

000  
001  **CACTUS: ACCELERATING AUTO-REGRESSIVE DE-**  
002 **CODING WITH CONSTRAINED ACCEPTANCE SPECULA-**  
003 **TIVE SAMPLING**  
004  
005  
006

007 **Anonymous authors**  
008 Paper under double-blind review  
009  
010  
011  
012

## ABSTRACT

013 Speculative sampling (SpS) has been successful in accelerating the decoding  
014 throughput of auto-regressive large language models by leveraging smaller draft  
015 models. SpS strictly enforces the generated distribution to match that of the verifier  
016 LLM. This is unnecessarily restrictive as slight variation of the verifier’s distri-  
017 bution, such as sampling with top- $k$  or temperature, would also be acceptable.  
018 Typical acceptance sampling (TAS) alleviates this issue by accepting more tokens  
019 using entropy-based heuristics. However, this approach distorts the verifier distri-  
020 bution, potentially degrading output quality when the verifier encodes critical in-  
021 formation. In this work, we formalize the speculative sampling algorithm through  
022 the lens of constrained optimization. Based on this formulation, we propose **Cac-**  
023 **tus** (constrained acceptance speculative sampling), a method that guarantees con-  
024 trolled divergence from the verifier distribution and increasing acceptance rates.  
025 Empirical results across a wide range of benchmarks confirm the effectiveness of  
026 our approach. The code is publicly available at this anonymous link.  
027

## 1 INTRODUCTION

028 Auto-regressive large language models (LLMs) have driven remarkable advances in machine learning  
029 and artificial intelligence (Vaswani et al., 2017; Brown et al., 2020; Kaplan et al., 2020), yet their  
030 growing size comes with steep computational costs: generating each token requires a memory-bound  
031 forward pass through hundreds of billions of parameters, which bottlenecks LLM throughput (Yuan  
032 et al., 2024). Speculative sampling (SpS) addresses this by first using a smaller draft model to pro-  
033 pose a fixed amount of candidate tokens in multiple smaller forward passes, then verifying them in  
034 parallel with the large-scale *verifier* LLM (Stern et al., 2018; Xia et al., 2022; Leviathan et al., 2023;  
035 Chen et al., 2023). Since SpS can emit multiple tokens per large-model invocation, it substantially  
036 speeds up auto-regressive generation by alleviating the memory-bound issue.  
037

038 Despite its success, SpS enforces strict distributional equivalence with the verifier, causing correct  
039 but lower-probability tokens to be rejected. In real-world applications, exact adherence to the orig-  
040 inal distribution is generally not required (Holtzman et al., 2019; Meister et al., 2020). Typical  
041 acceptance sampling (TAS Cai et al. (2024a)) mitigates this issue by accepting proposals based on  
042 entropy-driven heuristics (Hewitt et al., 2022; Meister et al., 2023). However, we show in this paper  
043 that TAS improves acceptance rates at the cost of distorting the verifier’s output distribution and  
044 risking semantic drift when the verifier encodes critical information.  
045

046 In this work, we reformulate speculative sampling as a constrained optimization problem, explicitly  
047 trading off acceptance rate against divergence from the verifier’s distribution. Guided by this theory,  
048 we introduce Cactus (constrained acceptance speculative sampling), a simple yet principled mod-  
049 ification that enforces a hard bound on distributional divergence while enabling higher acceptance  
050 rates.

051 We conducted experiments on a wide range of benchmarks with multiple state-of-the-art large lan-  
052 guage models. Results show that Cactus consistently improves generation throughput compared  
053 with the lossless SpS. In addition, Cactus preserves the generation quality and diversity of the veri-  
fier model, due to its explicit divergence constraint.

---

054 **Algorithm 1** Speculative sampling algorithm.  
055  
056 **Require:** sampling steps  $m$ , draft model  $p$ , acceptance rate  $\phi$ , and recover probability  $g$   
057 1:  $t \leftarrow 1, \mathbf{x}_{<t} \leftarrow [\text{BOS}]$   
058 2: **while** not end **do**  
059 3:  $\triangleright$  Drafting  $m$  tokens  
060 4: **for**  $i \leftarrow 0, \dots, m-1$  **do**  
061 5:  $x_{t+i} \sim p(\cdot | \mathbf{x}_{<t+i})$   $\triangleright \mathbf{x}_{<t+i}$  is concatenation of  $\mathbf{x}_{<t}$  and  $[x_t, \dots, x_{t+i-1}]$   
062 6:  $u_i \sim U(0, 1)$   $\triangleright U(0, 1)$  is the uniform distribution between  $[0, 1]$   
063 7: **end for**  
064 8:  $c \leftarrow \min\{j : u_j > \phi(x_{t+j} | \mathbf{x}_{<t+j})\} \cup \{m\}$   $\triangleright c$  is the length of accepted draft tokens  
065 9:  $x_{t+c} \sim g(\cdot | \mathbf{x}_{<t+c})$   $\triangleright x_c$  is always accepted  
066 10:  $t \leftarrow t + c + 1$   
067 11: **end while**

---

## 068 2 APPROACH

069  
070 We first formalize speculative sampling algorithm. This enables a theoretical analysis of speculative  
071 sampling under a constrained optimization framework. Based on this analysis, we propose a new  
072 algorithm, Cactus, which provably approximates the verifier distribution  $q$  while achieving higher  
073 acceptance rates.  
074

### 075 2.1 GENERALIZATION OF SPECULATIVE SAMPLING

076 **Speculative sampling.** The vanilla speculative sampling (SpS Chen et al. (2023)) uses a *draft*  
077 *model*  $p(\cdot | \mathbf{x}_{<t})$  that has significantly less memory footprint than the *verifier model*  $q(\cdot | \mathbf{x}_{<t})$ . At a  
078 time step  $t$ , SpS repeatedly samples  $m \in \mathbb{N}_+$  tokens  $x_t, \dots, x_{t+m-1}$  from  $p$  in an auto-regressive  
079 manner. Each token is accepted with a probability given by the *acceptance rate*  $\phi(x_{t+i} | \mathbf{x}_{<t+i}) =$   
080  $\min(1, q(x_{t+i} | \mathbf{x}_{<t+i})/p(x_{t+i} | \mathbf{x}_{<t+i}))$  for all  $i \in [0, m)$ . If any token  $x_{t+j}$  is rejected, then  
081 tokens  $x_{t+j+1}, \dots, x_{t+m-1}$  are also discarded. As a backup, SpS resamples  $x_{t+j}$  using the *recover*  
082 *probability*  $g(x_{t+j} | \mathbf{x}_{<t+j}) \propto (q(\cdot | \mathbf{x}_{<t+j}) - p(\cdot | \mathbf{x}_{<t+j}))_+$ , where  $(\cdot)_+$  denotes  $\max(0, \cdot)$ . The final  
083 accepted tokens are  $x_t, \dots, x_{t+j}$ . By this draft-and-verify scheme, SpS accelerates auto-regressive  
084 decoding by avoiding the need to load the large verifier model  $q$  from memory at every step. This  
085 approach has been shown effective in practice (Zhou et al., 2024; Hu et al., 2025).  
086

087 **Our observation.** We formalize the draft-and-verify scheme as Algorithm 1. Under this setting,  
088 we can show that the algorithm produces any target distribution with an optimal acceptance rate.  
089

090 **Observation 1.** *Given any desired target distribution  $h$  and draft model  $p$ , the acceptance rate and*  
091 *recovery probability are defined as*

$$\phi(x_t | \mathbf{x}_{<t}) = \min\left(\frac{h(x_t | \mathbf{x}_{<t})}{p(x_t | \mathbf{x}_{<t})}, 1\right) \quad (1)$$

$$\text{and} \quad g(x_t | \mathbf{x}_{<t}) = \frac{h(x_t | \mathbf{x}_{<t}) - p(x_t | \mathbf{x}_{<t})\phi(x_t | \mathbf{x}_{<t})}{\mathbb{E}_{x' \sim p}[1 - \phi(x' | \mathbf{x}_{<t})]} \quad (2)$$

092 respectively. Algorithm 1 samples from  $h$  exactly using the above  $\phi$  and  $g$ . In addition, this  $\phi$  is the  
093 optimal design of acceptance rate.  
094

100 *Proof.* See Appendix A.1. □

### 103 2.2 APPROXIMATING SPS AS CONSTRAINED OPTIMIZATION

104 Observation 1 provides a foundation to produce an arbitrary target distribution with the optimal  
105 design. Instead of producing a fixed verifier distribution  $q$ , we utilize this observation to dynamically  
106 select a distribution  $h$  close to  $q$  while yielding higher acceptance rates based on function  $\phi$ . This  
107 can be formulated as a constrained optimization problem.

108 **Definition 2.** For each step  $t$ , assume the drafted token has index  $n$ . Let  $\mathbf{h} \in \mathbb{R}^{|V|-1}$  be the  
 109 parameters to be optimized. The ideal  $h$  is given by  $h(i|\mathbf{x}_{<t}) = \mathbf{h}_i^*$ , where  $\mathbf{h}^*$  is the solution of the  
 110 following problem:

$$\max_{\mathbf{h}} \min(h_n/p(n|\mathbf{x}_{<t}), 1) \quad (3)$$

$$\text{s.t. } \mathbf{h} \in \Delta^{|V|-1} \quad (4)$$

$$D_f(\mathbf{h}\|q(\cdot|\mathbf{x}_{<t})) \leq \delta. \quad (5)$$

116 Here, the hyper-parameter  $\delta \geq 0$  controls the closeness to the verifier model  $q$ , and  $D_f$  is any  
 117  $f$ -divergence metric used to measure the distance between  $q$  and  $h$ .

118 The above definition falls into the framework of constrained convex optimization, which we show  
 119 has the following solution.

120 **Theorem 3.** *The optimal  $\mathbf{h}$  in Definition 2 is*

$$h_i = \begin{cases} \gamma^*, & \text{if } i = n, \\ \frac{1-\gamma^*}{1-q(n|\mathbf{x}_{<t})} q(i|\mathbf{x}_{<t}), & \text{otherwise,} \end{cases} \quad (6)$$

125 where  $\gamma^*$  is any root of the equation

$$\delta = q(n|\mathbf{x}_{<t}) f\left(\frac{\gamma}{q(n|\mathbf{x}_{<t})}\right) + (1 - q(n|\mathbf{x}_{<t})) f\left(\frac{1-\gamma}{1-q(n|\mathbf{x}_{<t})}\right) \quad (7)$$

126 over the interval  $[q(n|\mathbf{x}_{<t}), +\infty)$ , clamped into  $[q(n|\mathbf{x}_{<t}), 1]$ . The function  $f$  is the one used in the  
 127 definition of  $f$ -divergence.

131 *Proof.* See Appendix A.2. □

133 Theorem 3 theoretically characterizes the trade-off between closeness to the verifier model  $q$  and the  
 134 acceptance rate induced by  $\phi$ . In particular, the theorem suggests that the drafted token now has at  
 135 least the same or a higher chance of being accepted (since  $\gamma^* \geq q_n$ ). The exact probability depends  
 136 on the choice of the  $f$ -divergence and the hyper-parameter  $\delta$ . For other non-sampled tokens, their  
 137 probabilities are scaled down proportionally so that  $h$  remains a valid distribution.

138 It is worth-nothing that, since the solved  $\mathbf{h}$  in Equation (6) depends on the sampled token  $n$ , the  
 139 solution is different for different sampled tokens. As a result, the effective distribution of the overall  
 140 algorithm  $\mathbf{h}_{\text{alg}}$  might have a different divergence other than  $\delta$  from the target distribution  $q$ . To  
 141 this end, we provide the following theorem to guarantee the controlled divergence of the effective  
 142 distribution.

143 **Theorem 4.** *Let  $\phi_n$  and  $g_n$  denote the functions that follow the solution in Theorem 3 when the  
 144 sampled token is  $n$ . The distribution of the overall algorithm is given by*

$$\mathbf{h}_{\text{alg}} = \sum_{n \in [|V|]} p(n|\mathbf{x}_{<t}) [\phi_n(n) \mathbf{e}_n + (1 - \phi_n(n)) \mathbf{g}_n], \quad (8)$$

148 where  $\mathbf{e}_n$  is a one-hot vector with only non-zero element at index  $n$ . In addition,

$$D_f(\mathbf{h}_{\text{alg}}\|q(\cdot|\mathbf{x}_{<t})) \leq \min\{\Gamma(\delta), D_f(p(\cdot|\mathbf{x}_{<t})\|q(\cdot|\mathbf{x}_{<t}))\} \quad (9)$$

151 for any  $\delta \geq 0$ . Here, the function  $\Gamma : [0, +\infty) \rightarrow [0, +\infty]$  is continuous and non-decreasing in  $\delta$   
 152 with a value of 0 at  $\delta = 0$ .

153 *Proof.* See Appendix A.3. □

155 In essence, despite the  $\mathbf{h}$  in Equation (6) is solved specifically for the sampled token  $n$ , the  
 156 divergence between the overall distribution and the target distribution is still implicitly controlled. In  
 157 particular, for any target divergence  $0 \leq \delta_{\text{alg}} < +\infty$  imposed on the overall algorithm, we can  
 158 always find a proper  $\delta \geq 0$  such that  $D_f(\mathbf{h}_{\text{alg}}\|q) \leq \Gamma(\delta) \leq \delta_{\text{alg}}$ . While  $\Gamma$  does not admit a closed-  
 159 form expression,  $\delta$  itself is a hyper-parameter. In practice, one can tune  $\delta$  to achieve the desired  
 160 quality-throughput trade-off. This confirms the soundness of our framework.

161 In fact, our framework also offers a novel theoretical interpretation of typical acceptance sampling.

162 **Proposition 5.** *Typical acceptance sampling (TAS, Cai et al. (2024a)) implicitly solves a variant  
163 of the optimization problem in Definition 2, where the  $f$ -divergence is substituted with the cross-  
164 entropy  $H(\mathbf{h}, q(\cdot | \mathbf{x}_{<t}))$ .*

166 *Proof.* See Appendix A.4. □  
167

168 The suboptimality of TAS arises from the nature of cross-entropy. Specifically, the cross-entropy  
169 can be decomposed as

$$170 \quad 171 \quad 172 \quad H(\mathbf{h}, q(\cdot | \mathbf{x}_{<t})) = \underbrace{D_{\text{KL}}(\mathbf{h} \| q(\cdot | \mathbf{x}_{<t}))}_{\text{Mode capturing}} + \underbrace{H(\mathbf{h})}_{\text{Certainty}}. \quad (10)$$

173 Here, the KL divergence encourages  $\mathbf{h}$  to focus on the mode of  $q$  (since  $\mathbf{h}$  is the first argument), while  
174 the entropy term encourages  $\mathbf{h}$  to be deterministic. However, the summation allows  $\mathbf{h}$  to collapse  
175 into a deterministic distribution at the expense of increasing divergence, thereby failing to capture  
176 the full shape of  $q$ . In fact, TAS always yields  $\mathbf{h}$  with entropy 0 while increasing the divergence by at  
177 least  $H(q)$ . As a result, the produced distribution may diverge significantly from the verifier model,  
178 especially when  $q$  carries high entropy and thus rich information.

