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Abstract

Visual In-Context Learning (ICL) has emerged as a promising paradigm for constructing
vision generalists by conditioning on prompt pairs. Existing visual ICL methods typically
adopt a grid-like prompt-query construction combined with Masked Image Modeling (MIM)
as the training strategy. However, directly applying these frameworks to medical imaging
tasks often leads to suboptimal performance. Moreover, the reliance on MIM restricts the
backbone to Vision Transformer (ViT) and introduces unnecessary computational over-
head due to the need to reconstruct the prompt label. In this work, we revisit previous
visual ICL paradigms for medical imaging and propose a training-inference aligned masking
strategy to replace MIM. We further introduce a Retrieve-and-Propagate (RandP) module
to enhance prompt-query fusion under this masking scheme. Experimental results show
that our RandP visual ICL framework not only doubles the inference speed compared to
prior visual ICL baselines but also achieves superior performance across multiple medical
imaging tasks. Furthermore, unlike previous approaches constrained to vanilla ViT, our
framework is compatible with U-Net-style architectures, enabling broader applicability and
improved effectiveness in the medical imaging domain. Our code will be available after the
paper is accepted.
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1. Introduction

Accurate medical image analysis is crucial for diagnosing various diseases (Zhou et al., 2021).
With the advancement of deep learning techniques, many tasks in medical image analysis,
such as classification (Yue and Li, 2024), detection (Li et al., 2022a), segmentation (Ron-
neberger et al., 2015), restoration (Yang et al., 2024), reconstruction (Wang et al., 2019),
registration (Balakrishnan et al., 2019) and report generation (Wu et al., 2022), have made
substantial progress. However, most studies concentrate on specific visual tasks, anatom-
ical regions, and image modalities, developing specialized network architectures, training
methods, and techniques tailored to these tasks. Consequently, these models often lack
generalizability across different medical imaging tasks.

Recent research has also demonstrated the efficacy of ICL in vision-language tasks (Zhou
et al., 2024). In the medical domain, GPT-4V (OpenAlI et al., 2024) has achieved impres-
sive results: using few-shot in-context learning, it has matched or even surpassed the per-
formance of expert-designed convolutional neural networks (CNNs) on various pathology
classification tasks, such as colorectal tissue typing, polyp subtype identification, and lymph
node metastasis detection, with as few as 1-10 exemplars (Ferber et al., 2024). Comparable
success has been observed in COVID-19 chest X-ray classification and tauopathy recogni-
tion tasks (Chen et al., 2023). These findings underscore GPT-4V’s capabilities in one-shot
generalization, interpretability, and reduced annotation burden in biomedical imaging (Wu
et al., 2023). However, these methods focus on sparse prediction tasks (e.g., classifica-
tion, Visual Question Answering), rather than dense prediction tasks (e.g., segmentation,
denoising).

Given the demonstrated effectiveness of ICL in both natural language processing (NLP)
and vision-language domains for sparse prediction tasks, a natural and compelling question
arises: Can the in-context learning paradigm be effectively extended to dense
prediction tasks in computer vision, particularly in the field of medical imaging?

In the field of natural images, the answer is yes. Pioneering studies have explored visual
In-Context Learning (vICL) for dense prediction tasks and achieved encouraging results.
For instance, MAE-VQGAN (Bar et al., 2022) formulates vICL as an image inpainting
task by concatenating prompt-query pairs and employing a random masking strategy (He
et al., 2022) to predict the discrete visual tokens (Esser et al., 2021) corresponding to
the masked patches. This framework enables the model to perform various visual tasks
by conditioning on different prompts. Similarly, Painter (Wang et al., 2023) adopts a
simpler Masked Image Modeling (MIM) approach (Xie et al., 2022), directly regressing
pixel values in the image space. MVG (Ren et al., 2024) extends Painter to the medical
imaging domain, adopting a hybrid training scheme that combines autoregressive training
with MIM. However, the distinct properties of medical images limit the effectiveness of
directly adopting natural image vICL methods, revealing a critical yet underexplored need
for domain-specific frameworks.

