
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

CACTUS: ACCELERATING AUTO-REGRESSIVE DE-
CODING WITH CONSTRAINED ACCEPTANCE SPECULA-
TIVE SAMPLING

Anonymous authors
Paper under double-blind review

ABSTRACT

Speculative sampling (SpS) has been successful in accelerating the decoding
throughput of auto-regressive large language models by leveraging smaller draft
models. SpS strictly enforces the generated distribution to match that of the veri-
fier LLM. This is unnecessarily restrictive as slight variation of the verifier’s dis-
tribution, such as sampling with top-k or temperature, would also be acceptable.
Typical acceptance sampling (TAS) alleviates this issue by accepting more tokens
using entropy-based heuristics. However, this approach distorts the verifier distri-
bution, potentially degrading output quality when the verifier encodes critical in-
formation. In this work, we formalize the speculative sampling algorithm through
the lens of constrained optimization. Based on this formulation, we propose Cac-
tus (constrained acceptance speculative sampling), a method that guarantees con-
trolled divergence from the verifier distribution and increasing acceptance rates.
Empirical results across a wide range of benchmarks confirm the effectiveness of
our approach. The code is publicly available at this anonymous link.

1 INTRODUCTION

Auto-regressive large language models (LLMs) have driven remarkable advances in machine learn-
ing and artificial intelligence (Vaswani et al., 2017; Brown et al., 2020; Kaplan et al., 2020), yet their
growing size comes with steep computational costs: generating each token requires a memory-bound
forward pass through hundreds of billions of parameters, which bottlenecks LLM throughput (Yuan
et al., 2024). Speculative sampling (SpS) addresses this by first using a smaller draft model to pro-
pose a fixed amount of candidate tokens in multiple smaller forward passes, then verifying them in
parallel with the large-scale verifier LLM (Stern et al., 2018; Xia et al., 2022; Leviathan et al., 2023;
Chen et al., 2023). Since SpS can emit multiple tokens per large-model invocation, it substantially
speeds up auto-regressive generation by alleviating the memory-bound issue.

Despite its success, SpS enforces strict distributional equivalence with the verifier, causing correct
but lower-probability tokens to be rejected. In real-world applications, exact adherence to the orig-
inal distribution is generally not required (Holtzman et al., 2019; Meister et al., 2020). Typical
acceptance sampling (TAS Cai et al. (2024a)) mitigates this issue by accepting proposals based on
entropy-driven heuristics (Hewitt et al., 2022; Meister et al., 2023). However, we show in this paper
that TAS improves acceptance rates at the cost of distorting the verifier’s output distribution and
risking semantic drift when the verifier encodes critical information.

In this work, we reformulate speculative sampling as a constrained optimization problem, explicitly
trading off acceptance rate against divergence from the verifier’s distribution. Guided by this theory,
we introduce Cactus (constrained acceptance speculative sampling), a simple yet principled mod-
ification that enforces a hard bound on distributional divergence while enabling higher acceptance
rates.

We conducted experiments on a wide range of benchmarks with multiple state-of-the-art large lan-
guage models. Results show that Cactus consistently improves generation throughput compared
with the lossless SpS. In addition, Cactus preserves the generation quality and diversity of the veri-
fier model, due to its explicit divergence constraint.

1

https://anonymous.4open.science/r/Cactus-2E4D/

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

Algorithm 1 Speculative sampling algorithm.

Require: sampling steps m, draft model p, acceptance rate ϕ, and recover probability g
1: t← 1,x<t ← [BOS]
2: while not end do
3: ▷ Drafting m tokens
4: for i← 0, . . . ,m− 1 do
5: xt+i ∼ p(·|x<t+i) ▷ x<t+i is concatenation of x<t and [xt, . . . , xt+i−1]
6: ui ∼ U(0, 1) ▷ U(0, 1) is the uniform distribution between [0, 1]
7: end for
8: c← min{j : uj > ϕ(xt+j |x<t+j)}

⋃
{m} ▷ c is the length of accepted draft tokens

9: xt+c ∼ g(·|x<t+c) ▷ xc is always accepted
10: t← t+ c+ 1
11: end while

2 APPROACH

We first formalize speculative sampling algorithm. This enables a theoretical analysis of speculative
sampling under a constrained optimization framework. Based on this analysis, we propose a new
algorithm, Cactus, which provably approximates the verifier distribution q while achieving higher
acceptance rates.

2.1 GENERALIZATION OF SPECULATIVE SAMPLING

Speculative sampling. The vanilla speculative sampling (SpS Chen et al. (2023)) uses a draft
model p(·|x<t) that has significantly less memory footprint than the verifier model q(·|x<t). At a
time step t, SpS repeatedly samples m ∈ N+ tokens xt, . . . , xt+m−1 from p in an auto-regressive
manner. Each token is accepted with a probability given by the acceptance rate ϕ(xt+i|x<t+i) =
min(1, q(xt+i|x<t+i)/p(xt+i|x<t+i)) for all i ∈ [0,m). If any token xt+j is rejected, then to-
kens xt+j+1, . . . , xt+m−1 are also discarded. As a backup, SpS resamples xt+j using the recover
probability g(xt+j |x<t+j) ∝ (q(·|x<t+j)−p(·|x<t+j))+, where (·)+ denotes max(0, ·). The final
accepted tokens are xt, . . . , xt+j . By this draft-and-verify scheme, SpS accelerates auto-regressive
decoding by avoiding the need to load the large verifier model q from memory at every step. This
approach has been shown effective in practice (Zhou et al., 2024; Hu et al., 2025).

Our observation. We formalize the draft-and-verify scheme as Algorithm 1. Under this setting,
we can show that the algorithm produces any target distribution with an optimal acceptance rate.