### 179 2.3 CACTUS: CONSTRAINED ACCEPTANCE SPECULATIVE SAMPLING

180 Based on our analysis above, we propose using only the KL divergence as the measure of “distance”.  
181 Specifically, this corresponds to the function  $f(t) = t \log t$ . Combined with our Theorem 3,  $\gamma^*$  is  
182 the root of

$$183 \quad \Phi(\gamma) := q(n | \mathbf{x}_{<t}) f\left(\frac{\gamma}{q(n | \mathbf{x}_{<t})}\right) + (1 - q(n | \mathbf{x}_{<t})) f\left(\frac{1 - \gamma}{1 - q(n | \mathbf{x}_{<t})}\right) \quad (11)$$

$$184 \quad = \gamma \log\left(\frac{\gamma}{q(n | \mathbf{x}_{<t})}\right) + (1 - \gamma) \log\left(\frac{1 - \gamma}{1 - q(n | \mathbf{x}_{<t})}\right) \quad (12)$$

$$185 \quad = \delta. \quad (13)$$

186 However, since  $\Phi$  is a transcendental function involving terms like  $x \log x$ , it cannot be solved in  
187 closed form. We therefore approximate  $\Phi$  by its second-order Taylor series expanded at  $\gamma_0 =$   
188  $q(n | \mathbf{x}_{<t})$ :

$$189 \quad 190 \quad \Phi(\gamma) \approx \Phi(\gamma_0) + \Phi'(\gamma_0)(\gamma - \gamma_0) + \frac{\Phi''(\gamma_0)}{2}(\gamma - \gamma_0)^2. \quad (14)$$

191 This approximation is justified by noting that  $\delta$  is typically small and  $\gamma^*$  remains close to  $q(n | \mathbf{x}_{<t})$ .

192 **Corollary 6** (Cactus’s solution). *Let the  $f$ -divergence in Definition 2 be the KL divergence. The  
193 solution to Equation (14) is given by*

$$194 \quad 195 \quad h(i | \mathbf{x}_{<t}) = \begin{cases} \gamma^*, & \text{if } i = n, \\ \frac{1 - \gamma^*}{1 - q(n | \mathbf{x}_{<t})} q(i | \mathbf{x}_{<t}), & \text{otherwise,} \end{cases} \quad (15)$$

196 where  $\gamma^* = \min \left\{ q(n | \mathbf{x}_{<t}) + \sqrt{2\delta q(n | \mathbf{x}_{<t})(1 - q(n | \mathbf{x}_{<t}))}, 1 \right\}$ .

197 *Proof.* See Appendix A.5 □  
198

199 In other words, Cactus modifies the distribution of the verifier model by increasing the probability  
200 of the candidate token  $n$  by a small “bonus” determined jointly by  $q(n | \mathbf{x}_{<t})$  and  $\delta$ . We further show  
201 that Cactus’s solution is more conservative than the exact solution when the verifier is less confident,  
202 ensuring that it strictly satisfies the divergence constraint in such cases.

203 **Corollary 7.** *When the exact solution  $\gamma^*$  is not greater than 0.5 (i.e., the token is not likely to be  
204 accepted), our approximation always satisfies the divergence constraint:*

$$205 \quad 206 \quad D_{\text{KL}}(h \| q) \leq \delta, \quad (16)$$

207 where  $h(n | \mathbf{x}_{<t})$  is given by the approximated solution in Equation (15).

216 *Proof.* See Appendix A.6. □  
 217

218 It is easy to see that the bonus probability attains its maximum when  $q(n|\mathbf{x}_{<t}) = 0.5$ . In practice,  
 219 LLMs generally have more than 100K tokens (Dubey et al., 2024; Qwen et al., 2024), so a proba-  
 220 bility around 0.5 indicates strong model confidence in the token. However, SpS could still reject the  
 221 token  $n$  solely because the draft model is overconfident (i.e.,  $p(n|\mathbf{x}_{<t})$  is large). Cactus increases  
 222 the acceptance likelihood in such scenarios by modifying the verifier distribution accordingly.  
 223

224 Compared with TAS’s criterion function, Cactus only requires reading the probability at token  $n$   
 225 rather than accessing the full vocabulary. This allows Cactus to further reduce memory access  
 226 overhead, especially in large-vocabulary settings. More importantly, Cactus’s divergence is tightly  
 227 controlled with minimal entropy change, whereas TAS yields only low-entropy solutions.  
 228

### 229 3 EXPERIMENTS

#### 231 3.1 SETTINGS

233 **Datasets.** We evaluated Cactus on three popular benchmark datasets for large language models:  
 234 (1) The **GSM8K** (Cobbe et al., 2021) dataset contains 1.3K high-quality grade school math word  
 235 problems in the evaluation set, designed to assess a model’s ability to apply mathematics to real-  
 236 world scenarios. Following common practice in LM-Eval (Gao et al., 2024), we used 5-shot ex-  
 237 amples for each test instance. The final accuracy score is averaged over all samples. (2) The  
 238 **IFEval** (Zhou et al., 2023) benchmark measures instruction-following ability. It consists of 500  
 239 “verifiable instructions” whose outputs can be heuristically evaluated. For example, a prompt might  
 240 be: “Write a blog post with 400 or more words about the benefits of sleeping in a hammock,” which  
 241 can be automatically checked by counting the number of words. (3) The **GPQA** (Rein et al., 2023)  
 242 diamond benchmark includes approximately 200 challenging science questions authored by domain  
 243 experts, designed to test models’ scientific knowledge. For instance, a sample question is: “The  
 244 angular size of the event horizon of a supermassive black hole in the centre of a galaxy at a distance  
 245 of  $d = 10^{10}$  parsecs is measured to be  $\theta = 10^{-17}$  degrees. Find the order of magnitude of the  
 246 entropy of the black hole.” Following common practice (Gao et al., 2024), we include four answer  
 247 choices in the prompt and have models generate the correct one.

248 **Evaluation metrics.** For all three tasks, the results are extracted from the generated text by regex  
 249 matching with the corresponding format. These results are then compared with the gold labels using  
 250 strict-match accuracy (i.e., 1 if the strings are identical and 0 otherwise). Final scores are obtained  
 251 by averaging the accuracies over all samples. Following previous work (Dubey et al., 2024), the  
 252 regex for GSM8K and GPQA is the “flexible-extract” pattern, which selects the first number in the  
 253 generated sentence regardless of whether the model adheres to the few-shot examples. For IFEval,  
 254 we use the “prompt-level-strict-acc” regex as defined in Qwen et al. (2024), which requires the  
 255 model to strictly follow all the instructions.

256 In addition to task scores, we report the average acceptance length (AL) for all runs. Specifically,  
 257  $AL_m$  refers to the expected number of accepted tokens among  $m$  drafted tokens. A generally higher  
 258  $AL_m$  indicates faster generation. However, a method may artificially inflate AL by accepting low-  
 259 quality draft tokens that are later revised during earlier steps of the chain of thought. Although  
 260 AL remains high, this behavior can lead to lower overall throughput due to unnecessarily lengthy  
 261 outputs. To present a more complete picture of generation efficiency, we also measure the number  
 262 of rejected tokens during generation, which reflects both the acceptance rate and the total length of  
 263 generation.

264 **Implementation details.** We used the Qwen 3 series as our main testbed for two reasons: (1) the  
 265 models come in a variety of sizes, ranging from 0.6B to 14B parameters, enabling a wide range  
 266 of choices of model pairs; (2) the models are trained to generate with internalized chain-of-thought  
 267 reasoning (Wei et al., 2022), which makes them a natural use case for speculative sampling given the  
 268 longer generation lengths (Yang et al., 2025b). For all experiments, we used the recommended gen-  
 269 eration parameters (Yang et al., 2025a), where top- $p$  is set to 0.95, top- $k$  equals 20, and temperature  
 270 is 0.6.

270 Table 1: The results on three benchmarks: GSM8K, IFEval, and GPQA. We report the “strict-  
 271 match” accuracy as the score with the standard regex pattern for each task.  $AL_m$  indicates the  
 272 number of accepted tokens when the draft length is  $m$ . Rej denotes the total number of rejected  
 273 tokens throughout generation in relative scale, where we use the SpS runs as the reference (labeled  
 274 as “Ref”).

(a) The results of Qwen 3 8B as verifier and Qwen 3 0.6B as drafter.

| 277 | 278 | 279 | m   | Name | 280 GSM8K        |                       |                      | 281 IFEval       |                       |                      | 282 GPQA         |                       |                      |      |
|-----|-----|-----|-----|------|------------------|-----------------------|----------------------|------------------|-----------------------|----------------------|------------------|-----------------------|----------------------|------|
|     |     |     |     |      | Score $\uparrow$ | 283 $AL_m^{\uparrow}$ | 284 Rej $\downarrow$ | Score $\uparrow$ | 285 $AL_m^{\uparrow}$ | 286 Rej $\downarrow$ | Score $\uparrow$ | 287 $AL_m^{\uparrow}$ | 288 Rej $\downarrow$ |      |
| 280 | 281 | 282 | 283 | 284  | Verifier         | 84.31 $\pm$ 0.47      | -                    | -                | 84.66 $\pm$ 0.56      | -                    | -                | 41.07 $\pm$ 1.77      | -                    | -    |
| 285 | 286 | 287 | 288 | 289  | SpS              | 83.78                 | 4.49                 | Ref              | 84.66                 | 2.59                 | Ref              | 40.91                 | 3.70                 | Ref  |
|     |     |     |     |      | TAS              | 86.58                 | 5.49                 | -29%             | 85.40                 | 3.28                 | -27%             | 41.41                 | 5.17                 | -42% |
|     |     |     |     |      | Cactus 0.75      | 85.97                 | 5.65                 | -34%             | 85.03                 | 3.40                 | -31%             | 41.42                 | 5.33                 | -47% |
|     |     |     |     |      | Cactus 1.0       | 86.35                 | 5.72                 | -37%             | 84.10                 | 3.44                 | -32%             | 39.39                 | 5.44                 | -48% |
| 290 | 291 | 292 | 293 | 294  | SpS              | 84.46                 | 5.44                 | Ref              | 84.10                 | 2.74                 | Ref              | 42.93                 | 4.23                 | Ref  |
|     |     |     |     |      | TAS              | 85.51                 | 7.23                 | -35%             | 84.10                 | 3.77                 | -29%             | 38.89                 | 6.68                 | -46% |
|     |     |     |     |      | Cactus 0.75      | 86.66                 | 7.50                 | -37%             | 85.95                 | 3.76                 | -30%             | 40.01                 | 6.89                 | -47% |
|     |     |     |     |      | Cactus 1.0       | 86.43                 | 7.61                 | -39%             | 84.84                 | 4.05                 | -33%             | 39.90                 | 7.05                 | -49% |

(b) The results of Qwen 3 14B as verifier and Qwen 3 0.6B as drafter.

| 295 | 296 | 297 | 298 | 299 | 300 | 301 | 302 | 303 GSM8K        |                   |                  | 304 IFEval       |                   |                  | 305 GPQA         |                   |                  |      |
|-----|-----|-----|-----|-----|-----|-----|-----|------------------|-------------------|------------------|------------------|-------------------|------------------|------------------|-------------------|------------------|------|
|     |     |     |     |     |     |     |     | Score $\uparrow$ | $AL_m^{\uparrow}$ | Rej $\downarrow$ | Score $\uparrow$ | $AL_m^{\uparrow}$ | Rej $\downarrow$ | Score $\uparrow$ | $AL_m^{\uparrow}$ | Rej $\downarrow$ |      |
| 294 | 295 | 296 | 297 | 298 | 299 | 300 | 301 | Verifier         | 91.71 $\pm$ 0.52  | -                | -                | 85.09 $\pm$ 0.66  | -                | -                | 40.07 $\pm$ 0.77  | -                | -    |
| 302 | 303 | 304 | 305 | 306 | 307 | 308 | 309 | SpS              | 91.12             | 4.27             | Ref              | 85.03             | 2.19             | Ref              | 39.39             | 3.37             | Ref  |
|     |     |     |     |     |     |     |     | TAS              | 92.65             | 5.24             | -30%             | 86.14             | 3.00             | -25%             | 38.89             | 4.99             | -46% |
|     |     |     |     |     |     |     |     | Cactus 0.75      | 92.12             | 5.35             | -31%             | 86.87             | 3.04             | -29%             | 44.95             | 5.14             | -50% |
|     |     |     |     |     |     |     |     | Cactus 1.0       | 93.10             | 5.44             | -32%             | 85.96             | 3.03             | -30%             | 43.43             | 5.16             | -51% |
| 303 | 304 | 305 | 306 | 307 | 308 | 309 | 310 | SpS              | 91.89             | 5.11             | Ref              | 84.47             | 2.27             | Ref              | 40.91             | 3.84             | Ref  |
|     |     |     |     |     |     |     |     | TAS              | 92.87             | 6.78             | -32%             | 85.03             | 3.49             | -27%             | 40.40             | 6.41             | -46% |
|     |     |     |     |     |     |     |     | Cactus 0.75      | 92.15             | 7.15             | -36%             | 86.69             | 3.45             | -30%             | 45.46             | 6.46             | -46% |
|     |     |     |     |     |     |     |     | Cactus 1.0       | 92.87             | 7.00             | -34%             | 86.32             | 3.60             | -30%             | 45.46             | 6.74             | -50% |

### 3.2 MAIN RESULTS

As shown in Table 1, speculative sampling (SpS) serves as a strong baseline that closely preserves the output distribution of the verifier model. Across all three benchmarks (GSM8K, IFEval, and GPQA), SpS maintains similar accuracies to the verifier (e.g., 84.46 vs. 84.31 on GSM8K with  $m = 20$  in Table 1a, and 91.89 vs. 91.71 in Table 1b). This aligns with the theoretical claim that SpS is nearly lossless in generation quality. Additionally, the number of accepted tokens ( $AL_m$ ) for SpS reaches 5.44 on GSM8K and 4.23 on GPQA with  $m = 20$ , indicating that the verifier model is invoked less frequently.