In this study, we identify key limitations of existing visual in-context learning models
in medical imaging, such as ineffective masking strategies, rigid backbone, and
high computational overhead. To address these challenges, we adopt a novel training-
inference aligned masking strategy along with a Retrieve-and-Propagate (RandP) module,
both of which enhance prompt-query interaction and simultaneously reduce the number
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Figure 1: lustration of different visual ICL mask strategies during training. Gray patches
indicate masked areas.

of visual tokens, which in turn improves model efficiency and performance. Unlike prior
MIM-based vICL methods that are tied with ViT backbone, our framework generalizes to
convolutional networks and other non-transformer designs, enabling broader applicability
to dense prediction vision generalist in medical imaging. Our main contributions are
as follows:

1. Comprehensive Analysis of Ezisting vICL Frameworks. We present a comprehensive
analysis of the limitations of current vICL frameworks in medical imaging, regarding mask-
ing design, backbone flexibility and efficiency.

2. Training—Inference Aligned vICL with Retrieve-and-Propagate Module. We propose
a medical vICL framework adopting a training-inference aligned masking strategy and a
Retrieve-and-Propagate module to improve performance and computational efficiency.

3. Enabling vICL for U-Net-style Architectures. Our experiments demonstrate that our
framework can be effectively extended to U-Net-style models (Ronneberger et al., 2015),
which was not feasible for prior vICL frameworks.

2. Limitations of Previous Visual ICL Methods in Medical Imaging

Recent advances (Bar et al., 2022; Wang et al., 2023; Liu et al., 2024; Bai et al., 2024) in
vICL have demonstrated strong performance across a range of vision tasks. Despite these
innovations, directly applying such approaches to medical imaging remains suboptimal due
to the following key limitations:

(i) Ineffectiveness of MIM in Medical Settings. Naive masked image model-
ing typically involves randomly masking a large portion (e.g., 75%) of the input image.
However, in medical imaging scenarios, where images often contain large homogeneous
background regions, this approach fails to preserve sufficient task-relevant information for
effective prompt-query reasoning. Furthermore, as illustrated in Fig.1.(a) and Fig.1.(c), the
masking strategies shown are those adopted during the training phase of MIM-based visual
ICL models. In contrast, the inference stage requires the use of a different masking strategy,
as depicted in Fig.1.(d). This inconsistency results in a discrepancy between the training
and inference procedures, which introduces a gap between training and inference.
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Table 1: Comparison of the segmentation performance, measured by the Dice Similarity
Coefficient (DSC, in percentage), using different inference strategies.

MAE-VQGAN PromptGIP Painter

Standard Inference 44.14 69.92 78.99
Training-like Inference 83.20 88.64 86.43
Modified Inference 1.88 49.09 23.09

To further investigate this issue, we carefully design three distinct inference strategies
for the trained vICL models MAE-VQGAN, Painter, and PromptGIP (Liu et al., 2024):

1.5tandard Inference: The typical vICL setup where the prompt image, prompt label, and
query image are fully visible, and only the query label is fully masked (100%).

2. Training-like Inference: Matches the training phase masking strategy, providing partial
visibility to the query label during inference.

3.Modified Inference: Replaces the partially visible query label patches with black patches
before applying Training-like Inference.

Under the Training-like Inference setting, a small portion of the ground truth (GT)
is exposed to the model. Therefore, evaluation metrics are computed only on the masked
patches, without the visible GT regions to ensure a fair assessment. From Table 1, we
observe that all models achieve their highest performance under the Training-like Inference
setting. However, this setting grants the model partial access to the GT which is unreal-
istic in practical scenarios. When even this limited GT is removed, as in the Modified
Inference setting, the performance drops sharply (e.g., MAE-VQGAN: 83.20% — 1.88%).
These results indicate that visual ICL models trained via MIM are primarily effective at
inpainting, meaning they infer missing content based on visible patches, rather than truly
understanding and interpreting the query image. However, this capability is misaligned with
the requirements of medical visual tasks, which demand a comprehensive understanding of
the query image itself.

Moreover, comparing Standard Inference and Modified Inference, their main dif-
ference lies in whether the prompt labels are provided in full or only partially. When the
prompt labels are reduced from complete to partial, model performance also declines sig-
nificantly(e.g., Painter: 78.99% — 23.09%). This further underscores that prompts play a
crucial role in guiding the model’s processing of the query image within the vICL framework.

(ii) Unnecessarily High Computational Overhead. Although models like Painter
and MVG attempt to mitigate this issue by adding image and label patches at shallow layers,
they still devote nearly half of their computational budget to prompt processing.
This allocation limits the model’s capacity to focus on the query task itself, reducing overall
efficiency.