Observation 1. Given any desired target distribution h and draft model p, the acceptance rate and
recovery probability are defined as

ϕ(xt|x<t) = min

(
h(xt|x<t)

p(xt|x<t)
, 1

)
(1)

and g(xt|x<t) =
h(xt|x<t)− p(xt|x<t)ϕ(xt|x<t)

Ex′∼p[1− ϕ(x′|x<t)]
(2)

respectively. Algorithm 1 samples from h exactly using the above ϕ and g. In addition, this ϕ is the
optimal design of acceptance rate.

Proof. See Appendix A.1.

2.2 APPROXIMATING SPS AS CONSTRAINED OPTIMIZATION

Observation 1 provides a foundation to produce an arbitrary target distribution with the optimal
design. Instead of producing a fixed verifier distribution q, we utilize this observation to dynamically
select a distribution h close to q while yielding higher acceptance rates based on function ϕ. This
can be formulated as a constrained optimization problem.

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

Definition 2. For each step t, assume the drafted token has index n. Let h ∈ R|V |−1 be the
parameters to be optimized. The ideal h is given by h(i|x<t) = h∗

i , where h∗ is the solution of the
following problem:

max
h

min(hn/p(n|x<t), 1) (3)

s.t. h ∈ ∆|V |−1 (4)
Df (h∥q(·|x<t)) ≤ δ. (5)

Here, the hyper-parameter δ ≥ 0 controls the closeness to the verifier model q, and Df is any
f -divergence metric used to measure the distance between q and h.

The above definition falls into the framework of constrained convex optimization, which we show
has the following solution.
Theorem 3. The optimal h in Definition 2 is

hi =

{
γ∗, if i = n,

1−γ∗

1−q(n|x<t)
q(i|x<t), otherwise,

(6)

where γ∗ is any root of the equation

δ = q(n|x<t)f

(
γ

q(n|x<t)

)
+ (1− q(n|x<t))f

(
1− γ

1− q(n|x<t)

)
(7)

over the interval [q(n|x<t),+∞), clamped into [q(n|x<t), 1]. The function f is the one used in the
definition of f -divergence.

Proof. See Appendix A.2.

Theorem 3 theoretically characterizes the trade-off between closeness to the verifier model q and the
acceptance rate induced by ϕ. In particular, the theorem suggests that the drafted token now has at
least the same or a higher chance of being accepted (since γ∗ ≥ qn). The exact probability depends
on the choice of the f -divergence and the hyper-parameter δ. For other non-sampled tokens, their
probabilities are scaled down proportionally so that h remains a valid distribution.

It is worth-nothing that, since the solved h in Equation (6) depends on the sampled token n, the
solution is different for different sampled tokens. As a result, the effective distribution of the overall
algorithm halg might have a different divergence other than δ from the target distribution q. To
this end, we provide the following theorem to guarantee the controlled divergence of the effective
distribution.
Theorem 4. Let ϕn and gn denote the functions that follow the solution in Theorem 3 when the
sampled token is n. The distribution of the overall algorithm is given by

halg =
∑

n∈[|V |]

p(n|x<t) [ϕn(n)en + (1− ϕn(n))gn] , (8)

where en is a one-hot vector with only non-zero element at index n. In addition,

Df (halg∥q(·|x<t)) ≤ min{Γ(δ), Df (p(·|x<t)∥q(·|x<t))} (9)

for any δ ≥ 0. Here, the function Γ : [0,+∞) → [0,+∞] is continuous and non-decreasing in δ
with a value of 0 at δ = 0.

Proof. See Appendix A.3.

In essence, despite the h in Equation (6) is solved specifically for the sampled token n, the diver-
gence between the overall distribution and the target distribution is still implicitly controlled. In
particular, for any target divergence 0 ≤ δalg < +∞ imposed on the overall algorithm, we can
always find a proper δ ≥ 0 such that Df (halg∥q) ≤ Γ(δ) ≤ δalg. While Γ does not admit a closed-
form expression, δ itself is a hyper-parameter. In practice, one can tune δ to achieve the desired
quality-throughput trade-off. This confirms the soundness of our framework.

In fact, our framework also offers a novel theoretical interpretation of typical acceptance sampling.

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

Proposition 5. Typical acceptance sampling (TAS, Cai et al. (2024a)) implicitly solves a variant
of the optimization problem in Definition 2, where the f -divergence is substituted with the cross-
entropy H(h, q(·|x<t)).

Proof. See Appendix A.4.

The suboptimality of TAS arises from the nature of cross-entropy. Specifically, the cross-entropy
can be decomposed as

H(h, q(·|x<t)) = DKL(h∥q(·|x<t))︸ ︷︷ ︸
Mode capturing

+ H(h)︸ ︷︷ ︸
Certainty

. (10)

Here, the KL divergence encourages h to focus on the mode of q (since h is the first argument), while
the entropy term encourages h to be deterministic. However, the summation allows h to collapse
into a deterministic distribution at the expense of increasing divergence, thereby failing to capture
the full shape of q. In fact, TAS always yields h with entropy 0 while increasing the divergence by at
least H(q). As a result, the produced distribution may diverge significantly from the verifier model,
especially when q carries high entropy and thus rich information.

2.3 CACTUS: CONSTRAINED ACCEPTANCE SPECULATIVE SAMPLING

Based on our analysis above, we propose using only the KL divergence as the measure of “distance”.
Specifically, this corresponds to the function f(t) = t log t. Combined with our Theorem 3, γ∗ is
the root of

Φ(γ) :=q(n|x<t)f

(
γ

q(n|x<t)

)
+ (1− q(n|x<t))f

(
1− γ

1− q(n|x<t)

)
(11)

=γ log

(
γ

q(n|x<t)

)
+ (1− γ) log

(
1− γ

1− q(n|x<t)

)
(12)

=δ. (13)

However, since Φ is a transcendental function involving terms like x log x, it cannot be solved in
closed form. We therefore approximate Φ by its second-order Taylor series expanded at γ0 =
q(n|x<t):

Φ(γ) ≈ Φ(γ0) + Φ′(γ0)(γ − γ0) +
Φ′′(γ0)

2
(γ − γ0)

2. (14)

This approximation is justified by noting that δ is typically small and γ∗ remains close to q(n|x<t).
Corollary 6 (Cactus’s solution). Let the f -divergence in Definition 2 be the KL divergence. The
solution to Equation (14) is given by

h(i|x<t) =

{
γ∗, if i = n,

1−γ∗

1−q(n|x<t)
q(i|x<t), otherwise,

(15)

where γ∗ = min
{
q(n|x<t) +

√
2δq(n|x<t)(1− q(n|x<t)), 1

}
.