Typical acceptance sampling (TAS) outperforms SpS in terms of acceptance rate, achieving more accepted tokens and lower rejection rates. For example, on GSM8K with  $m = 20$ , TAS improves  $AL_m$  from 5.44 to 7.23 (Table 1a) and reduces the rejection rate by 35%, which is consistent with our approximation analysis in Section 2.2. However, TAS often introduces distributional shifts that degrade performance. For instance, on GPQA in Table 1a, TAS yields lower accuracy than SpS (38.89 vs. 42.93), likely due to accepting plausible yet suboptimal tokens, especially when the verifier distribution contains fine-grained decision signals.

In contrast, our proposed method, Cactus, achieves the highest acceptance rates across all benchmarks while maintaining or improving accuracy. When  $\delta = 0.75$ , Cactus consistently surpasses both SpS and TAS in  $AL_m$ , achieving 86.66 on GSM8K with  $m = 20$  (Table 1a) and 45.46 on GPQA with  $m = 20$  (Table 1b), notably outperforming all baselines. When  $\delta = 1.0$ , Cactus further

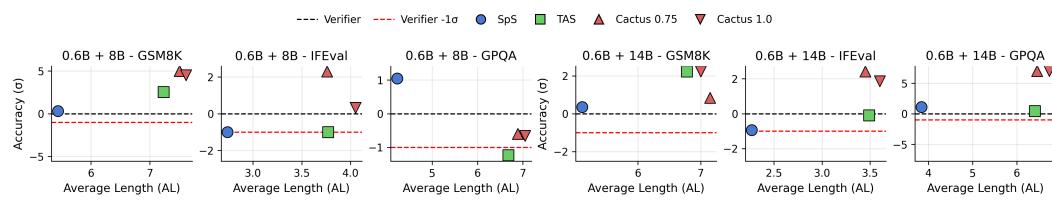


Figure 1: Accuracy-acceptance across benchmarks and model settings. The  $x$ -axis shows the average accepted length (AL), and the  $y$ -axis shows accuracy normalized by the standard deviation from the verifier.

increases  $AL_m$  to 7.61 on GSM8K with 86.43 accuracy (Table 1a), or to 7.00 with 92.87 accuracy using a larger verifier (Table 1b). Notably, unlike TAS, Cactus does not degrade performance on challenging benchmarks such as GPQA. Instead, it achieves both high acceptance rates and stable accuracy, validating its theoretical foundation in constrained optimization and demonstrating practical robustness across diverse tasks.

### 3.3 IN-DEPTH ANALYSES

**Accuracy against acceptance rates.** We visualize the accuracy-acceptance trade-off in Figure 1, where accuracy is measured in standard deviations ( $\sigma$ ) from the verifier mean, and throughput is quantified by the average accepted length (AL). Each subplot corresponds to a specific benchmark and verifier-drafter pair. The dashed black line indicates the verifier performance, and the red dashed line marks the  $-1\sigma$  threshold, a commonly used indicator of statistically significant degradation.

As shown, TAS improves throughput over SpS but often suffers from accuracy drops, notably falling below the  $-1\sigma$  threshold on GPQA with the 8B verifier. In contrast, Cactus consistently preserves accuracy (remaining within or above the verifier confidence range) and frequently exceeds it, such as on GSM8K and IFEval with both 8B and 14B verifiers. This demonstrates that Cactus effectively improves decoding efficiency without compromising (and sometimes even enhancing) generation quality.

It is also worth noting that the improvements from Cactus are stable across tasks with different characteristics. For instance, on challenging benchmarks like GPQA, where other methods either exhibit significant degradation (e.g., TAS) or achieve limited throughput gains (e.g., SpS), Cactus substantially increases AL while maintaining accuracy above baseline. This highlights the strength of our constrained acceptance framework in balancing aggressive token acceptance with distributional fidelity.

**The importance of divergence control.** Our Cactus dynamically manipulates the target distribution to increase the chance of accepting the sample tokens. Since this inevitably pushes the target distribution  $h$  from the verifier  $q$  to be more similar to the draft model  $p$ , it resembles the notion of mixing the distribution  $q$  and  $p$  like interpolation. However, we argue that Cactus is superior than simple interpolation, given that it uses a principled approach which comes with a divergence guarantee. We empirically justify this argument by the following experiment.

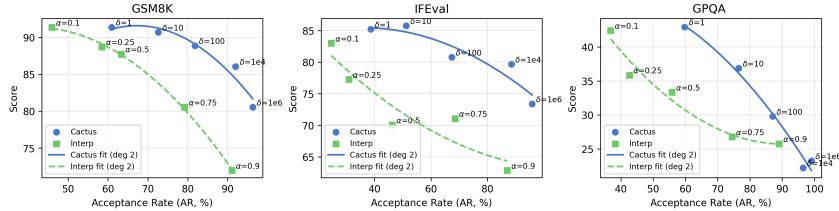
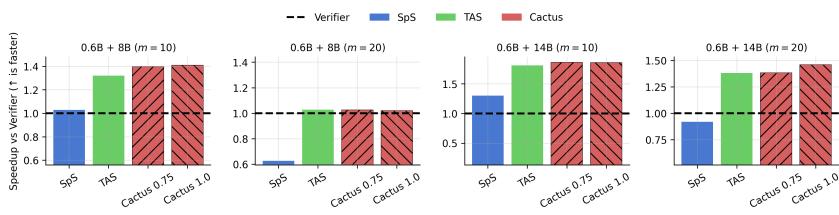


Figure 2: Score vs. acceptance rate for the 0.6B+14B Qwen3 combination without top- $p$ /top- $k$  sampling arguments. Solid and dashed lines are degree-2 polynomial fits.

378 Here, we produce data points by running grid search on  $\delta$  for Cactus and interpolation rate  $\alpha$  for  
 379 interpolation, respectively. As shown, Cactus consistently outperforms interpolation at the similar  
 380 acceptance rate. For example, at a similar acceptance rate of approximately 90%, Cactus achieves  
 381 a score above 86 ( $\delta = 1e4$ ) on GSM8K, whereas interpolation only reaches a score below 72  
 382 ( $\alpha = 0.9$ ). Notably, even at a 96.3% acceptance rate, Cactus maintains a higher score (above 80),  
 383 further confirming the necessity of divergence control of our method.

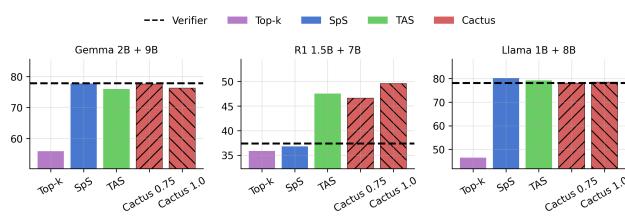
384  
 385 **Throughput comparison.** In Section 3.2, we used  $AL_m$  and  $Rej$  as proxies for throughput, as  
 386 they are invariant to hardware and system conditions. Here, we additionally report wall-time re-  
 387 sults, all measured on A100 40GB GPUs with identical CPU and memory configurations. We used  
 388 VLLM (Kwon et al., 2023) with its default compilation settings to ensure realistic inference condi-  
 389 tions. The results on GPQA are shown in Figure 3.



390  
 391  
 392 Figure 3: Wall-time normalized throughput ( $y$ -axis) across different model sizes and draft lengths.  
 393 The wall time of a single verifier model is always normalized to 1.  
 394  
 395  
 396

400  
 401 Across all settings, Cactus remains competitive or superior to all baselines. In particular, Cactus  
 402 0.75 and 1.0 yield significant improvements in the 0.6B+14B setting, where Cactus 1.0 achieves  
 403 nearly 1.9 $\times$  speedup over the verifier alone with  $m = 10$ , while also maintaining the highest score on  
 404 GPQA (see Table 1b). In contrast, TAS slightly underperforms Cactus in nearly all settings. Notably,  
 405 as discussed in Section 2.2 and verified in Table 1b, TAS lacks explicit divergence control. These  
 406 results highlight the benefit of Cactus’s constrained acceptance strategy, which more effectively  
 407 balances fidelity and efficiency than existing baselines.  
 408

409  
 410 **Evaluating on more model series.** To assess the generality of our method, we go beyond Qwen  
 411 3 and evaluate three additional model series: Gemma (2B + 9B, Team et al. (2024)), R1 (1.5B + 7B,  
 412 DeepSeek-AI et al. (2025)), and LLaMA (1B + 8B, Dubey et al. (2024)). Each model pair represents  
 413 a distinct series developed by different teams with varying training methodologies. Following Bach-  
 414 mann et al. (2025), we additionally evaluate Top- $k$  decoding as a naive lossy baseline, where draft  
 415 tokens are accepted if they fall within the top-5 candidates according to the verifier. All drafter-  
 416 verifier pairs follow the same speculative decoding setup, and accuracy is measured with standard  
 417 task-specific metrics. We also include SpS and TAS baselines under equivalent configurations to  
 418 ensure a fair comparison. The results are presented in Figure 4.



419  
 420  
 421 Figure 4: Evaluating on GSM8K with three model pairs.  
 422  
 423

424  
 425  
 426 Top- $k$  decoding consistently underperforms the verifier model, reaffirming the importance of using  
 427 principled verifier-guided sampling like Cactus. Across all settings, Cactus delivers strong and  
 428 consistent performance. For R1 and Gemma, Cactus notably outperforms TAS. While SpS and TAS  
 429 perform well on LLaMA, Cactus matches their accuracy and retains its robustness across models.  
 430  
 431

432 These results support the conclusion that Cactus generalizes well across diverse architectures and  
 433 remains competitive or superior regardless of the underlying model series.  
 434

## 436 4 RELATED WORK

437  
 438 **The draft-and-verify scheme.** The line of work most closely related to this paper is the use of the  
 439 draft-and-verify scheme to accelerate auto-regressive decoding. The foundation of this scheme lies  
 440 in the acceptance algorithms (i.e., designing the acceptance rate and recovery probability functions  
 441 in Section 2). This includes vanilla speculative sampling (Chen et al., 2023; Leviathan et al., 2023)  
 442 and typical acceptance sampling (Hewitt et al., 2022; Meister et al., 2023; Cai et al., 2024a). Cactus,  
 443 as it applies a different acceptance strategy, belongs to the same category. For this reason, we exten-  
 444 sively compare it against both methods in our paper. In addition to acceptance algorithms, building  
 445 specialized models for this scheme has shown to be effective (Kim et al., 2023; Liu et al., 2024a; Liao  
 446 et al., 2025). For instance, Cai et al. (2024a) fine-tune multiple heads for generating subsequent to-  
 447 kens; Li et al. (2024b;c, 2025) propose EAGLE, which introduces an additional head for draft token  
 448 generation; Bachmann et al. (2025) propose Judge Decoding, training a binary classifier to aug-  
 449 ment the acceptance rate function. However, these methods require substantial training resources,  
 450 whereas Cactus is a training-free acceptance rule. **We also expect that Cactus can be directly applied**  
 451 **to that utilizes either SpS or TAS as the underlying principle.** Another generalization of speculative  
 452 sampling involves using multiple draft tokens or verifiers (Yang et al., 2024; Chen et al., 2024; Jeon  
 453 et al., 2024). For example, Miao et al. (2023) propose SpecInfer with tree-based draft generation;  
 454 TreeBoN (Qiu et al., 2024) integrates speculative sampling into best-of-N tree-search decoding. We  
 455 leave the exploration on more integrated versions of multi-drafter or multi-verifier Cactus to future  
 456 work.  
 457

458 **Low-complexity attention for Transformers.** Transformer models generate sequences in an  
 459 auto-regressive manner (Vaswani et al., 2017). Since each token attends to all previous ones, gener-  
 460 ation time grows quadratically with sequence length (Wang et al., 2020). To address this, previous  
 461 work has proposed low-complexity attention variants (Child et al., 2019; Zaheer et al., 2020; Tsai  
 462 et al., 2019; Kitaev et al., 2020; Choromanski et al., 2021). These methods modify the Transformer  
 463 architecture itself. Cactus can be combined with these methods since they also follow the auto-  
 464 regressive paradigm. In addition to architectural changes, decoding complexity can also be reduced  
 465 by manipulating the KV cache (Zhang et al., 2023; Li et al., 2024a; Cai et al., 2024b). For in-  
 466 stance, SnapKV (Li et al., 2024a) evicts less relevant tokens from the prompt before generation;  
 467 Radar (Hao et al., 2025) dynamically selects key segments using random projections. These tech-  
 468 niques are drop-in approximations of vanilla attention and are orthogonal to speculative sampling  
 469 methods like Cactus.  
 470

471 **Minimizing overheads of Transformers.** Without approximating the Transformer architecture,  
 472 overheads can still be reduced to accelerate decoding. Flash Attention (Dao et al., 2022; Dao, 2023),  
 473 for example, uses tiling techniques to avoid memory-bound operations, and has seen widespread  
 474 adoption (Wolf et al., 2019; Kwon et al., 2023). Memory-efficient attention (Rabe and Staats, 2021)  
 475 reorders computation to maintain constant memory usage regardless of context length. Another  
 476 line of work applies quantization to model parameters (Lin et al., 2023; Badri and Shaji, 2023; Liu  
 477 et al., 2024b). The benefits are threefold: (1) reduced memory footprint due to lower-precision data  
 478 types; (2) alleviated memory bottlenecks during decoding; and (3) improved hardware efficiency  
 479 via optimized kernels. All these methods can be seamlessly integrated into speculative sampling  
 480 approaches, including Cactus.  
 481

## 5 CONCLUSION

482 In this paper, we propose a constrained optimization framework for analyzing and improving specu-  
 483 lative sampling methods. Building upon this framework, we introduce Cactus, a novel training-free  
 484 speculative sampling method that increases acceptance rates while maintaining a provably controlled  
 485 divergence from the large verifier model. Cactus uses only basic element-wise operations, making  
 486 it highly practical and lightweight for real-time inference. We empirically evaluate our method on a

486 variety of benchmarks and confirm its effectiveness. As LLMs continue to grow in size and cost, our  
487 method provides a theoretically grounded yet practically efficient solution for scalable deployment.  
488  
489  
490  
491  
492  
493  
494  
495  
496  
497  
498  
499  
500  
501  
502  
503  
504  
505  
506  
507  
508  
509  
510  
511  
512  
513  
514  
515  
516  
517  
518  
519  
520  
521  
522  
523  
524  
525  
526  
527  
528  
529  
530  
531  
532  
533  
534  
535  
536  
537  
538  
539

540 ETHICS STATEMENT  
541

542 We certify that all authors of this project adhere to the ICLR Code of Ethics (<https://iclr.cc/public/CodeOfEthics>). Our research does not involve human subjects, practices to dataset  
543 releases, potentially harmful content, potential conflicts of interest and sponsorship, discrimination/bias/fairness concerns, privacy and security issues, legal compliance, or research integrity is-  
544 sues.