(iii) Limited Backbone Flexibility. MIM-based methods are tightly coupled with
transformer-based architectures (Vaswani et al., 2023) and often perform poorly on convolu-
tional networks (Tian et al., 2023), limiting their compatibility with widely used backbones
in medical image analysis, such as U-Net (Ronneberger et al., 2015) and its variants, which
are more suitable for image-to-image tasks in medical imaging.
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Figure 2: The grid-like image is first processed by the Retrieve-and-Propagate (RandP)
Module (1) to produce X-fused feature, which can be fed into either a ViT backbone (2)
with a pixel decoder or a U-Net-style (2’) architecture to get the dense output. The query
label is replaced with [MASK] tokens, which then serves as the Ground Truth to calculate
the loss against the output. The italicized pi, pl, qi, and gl denote the prompt image, prompt
label, query image, and query label, respectively. H denotes Hungarian matching (Kuhn,
1955), and Pos. stands for positional encoding (Vaswani et al., 2023).

3. Method

RandP Framework. Our RandP medical vICL framework, as illustrated in the Fig.2,
consists of three main components: a Retrieval-and- Propagate module for prompt-query
fusion, a backbone for image feature extraction, and a pixel decoder for dense prediction.

Unifying Input and Output Spaces. For each query image in the training set,
we randomly select another image with the same task and its corresponding label as the
prompt image and prompt label. All four components—prompt image, prompt label, query
image, and query label—are in R3*H>*W  These are arranged into a grid: top-left, top-right,
bottom-left, and bottom-right, respectively, forming a grid-like image X € R3*2HX2W g
shown in Fig.1.(a). For segmentation tasks, which need to predict discrete one-hot labels,
we follow (Wang et al., 2023) by assigning each semantic category a unique RGB color.
During inference, the predicted label is obtained by mapping each output pixel to the
nearest category via Lo distance, effectively turning segmentation into an image-to-image
translation task. For low-level tasks, where outputs are already continuous in RGB space,
no such transformation is needed. After training, a given prompt image and label pair
instructs the model to perform which task on the query image.

Training-Inference Aligned Masking Strategy. Unlike prior vICL approaches that
predominantly rely on masked image modeling during training, we adopt a fully training-
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inference aligned masking strategy, as depicted in Fig.1.(d). In our setting, the prompt
image, prompt label, and query image are never masked, while the query label is always
fully masked. This design offers several advantages:

1. Consistency between training and inference: By avoiding partial masking of
the query image, the model is encouraged to truly understand the query image rather
than simply reconstructing grid-like masked patterns, thus improving generalization
to real ICL scenarios.

2. Broader backbone compatibility: This strategy allows the use of backbones be-
yond ViT. Prior work (Tian et al., 2023) has shown that the effectiveness of naive
MIM degrades on CNNs due to the sparsity of masked inputs being diluted through
stacked convolutional layers. By eliminating MIM-style masking, our framework can
more effectively utilize convolutional architectures.

3. Reduced computational cost: Since the prompt label is never masked, there is no
need to reconstruct it. Consequently, the model only needs to predict the query label,
enabling us to discard prompt-related tokens after the prompt information has been
integrated. This leads to significant computational savings without compromising
performance.

Retrieval-and-Propagate Module for Prompt-Query Fusion. In previous vICL
methods, prompt tokens and query tokens are concatenated into a single sequence and
interact via self-attention. However, due to the quadratic complexity O(N?) of self-attention
with respect to sequence length, this design introduces considerable computational overhead
compared to conventional image-to-image models that do not use prompts.

While the redundancy of visual tokens has been extensively validated in MLLMs (Chen
et al., 2024), we argue that a similar level of redundancy may exist even when visual tokens
are used purely as context. Inspired by recent efforts on visual token pruning or merging
in MLLMs (Bolya et al., 2023; Zhang et al., 2025b; Wen et al., 2025), we propose to fuse
prompt and query tokens at the early stage of the network to reduce computation and
enhance efficiency.