Proof. See Appendix A.5

In other words, Cactus modifies the distribution of the verifier model by increasing the probability
of the candidate token n by a small “bonus” determined jointly by q(n|x<t) and δ. We further show
that Cactus’s solution is more conservative than the exact solution when the verifier is less confident,
ensuring that it strictly satisfies the divergence constraint in such cases.
Corollary 7. When the exact solution γ∗ is not greater than 0.5 (i.e., the token is not likely to be
accepted), our approximation always satisfies the divergence constraint:

DKL(h∥q) ≤ δ, (16)

where h(n|x<t) is given by the approximated solution in Equation (15).

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

Proof. See Appendix A.6.

It is easy to see that the bonus probability attains its maximum when q(n|x<t) = 0.5. In practice,
LLMs generally have more than 100K tokens (Dubey et al., 2024; Qwen et al., 2024), so a proba-
bility around 0.5 indicates strong model confidence in the token. However, SpS could still reject the
token n solely because the draft model is overconfident (i.e., p(n|x<t) is large). Cactus increases
the acceptance likelihood in such scenarios by modifying the verifier distribution accordingly.

Compared with TAS’s criterion function, Cactus only requires reading the probability at token n
rather than accessing the full vocabulary. This allows Cactus to further reduce memory access
overhead, especially in large-vocabulary settings. More importantly, Cactus ’s divergence is tightly
controlled with minimal entropy change, whereas TAS yields only low-entropy solutions.

3 EXPERIMENTS

3.1 SETTINGS

Datasets. We evaluated Cactus on three popular benchmark datasets for large language models:
(1) The GSM8K (Cobbe et al., 2021) dataset contains 1.3K high-quality grade school math word
problems in the evaluation set, designed to assess a model’s ability to apply mathematics to real-
world scenarios. Following common practice in LM-Eval (Gao et al., 2024), we used 5-shot ex-
amples for each test instance. The final accuracy score is averaged over all samples. (2) The
IFEval (Zhou et al., 2023) benchmark measures instruction-following ability. It consists of 500
”verifiable instructions” whose outputs can be heuristically evaluated. For example, a prompt might
be: “Write a blog post with 400 or more words about the benefits of sleeping in a hammock,” which
can be automatically checked by counting the number of words. (3) The GPQA (Rein et al., 2023)
diamond benchmark includes approximately 200 challenging science questions authored by domain
experts, designed to test models’ scientific knowledge. For instance, a sample question is: “The
angular size of the event horizon of a supermassive black hole in the centre of a galaxy at a distance
of d = 1010 parsecs is measured to be θ = 10−17 degrees. Find the order of magnitude of the
entropy of the black hole.” Following common practice (Gao et al., 2024), we include four answer
choices in the prompt and have models generate the correct one.

Evaluation metrics. For all three tasks, the results are extracted from the generated text by regex
matching with the corresponding format. These results are then compared with the gold labels using
strict-match accuracy (i.e., 1 if the strings are identical and 0 otherwise). Final scores are obtained
by averaging the accuracies over all samples. Following previous work (Dubey et al., 2024), the
regex for GSM8K and GPQA is the “flexible-extract” pattern, which selects the first number in the
generated sentence regardless of whether the model adheres to the few-shot examples. For IFEval,
we use the “prompt-level-strict-acc” regex as defined in Qwen et al. (2024), which requires the
model to strictly follow all the instructions.

In addition to task scores, we report the average acceptance length (AL) for all runs. Specifically,
ALm refers to the expected number of accepted tokens among m drafted tokens. A generally higher
ALm indicates faster generation. However, a method may artificially inflate AL by accepting low-
quality draft tokens that are later revised during earlier steps of the chain of thought. Although
AL remains high, this behavior can lead to lower overall throughput due to unnecessarily lengthy
outputs. To present a more complete picture of generation efficiency, we also measure the number
of rejected tokens during generation, which reflects both the acceptance rate and the total length of
generation.

Implementation details. We used the Qwen 3 series as our main testbed for two reasons: (1) the
models come in a variety of sizes, ranging from 0.6B to 14B parameters, enabling a wide range
of choices of model pairs; (2) the models are trained to generate with internalized chain-of-thought
reasoning (Wei et al., 2022), which makes them a natural use case for speculative sampling given the
longer generation lengths (Yang et al., 2025b). For all experiments, we used the recommended gen-
eration parameters (Yang et al., 2025a), where top-p is set to 0.95, top-k equals 20, and temperature
is 0.6.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

Table 1: The results on three benchmarks: GSM8K, IFEval, and GPQA. We report the “strict-
match” accuracy as the score with the standard regex pattern for each task. ALm indicates the
number of accepted tokens when the draft length is m. Rej denotes the total number of rejected
tokens throughout generation in relative scale, where we use the SpS runs as the reference (labeled
as “Ref”).

(a) The results of Qwen 3 8B as verifier and Qwen 3 0.6B as drafter.