548 REPRODUCIBILITY STATEMENT  
549

550 All of our experiments use publicly accessible datasets and models. Specifically, the datasets we  
551 used can be found by the following links via HuggingFace

- 553 • GSM8K: <https://huggingface.co/datasets/openai/gsm8k>
- 554 • IFEval: <https://huggingface.co/datasets/google/IFEval>
- 555 • GPQA: <https://huggingface.co/datasets/Idavidrein/gpqa>

557 The models can be found by the following links

- 559 • Qwen3 0.6B: <https://huggingface.co/Qwen/Qwen3-0.6B>
- 560 • Qwen3 8B: <https://huggingface.co/Qwen/Qwen3-8B>
- 561 • Qwen3 14B: <https://huggingface.co/Qwen/Qwen3-14B>
- 562 • Gemma 2B: <https://huggingface.co/google/gemma-2-2b>
- 563 • Gemma 9B: <https://huggingface.co/google/gemma-2-9b>
- 564 • R1 1.5B: <https://huggingface.co/deepseek-ai/DeepSeek-R1-Distill-Qwen-1.5B>
- 565 • R1 7B: <https://huggingface.co/deepseek-ai/DeepSeek-R1-Distill-Qwen-7B>
- 566 • Llama 1B: <https://huggingface.co/meta-llama/Llama-3.2-1B>
- 567 • Llama 8B: <https://huggingface.co/meta-llama/Llama-3.1-8B>

573 In addition, our code is publicly available at the anonymous link <https://anonymous.4open.science/r/Cactus-2E4D/>.

576 REFERENCES  
577

578 Gregor Bachmann, Sotiris Anagnostidis, Albert Pumarola, Markos Georgopoulos, Artsiom  
579 Sanakoyeu, Yuming Du, Edgar Schönfeld, Ali Thabet, and Jonas K Kohler. Judge decoding:  
580 Faster speculative sampling requires going beyond model alignment. In *ICLR*, 2025. URL  
581 <https://openreview.net/forum?id=mtSSFiqW6y>.

582 Hicham Badri and Appu Shaji. Half-quadratic quantization of large machine learning models,  
583 November 2023. URL [https://mobiusml.github.io/hqq\\_blog/](https://mobiusml.github.io/hqq_blog/).

584 Tom B. Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, J. Kaplan, Prafulla Dhariwal,  
585 Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, Sandhini Agarwal, Ariel  
586 Herbert-Voss, Gretchen Krueger, T. Henighan, R. Child, A. Ramesh, Daniel M. Ziegler, Jeff  
587 Wu, Clemens Winter, Christopher Hesse, Mark Chen, Eric Sigler, Mateusz Litwin, S. Gray,  
588 B. Chess, Jack Clark, Christopher Berner, Sam McCandlish, Alec Radford, I. Sutskever, and  
589 Dario Amodei. Language models are few-shot learners. In *NeurIPS*, 2020. URL <https://arxiv.org/abs/2005.14165>.

590 Tianle Cai, Yuhong Li, Zhengyang Geng, Hongwu Peng, Jason D Lee, Deming Chen, and Tri Dao.  
591 Medusa: Simple LLM inference acceleration framework with multiple decoding heads. *arXiv preprint arXiv:2401.10774*, 2024a. URL <https://arxiv.org/abs/2401.10774>.

594 Zefan Cai, Yichi Zhang, Bofei Gao, Yuliang Liu, Tianyu Liu, Keming Lu, Wayne Xiong, Yue Dong,  
 595 Baobao Chang, Junjie Hu, and Wen Xiao. PyramidKV: Dynamic KV cache compression based  
 596 on pyramidal information funneling. *arXiv preprint arXiv: 2406.02069*, 2024b. URL <https://arxiv.org/abs/2406.02069>.

598 Charlie Chen, Sebastian Borgeaud, Geoffrey Irving, Jean-Baptiste Lespiau, Laurent Sifre, and John  
 599 Jumper. Accelerating large language model decoding with speculative sampling. *arXiv preprint  
 600 arXiv:2302.01318*, 2023. URL <https://arxiv.org/abs/2302.01318>.

602 Ziyi Chen, Xiaocong Yang, Jiacheng Lin, Chenkai Sun, Kevin Chang, and Jie Huang.  
 603 Cascade speculative drafting for even faster llm inference. *NeurIPS*, 37:86226–86242,  
 604 2024. URL [https://proceedings.neurips.cc/paper\\_files/paper/2024/hash/9cb5b083ba4f5ca6bd05dd307a2fb354-Abstract-Conference.html](https://proceedings.neurips.cc/paper_files/paper/2024/hash/9cb5b083ba4f5ca6bd05dd307a2fb354-Abstract-Conference.html).

606 Rewon Child, Scott Gray, Alec Radford, and Ilya Sutskever. Generating long sequences with sparse  
 607 Transformers. *arXiv preprint arXiv:1904.10509*, 2019. URL <https://arxiv.org/abs/1904.10509>.

609 Krzysztof Marcin Choromanski, Valerii Likhoshesterov, David Dohan, Xingyou Song, Andreea  
 610 Gane, Tamas Sarlos, Peter Hawkins, Jared Quincy Davis, Afroz Mohiuddin, Lukasz Kaiser,  
 611 David Benjamin Belanger, Lucy J Colwell, and Adrian Weller. Rethinking attention with per-  
 612 formers. In *ICLR*, 2021. URL <https://openreview.net/forum?id=Ua6zuk0WRH>.

614 Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian, Mark Chen, Heewoo Jun, Lukasz Kaiser,  
 615 Matthias Plappert, Jerry Tworek, Jacob Hilton, Reiichiro Nakano, Christopher Hesse, and John  
 616 Schulman. Training verifiers to solve math word problems. *arXiv preprint arXiv: 2110.14168*,  
 617 2021. URL <https://arxiv.org/abs/2110.14168>.

618 Tri Dao. Flashattention-2: Faster attention with better parallelism and work partitioning. *arXiv  
 619 preprint arXiv:2307.08691*, 2023. URL <https://arxiv.org/abs/2307.08691>.

621 Tri Dao, Dan Fu, Stefano Ermon, Atri Rudra, and Christopher Ré. FlashAttention: Fast and memory-  
 622 efficient exact attention with IO-awareness. *NeurIPS*, 35:16344–16359, 2022. URL <https://arxiv.org/abs/2205.14135>.

624 DeepSeek-AI, Daya Guo, Dejian Yang, Haowei Zhang, Junxiao Song, Ruoyu Zhang, Runxin Xu,  
 625 Qihao Zhu, Shirong Ma, Peiyi Wang, Xiao Bi, Xiaokang Zhang, Xingkai Yu, Yu Wu, Z. F. Wu,  
 626 Zhibin Gou, Zhihong Shao, Zhuoshu Li, Ziyi Gao, Aixin Liu, Bing Xue, Bingxuan Wang, Bochao  
 627 Wu, Bei Feng, Chengda Lu, Chenggang Zhao, Chengqi Deng, Chenyu Zhang, Chong Ruan,  
 628 Damai Dai, Deli Chen, Dongjie Ji, Erhang Li, Fangyun Lin, Fucong Dai, Fuli Luo, Guangbo Hao,  
 629 Guanting Chen, Guowei Li, H. Zhang, Han Bao, Hanwei Xu, Haocheng Wang, Honghui Ding,  
 630 Huajian Xin, Huazuo Gao, Hui Qu, Hui Li, Jianzhong Guo, Jiashi Li, Jiawei Wang, Jingchang  
 631 Chen, Jingyang Yuan, Junjie Qiu, Junlong Li, J. L. Cai, Jiaqi Ni, Jian Liang, Jin Chen, Kai  
 632 Dong, Kai Hu, Kaige Gao, Kang Guan, Kexin Huang, Kuai Yu, Lean Wang, Lecong Zhang,  
 633 Liang Zhao, Litong Wang, Liyue Zhang, Lei Xu, Leyi Xia, Mingchuan Zhang, Minghua Zhang,  
 634 Minghui Tang, Meng Li, Miaojun Wang, Mingming Li, Ning Tian, Panpan Huang, Peng Zhang,  
 635 Qiancheng Wang, Qinyu Chen, Qiushi Du, Ruiqi Ge, Ruisong Zhang, Ruizhe Pan, Runji Wang,  
 636 R. J. Chen, R. L. Jin, Ruyi Chen, Shanghao Lu, Shangyan Zhou, Shanhua Chen, Shengfeng  
 637 Ye, Shiyu Wang, Shuiping Yu, Shunfeng Zhou, Shuting Pan, S. S. Li, Shuang Zhou, Shao-  
 638 qing Wu, Shengfeng Ye, Tao Yun, Tian Pei, Tianyu Sun, T. Wang, Wangding Zeng, Wanja  
 639 Zhao, Wen Liu, Wenfeng Liang, Wenjun Gao, Wenqin Yu, Wentao Zhang, W. L. Xiao, Wei  
 640 An, Xiaodong Liu, Xiaohan Wang, Xiaokang Chen, Xiaotao Nie, Xin Cheng, Xin Liu, Xin Xie,  
 641 Xingchao Liu, Xinyu Yang, Xinyuan Li, Xuecheng Su, Xuheng Lin, X. Q. Li, Xiangyue Jin,  
 642 Xiaojin Shen, Xiaosha Chen, Xiaowen Sun, Xiaoxiang Wang, Xinnan Song, Xinyi Zhou, Xi-  
 643 anzu Wang, Xinxia Shan, Y. K. Li, Y. Q. Wang, Y. X. Wei, Yang Zhang, Yanhong Xu, Yao Li,  
 644 Yao Zhao, Yaofeng Sun, Yaohui Wang, Yi Yu, Yichao Zhang, Yifan Shi, Yiliang Xiong, Ying  
 645 He, Yishi Piao, Yisong Wang, Yixuan Tan, Yiyang Ma, Yiyuan Liu, Yongqiang Guo, Yuan Ou,  
 646 Yuduan Wang, Yue Gong, Yuheng Zou, Yujia He, Yunfan Xiong, Yuxiang Luo, Yuxiang You,  
 647 Yuxuan Liu, Yuyang Zhou, Y. X. Zhu, Yanhong Xu, Yanping Huang, Yaohui Li, Yi Zheng,  
 Yuchen Zhu, Yunxian Ma, Ying Tang, Yukun Zha, Yuting Yan, Z. Z. Ren, Zehui Ren, Zhangli  
 Sha, Zhe Fu, Zhean Xu, Zhenda Xie, Zhengyan Zhang, Zhewen Hao, Zhicheng Ma, Zhigang

648 Yan, Zhiyu Wu, Zihui Gu, Zijia Zhu, Zijun Liu, Zilin Li, Ziwei Xie, Ziyang Song, Zizheng Pan,  
 649 Zhen Huang, Zhipeng Xu, Zhongyu Zhang, and Zhen Zhang. Deepseek-r1: Incentivizing rea-  
 650 soning capability in LLMs via reinforcement learning. *arXiv preprint arXiv: 2501.12948*, 2025.  
 651 URL <https://arxiv.org/abs/2501.12948>.

652 Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad Al-Dahle, Aiesha  
 653 Letman, Akhil Mathur, Alan Schelten, Amy Yang, Angela Fan, Anirudh Goyal, Anthony  
 654 Hartshorn, Aobo Yang, Archi Mitra, Archie Sravankumar, and et al. The Llama 3 herd of models.  
 655 *arXiv preprint arXiv: 2407.21783*, 2024. URL <https://arxiv.org/abs/2407.21783>.

656

657 Leo Gao, Jonathan Tow, Baber Abbasi, Stella Biderman, Sid Black, Anthony DiPofi, Charles Fos-  
 658 ter, Laurence Golding, Jeffrey Hsu, Alain Le Noac'h, Haonan Li, Kyle McDonell, Niklas Muen-  
 659 nighoff, Chris Ociepa, Jason Phang, Laria Reynolds, Hailey Schoelkopf, Aviya Skowron, Lintang  
 660 Sutawika, Eric Tang, Anish Thite, Ben Wang, Kevin Wang, and Andy Zou. The language model  
 661 evaluation harness, 07 2024. URL <https://zenodo.org/records/12608602>.

662

663 Yongchang Hao, Mengyao Zhai, Hossein Hajimirsadeghi, Sepidehsadat Hosseini, and Frederick  
 664 Tung. Radar: Fast long-context decoding for any Transformers. In *ICLR*, 2025. URL <https://openreview.net/forum?id=ZTpW0wMrzQ>.

665

666 John Hewitt, Christopher D. Manning, and Percy Liang. Truncation sampling as language model  
 667 desmoothing. *arXiv preprint arXiv: 2210.15191*, 2022. URL <https://arxiv.org/abs/2210.15191>.

668

669 Ari Holtzman, Jan Buys, Li Du, Maxwell Forbes, and Yejin Choi. The curious case of neural text  
 670 degeneration. *arXiv preprint arXiv:1904.09751*, 2019. URL <https://arxiv.org/abs/1904.09751>.

671

672 Yunhai Hu, Zining Liu, Zhenyuan Dong, Tianfan Peng, Bradley McDanel, and Sai Qian  
 673 Zhang. Speculative decoding and beyond: An in-depth survey of techniques. *arXiv preprint  
 674 arXiv:2502.19732*, 2025. URL <https://arxiv.org/abs/2502.19732>.

675

676 Wonseok Jeon, Mukul Agrawal, Raghav Goel, Junyoung Park, Mingu Lee, and Christopher Lott.  
 677 Recursive speculative decoding: Accelerating llm inference via sampling without replacement.  
 678 *ICLR 2024 Workshop on Large Language Model (LLM) Agents*, 2024. URL <https://arxiv.org/abs/2402.14160>.

679

680 Jared Kaplan, Sam McCandlish, Tom Henighan, Tom B Brown, Benjamin Chess, Rewon Child,  
 681 Scott Gray, Alec Radford, Jeffrey Wu, and Dario Amodei. Scaling laws for neural language  
 682 models. *arXiv preprint arXiv:2001.08361*, 2020. URL <https://arxiv.org/abs/2001.08361>.

683

684 Sehoon Kim, Karttikeya Mangalam, Suhong Moon, Jitendra Malik, Michael W Mahoney, Amir  
 685 Gholami, and Kurt Keutzer. Speculative decoding with big little decoder. *NeurIPS*, 36:39236–  
 686 39256, 2023. URL [https://proceedings.neurips.cc/paper\\_files/paper/2023/hash/7b97adeafalc51cf65263459ca9d0d7c-Abstract-Conference.html](https://proceedings.neurips.cc/paper_files/paper/2023/hash/7b97adeafalc51cf65263459ca9d0d7c-Abstract-Conference.html).

687

688

689

690 Nikita Kitaev, Lukasz Kaiser, and Anselm Levskaya. Reformer: The efficient Transformers. In  
 691 *ICLR*, 2020. URL <https://openreview.net/forum?id=rkgNKkHtvB>.