We introduce a Retrieval-and-Propagate token fusion strategy, which is particularly
inspired by the characteristics of medical images from different patients tend to exhibit
strong visual similarities within corresponding anatomical regions—often more pronounced
than those observed in natural images. Specifically, let I, L,, I, and I denote the
prompt image, prompt label, query image, and query label, respectively. These inputs are
first embedded with a patch embedding layer and added with learnable positional encodings:

Zpi7 Zpl) Zqi = PatchEmbed(Ipi, Ipl’ qu) +P (1)

The resulting latent representations are then fed into a shallow ViT encoder (e.g., 2
layers) to extract features:

Xpia Xpb Xqiv qu :ViT([Zpiv Zplv Zqi> [MASKH) (2)

Here, Z, and X, represent the latent representations before and after the encoder,
respectively; P denotes the positional encoding. [MASK] is the learnable mask token used
to replace the masked query label.
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For each patch in the query image, we compute its cosine similarity with all patches in
the prompt image, effectively allowing each query token to Retrieve similar token from
the prompt.

To preserve the full information of the prompt pairs, we employ Hungarian match-
ing (Kuhn, 1955) rather than greedy matching, as it enforces globally optimal one-to-one
correspondences between query and prompt tokens based on the similarity matrix:

M = Hungarian (—Norm(Zpi) : Norm(Zqi)T> (3)

This design avoids information loss and ensures that each prompt token is effectively utilized
in the fusion process. The matched prompt and query tokens are concatenated along the
feature dimension and subsequently fused via a linear layer. If a highly similar prompt
token is retrieved, the model can directly reuse the associated prompt label token, effectively
Propagating it to the output.

X = Linear (Concat [M(Xi), M(X;1), Xqi, Xq1)) (4)

Backbone and Pixel Decoder. Similar to previous visual ICL frameworks, we use
ViT as the backbone. The pixel decoder is a simple prediction head with two convolutional
layers, taking the concatenated feature maps from four different layers of ViT as input (Li
et al., 2022b).

Loss Function. The decoder outputs an image in , and we compute the smooth
L1 loss (Girshick, 2015) pixel-wise against the query label. Additionally, we use cross-
entropy (CE) loss to optimize task prediction. The total loss function is as follows:

R3><H><W

L= ﬁsmoothLl(yquery,labela g)query,label) +0.1- ECE (ytaska Qtask)

Extending Visual ICL via RandP + U-Net Variants Our masking strategy and
RandP module enable the extension of visual ICL method to other non-transformer archi-
tectures, including the commonly used U-Net and its variants in medical imaging. Specifi-
cally, the activations output from the RandP Module, with a stride of 16, match the spatial
dimensions of the feature maps after downsampling four times in U-Net. We adjust the
channel dimensions of these activations using a 1 x 1 convolutional layer and add them
element-wise to the feature maps in the U-Net bottleneck.

4. Experiment

Dataset and Implementation. Following (Yang et al., 2024), we select the IXI (LLC,
2024) MRI dataset for the super-resolution task, the 2016 NIH AAPM-Mayo Clinic Low-
Dose CT Grand Challenge (McCollough et al., 2017) dataset for denoising task, and PET
synthesis dataset provided by (Yang et al., 2024). Our segmentation dataset covers both
CT and MRI modalities: PROMISE12 (Litjens et al., 2014), Prostate MRI_Dataset (Ye
et al., 2023), AMOS (Ji et al., 2022), and BTCV (Landman et al., 2015). Although we have
chosen only these four tasks, our framework can be applied to any image-to-image task.
For all models, the shallow ViT encoder in the RandP Module uses two layers. We
train for 100 epochs with a maximum learning rate of le—3, a batch size of 64, and a
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Table 2: Performance comparison across different visual ICL frameworks. Inference metrics
include FLOPs, runtime (per image on a RTX 3090), and memory usage (batch size = 16).

Seg. Denoising Super-Res. | PET synthesis | FLOPs | Time | Mem.
Models Dice | PSNR SSIM | PSNR SSIM | PSNR  SSIM (Gl (ms)] | (GB)J
Copy 0.90 9.17 2192 | 16.04 48.65 | 19.67 68.65 - - -
MAE-VQGAN | 44.14 | 21.16 74.14 | 23.23 75.89 | 27.65 83.66 664 33.2 20.5
PromptGIP 69.92 | 31.1 90.18 | 28.36 88.29 | 27.77 86.26 670 33.1 18.8

Painter 78.99 | 32.83 91.94 | 30.11 91.35| 31.16 89.75 429 30.6 15.5
MVG 82.56 | 32.97 92.08 | 30.11 91.34 | 31.09 89.85 429 30.5 15.6
RandP 84.95 | 33.01 92.14 | 30.14 91.33 | 31.46 90.17 258 14.4 10.7

Grid-like Image resolution of 512 x 512. In this paper, the reported DiceR (Dice, 1945) and
SSIMR (Wang et al., 2004) values are presented in percentage form.