GSM8K IFEval GPQA

m Name Score↑ AL↑
m Rej↓ Score↑ AL↑

m Rej↓ Score↑ AL↑
m Rej↓

Verifier 84.31±0.47 - - 84.66±0.56 - - 41.07±1.77 - -

10

SpS 83.78 4.49 Ref 84.66 2.59 Ref 40.91 3.70 Ref
TAS 86.58 5.49 -29% 85.40 3.28 -27% 41.41 5.17 -42%
Cactus 0.75 85.97 5.65 -34% 85.03 3.40 -31% 41.42 5.33 -47%
Cactus 1.0 86.35 5.72 -37% 84.10 3.44 -32% 39.39 5.44 -48%

20

SpS 84.46 5.44 Ref 84.10 2.74 Ref 42.93 4.23 Ref
TAS 85.51 7.23 -35% 84.10 3.77 -29% 38.89 6.68 -46%
Cactus 0.75 86.66 7.50 -37% 85.95 3.76 -30% 40.01 6.89 -47%
Cactus 1.0 86.43 7.61 -39% 84.84 4.05 -33% 39.90 7.05 -49%

(b) The results of Qwen 3 14B as verifier and Qwen 3 0.6B as drafter.

GSM8K IFEval GPQA

m Name Score↑ AL↑
m Rej↓ Score↑ AL↑

m Rej↓ Score↑ AL↑
m Rej↓

Verifier 91.71±0.52 - - 85.09±0.66 - - 40.07±0.77 - -

10

SpS 91.12 4.27 Ref 85.03 2.19 Ref 39.39 3.37 Ref
TAS 92.65 5.24 -30% 86.14 3.00 -25% 38.89 4.99 -46%
Cactus 0.75 92.12 5.35 -31% 86.87 3.04 -29% 44.95 5.14 -50%
Cactus 1.0 93.10 5.44 -32% 85.96 3.03 -30% 43.43 5.16 -51%

20

SpS 91.89 5.11 Ref 84.47 2.27 Ref 40.91 3.84 Ref
TAS 92.87 6.78 -32% 85.03 3.49 -27% 40.40 6.41 -46%
Cactus 0.75 92.15 7.15 -36% 86.69 3.45 -30% 45.46 6.46 -46%
Cactus 1.0 92.87 7.00 -34% 86.32 3.60 -30% 45.46 6.74 -50%

3.2 MAIN RESULTS

As shown in Table 1, speculative sampling (SpS) serves as a strong baseline that closely preserves
the output distribution of the verifier model. Across all three benchmarks (GSM8K, IFEval, and
GPQA), SpS maintains similar accuracies to the verifier (e.g., 84.46 vs. 84.31 on GSM8K with
m = 20 in Table 1a, and 91.89 vs. 91.71 in Table 1b). This aligns with the theoretical claim that
SpS is nearly lossless in generation quality. Additionally, the number of accepted tokens (ALm) for
SpS reaches 5.44 on GSM8K and 4.23 on GPQA with m = 20, indicating that the verifier model is
invoked less frequently.

Typical acceptance sampling (TAS) outperforms SpS in terms of acceptance rate, achieving more
accepted tokens and lower rejection rates. For example, on GSM8K with m = 20, TAS improves
ALm from 5.44 to 7.23 (Table 1a) and reduces the rejection rate by 35%, which is consistent with
our approximation analysis in Section 2.2. However, TAS often introduces distributional shifts that
degrade performance. For instance, on GPQA in Table 1a, TAS yields lower accuracy than SpS
(38.89 vs. 42.93), likely due to accepting plausible yet suboptimal tokens, especially when the
verifier distribution contains fine-grained decision signals.

In contrast, our proposed method, Cactus, achieves the highest acceptance rates across all bench-
marks while maintaining or improving accuracy. When δ = 0.75, Cactus consistently surpasses
both SpS and TAS in ALm, achieving 86.66 on GSM8K with m = 20 (Table 1a) and 45.46 on
GPQA with m = 20 (Table 1b), notably outperforming all baselines. When δ = 1.0, Cactus further

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

Figure 1: Accuracy-acceptance across benchmarks and model settings. The x-axis shows the aver-
age accepted length (AL), and the y-axis shows accuracy normalized by the standard deviation from
the verifier.

increases ALm to 7.61 on GSM8K with 86.43 accuracy (Table 1a), or to 7.00 with 92.87 accuracy
using a larger verifier (Table 1b). Notably, unlike TAS, Cactus does not degrade performance on
challenging benchmarks such as GPQA. Instead, it achieves both high acceptance rates and stable
accuracy, validating its theoretical foundation in constrained optimization and demonstrating practi-
cal robustness across diverse tasks.

3.3 IN-DEPTH ANALYSES

Accuracy against acceptance rates. We visualize the accuracy-acceptance trade-off in Figure 1,
where accuracy is measured in standard deviations (σ) from the verifier mean, and throughput is
quantified by the average accepted length (AL). Each subplot corresponds to a specific benchmark
and verifier-drafter pair. The dashed black line indicates the verifier performance, and the red dashed
line marks the −1σ threshold, a commonly used indicator of statistically significant degradation.

As shown, TAS improves throughput over SpS but often suffers from accuracy drops, notably falling
below the −1σ threshold on GPQA with the 8B verifier. In contrast, Cactus consistently preserves
accuracy (remaining within or above the verifier confidence range) and frequently exceeds it, such
as on GSM8K and IFEval with both 8B and 14B verifiers. This demonstrates that Cactus effectively
improves decoding efficiency without compromising (and sometimes even enhancing) generation
quality.

It is also worth noting that the improvements from Cactus are stable across tasks with different char-
acteristics. For instance, on challenging benchmarks like GPQA, where other methods either exhibit
significant degradation (e.g., TAS) or achieve limited throughput gains (e.g., SpS), Cactus substan-
tially increases AL while maintaining accuracy above baseline. This highlights the strength of our
constrained acceptance framework in balancing aggressive token acceptance with distributional fi-
delity.