692

693 Woosuk Kwon, Zuhuan Li, Siyuan Zhuang, Ying Sheng, Lianmin Zheng, Cody Hao Yu, Joseph E.  
 694 Gonzalez, Hao Zhang, and Ion Stoica. Efficient memory management for large language model  
 695 serving with PagedAttention. In *ACM SIGOPS*, 2023. URL <https://arxiv.org/abs/2309.06180>.

696

697 Yaniv Leviathan, Matan Kalman, and Yossi Matias. Fast inference from Transformers via spec-  
 698 ulative decoding. In *ICML*, pages 19274–19286, 2023. URL <https://arxiv.org/abs/2211.17192>.

699

700 Yuhong Li, Yingbing Huang, Bowen Yang, Bharat Venkitesh, Akyr Locatelli, Hanchen Ye, Tianle  
 701 Cai, Patrick Lewis, and Deming Chen. SnapKV: LLM knows what you are looking for before  
 702 generation. *NeruIPS*, 2024a. URL <https://arxiv.org/abs/2404.14469>.

702 Yuhui Li, Fangyun Wei, Chao Zhang, and Hongyang Zhang. EAGLE: Speculative sampling requires  
 703 rethinking feature uncertainty. *ICML*, 2024b. URL <https://arxiv.org/abs/2401.15077>.

704

705 Yuhui Li, Fangyun Wei, Chao Zhang, and Hongyang Zhang. EAGLE-2: Faster inference of  
 706 language models with dynamic draft trees. *arXiv preprint arXiv: 2406.16858*, 2024c. URL  
 707 <https://arxiv.org/abs/2406.16858>.

708

709 Yuhui Li, Fangyun Wei, Chao Zhang, and Hongyang Zhang. EAGLE-3: Scaling up inference  
 710 acceleration of large language models via training-time test. In *NeurIPS*, 2025. URL <https://openreview.net/forum?id=4exx1hUffq>.

711

712

713 Baohao Liao, Yuhui Xu, Hanze Dong, Junnan Li, Christof Monz, Silvio Savarese, Doyen Sahoo,  
 714 and Caiming Xiong. Reward-guided speculative decoding for efficient LLM reasoning. *arXiv  
 715 preprint arXiv: 2501.19324*, 2025. URL <https://arxiv.org/abs/2501.19324>.

716

717 Ji Lin, Jiaming Tang, Haotian Tang, Shang Yang, Wei-Ming Chen, Wei-Chen Wang, Guangxuan  
 718 Xiao, Xingyu Dang, Chuang Gan, and Song Han. AWQ: Activation-aware weight quantization  
 719 for LLM compression and acceleration. *arXiv preprint arXiv: 2306.00978*, 2023. URL <https://arxiv.org/abs/2306.00978v5>.

720

721 Fangcheng Liu, Yehui Tang, Zhenhua Liu, Yunsheng Ni, Kai Han, and Yunhe Wang. Kangaroo:  
 722 Lossless self-speculative decoding via double early exiting. *arXiv preprint arXiv:2404.18911*,  
 723 2024a. URL <https://arxiv.org/abs/2404.18911>.

724

725 Zechun Liu, Changsheng Zhao, Igor Fedorov, Bilge Soran, Dhruv Choudhary, Raghuraman Kr-  
 726 ishnamoorthi, Vikas Chandra, Yuandong Tian, and Tijmen Blankevoort. SpinQuant: LLM  
 727 quantization with learned rotations. *arXiv preprint arXiv: 2405.16406*, 2024b. URL <https://arxiv.org/abs/2405.16406>.

728

729 Clara Meister, Tim Vieira, and Ryan Cotterell. If beam search is the answer, what was the question?  
 730 *arXiv preprint arXiv:2010.02650*, 2020. URL <https://arxiv.org/abs/2010.02650>.

731

732 Clara Meister, Tiago Pimentel, Gian Wiher, and Ryan Cotterell. Locally typical sampling. *TACL*,  
 733 11:102–121, 2023. URL [https://doi.org/10.1162/tacl\\_a\\_00536](https://doi.org/10.1162/tacl_a_00536).

734

735 Xupeng Miao, Gabriele Oliaro, Zhihao Zhang, Xinhao Cheng, Zeyu Wang, Zhengxin Zhang, Rae  
 736 Ying Yee Wong, Alan Zhu, Lijie Yang, Xiaoxiang Shi, et al. Specinfer: Accelerating genera-  
 737 tive large language model serving with tree-based speculative inference and verification. *arXiv  
 738 preprint arXiv:2305.09781*, 2023. URL <https://arxiv.org/abs/2305.09781>.

739

740 Harikrishna Narasimhan, Wittawat Jitkrittum, Ankit Singh Rawat, Seungyeon Kim, Neha Gupta,  
 741 Aditya Krishna Menon, and Sanjiv Kumar. Faster cascades via speculative decoding. In *ICLR*,  
 742 2025. URL <https://openreview.net/forum?id=vo9t20wsmd>.

743

744 Jiahao Qiu, Yifu Lu, Yifan Zeng, Jiacheng Guo, Jiayi Geng, Huazheng Wang, Kaixuan Huang,  
 745 Yue Wu, and Mengdi Wang. TreeBoN: Enhancing inference-time alignment with speculative  
 746 tree-search and best-of-n sampling. *arXiv preprint arXiv:2410.16033*, 2024. URL <https://arxiv.org/abs/2410.16033>.

747

748 Qwen, :, An Yang, Baosong Yang, Beichen Zhang, Binyuan Hui, Bo Zheng, Bowen Yu, Chengyuan  
 749 Li, Dayiheng Liu, Fei Huang, Haoran Wei, Huan Lin, Jian Yang, Jianhong Tu, Jianwei Zhang,  
 750 Jianxin Yang, Jiaxi Yang, Jingren Zhou, Junyang Lin, Kai Dang, Keming Lu, Keqin Bao, Kexin  
 751 Yang, Le Yu, Mei Li, Mingfeng Xue, Pei Zhang, Qin Zhu, Rui Men, Runji Lin, Tianhao Li,  
 752 Tianyi Tang, Tingyu Xia, Xingzhang Ren, Xuancheng Ren, Yang Fan, Yang Su, Yichang Zhang,  
 753 Yu Wan, Yuqiong Liu, Zeyu Cui, Zhenru Zhang, and Zihan Qiu. Qwen2.5 technical report. *arXiv  
 754 preprint arXiv: 2412.15115*, 2024. URL <https://arxiv.org/abs/2412.15115>.

755

Markus N. Rabe and Charles Staats. Self-attention does not need  $o(n^2)$  memory. *arXiv preprint  
 756 arXiv: 2112.05682*, 2021. URL <https://arxiv.org/abs/2112.05682>.

756 David Rein, Betty Li Hou, Asa Cooper Stickland, Jackson Petty, Richard Yuanzhe Pang, Julien  
 757 Dirani, Julian Michael, and Samuel R. Bowman. GPQA: A graduate-level Google-proof Q&A  
 758 benchmark. *arXiv preprint arXiv: 2311.12022*, 2023. URL <https://arxiv.org/abs/2311.12022>.

760 Mitchell Stern, Noam Shazeer, and Jakob Uszkoreit. Blockwise parallel decoding for deep autore-  
 761 gressive models. *NeurIPS*, 31, 2018. URL <https://arxiv.org/abs/1811.03115>.

763 Gemma Team, Thomas Mesnard, Cassidy Hardin, Robert Dadashi, Surya Bhupatiraju, Shreya  
 764 Pathak, Laurent Sifre, Morgane Rivière, Mihir Sanjay Kale, Juliette Love, et al. Gemma: Open  
 765 models based on gemini research and technology. *arXiv preprint arXiv:2403.08295*, 2024. URL  
 766 <https://arxiv.org/abs/2403.08295>.

767 Vivien Tran-Thien. An optimal lossy variant of speculative decoding,  
 768 2023. URL <https://vivien000.github.io/blog/journal/a-provably-optimal-lossy-variant-of-speculative-decoding.html>.

771 Yao-Hung Hubert Tsai, Shaojie Bai, Makoto Yamada, Louis-Philippe Morency, and Ruslan  
 772 Salakhutdinov. Transformer dissection: An unified understanding for Transformers's atten-  
 773 tion via the lens of kernel. In *EMNLP-IJCNLP*, pages 4344–4353, 2019. URL <https://aclanthology.org/D19-1443>.

775 Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,  
 776 Łukasz Kaiser, and Illia Polosukhin. Attention is all you need. In *NIPS*, volume 30,  
 777 2017. URL [https://proceedings.neurips.cc/paper\\_files/paper/2017/file/3f5ee243547dee91fb053c1c4a845aa-Paper.pdf](https://proceedings.neurips.cc/paper_files/paper/2017/file/3f5ee243547dee91fb053c1c4a845aa-Paper.pdf).

779 Sinong Wang, Belinda Z Li, Madian Khabsa, Han Fang, and Hao Ma. Linformer: Self-attention  
 780 with linear complexity. *arXiv preprint arXiv:2006.04768*, 2020. URL <https://arxiv.org/abs/2006.04768>.

783 Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, brian ichter, Fei Xia, Ed H. Chi,  
 784 Quoc V Le, and Denny Zhou. Chain of thought prompting elicits reasoning in large language  
 785 models. In *NeurIPS*, 2022. URL [https://openreview.net/forum?id=\\_VjQ1MeSB\\_J](https://openreview.net/forum?id=_VjQ1MeSB_J).

787 Thomas Wolf, Lysandre Debut, Victor Sanh, Julien Chaumond, Clement Delangue, Anthony Moi,  
 788 Pierrick Cistac, Tim Rault, Rémi Louf, Morgan Funtowicz, Joe Davison, Sam Shleifer, Patrick  
 789 von Platen, Clara Ma, Yacine Jernite, Julien Plu, Canwen Xu, Teven Le Scao, Sylvain Gugger,  
 790 Mariama Drame, Quentin Lhoest, and Alexander M. Rush. HuggingFace's Transformers: State-  
 791 of-the-art natural language processing. *arXiv preprint arXiv: 1910.03771*, 2019. URL <https://arxiv.org/abs/1910.03771>.

793 Heming Xia, Tao Ge, Peiyi Wang, Si-Qing Chen, Furu Wei, and Zhifang Sui. Speculative de-  
 794 coding: Exploiting speculative execution for accelerating seq2seq generation. *arXiv preprint*  
 795 *arXiv:2203.16487*, 2022. URL <https://arxiv.org/abs/2203.16487>.

797 Heming Xia, Zhe Yang, Qingxiu Dong, Peiyi Wang, Yongqi Li, Tao Ge, Tianyu Liu, Wenjie Li, and  
 798 Zhifang Sui. Unlocking efficiency in large language model inference: A comprehensive survey  
 799 of speculative decoding. In *Findings of ACL 2024*, pages 7655–7671, 2024. URL <https://aclanthology.org/2024.findings-acl.456>.

801 An Yang, Anfeng Li, Baosong Yang, Beichen Zhang, Binyuan Hui, Bo Zheng, Bowen Yu, Chang  
 802 Gao, Chengan Huang, Chenxu Lv, Chujie Zheng, Dayiheng Liu, Fan Zhou, Fei Huang, Feng Hu,  
 803 Hao Ge, Haoran Wei, Huan Lin, Jialong Tang, Jian Yang, Jianhong Tu, Jianwei Zhang, Jianxin  
 804 Yang, Jiaxi Yang, Jing Zhou, Jingren Zhou, Junyang Lin, Kai Dang, Keqin Bao, Kexin Yang,  
 805 Le Yu, Lianghao Deng, Mei Li, Mingfeng Xue, Mingze Li, Pei Zhang, Peng Wang, Qin Zhu, Rui  
 806 Men, Ruize Gao, Shixuan Liu, Shuang Luo, Tianhao Li, Tianyi Tang, Wenbiao Yin, Xingzhang  
 807 Ren, Xinyu Wang, Xinyu Zhang, Xuancheng Ren, Yang Fan, Yang Su, Yichang Zhang, Yinger  
 808 Zhang, Yu Wan, Yuqiong Liu, Zekun Wang, Zeyu Cui, Zhenru Zhang, Zhipeng Zhou, and Zihan  
 809 Qiu. Qwen3 technical report. *arXiv preprint arXiv: 2505.09388*, 2025a. URL <https://arxiv.org/abs/2505.09388>.

810 Sen Yang, Shujian Huang, Xinyu Dai, and Jiajun Chen. Multi-candidate speculative decoding. *arXiv*  
 811 *preprint arXiv:2401.06706*, 2024. URL <https://arxiv.org/abs/2401.06706>.  
 812

813 Wang Yang, Xiang Yue, Vipin Chaudhary, and Xiaotian Han. Speculative thinking: Enhanc-  
 814 ing small-model reasoning with large model guidance at inference time. *arXiv preprint arXiv:*  
 815 *2504.12329*, 2025b. URL <https://arxiv.org/abs/2504.12329>.  
 816

817 Zhihang Yuan, Yuzhang Shang, Yang Zhou, Zhen Dong, Zhe Zhou, Chenhao Xue, Bingzhe Wu,  
 818 Zhikai Li, Qingyi Gu, Yong Jae Lee, Yan Yan, Beidi Chen, Guangyu Sun, and Kurt Keutzer. Llm  
 819 inference unveiled: Survey and roofline model insights. *arXiv preprint arXiv: 2402.16363*, 2024.  
 820 URL <https://arxiv.org/abs/2402.16363>.  
 821

822 Manzil Zaheer, Guru Guruganesh, Kumar Avinava Dubey, Joshua Ainslie, Chris Alberti, Santiago  
 823 Ontanon, Philip Pham, Anirudh Ravula, Qifan Wang, Li Yang, et al. Big bird: Transformers  
 824 for longer sequences. *NeurIPS*, 33:17283–17297, 2020. URL <https://arxiv.org/abs/2007.14062>.  
 825

826 Zhenyu Zhang, Ying Sheng, Tianyi Zhou, Tianlong Chen, Lianmin Zheng, Ruisi Cai, Zhao Song,  
 827 Yuandong Tian, Christopher Ré, Clark Barrett, et al. H<sub>2</sub>O: Heavy-hitter oracle for efficient gen-  
 828 erative inference of large language models. *NeruIPS*, 36, 2023. URL <https://arxiv.org/abs/2306.14048>.  
 829

830 Jeffrey Zhou, Tianjian Lu, Swaroop Mishra, Siddhartha Brahma, Sujoy Basu, Yi Luan, Denny Zhou,  
 831 and Le Hou. Instruction-following evaluation for large language models. *arXiv preprint arXiv:*  
 832 *2311.07911*, 2023. URL <https://arxiv.org/abs/2311.07911>.  
 833