Comparison of Different Visual ICL Frameworks. We re-implement multiple prior
vICL methods on our medical datasets, including MAE-VQGAN, PromptGIP, Painter, and
MVG, to construct strong baselines for comparison. Additionally, we include AMIR, (Yang
et al., 2024), a router-based multi-task model in medical imaging. We also introduce a Copy
baseline, which simply replicates the prompt label as the final output.For MAE-VQGAN, a
pretrained VQGAN (Esser et al., 2021) is required to serve as the tokenizer. We initialized
the VQGAN with weights pretrained on ImageNet (Deng et al., 2009) and further fine-
tuned it on our datasets. In contrast, all other models perform regression directly in the
pixel space. All frameworks adopt ViT as the backbone. As shown in Table 2, our proposed
RandP framework consistently outperforms previous vICL frameworks across various tasks,
while achieving inference speed 2x faster than prior visual ICL frameworks and lower
memory consumption.

Table 3: Performance comparison under the Single-Task Separate Training Setting.

Seg. Denoising Super-Resolution | PET synthesis
Models Dice | PSNR SSIM | PSNR SSIM PSNR  SSIM
AMIR (Yang et al., 2024) | 84.45 | 33.71  92.47 | 30.52 92.11 31.56 90.48
MVG (Ren et al., 2024) 77.91 | 3254 91.65 | 29.94 91.08 31.19 89.96
RandP 79.32 | 32.80 91.88 | 29.93 91.17 31.18 89.97
RandP-UX-NET 83.27 | 32.77 89.82 | 29.44 91.02 30.40 88.72
RandP-SwinUNETR 83.63 | 32.44 89.33 | 29.16 90.25 30.67 89.13
RandP-Restormer 84.89 | 33.73 92.58 | 30.54 92.27 31.21 90.14

Table 4: Performance comparison under the Multi-Task Joint Training Setting. Values in
parentheses indicate the performance gain compared to single-task training. UX., Sw., and
Res. refer to UX-NET, SwinUNETR, and Restormer, respectively.

Segment. Denoising Super-Resolution PET synthesis

Models Dice PSNR SSIM PSNR SSIM PSNR SSIM

AMIR 83.5(-0.9) | 33.9(4+0.2) 92.8(4+0.3) | 30.8(4+0.3) 92.3(40.2) | 31.6(4+0.1) 90.6(+0.1)
RandP 85.0(+5.6) | 33.0(+0.2) 92.1(+0.2) | 30.1(+0.2) 91.3(40.2) | 31.5(4+0.3) 90.2(+0.2)
RandP-UX. | 84.1(4+0.8) | 33.8(4+1.0) 92.7(+2.9) | 30.5(+1.0) 92.0(+1.0) | 31.6(+1.2) 90.4(+1.6)
RandP-Sw. | 84.2(40.6) | 33.7(4+1.3) 92.6(+3.3) | 30.3(+1.1) 91.6(+1.4) | 31.6(4+0.9) 90.3(+1.1)
RandP-Res. | 85.7(4+0.8) | 34.0(4+0.3) 92.9(4+0.3) | 30.8(+0.3) 92.5(+0.2) | 32.1(4+0.9) 91.0(40.9)
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Figure 3: Qualitative evaluation of our RandP models.

Extending RandP to U-Net Variants. We extend the RandP framework to several
widely-used U-Net variants in medical imaging. Specifically, we adopt pure advanced con-
volutional UX-Net (Lee et al., 2023), and SwinUNETR (Hatamizadeh et al., 2022), a win-
dow attention (Liu et al., 2021) based model. Both of them originally designed for 3D
tasks, we adapt them to 2D settings. Additionally, we incorporate Restormer (Zamir et al.,
2022), a modified-transformer-based model commonly used for low-level vision tasks. These
combinations result in three RandP-based medical vICL models: RandP-UX-Net, RandP-
SwinUNETR, and RandP-Restormer. We first train these models independently for each
task. As shown in Table 3, in the single-task separate training setting, models with the
same backbone generally show similar performance—for example, RandP and MVG (with
ViT), and RandP-Restormer and AMIR, (with Restormer) perform comparably. However,
ViT-based models still lag behind task-specific U-Net-style architectures, particularly for
the segmentation task.