The importance of divergence control. Our Cactus dynamically manipulates the target distribu-
tion to increase the chance of accepting the sample tokens. Since this inevitably pushes the target
distribution h from the verifier q to be more similar to the draft model p, it resembles the notion
of mixing the distribution q and p like interpolation. However, we argue that Cactus is superior
than simple interpolation, given that it uses a principled approach which comes with a divergence
guarantee. We empirically justify this argument by the following experiment.

Figure 2: Score vs. acceptance rate for the 0.6B+14B Qwen3 combination without top-p/top-k sam-
pling arguments. Solid and dashed lines are degree-2 polynomial fits.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

Here, we produces data points by running grid search on δ for Cactus and interpolation rate α for
interpolation, respectively. As shown, Cactus consistently outperforms interpolation at the similar
acceptance rate. For example, at a similar acceptance rate of approximately 90%, Cactus achieves
a score above 86 (δ = 1e4) on GSM8K, whereas interpolation only reaches a score below 72
(α = 0.9). Notably, even at a 96.3% acceptance rate, Cactus maintains a higher score (above 80),
further confirming the necessity of divergence control of our method.

Throughput comparison. In Section 3.2, we used ALm and Rej as proxies for throughput, as
they are invariant to hardware and system conditions. Here, we additionally report wall-time re-
sults, all measured on A100 40GB GPUs with identical CPU and memory configurations. We used
VLLM (Kwon et al., 2023) with its default compilation settings to ensure realistic inference condi-
tions. The results on GPQA are shown in Figure 3.

Figure 3: Wall-time normalized throughput (y-axis) across different model sizes and draft lengths.
The wall time of a single verifier model is always normalized to 1.

Across all settings, Cactus remains competitive or superior to all baselines. In particular, Cactus
0.75 and 1.0 yield significant improvements in the 0.6B+14B setting, where Cactus 1.0 achieves
nearly 1.9× speedup over the verifier alone with m = 10, while also maintaining the highest score on
GPQA (see Table 1b). In contrast, TAS slightly underperforms Cactus in nearly all settings. Notably,
as discussed in Section 2.2 and verified in Table 1b, TAS lacks explicit divergence control. These
results highlight the benefit of Cactus’s constrained acceptance strategy, which more effectively
balances fidelity and efficiency than existing baselines.

Evaluating on more model series. To assess the generality of our method, we go beyond Qwen
3 and evaluate three additional model series: Gemma (2B + 9B, Team et al. (2024)), R1 (1.5B + 7B,
DeepSeek-AI et al. (2025)), and LLaMA (1B + 8B, Dubey et al. (2024)). Each model pair represents
a distinct series developed by different teams with varying training methodologies. Following Bach-
mann et al. (2025), we additionally evaluate Top-k decoding as a naive lossy baseline, where draft
tokens are accepted if they fall within the top-5 candidates according to the verifier. All drafter-
verifier pairs follow the same speculative decoding setup, and accuracy is measured with standard
task-specific metrics. We also include SpS and TAS baselines under equivalent configurations to
ensure a fair comparison. The results are presented in Figure 4.

Figure 4: Evaluating on GSM8K with three model pairs.

Top-k decoding consistently underperforms the verifier model, reaffirming the importance of using
principled verifier-guided sampling like Cactus. Across all settings, Cactus delivers strong and
consistent performance. For R1 and Gemma, Cactus notably outperforms TAS. While SpS and TAS
perform well on LLaMA, Cactus matches their accuracy and retains its robustness across models.

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

These results support the conclusion that Cactus generalizes well across diverse architectures and
remains competitive or superior regardless of the underlying model series.

4 RELATED WORK

The draft-and-verify scheme. The line of work most closely related to this paper is the use of the
draft-and-verify scheme to accelerate auto-regressive decoding. The foundation of this scheme lies
in the acceptance algorithms (i.e., designing the acceptance rate and recovery probability functions
in Section 2). This includes vanilla speculative sampling (Chen et al., 2023; Leviathan et al., 2023)
and typical acceptance sampling (Hewitt et al., 2022; Meister et al., 2023; Cai et al., 2024a). Cactus,
as it applies a different acceptance strategy, belongs to the same category. For this reason, we exten-
sively compare it against both methods in our paper. In addition to acceptance algorithms, building
specialized models for this scheme has shown to be effective (Kim et al., 2023; Liu et al., 2024a; Liao
et al., 2025). For instance, Cai et al. (2024a) fine-tune multiple heads for generating subsequent to-
kens; Li et al. (2024b;c; 2025) propose EAGLE, which introduces an additional head for draft token
generation; Bachmann et al. (2025) propose Judge Decoding, training a binary classifier to aug-
ment the acceptance rate function. However, these methods require substantial training resources,
whereas Cactus is a training-free acceptance rule. We also expect that Cactus can be directly applied
to that utilizes either SpS or TAS as the underlying principle. Another generalization of speculative
sampling involves using multiple draft tokens or verifiers (Yang et al., 2024; Chen et al., 2024; Jeon
et al., 2024). For example, Miao et al. (2023) propose SpecInfer with tree-based draft generation;
TreeBoN (Qiu et al., 2024) integrates speculative sampling into best-of-N tree-search decoding. We
leave the exploration on more integrated versions of multi-drafter or multi-verifier Cactus to future
work.

Low-complexity attention for Transformers. Transformer models generate sequences in an
auto-regressive manner (Vaswani et al., 2017). Since each token attends to all previous ones, gener-
ation time grows quadratically with sequence length (Wang et al., 2020). To address this, previous
work has proposed low-complexity attention variants (Child et al., 2019; Zaheer et al., 2020; Tsai
et al., 2019; Kitaev et al., 2020; Choromanski et al., 2021). These methods modify the Transformer
architecture itself. Cactus can be combined with these methods since they also follow the auto-
regressive paradigm. In addition to architectural changes, decoding complexity can also be reduced
by manipulating the KV cache (Zhang et al., 2023; Li et al., 2024a; Cai et al., 2024b). For in-
stance, SnapKV (Li et al., 2024a) evicts less relevant tokens from the prompt before generation;
Radar (Hao et al., 2025) dynamically selects key segments using random projections. These tech-
niques are drop-in approximations of vanilla attention and are orthogonal to speculative sampling
methods like Cactus.