834 Zixuan Zhou, Xuefei Ning, Ke Hong, Tianyu Fu, Jiaming Xu, Shiyao Li, Yuming Lou, Luning  
 835 Wang, Zhihang Yuan, Xiuhong Li, et al. A survey on efficient inference for large language models.  
 836 *arXiv preprint arXiv:2404.14294*, 2024. URL <https://arxiv.org/abs/2404.14294>.  
 837

838

839

840

841

842

843

844

845

846

847

848

849

850

851

852

853

854

855

856

857

858

859

860

861

862

863

864 A TECHNICAL PROOFS  
865866 A.1 PROOF OF THEOREM 1  
867868 **Observation 1.** Given any desired target distribution  $h$  and draft model  $p$ , the acceptance rate and  
869 recovery probability are defined as

870 
$$\phi(x_t | \mathbf{x}_{<t}) = \min \left( \frac{h(x_t | \mathbf{x}_{<t})}{p(x_t | \mathbf{x}_{<t})}, 1 \right) \quad (1)$$

871 and 
$$g(x_t | \mathbf{x}_{<t}) = \frac{h(x_t | \mathbf{x}_{<t}) - p(x_t | \mathbf{x}_{<t})\phi(x_t | \mathbf{x}_{<t})}{\mathbb{E}_{x' \sim p}[1 - \phi(x' | \mathbf{x}_{<t})]} \quad (2)$$

872 respectively. Algorithm 1 samples from  $h$  exactly using the above  $\phi$  and  $g$ . In addition, this  $\phi$  is the  
873 optimal design of acceptance rate.874  
875 *Proof.* Let  $n$  be the selected token and  $\mathbf{x}$  be the context. Then at each step, the resulting distribution  
876 of the algorithm is:

877 
$$\Pr(n | \mathbf{x}) = \Pr(n \sim p(\cdot | \mathbf{x}) \text{ and } u \leq \phi(x | \mathbf{x})) + \sum_{i=1}^{|V|} p(i | \mathbf{x}) \Pr(n \sim g(\cdot | \mathbf{x}) \text{ and } u > \phi(i | \mathbf{x})) \quad (17)$$

878 
$$= p(n | \mathbf{x})\phi(n | \mathbf{x}) + g(n | \mathbf{x}) \mathbb{E}_{i \sim p(\cdot | \mathbf{x})} [1 - \phi(i | \mathbf{x})], \quad (18)$$

879 where the first term on the right hand side indicates the sampled token  $n$  is accepted. The second  
880 term means the originally sampled token is rejected, and the current token  $n$  comes from the recover  
881 probability  $g$ . Since we would like  $\Pr(n | \mathbf{x}) = h(n | \mathbf{x})$ , we have

882 
$$p(n | \mathbf{x})\phi(n | \mathbf{x}) + g(n | \mathbf{x}) \mathbb{E}_{i \sim p(\cdot | \mathbf{x})} [1 - \phi(i | \mathbf{x})] = h(n | \mathbf{x}) \quad (19)$$

883 
$$\iff g(n | \mathbf{x}) = \frac{h(n | \mathbf{x}) - p(n | \mathbf{x})\phi(n | \mathbf{x})}{\mathbb{E}_{i \sim p(\cdot | \mathbf{x})} [1 - \phi(i | \mathbf{x})]}, \quad (20)$$

884 hence proving the expression for  $g$ . Here,  $\phi$  can be function that maps to  $[0, 1]$  that makes  $g$  a  
885 distribution. Since the expression of  $g$  is self-normalizing, we only need to make sure that all  $g(i | \mathbf{x})$   
886 are non-negative. Specifically,

887 
$$0 \leq g(i | \mathbf{x}) \quad (21)$$
  
888 
$$\iff h(i | \mathbf{x}) - p(i | \mathbf{x})\phi(i | \mathbf{x}) \geq 0 \quad (\text{Image}(\phi) \subseteq [0, 1])$$

889 
$$\iff \phi(i | \mathbf{x}) \leq \frac{h(i | \mathbf{x})}{p(i | \mathbf{x})}. \quad (22)$$

890 Again, given  $\text{Image}(\phi) \subseteq [0, 1]$ ,

891 
$$\phi(i | \mathbf{x}) \leq \min \left( \frac{h(i | \mathbf{x})}{p(i | \mathbf{x})}, 1 \right). \quad (23)$$

892 gives the optimal acceptance rate.  $\square$ 

## 900 A.2 PROOF OF THEOREM 3

901 Before proceeding to the proof of the theorem, we first show the following technical lemma.

902 **Lemma 8** (Minimal Divergence Allocation). *Let  $f : \mathbb{R}_+ \rightarrow \mathbb{R}$  be convex with  $f(1) = 0$ . For any  
903  $\alpha \in [0, 1]$  and sub-distribution  $\{q(i)\}_{i \in S}$  over  $S$  with  $Q := \sum_{i \in S} q(i) > 0$ , the solution to:*

904 
$$\min_{\{h(i)\}} \sum_{i \in S} q(i) f \left( \frac{h(i)}{q(i)} \right) \quad (24)$$

905 
$$\text{s.t. } \sum_{i \in S} h(i) = \alpha, \quad h(i) \geq 0 \quad (25)$$

906 is  $h^*(i) = \frac{\alpha}{Q} q(i)$  for all  $i \in S$ .

918 *Proof.* Let  $\lambda := \frac{\alpha}{Q}$ . Define  $\tilde{h}(i) := \lambda q(i)$ . Then:

$$920 \quad 921 \quad 922 \quad \sum_{i \in S} \tilde{h}(i) = \lambda Q = \alpha \quad (26)$$

923 satisfies the constraints. For any feasible  $h \neq \tilde{h}$ , define  $r(i) := \frac{h(i)}{q(i)}$ . By Jensen's inequality:

$$925 \quad 926 \quad 927 \quad \frac{1}{Q} \sum_{i \in S} q(i) f(r(i)) \geq f \left( \frac{1}{Q} \sum_{i \in S} q(i) r(i) \right) = f \left( \frac{\alpha}{Q} \right) \quad (27)$$

928 with equality iff  $r(i) = \lambda$  for all  $i \in S$ . Thus  $\tilde{h}$  is the unique minimizer.  $\square$

930 We can now show the theorem below.

931 **Theorem 3.** *The optimal  $\mathbf{h}$  in Definition 2 is*

$$933 \quad 934 \quad 935 \quad h_i = \begin{cases} \gamma^*, & \text{if } i = n, \\ \frac{1-\gamma^*}{1-q(n|\mathbf{x}_{<t})} q(i|\mathbf{x}_{<t}), & \text{otherwise,} \end{cases} \quad (6)$$

936 where  $\gamma^*$  is any root of the equation

$$937 \quad 938 \quad 939 \quad \delta = q(n|\mathbf{x}_{<t}) f \left( \frac{\gamma}{q(n|\mathbf{x}_{<t})} \right) + (1 - q(n|\mathbf{x}_{<t})) f \left( \frac{1-\gamma}{1-q(n|\mathbf{x}_{<t})} \right) \quad (7)$$

940 over the interval  $[q(n|\mathbf{x}_{<t}), +\infty)$ , clamped into  $[q(n|\mathbf{x}_{<t}), 1]$ . The function  $f$  is the one used in the  
941 definition of  $f$ -divergence.

942 *Proof.*

$$944 \quad 945 \quad 946 \quad \max_{\mathbf{h}} \min \left( \frac{h_n}{p(n|\mathbf{x}_{<t})}, 1 \right) \quad (28)$$

$$947 \quad \text{s.t. } \mathbf{h} \in \Delta^{|V|-1}, \quad (29)$$

$$948 \quad D_f(\mathbf{h} \| q(\cdot|\mathbf{x}_{<t})) \leq \delta. \quad (30)$$

949 Here,  $\Delta^{|V|-1}$  denotes the probability simplex, and

$$951 \quad 952 \quad 953 \quad D_f(\mathbf{h} \| q) = \sum_{i \in V} q(i) f \left( \frac{h(i)}{q(i)} \right) \quad (31)$$

954 is the  $f$ -divergence. The objective

$$956 \quad 957 \quad \min \left( \frac{h_n}{p(n)}, 1 \right) \quad (32)$$

958 is maximized when  $\frac{h_n}{p(n)}$  is as large as possible. However, since  $\min(\cdot, 1)$  caps the value at 1, the  
959 maximum achievable is 1 (when  $h_n \geq p(n)$ ). Thus, the problem reduces to maximizing  $h_n$  under  
960 the constraints, as increasing  $h_n$  directly improves the objective until  $h_n \geq p(n)$ . To maximize  
961  $h_n$ , we allocate as much probability mass to  $h_n$  as allowed by the constraints. Let  $\gamma = h_n$ . The  
962 remaining mass  $1 - \gamma$  must be distributed over  $i \neq n$ . By Lemma 8, the optimal allocation for  $i \neq n$   
963 is:

$$964 \quad 965 \quad 966 \quad h(i) = \frac{1-\gamma}{1-q(n)} q(i), \quad (33)$$

967 where  $\frac{1-\gamma}{1-q(n)}$  ensures  $\sum_{i \neq n} h(i) = 1 - \gamma$ . Thus, for  $i \neq n$ :

$$969 \quad 970 \quad h(i) = \frac{1-\gamma}{1-q(n)} q(i), \quad (34)$$

971 where  $\frac{1-\gamma}{1-q(n)}$  ensures  $\sum_{i \neq n} h(i) = 1 - \gamma$ .

972 Substitute  $h_n = \gamma$  and  $h(i) = \frac{1-\gamma}{1-q(n)}q(i)$  into  $D_f(\mathbf{h}\|q)$ :  
 973

$$974 \quad 975 \quad 976 \quad D_f = q(n)f\left(\frac{\gamma}{q(n)}\right) + \sum_{i \neq n} q(i)f\left(\frac{1-\gamma}{1-q(n)}\right). \quad (35)$$

977 Simplify the second term using  $\sum_{i \neq n} q(i) = 1 - q(n)$ :  
 978

$$979 \quad 980 \quad D_f = q(n)f\left(\frac{\gamma}{q(n)}\right) + (1 - q(n))f\left(\frac{1-\gamma}{1-q(n)}\right). \quad (36)$$

981 The constraint  $D_f \leq \delta$  becomes an equality at optimality (since increasing  $\gamma$  further would violate  
 982 the constraint). Thus,  $\gamma^*$  solves:  
 983

$$984 \quad 985 \quad q(n)f\left(\frac{\gamma}{q(n)}\right) + (1 - q(n))f\left(\frac{1-\gamma}{1-q(n)}\right) = \delta. \quad (37)$$

987 Finally, since  $\gamma^*$  may exceed 1 (when  $\delta$  is set too large to attain), it is truncated into  $[q(n), 1]$  as a  
 988 proper probability value.  $\square$   
 989

### 990 A.3 PROOF OF THEOREM 4

991  
 992 **Theorem 4.** Let  $\phi_n$  and  $g_n$  denote the functions that follow the solution in Theorem 3 when the  
 993 sampled token is  $n$ . The distribution of the overall algorithm is given by

$$994 \quad 995 \quad 996 \quad \mathbf{h}_{\text{alg}} = \sum_{n \in [|V|]} p(n|\mathbf{x}_{<t}) [\phi_n(n)\mathbf{e}_n + (1 - \phi_n(n))\mathbf{g}_n], \quad (8)$$

997 where  $\mathbf{e}_n$  is a one-hot vector with only non-zero element at index  $n$ . In addition,

$$998 \quad 999 \quad D_f(\mathbf{h}_{\text{alg}}\|q(\cdot|\mathbf{x}_{<t})) \leq \min\{\Gamma(\delta), D_f(p(\cdot|\mathbf{x}_{<t})\|q(\cdot|\mathbf{x}_{<t}))\} \quad (9)$$

1000 for any  $\delta \geq 0$ . Here, the function  $\Gamma : [0, +\infty) \rightarrow [0, +\infty]$  is continuous and non-decreasing in  $\delta$   
 1001 with a value of 0 at  $\delta = 0$ .  
 1002

1003 *Proof.* We work at a single step at  $t$  and suppress the context  $\mathbf{x}_{<t}$ . Fix  $p$  and  $q$  on a finite alphabet.  
 1004 For each drafted index  $n$ , let  $h_n$  be any target with  $D_f(h_n\|q) \leq \delta$ . The conditional output is

$$1005 \quad 1006 \quad \mathbf{r}_n = \phi_n(n)\mathbf{e}_n + (1 - \phi_n(n))\mathbf{g}(h_n),$$

1007 and the algorithm's one-step output is

$$1008 \quad 1009 \quad 1010 \quad \mathbf{h}_{\text{alg}} = \sum_n p(n)\mathbf{r}_n.$$

1011 Let

$$1013 \quad \mathcal{H}_\delta := \left\{ (h_n)_n : D_f(h_n\|q) \leq \delta \quad \forall n, \quad q(i) = 0 \Rightarrow h_n(i) = 0 \right\}, \quad (38)$$

$$1015 \quad F((h_n)_n) := D_f(\mathbf{h}_{\text{alg}}\|q). \quad (39)$$

1016 Define

$$1018 \quad 1019 \quad \Gamma(\delta) := \sup_{(h_n) \in \mathcal{H}_\delta} F((h_n)_n) \in [0, \infty], \quad (40)$$

1020 and note that  $\Gamma$  depends only on  $(p, q, f)$  and the budget  $\delta$ . By construction,  
 1021

$$1022 \quad D_f(\mathbf{h}_{\text{alg}}\|q) \leq \Gamma(\delta) \quad \text{for every feasible family } (h_n) \in \mathcal{H}_\delta. \quad (41)$$

1023 It is straight-forward to show that  $D_f(\mathbf{h}_{\text{alg}}\|q) \leq D_f(p\|q)$  given that the all-acceptance distribution  
 1024 is simply  $p$ . Thus it remains to show that  $\Gamma$  has the claimed shape: non-decreasing,  $\Gamma(0) = 0$ , and  
 1025 continuous in the extended-real sense.

1026 **Basic properties of  $\Gamma$ .** (i)  $\Gamma(0) = 0$ . If  $\delta = 0$  then  $h_n = q$  for all  $n$ , so  $\mathbf{h}_{\text{alg}} = q$  and thus  
 1027  $\Gamma(0) = D_f(q\|q) = 0$ .

1028 (ii) *Monotonicity.* If  $\delta_2 \geq \delta_1$  then  $\mathcal{H}_{\delta_1} \subseteq \mathcal{H}_{\delta_2}$ , so  $\Gamma(\delta_1) \leq \Gamma(\delta_2)$  by definition of the supremum.