We further perform joint multi-task training using the RandP framework across dif-
ferent backbones. As shown in Table 4, compared to single-task training, all backbones
consistently benefit from joint optimization, demonstrating RandP’s capability to mitigate
inter-task conflicts during learning. However, the router-based AMIR, framework shows
a performance drop on the segmentation task under multi-task training compared to its
single-task counterpart.

Both RandP-Restormer and AMIR use Restormer as the backbone. While AMIR intro-
duces a complex task routing mechanism and incurs additional computational cost to reduce
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Table 5: Ablation Study Results. Dice and SSIM are reported in percentage.

Seg. Denoising Super-Resolution | PET synthesis
Models Dice | PSNR SSIM | PSNR SSIM PSNR  SSIM
prompt-query token fusion strategies in ViT backbone
Patch Merge 75.91 | 3294 92.09 | 29.99 90.95 31.25 90.09
Greedy Matching 78.83 | 32.99 92.09 | 29.38 90.11 31.03 89.53

Hungarian Matching | 84.95 | 33.01 92.14 | 30.14 91.33 31.46 90.17
Different Fusion Strategies when extending RandP to Restormer backbone

First-Stage 84.71 | 33.97  92.89 | 30.74 92.31 31.44 90.38
Multi-Stage 83.62 | 33.97 92.78 | 30.86 92.47 31.13 90.12
Bottleneck 85.70 | 33.99 92.92 | 30.83 92.50 32.08 91.04

task interference, RandP-Restormer achieves clear and consistent improvements across all
tasks, highlighting the effectiveness and efficiency of the RandP framework.

Fig. 3 shows the qualitative evaluation of our RandP models, the last row of it indi-
cates that when we provide a denoising prompt for a segmentation query image, the model
executes the task as instructed by the prompt, rather than simply memorizing the dataset.
Ablation Study 1: Query-Prompt Interaction strategy. Painter and MVG adopt
apatch merging mechanism to fuse images and labels. However, as shown in Table 5,
under the training-inference aligned masking strategy and the setting where the prompt
label is not reconstructed, the performance of patch merging (i.e., spatially aligned visual
tokens from the prompt image, prompt label, query image, and query label are summed at
the merge layer) is significantly inferior to that of our proposed RandP Module. Another
important aspect concerns the matching strategy between prompt tokens and query tokens
during the fusion process. We experimented with both greedy matching and Hungarian
matching. The primary difference lies in whether a single prompt token is allowed to match
multiple query tokens. Experimental results show that Hungarian matching significantly
outperforms greedy matching. We hypothesize that many-to-one matching leads to the
neglect of numerous prompt tokens, thereby causing substantial prompt information loss.
Ablation Study 2: Fusion Strategy for Extending RandP to U-Net Variants.
The mixed features from the RandP module are 16 x downsampled relative to the input
image. We explore three fusion strategies to integrate them into U-Net-style architectures:
1. First-stage fusion: Upsample the mixed features via pixel shuffle and concatenate with
the input image at the first encoder stage.
2.Bottleneck fusion: Inject the mixed features directly into the bottleneck of the encoder.
3. Multi-stage fusion: Upsample the mixed features to multiple scales and add them to
encoder features at corresponding stages.

Experiments show that bottleneck fusion achieves the best performance.