Minimizing overheads of Transformers. Without approximating the Transformer architecture,
overheads can still be reduced to accelerate decoding. Flash Attention (Dao et al., 2022; Dao, 2023),
for example, uses tiling techniques to avoid memory-bound operations, and has seen widespread
adoption (Wolf et al., 2019; Kwon et al., 2023). Memory-efficient attention (Rabe and Staats, 2021)
reorders computation to maintain constant memory usage regardless of context length. Another
line of work applies quantization to model parameters (Lin et al., 2023; Badri and Shaji, 2023; Liu
et al., 2024b). The benefits are threefold: (1) reduced memory footprint due to lower-precision data
types; (2) alleviated memory bottlenecks during decoding; and (3) improved hardware efficiency
via optimized kernels. All these methods can be seamlessly integrated into speculative sampling
approaches, including Cactus.

5 CONCLUSION

In this paper, we propose a constrained optimization framework for analyzing and improving specu-
lative sampling methods. Building upon this framework, we introduce Cactus, a novel training-free
speculative sampling method that increases acceptance rates while maintaining a provably controlled
divergence from the large verifier model. Cactus uses only basic element-wise operations, making
it highly practical and lightweight for real-time inference. We empirically evaluate our method on a

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

variety of benchmarks and confirm its effectiveness. As LLMs continue to grow in size and cost, our
method provides a theoretically grounded yet practically efficient solution for scalable deployment.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

ETHICS STATEMENT

We certify that all authors of this project adhere to the ICLR Code of Ethics (https://iclr.cc/
public/CodeOfEthics). Our research does not involve human subjects, practices to dataset
releases, potentially harmful content, potential conflicts of interest and sponsorship, discrimina-
tion/bias/fairness concerns, privacy and security issues, legal compliance, or research integrity is-
sues.

REPRODUCIBILITY STATEMENT

All of our experiments use publicly accessible datasets and models. Specifically, the datasets we
used can be found by the following links via HuggingFace

• GSM8K: https://huggingface.co/datasets/openai/gsm8k

• IFEval: https://huggingface.co/datasets/google/IFEval

• GPQA: https://huggingface.co/datasets/Idavidrein/gpqa

The models can be found by the following links

• Qwen3 0.6B: https://huggingface.co/Qwen/Qwen3-0.6B

• Qwen3 8B: https://huggingface.co/Qwen/Qwen3-8B

• Qwen3 14B: https://huggingface.co/Qwen/Qwen3-14B

• Gemma 2B: https://huggingface.co/google/gemma-2-2b

• Gemma 9B: https://huggingface.co/google/gemma-2-9b

• R1 1.5B: https://huggingface.co/deepseek-ai/
DeepSeek-R1-Distill-Qwen-1.5B

• R1 7B: https://huggingface.co/deepseek-ai/
DeepSeek-R1-Distill-Qwen-7B

• Llama 1B: https://huggingface.co/meta-llama/Llama-3.2-1B

• Llama 8B: https://huggingface.co/meta-llama/Llama-3.1-8B

In addition, our code is publicly available at the anonymous link https://anonymous.4open.
science/r/Cactus-2E4D/.

REFERENCES

Gregor Bachmann, Sotiris Anagnostidis, Albert Pumarola, Markos Georgopoulos, Artsiom
Sanakoyeu, Yuming Du, Edgar Schönfeld, Ali Thabet, and Jonas K Kohler. Judge decoding:
Faster speculative sampling requires going beyond model alignment. In ICLR, 2025. URL
https://openreview.net/forum?id=mtSSFiqW6y.

Hicham Badri and Appu Shaji. Half-quadratic quantization of large machine learning models,
November 2023. URL https://mobiusml.github.io/hqq_blog/.

Tom B. Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, J. Kaplan, Prafulla Dhariwal,
Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, Sandhini Agarwal, Ariel
Herbert-Voss, Gretchen Krueger, T. Henighan, R. Child, A. Ramesh, Daniel M. Ziegler, Jeff
Wu, Clemens Winter, Christopher Hesse, Mark Chen, Eric Sigler, Mateusz Litwin, S. Gray,
B. Chess, Jack Clark, Christopher Berner, Sam McCandlish, Alec Radford, I. Sutskever, and
Dario Amodei. Language models are few-shot learners. In NeurIPS, 2020. URL https:
//arxiv.org/abs/2005.14165.

Tianle Cai, Yuhong Li, Zhengyang Geng, Hongwu Peng, Jason D Lee, Deming Chen, and Tri Dao.
Medusa: Simple LLM inference acceleration framework with multiple decoding heads. arXiv
preprint arXiv:2401.10774, 2024a. URL https://arxiv.org/abs/2401.10774.