1029 (iii) *Continuity.* We show right- and left-continuity. On a finite alphabet, the set of probability  
 1030 distributions is compact (a simplex), and with support alignment the feasible set  $\mathcal{H}_\delta$  is closed (as  
 1031 the preimage of  $[0, \delta]$  under the continuous function  $\max_n D_f(\cdot\|q)$ ) and thus compact. The map  
 1032  $(h_n)_n \mapsto \mathbf{h}_{\text{alg}}$  is continuous (operations involved are continuous on their domains), hence  $F$  is  
 1033 continuous.  
 1034

1035 We first show the right-continuity. Let  $\delta_k \downarrow \delta$ . For each  $k$  pick  $(h_n^{(k)})_n \in \mathcal{H}_{\delta_k}$  with  $F((h_n^{(k)})_n) \geq$   
 1036  $\Gamma(\delta_k) - \varepsilon_k$ , where  $\varepsilon_k \downarrow 0$ . Since the alphabet is finite, the feasible families live in a finite product of  
 1037 simplices, which is compact; therefore, there exists a subsequence (not relabeled) such that  $h_n^{(k)} \rightarrow$   
 1038  $h_n^*$  for each  $n$ . By continuity of  $D_f(\cdot\|q)$ ,  $D_f(h_n^*\|q) = \lim_k D_f(h_n^{(k)}\|q) \leq \lim_k \delta_k = \delta$ , so  
 1039  $(h_n^*)_n \in \mathcal{H}_\delta$ . Continuity of  $F$  gives  
 1040

$$1041 \limsup_{k \rightarrow \infty} \Gamma(\delta_k) \leq \lim_{k \rightarrow \infty} (F((h_n^{(k)})_n) + \varepsilon_k) = F((h_n^*)_n) \leq \Gamma(\delta).$$

1043 Monotonicity gives  $\Gamma(\delta) \leq \liminf_{k \rightarrow \infty} \Gamma(\delta_k)$ , hence  $\lim_{k \rightarrow \infty} \Gamma(\delta_k) = \Gamma(\delta)$ .

1044 We then show the left-continuity. Let  $\delta_k \uparrow \delta$  and fix  $\varepsilon > 0$ . Choose  $(h_n^*)_n \in \mathcal{H}_\delta$  with  $F((h_n^*)_n) \geq$   
 1045  $\Gamma(\delta) - \varepsilon$ . For  $\theta \in (0, 1)$  define  $h_{n,\theta} := (1 - \theta)h_n^* + \theta q$ . By convexity of  $D_f(\cdot\|q)$  in its first  
 1046 argument,  
 1047

$$D_f(h_{n,\theta}\|q) \leq (1 - \theta)D_f(h_n^*\|q) + \theta D_f(q\|q) \leq (1 - \theta)\delta < \delta,$$

1048 so  $(h_{n,\theta})_n \in \mathcal{H}_{(1-\theta)\delta}$ . By continuity of  $F$ , for sufficiently small  $\theta > 0$  we have  
 1049

$$1050 \quad F((h_{n,\theta})_n) \geq F((h_n^*)_n) - \varepsilon \geq \Gamma(\delta) - 2\varepsilon.$$

1052 For all large  $k$  with  $\delta_k > (1 - \theta)\delta$ , monotonicity gives  
 1053

$$1054 \quad \Gamma(\delta_k) \geq \Gamma((1 - \theta)\delta) \geq F((h_{n,\theta})_n) \geq \Gamma(\delta) - 2\varepsilon.$$

1055 Thus  $\liminf_{k \rightarrow \infty} \Gamma(\delta_k) \geq \Gamma(\delta)$ , and since monotonicity gives  $\limsup_{k \rightarrow \infty} \Gamma(\delta_k) \leq \Gamma(\delta)$ , we have  
 1056  $\lim_{k \rightarrow \infty} \Gamma(\delta_k) = \Gamma(\delta)$ .  
 1057

1058 In conclusion, by definition of  $\Gamma$ , for every feasible family  $(h_n) \in \mathcal{H}_\delta$ ,

$$1059 \quad D_f(\mathbf{h}_{\text{alg}}\|q) \leq \Gamma(\delta),$$

1061 with  $\Gamma$  non-decreasing, continuous on  $[0, \infty)$ , and  $\Gamma(0) = 0$ . This proves the theorem.  $\square$   
 1062

#### 1063 A.4 PROOF OF PROPOSITION 5

1065 **Proposition 5.** *Typical acceptance sampling (TAS, Cai et al. (2024a)) implicitly solves a variant  
 1066 of the optimization problem in Definition 2, where the  $f$ -divergence is substituted with the cross-  
 1067 entropy  $H(\mathbf{h}, q(\cdot|\mathbf{x}_{<t}))$ .*

1068 *Proof.* Given the optimization problem:  
 1069

$$1070 \quad \max_{\mathbf{h}} \quad \min \left( \frac{h_n}{p(n)}, 1 \right) \\ 1071 \quad \text{s.t. } \mathbf{h} \in \Delta^{|V|-1}, \quad (42)$$

$$1074 \quad H(\mathbf{h}, q) \leq H(q) + \delta, \quad (43)$$

1075 where  $H(q)$  is the entropy. The optimal solution concentrates mass on  $\{n, m\}$ . Equation (43) is  
 1076 equivalent to  
 1077

$$1078 \quad \sum_i [q(i) - h(i)] \log \frac{1}{q(i)} \geq -\delta. \quad (44)$$

1080 To maximize  $h_n = \gamma$ , we must minimize the LHS of (44). Based on Lemma 9, the resulting  
 1081 distribution is always two-point distribution. Let  $m = \arg \max_i q(i)$ . For fixed  $h_n = \gamma$ , the optimal  
 1082 allocation places all remaining mass on  $m$ :

$$1084 \quad h(i) = \begin{cases} \gamma, & i = n \\ 1 - \gamma, & i = m \\ 0, & \text{otherwise} \end{cases} \quad (45)$$

1088 Substituting the optimal form into (43):

$$\begin{aligned} 1090 \quad \gamma \log \frac{1}{q(n)} + (1 - \gamma) \log \frac{1}{q(m)} &\leq H(q) + \delta \\ 1091 \quad \gamma \left( \log \frac{1}{q(n)} - \log \frac{1}{q(m)} \right) &\leq H(q) + \delta - \log \frac{1}{q(m)} \\ 1092 \quad \gamma &\leq \frac{H(q) + \delta - \log \frac{1}{q(m)}}{\log \frac{q(m)}{q(n)}} \end{aligned} \quad (46)$$

1098 Since  $\gamma$  is a probability, its maximum is reached when

$$\begin{aligned} 1101 \quad \gamma = 1 &\iff \log \frac{q(m)}{q(n)} \leq H(q) + \delta - \log \frac{1}{q(m)} \\ 1102 \quad &\iff q(n) \geq \exp(-H(q)) \exp(-\delta), \end{aligned} \quad (47)$$

1104 which is the acceptance rate used in TAS.

1106 It should be noted that our theory here is used to reveal the soundness of the TAS acceptance function,  
 1107 without aiming to replicate the exact TAS algorithm. However, based on our framework, one  
 1108 can derive the exact TAS algorithm by adding an  $H(\mathbf{h}) = 0$  constraint and an  $\epsilon$  threshold to the  
 1109 cross-entropy limit, which we omitted for simplicity.  $\square$

1111 In the proof above, we invoked the following technical lemma.  
 1112 **Lemma 9.** For any  $\gamma \in [0, 1]$ , the minimal value of  $\sum_{i \neq n} [q(i) - h(i)] \log \frac{1}{q(i)}$  is achieved when:

$$1114 \quad h(m) = 1 - \gamma, \quad h(i) = 0 \quad \forall i \neq n, m. \quad (48)$$

1116 We provide the proof below.

1118 *Proof.* Let  $h(i) = \alpha_i(1 - \gamma)$  for  $i \neq n$ , where  $\sum_i \alpha_i = 1$ . Then:

$$1120 \quad \sum_{i \neq n} [q(i) - \alpha_i(1 - \gamma)] \log \frac{1}{q(i)} \quad (49)$$

1123 is minimized when  $\alpha_i$  concentrates on  $m = \arg \max q(i)$ , since  $\log \frac{1}{q(i)}$  is minimized at  $i = m$ .  $\square$

## 1125 A.5 PROOF OF THEOREM 6

1127 **Corollary 6** (Cactus's solution). Let the  $f$ -divergence in Definition 2 be the KL divergence. The  
 1128 solution to Equation (14) is given by

$$1130 \quad h(i|\mathbf{x}_{<t}) = \begin{cases} \gamma^*, & \text{if } i = n, \\ \frac{1-\gamma^*}{1-q(n|\mathbf{x}_{<t})} q(i|\mathbf{x}_{<t}), & \text{otherwise,} \end{cases} \quad (15)$$

1133 where  $\gamma^* = \min \left\{ q(n|\mathbf{x}_{<t}) + \sqrt{2\delta q(n|\mathbf{x}_{<t})(1 - q(n|\mathbf{x}_{<t}))}, 1 \right\}$ .

1134 *Proof.* We first compute the derivatives of  $\Phi$  at  $\gamma_0$ :

$$1136 \quad \Phi(\gamma_0) = \Phi'(\gamma_0) = 0, \quad (50)$$

$$1137 \quad \text{and } \Phi''(\gamma_0) = \frac{1}{q(n|\mathbf{x}_{<t})(1 - q(n|\mathbf{x}_{<t}))}. \quad (51)$$

1140 The unique root in  $[q(n|\mathbf{x}_{<t}), +\infty)$  is then

$$1142 \quad \gamma_0 + \sqrt{\frac{2\delta}{\Phi''(\gamma_0)}} = q(n|\mathbf{x}_{<t}) + \sqrt{2\delta q(n|\mathbf{x}_{<t})(1 - q(n|\mathbf{x}_{<t}))}.$$

1145 We clip this value to the interval  $[q(n|\mathbf{x}_{<t}), 1]$  to ensure validity as a probability.  $\square$

## A.6 PROOF OF COROLLARY 7

1149 **Corollary 7.** *When the exact solution  $\gamma^*$  is not greater than 0.5 (i.e., the token is not likely to be  
1150 accepted), our approximation always satisfies the divergence constraint:*

$$1152 \quad D_{KL}(h\|q) \leq \delta, \quad (16)$$

1153 where  $h(n|\mathbf{x}_{<t})$  is given by the approximated solution in Equation (15).

1155

1156 *Proof.* Let  $q := q(n|\mathbf{x}_{<t})$  for brevity and define the quadratic-approximate root

$$1158 \quad \hat{\gamma} := q + \sqrt{2\delta q(1 - q)}. \quad (52)$$

1160 Because  $\Phi'(\gamma) = \log \frac{\gamma}{q} - \log \frac{1-\gamma}{1-q}$ , we have  $\Phi'(\gamma) > 0$  for every  $\gamma \in (q, 1)$ ; hence  $\Phi$  is strictly  
1161 increasing on  $[q, 1]$  and the equation  $\Phi(\gamma) = \delta$  admits a unique root  $\gamma^* \in (q, 1]$ .

1162 Taylor's theorem with the Lagrange remainder, expanded at  $\gamma_0 = q$ , gives, for some  $\xi \in (q, \gamma)$ ,

$$1164 \quad \Phi(\gamma) = \underbrace{\frac{\Phi''(q)}{2}(\gamma - q)^2}_{=:T_2(\gamma)} + \frac{\Phi'''(\xi)}{6}(\gamma - q)^3. \quad (53)$$

1168

1169 For the Bernoulli KL,

$$1170 \quad \Phi''(\gamma) = \frac{1}{\gamma(1-\gamma)}, \quad \Phi'''(\gamma) = -\frac{1-2\gamma}{\gamma^2(1-\gamma)^2}. \quad (54)$$

1173

1174 Whenever  $\gamma \leq \frac{1}{2}$ , the factor  $1 - 2\gamma$  is non-negative and therefore  $\Phi'''(\xi) \leq 0$ . It follows that

$$1175 \quad \Phi(\gamma) \leq T_2(\gamma) = \frac{(\gamma - q)^2}{2q(1 - q)}, \quad \forall \gamma \in (q, \frac{1}{2}]. \quad (*)$$

1177

1178 Choose  $\hat{\gamma}$  such that  $T_2(\hat{\gamma}) = \delta$ , this yields the expression given above. If  $\hat{\gamma} \leq \frac{1}{2}$  or equivalently

$$1180 \quad \delta \leq \frac{(1/2 - q)^2}{2q(1 - q)} \quad (55)$$

1183

1184 then the above inequality gives  $\Phi(\hat{\gamma}) < \delta$ . Since  $\Phi$  is strictly increasing, we obtain

1185

$$\hat{\gamma} < \gamma^*. \quad (56)$$

1186

1187 This result ensures that our approximation never overestimate  $\gamma$  when the verifier model is not  
1188 confident about the current sampled token.  $\square$

1188 **B ADDITIONAL EXPERIMENTS**  
1189

1190 **Mentored decoding.** A blog post proposed Mentored decoding (Tran-Thien, 2023), which uses  
1191 binary search to generate a target distribution  $\tilde{q}$  such that  $D_{\text{KL}}(q\| \tilde{q}) \leq \delta$  is met. Compared with  
1192 Cactus, there are two major differences: (1) Mentored decoding allows sampled tokens to be ac-  
1193 cepted even when the verifier has zero probability, violating the principle of adhering to the ver-  
1194 ifier’s mode; (2) more importantly, the solution is found via a numerical optimization procedure,  
1195 significantly slowing down the decoding speed and defying the purpose of high-throughput decod-  
1196 ing. We conduct additional experiments to compare Cactus and Mentored decoding (using  $\delta = 1$  as  
1197 recommended).

1198 As shown in Table 2, Mentored decoding has the least acceptance rate gain at the cost of increasing  
1199 the per-step generation time. For example, on GSM8K, the overall wall time is even longer than that  
1200 of the naive SpS method by 20

1201 **Speculative cascading.** More recently, Narasimhan et al. (2025) proposed speculative cascading  
1202 (SpecCas), which dynamically decides if the sampled token will be verified by the large model  
1203 based on the difference between the two distributions. Essentially, it is mathematically equivalent to  
1204 mixing the draft and verifier distributions as the target distribution at different steps. We therefore  
1205 conduct experiments with SpecCas (the [OPT] variant and  $\alpha = 0.1$  for better quality).

1206 The results in Table 2 show that SpecCas significantly increases the acceptance rate and the decoding  
1207 speed. However, its generation quality is not as good as that of other methods, even when we choose  
1208 hyperparameters to favor higher generation quality. On the other hand, we also ran experiments  
1209 with  $\delta = 10$  for Cactus. With a similar wall-time acceleration on GSM8K and GPQA, Cactus’s  
1210 generation quality is considerably higher. We hypothesize that this is due to the lack of explicit  
1211 divergence control in SpecCas, whereas the other methods (especially Cactus) guarantee controlled  
1212 “distances.” Given that the primary focus of this paper is to introduce a new, principled method, we  
1213 leave a deeper investigation of these methods to future work.