5. Conclusion

In this paper, we propose a medical vICL framework called RandP, which enables the exe-
cution of multiple different medical imaging tasks via visual prompt pairs. Our experiments
demonstrate that RandP has superior performance while maintaining low computational
cost. Furthermore, RandP can be extended to other architectures beyond ViT.
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Appendix A. Pseudocode of RandP

Algorithm 1 Retrieval and Propagate for Prompt-Query Interaction
Input: Prompt image L,;, Prompt label I,;, Query image I,;
Output: Prompt-Query Fusion Feature X
Step 1: Patch Embedding
Zyi, Zpi, Zgi < PatchEmbed (I, Iy, I,)+ P
Step 2: Shallow ViT for Feature Extraction
Xopis Xpi, Xgiy Xgi  VIT([Zpi, Zpi, Zgi, [MASK]])
Step 3: Cosine Similarity Matching
S + Norm(X,;) - Norm(X,;) "
M <« Hungarian(—S)
Step 4: Reorder Prompt Tokens
M(X,;) + Reorder(X,;, M)
M(X,;) < Reorder(X,;, M)
Step 5: Prompt-Query Token Fusion
X ¢ Linear(Concat[M(Xp;), M(Xp1), Xgi, Xql)
Return X
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Appendix B. Prompt Analysis

Numerous studies (Bar et al., 2022; Sun et al., 2025; Zhang et al., 2023) have highlighted
the sensitivity of vICL models to the choice of prompts. Some works have explored heuristic
strategies (Sun et al., 2025; Zhang et al., 2023; Suo et al., 2024) for selecting optimal visual
prompts, while others have investigated learning-based approaches (Jia et al., 2022; Zhang
et al., 2024, 2025a) to prompt construction. Given the high demand for controllability in
medical image analysis, vICL models are designed to take both the query image and a
prompt pair—consisting of an image and its corresponding label—as input. Therefore, we
conduct a comprehensive analysis of the prompt component in trained visual ICL models.

Table 6: Average standard deviation of the performance of trained medical vICL models
across 20 different prompts.

Segmentation | Denoising Super-Resolution PET synthesis
Dice-std PSNR-std
MVG 0.00455 0.00880 0.0057 0.0353
RandP 0.00704 0.00695 0.0069 0.0416
RandP-UX-NET 0.00855 0.00526 0.0195 0.0327
RandP-SwinUNETR 0.00968 0.00815 0.0272 0.0284
RandP-Restormer 0.00722 0.00475 0.0239 0.0336

Standard Deviations Across Different Prompt Pairs. First, for each query image
in the test set, 20 prompt pairs from the same task were randomly selected for inference.
We then calculated the standard deviation of performance metrics across these inferences.
Finally, we averaged these standard deviations over the entire test set. The results are
summarized in Table 6.

When using ViT as the backbone, our RandP model exhibits higher standard deviations
in segmentation, super-resolution, and PET synthesis compared to MVG. We attribute this
to our more aggressive merging strategy between prompt tokens and query tokens. When
extending the RandP framework to other U-Net variants, the standard deviation tends to
increase further across most tasks relative to the ViT-based version.

However, a lower standard deviation is not always preferable. We argue that a moder-
ately low standard deviation is desirable—it ensures model stability across prompts while
allowing prompts to exert meaningful influence on the model’s interpretation of the query.
The results suggest that our trained medical visual ICL models under the RandP framework
maintain appropriately low standard deviations, ensuring stable performance under differ-
ent prompts. Meanwhile, the variability in prompt effectiveness implies that some prompts
are better than others. Identifying optimal prompts for medical visual ICL models will be
an important direction for our future work.

Table 7: Performance difference between learned prompts and random prompts.

Segmentation Denoising Super-Resolution | PET synthesis

Dice PSNR SSIM | PSNR SSIM PSNR  SSIM

Random Prompts 84.95 33.01 92.14 | 30.14 91.33 31.46 90.17
Learned Prompts 85.11 33.04 92.16 | 30.12 91.32 31.39 90.16
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Learned Prompt vs. Random Prompt In addition, we froze the parameters of the
trained visual ICL model and treated the prompt image and prompt label as learnable
embeddings. Each task was associated with a distinct set of prompt embeddings, enabling
task-specific adaptation without modifying the backbone. These learnable embeddings are
optimized using a learning rate of le-4 for 10 epochs without any warm-up schedule. During
inference, we used the corresponding learned prompt embeddings for each task. As shown
in Table 7, due to the marginal performance gap between learned and random prompts,
the use of learned prompts can be seen to enhance the stability of medical visual ICL
models. The results are presented in Table 7, we observe that the performance difference
between the learned prompts and randomly selected prompts is marginal. These results
indicate that learned prompts further enhance the stability of medical visual ICL models.
Upon visualizing the learned prompts, we find that they do not resemble semantically
meaningful images; rather, they appear as structured noise patterns with no obvious visual
interpretation.
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