11

https://iclr.cc/public/CodeOfEthics
https://iclr.cc/public/CodeOfEthics
https://huggingface.co/datasets/openai/gsm8k
https://huggingface.co/datasets/google/IFEval
https://huggingface.co/datasets/Idavidrein/gpqa
https://huggingface.co/Qwen/Qwen3-0.6B
https://huggingface.co/Qwen/Qwen3-8B
https://huggingface.co/Qwen/Qwen3-14B
https://huggingface.co/google/gemma-2-2b
https://huggingface.co/google/gemma-2-9b
https://huggingface.co/deepseek-ai/DeepSeek-R1-Distill-Qwen-1.5B
https://huggingface.co/deepseek-ai/DeepSeek-R1-Distill-Qwen-1.5B
https://huggingface.co/deepseek-ai/DeepSeek-R1-Distill-Qwen-7B
https://huggingface.co/deepseek-ai/DeepSeek-R1-Distill-Qwen-7B
https://huggingface.co/meta-llama/Llama-3.2-1B
https://huggingface.co/meta-llama/Llama-3.1-8B
https://anonymous.4open.science/r/Cactus-2E4D/
https://anonymous.4open.science/r/Cactus-2E4D/
https://openreview.net/forum?id=mtSSFiqW6y
https://mobiusml.github.io/hqq_blog/
https://arxiv.org/abs/2005.14165
https://arxiv.org/abs/2005.14165
https://arxiv.org/abs/2401.10774

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Zefan Cai, Yichi Zhang, Bofei Gao, Yuliang Liu, Tianyu Liu, Keming Lu, Wayne Xiong, Yue Dong,
Baobao Chang, Junjie Hu, and Wen Xiao. PyramidKV: Dynamic KV cache compression based
on pyramidal information funneling. arXiv preprint arXiv: 2406.02069, 2024b. URL https:
//arxiv.org/abs/2406.02069.

Charlie Chen, Sebastian Borgeaud, Geoffrey Irving, Jean-Baptiste Lespiau, Laurent Sifre, and John
Jumper. Accelerating large language model decoding with speculative sampling. arXiv preprint
arXiv:2302.01318, 2023. URL https://arxiv.org/abs/2302.01318.

Ziyi Chen, Xiaocong Yang, Jiacheng Lin, Chenkai Sun, Kevin Chang, and Jie Huang.
Cascade speculative drafting for even faster llm inference. NeurIPS, 37:86226–86242,
2024. URL https://proceedings.neurips.cc/paper_files/paper/2024/
hash/9cb5b083ba4f5ca6bd05dd307a2fb354-Abstract-Conference.html.

Rewon Child, Scott Gray, Alec Radford, and Ilya Sutskever. Generating long sequences with sparse
Transformers. arXiv preprint arXiv:1904.10509, 2019. URL https://arxiv.org/abs/
1904.10509.

Krzysztof Marcin Choromanski, Valerii Likhosherstov, David Dohan, Xingyou Song, Andreea
Gane, Tamas Sarlos, Peter Hawkins, Jared Quincy Davis, Afroz Mohiuddin, Lukasz Kaiser,
David Benjamin Belanger, Lucy J Colwell, and Adrian Weller. Rethinking attention with per-
formers. In ICLR, 2021. URL https://openreview.net/forum?id=Ua6zuk0WRH.

Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian, Mark Chen, Heewoo Jun, Lukasz Kaiser,
Matthias Plappert, Jerry Tworek, Jacob Hilton, Reiichiro Nakano, Christopher Hesse, and John
Schulman. Training verifiers to solve math word problems. arXiv preprint arXiv: 2110.14168,
2021. URL https://arxiv.org/abs/2110.14168.

Tri Dao. Flashattention-2: Faster attention with better parallelism and work partitioning. arXiv
preprint arXiv:2307.08691, 2023. URL https://arxiv.org/abs/2307.08691.

Tri Dao, Dan Fu, Stefano Ermon, Atri Rudra, and Christopher Ré. FlashAttention: Fast and memory-
efficient exact attention with IO-awareness. NeurIPS, 35:16344–16359, 2022. URL https:
//arxiv.org/abs/2205.14135.

DeepSeek-AI, Daya Guo, Dejian Yang, Haowei Zhang, Junxiao Song, Ruoyu Zhang, Runxin Xu,
Qihao Zhu, Shirong Ma, Peiyi Wang, Xiao Bi, Xiaokang Zhang, Xingkai Yu, Yu Wu, Z. F. Wu,
Zhibin Gou, Zhihong Shao, Zhuoshu Li, Ziyi Gao, Aixin Liu, Bing Xue, Bingxuan Wang, Bochao
Wu, Bei Feng, Chengda Lu, Chenggang Zhao, Chengqi Deng, Chenyu Zhang, Chong Ruan,
Damai Dai, Deli Chen, Dongjie Ji, Erhang Li, Fangyun Lin, Fucong Dai, Fuli Luo, Guangbo Hao,
Guanting Chen, Guowei Li, H. Zhang, Han Bao, Hanwei Xu, Haocheng Wang, Honghui Ding,
Huajian Xin, Huazuo Gao, Hui Qu, Hui Li, Jianzhong Guo, Jiashi Li, Jiawei Wang, Jingchang
Chen, Jingyang Yuan, Junjie Qiu, Junlong Li, J. L. Cai, Jiaqi Ni, Jian Liang, Jin Chen, Kai
Dong, Kai Hu, Kaige Gao, Kang Guan, Kexin Huang, Kuai Yu, Lean Wang, Lecong Zhang,
Liang Zhao, Litong Wang, Liyue Zhang, Lei Xu, Leyi Xia, Mingchuan Zhang, Minghua Zhang,
Minghui Tang, Meng Li, Miaojun Wang, Mingming Li, Ning Tian, Panpan Huang, Peng Zhang,
Qiancheng Wang, Qinyu Chen, Qiushi Du, Ruiqi Ge, Ruisong Zhang, Ruizhe Pan, Runji Wang,
R. J. Chen, R. L. Jin, Ruyi Chen, Shanghao Lu, Shangyan Zhou, Shanhuang Chen, Shengfeng
Ye, Shiyu Wang, Shuiping Yu, Shunfeng Zhou, Shuting Pan, S. S. Li, Shuang Zhou, Shao-
qing Wu, Shengfeng Ye, Tao Yun, Tian Pei, Tianyu Sun, T. Wang, Wangding Zeng, Wanjia
Zhao, Wen Liu, Wenfeng Liang, Wenjun Gao, Wenqin Yu, Wentao Zhang, W. L. Xiao, Wei
An, Xiaodong Liu, Xiaohan Wang, Xiaokang Chen, Xiaotao Nie, Xin Cheng, Xin Liu, Xin Xie,
Xingchao Liu, Xinyu Yang, Xinyuan Li, Xuecheng Su, Xuheng Lin, X. Q. Li, Xiangyue Jin,
Xiaojin Shen, Xiaosha Chen, Xiaowen Sun, Xiaoxiang Wang, Xinnan Song, Xinyi Zhou, Xi-
anzu Wang, Xinxia Shan, Y. K. Li, Y. Q. Wang, Y. X. Wei, Yang Zhang, Yanhong Xu, Yao Li,
Yao Zhao, Yaofeng Sun, Yaohui Wang, Yi Yu, Yichao Zhang, Yifan Shi, Yiliang Xiong, Ying
He, Yishi Piao, Yisong Wang, Yixuan Tan, Yiyang Ma, Yiyuan Liu, Yongqiang Guo, Yuan Ou,
Yuduan Wang, Yue Gong, Yuheng Zou, Yujia He, Yunfan Xiong, Yuxiang Luo, Yuxiang You,
Yuxuan Liu, Yuyang Zhou, Y. X. Zhu, Yanhong Xu, Yanping Huang, Yaohui Li, Yi Zheng,
Yuchen Zhu, Yunxian Ma, Ying Tang, Yukun Zha, Yuting Yan, Z. Z. Ren, Zehui Ren, Zhangli
Sha, Zhe Fu, Zhean Xu, Zhenda Xie, Zhengyan Zhang, Zhewen Hao, Zhicheng Ma, Zhigang