1214  
1215 Table 2: The results with Qwen 3 14B as verifier and Qwen 3 0.6B as drafter.  
1216

| 1217 <i>m</i> | Name      | 1218 GSM8K       |                               |                                 | 1219 IFEval      |                               |                                 | 1220 GPQA        |                               |                                 |
|---------------|-----------|------------------|-------------------------------|---------------------------------|------------------|-------------------------------|---------------------------------|------------------|-------------------------------|---------------------------------|
|               |           | Score $\uparrow$ | 1221 $\text{AL}_m^{\uparrow}$ | 1222 $\text{Wall}^{\downarrow}$ | Score $\uparrow$ | 1223 $\text{AL}_m^{\uparrow}$ | 1224 $\text{Wall}^{\downarrow}$ | Score $\uparrow$ | 1225 $\text{AL}_m^{\uparrow}$ | 1226 $\text{Wall}^{\downarrow}$ |
| 1227 10       | SpS       | 91.12            | 4.27                          | 1.00x                           | 85.03            | 2.19                          | 1.00x                           | 39.39            | 3.37                          | 1.00x                           |
|               | Mentored  | 91.66            | 4.51                          | 1.20x                           | 61.37            | 2.88                          | 0.96x                           | 40.91            | 4.31                          | 0.93x                           |
|               | SpecCas   | 88.40            | 6.42                          | 0.85x                           | 69.50            | 5.02                          | 0.54x                           | 32.83            | 6.27                          | 0.68x                           |
|               | TAS       | 92.65            | 5.24                          | 0.86x                           | 86.14            | 3.00                          | 0.82x                           | 38.89            | 4.99                          | 0.72x                           |
|               | Cactus 1  | 93.10            | 5.44                          | 0.87x                           | 85.96            | 3.03                          | 0.78x                           | 43.43            | 5.16                          | 0.70x                           |
|               | Cactus 10 | 92.72            | 5.73                          | 0.83x                           | 84.66            | 3.41                          | 0.74x                           | 39.40            | 5.71                          | 0.69x                           |

1227 **Scaling to larger models.** To evaluate the scalability of our method under more memory-intensive  
1228 conditions, we conduct experiments on a larger model pair: Qwen 3 1.7B (drafter) and 32B (verifier).  
1229 This setting involves significantly higher parameter counts than the reported 14B maximum in the  
1230 main table, serving to verify performance where memory bottlenecks are typically more prominent.  
1231 We maintain the standard speculative decoding setup with a draft length of  $m = 10$  and report both  
1232 accuracy and acceptance length (AL).

1233  
1234 Table 3: The results of Qwen 3 32B as verifier and Qwen 3 1.7B as drafter on three benchmarks:  
1235 GSM8K, IFEval, and GPQA. We report the “strict-match” accuracy and the acceptance length (AL).

| 1236 <i>m</i> | Name                  | 1237 GSM8K       |                               | 1238 IFEval      |                               | 1239 GPQA        |                               |
|---------------|-----------------------|------------------|-------------------------------|------------------|-------------------------------|------------------|-------------------------------|
|               |                       | Score $\uparrow$ | 1240 $\text{AL}_m^{\uparrow}$ | Score $\uparrow$ | 1241 $\text{AL}_m^{\uparrow}$ | Score $\uparrow$ | 1242 $\text{AL}_m^{\uparrow}$ |
| 1243 10       | SpS                   | <b>95.30</b>     | 5.03                          | 83.36            | 2.61                          | 40.40            | 3.73                          |
|               | TAS                   | 94.10            | 7.02                          | 83.73            | 4.16                          | 40.40            | 6.12                          |
|               | Ours ( $\delta = 1$ ) | 94.40            | <b>7.13</b>                   | <b>85.21</b>     | <b>4.47</b>                   | <b>41.92</b>     | <b>6.36</b>                   |

As shown in Table 3, Cactus demonstrates superior efficiency (achieving the longest acceptance lengths) across all three benchmarks. In terms of task performance, it notably surpasses TAS and SpS on IFEval and GPQA, while remaining a comparable result on GSM8K. These findings confirm that the effectiveness of Cactus naturally extends to larger models, delivering consistent improvements in acceptance rates while maintaining the accuracy.

**Evaluations on Spec-Bench.** To provide a more comprehensive assessment of Cactus across diverse scenarios, we conduct evaluations on Spec-Bench (Xia et al., 2024), a unified benchmark designed to test speculative decoding methods across multiple distinct domains, including multi-turn conversation (MT-Bench), translation (WMT), summarization (CNN/DM), question answering (natural questions), mathematical reasoning (GSM8K), and retrieval-augmented generation (RAG). This broad coverage ensures that the observed speedups are not limited to specific task types but are consistent across varied real-world applications. We use the Qwen 3 14B model as the verifier and the 0.6B model as the drafter, maintaining a temperature of 0.6.

Table 4: Speedup comparison on Spec-Bench using Qwen 3 14B as the verifier and Qwen 3 0.6B as the drafter. We report the speedup ratio relative to standard autoregressive decoding. “Accepted” denotes the mean number of accepted tokens per step.

|                         | MT Bench     | Trans.       | Summ.        | QA           | Math         | RAG          | AL <sub>10</sub> | Overall      |
|-------------------------|--------------|--------------|--------------|--------------|--------------|--------------|------------------|--------------|
| SpS                     | 2.01×        | 1.40×        | 1.92×        | 1.85×        | 1.83×        | 1.86×        | 3.20             | 1.81×        |
| Cactus ( $\delta = 1$ ) | <b>2.09×</b> | <b>1.40×</b> | <b>2.04×</b> | <b>1.95×</b> | <b>1.86×</b> | <b>1.92×</b> | <b>3.29</b>      | <b>1.88×</b> |

The results are summarized in Table 4. Cactus is tested without any hyper-parameter tuning ( $\delta = 1$ ). However, it immediately yields acceleration over the SpS baseline. In addition, Cactus consistently outperforms SpS across different domains, achieving an overall speedup of  $1.88\times$  (+88% gain over autoregressive decoding). This significant reduction in compute cost is achieved without additional training. It is worth noting that these speeds are measured using the HuggingFace Transformers framework (Wolf et al., 2019), which is less optimized for speculative sampling. We anticipate that the real-world performance gains would be even larger with a better implementation such as vLLM (Kwon et al., 2023), as indicated by our other experiments.

**Impact of draft model size.** We employ same-family models to ensure aligned tokenization, consistent with standard practice (Leviathan et al., 2023; Chen et al., 2023). To investigate the impact of drafter capacity, we evaluate Cactus on GSM8K using a Qwen 3 14B verifier with varying drafter sizes (Table 5).

Table 5: Ablation on GSM8K using Qwen 3 14B verifier with different drafter sizes ( $\delta = 1$ ).

| Draft Size        | Score        | AL          | Rej         |
|-------------------|--------------|-------------|-------------|
| Verifier (Oracle) | 91.71        | -           | -           |
| 0.6B              | <b>93.10</b> | 5.44        | -32%        |
| 1.7B              | 92.50        | 6.78        | -60%        |
| 4B                | 92.57        | <b>7.76</b> | <b>-76%</b> |

Increasing the drafter size to 4B significantly boosts the mean accepted length (AL) to 7.76 and reduces rejection rates by 76%, while maintaining high task accuracy. These results confirm that Cactus effectively scales with stronger drafters, translating improved draft quality into greater decoding efficiency.

## C CASE STUDY

In this section, we discuss whether the choice of  $\delta$  affects qualitative measures such as reasoning ability. We gather the results of the first sample from GSM8k, where  $\delta$  is set to different values when running Cactus with the Qwen3 0.6B + 14B model pair.

1296 From the case study in Table 6, we can see that the reasoning is poor and lengthy when  $\delta$  is large  
 1297 (more divergence allowed). Consequently, the result is wrong due to the low-quality chain-of-  
 1298 thought. This confirms that the divergence control in Cactus helps maintain qualitative measures.  
 1299

## 1300 D BROADER IMPACT AND FUTURE DIRECTIONS

1302 **Broader impact.** By improving the inference efficiency of large language models without sacri-  
 1303 ficing output quality, our method reduces computational costs and energy consumption. This con-  
 1304 tributes to more sustainable AI deployment, broadens access to high-performance language models,  
 1305 and supports environmentally conscious machine learning practices. Additionally, Cactus can en-  
 1306 able faster, lower-cost applications in education, healthcare, and low-resource settings.  
 1307

1308 **Future directions.** Our goal in this paper is to introduce and analyze the draft–verify framework,  
 1309 not to exhaustively optimize every dimension of the system. Accordingly, we scope out several  
 1310 extensions and leave them for future exploration by the community: (1) *Model scale*. We capped  
 1311 evaluation at 14B parameters to keep the methodology clear and costs tractable. Pushing to sub-  
 1312 stantially larger backbones could reveal scaling behavior (e.g., effects on acceptance rates, latency,  
 1313 and robustness) and is best investigated in follow-on work, including studies of scaling laws and  
 1314 distributed inference. (2) *Model training*. We emphasize a training-free method to highlight the  
 1315 mechanism itself. While targeted tuning (e.g., LoRA for the draft, verifier calibration, joint dis-  
 1316 tillation) may further improve proposal quality and reduce disagreement error, such engineering is  
 1317 orthogonal to our core contribution and thus deferred. (3) *Memory usage*. Draft-and-verify intro-  
 1318 duces extra memory for the draft model and caches. Techniques like quantization, weight sharing,  
 1319 cache reuse, selective offloading, and early-exit heuristics could lower this footprint, but a thorough  
 1320 treatment would distract from the main result; we leave these optimizations to future work. (4)  
 1321 *Leveraging ensemble effects*. In our main experiments, we observe that Cactus often performs better  
 1322 than the verifier model. For example, Cactus surpasses the verifier’s accuracy by 2 standard devi-  
 1323 ations on both IFEval and GPQA. We hypothesize that this is because Cactus enables a “healthy”  
 1324 ensemble effect by combining two model distributions. Leveraging ensemble effects in speculative  
 1325 sampling could be explored in future work.

## 1326 E THE USE OF LARGE LANGUAGE MODELS

1328 Throughout this paper (with this paragraph being an exemption), we use large language models to  
 1329 help identify grammar errors. Specifically, we prompt ChatGPT to “Revise grammar errors with  
 1330 minimal changes of the original text”, followed by the latex source code of each paragraph. In  
 1331 addition, we use ChatGPT and DeepSeek R1 to triple-check all technical proofs. The code for  
 1332 plotting all the figures is initially generated by ChatGPT, which is further revised by the authors  
 1333 according to the authors’ taste. We certify that the originality and scientific contributions of our  
 1334 method do not come from any large language models.

1335  
 1336  
 1337  
 1338  
 1339  
 1340  
 1341  
 1342  
 1343  
 1344  
 1345  
 1346  
 1347  
 1348  
 1349

Table 6: Generations for different values of  $\delta$ .

|      |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|------|-----------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1350 | Task            | Question: Janets ducks lay 16 eggs per day. She eats three for breakfast every morning and bakes muffins for her friends every day with four. She sells the remainder at the farmers' market daily for \$2 per fresh duck egg. How much in dollars does she make every day at the farmers' market?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 1351 | $\delta = 1$    | <p>&lt;think&gt;\nOkay , let me try to figure out how much Janet makes each day at the farmers' market. Hmm, so the problem says she has ducks that lay 16 eggs per day. Then she eats three for breakfast and bakes muffins with four eggs each day. Then she sells the remaining eggs for \$2 each. Alright, let's break this down step by step.\n \nFirst , total eggs per day: 16 eggs. Then she uses some for breakfast and baking. Let's see, for breakfast, she eats 3 eggs. Then for baking, she uses 4 eggs. So total eggs used each day would be <math>3 + 4 = 7</math> eggs. Therefore, the remaining eggs would be <math>16 - 7 = 9</math> eggs. Then she sells those 9 eggs at \$2 each. So, how much does she make? 9 eggs multiplied by \$2, which is 18 dollars.\n \nWait , let me check again. If she uses 3 eggs for breakfast and 4 for baking, that's 7. 16 minus 7 is indeed 9. Then 9 times 2 is 18. Yeah, that seems right. So her daily earnings would be \$18. Hmm, is there any possibility I made a mistake here? Maybe I should re-read the problem to make sure I didn't miss anything.\n \nThe problem says she lays 16 eggs per day. Then she eats 3 for breakfast and bakes muffins each day with four. So the total used is <math>3+4=7</math>. Subtract that from 16, which leaves 9. Multiply by \$2 for selling, <math>9*2=18</math>. Yep, that's correct. I think that's the answer.\n &lt;/think&gt;\n \nJanet s ducks lay 16 eggs per day. She uses 3 eggs for breakfast and 4 eggs for baking muffins, totaling 7 eggs used. The remaining eggs are <math>16 - 7 = 9</math>\$. She sells these at \$2 per egg, earning <math>9 \times 2 = 18</math>\$. \n \n ##### 18</p> |
| 1381 | $\delta = 10^6$ | <p>&lt;think&gt;\nOkay , so let's try to figure out how much Janet makes every day at the farmers' market. Let me start by breaking down the problem step by step. <b>[lengthy CoT omitted]</b> so total eggs used is <math>4 * 4 = 16</math>. Then, after eating 3 for breakfast, leftover is <math>16 - 3 = 13</math>, then she sells them at 2 each: <math>13 * 2 = \\$26</math>. \n \nYes , that seems to make sense. Therefore, the answer should be 26. But let me check if the question is asking "how much money does she make every day at the farmers' market?" So yes, selling the remainder at \$2 per egg. Therefore, answer is \$26. \n \nTherefore , the answer is 26, which in the previous problems they had 5. This is a different case. So I think that's correct.\n &lt;/think&gt;\n \nAnswer : 26\n \nThe problem states that Janet's ducks lay 16 eggs per day. She eats 3 eggs for breakfast and 4 eggs to make muffins daily. After these expenses, the remaining eggs are <math>16 - 3 - 4 = 9</math> \$, which are sold at \$2 per egg. Therefore, the total money she earns at the farmers' market is <math>9 \times 2 = 18</math> \$. \n \nHowever , the phrase "bakes muffins for her friends every day with four" might imply that she uses 4 eggs per muffin, meaning she makes 4 muffins. If she uses 4 eggs each muffin, the total eggs consumed would be <math>4 \times 4 = 16</math> \$. Since she eats 3, the remaining eggs are <math>16 - 3 = 13</math> \$, which are sold for \$ 13 <math>\times 2 = 26</math> \$. Hence, the correct answer is **26**. \n \n ##### 26</p>                                                                                                 |