof. This assumption postulates that all observed
variables have only a single latent variable as a parent. Cai et al. (2019) deal with linearly transformed latent
variables that have two pure children, subsequently generalized by Xie et al. (2020) to permit more than two
pure children per latent in the form of the so-called Generalized Independent Noise condition. The same
authors’ later work further generalizes this setting to facilitate the learning of hierarchical latent variable
models (Xie et al., 2022). While our approach also assumes the observation of an effect of the underlying
SCM in the form of Y , the main difference to the aforementioned works lies in the modelling choice of the
remaining observed variables, X. In our case, we consider X to come from an injective transformation of
the underlying variables Z, and therefore not to be causal variables of any SCM directly, while the methods
mentioned above consider all observed variables X to be part of the underlying, latent SCM and consequently
model their relation to the latent variables Z in terms of surjective causal mechanisms. Given this difference,
we do not require assumptions on the mechanism of Y similar to those in (Xie et al., 2020) and related works
pertaining to the number of observed children of latents Z or the linearity of the transform that yields X.
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