12

https://arxiv.org/abs/2406.02069
https://arxiv.org/abs/2406.02069
https://arxiv.org/abs/2302.01318
https://proceedings.neurips.cc/paper_files/paper/2024/hash/9cb5b083ba4f5ca6bd05dd307a2fb354-Abstract-Conference.html
https://proceedings.neurips.cc/paper_files/paper/2024/hash/9cb5b083ba4f5ca6bd05dd307a2fb354-Abstract-Conference.html
https://arxiv.org/abs/1904.10509
https://arxiv.org/abs/1904.10509
https://openreview.net/forum?id=Ua6zuk0WRH
https://arxiv.org/abs/2110.14168
https://arxiv.org/abs/2307.08691
https://arxiv.org/abs/2205.14135
https://arxiv.org/abs/2205.14135

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Yan, Zhiyu Wu, Zihui Gu, Zijia Zhu, Zijun Liu, Zilin Li, Ziwei Xie, Ziyang Song, Zizheng Pan,
Zhen Huang, Zhipeng Xu, Zhongyu Zhang, and Zhen Zhang. Deepseek-r1: Incentivizing rea-
soning capability in LLMs via reinforcement learning. arXiv preprint arXiv: 2501.12948, 2025.
URL https://arxiv.org/abs/2501.12948.

Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad Al-Dahle, Aiesha
Letman, Akhil Mathur, Alan Schelten, Amy Yang, Angela Fan, Anirudh Goyal, Anthony
Hartshorn, Aobo Yang, Archi Mitra, Archie Sravankumar, and et al. The Llama 3 herd of models.
arXiv preprint arXiv: 2407.21783, 2024. URL https://arxiv.org/abs/2407.21783.

Leo Gao, Jonathan Tow, Baber Abbasi, Stella Biderman, Sid Black, Anthony DiPofi, Charles Fos-
ter, Laurence Golding, Jeffrey Hsu, Alain Le Noac’h, Haonan Li, Kyle McDonell, Niklas Muen-
nighoff, Chris Ociepa, Jason Phang, Laria Reynolds, Hailey Schoelkopf, Aviya Skowron, Lintang
Sutawika, Eric Tang, Anish Thite, Ben Wang, Kevin Wang, and Andy Zou. The language model
evaluation harness, 07 2024. URL https://zenodo.org/records/12608602.

Yongchang Hao, Mengyao Zhai, Hossein Hajimirsadeghi, Sepidehsadat Hosseini, and Frederick
Tung. Radar: Fast long-context decoding for any Transformers. In ICLR, 2025. URL https:
//openreview.net/forum?id=ZTpWOwMrzQ.

John Hewitt, Christopher D. Manning, and Percy Liang. Truncation sampling as language model
desmoothing. arXiv preprint arXiv: 2210.15191, 2022. URL https://arxiv.org/abs/
2210.15191.

Ari Holtzman, Jan Buys, Li Du, Maxwell Forbes, and Yejin Choi. The curious case of neural text
degeneration. arXiv preprint arXiv:1904.09751, 2019. URL https://arxiv.org/abs/
1904.09751.

Yunhai Hu, Zining Liu, Zhenyuan Dong, Tianfan Peng, Bradley McDanel, and Sai Qian
Zhang. Speculative decoding and beyond: An in-depth survey of techniques. arXiv preprint
arXiv:2502.19732, 2025. URL https://arxiv.org/abs/2502.19732.

Wonseok Jeon, Mukul Gagrani, Raghavv Goel, Junyoung Park, Mingu Lee, and Christopher Lott.
Recursive speculative decoding: Accelerating llm inference via sampling without replacement.
ICLR 2024 Workshop on Large Language Model (LLM) Agents, 2024. URL https://arxiv.
org/abs/2402.14160.

Jared Kaplan, Sam McCandlish, Tom Henighan, Tom B Brown, Benjamin Chess, Rewon Child,
Scott Gray, Alec Radford, Jeffrey Wu, and Dario Amodei. Scaling laws for neural language
models. arXiv preprint arXiv:2001.08361, 2020. URL https://arxiv.org/abs/2001.
08361.

Sehoon Kim, Karttikeya Mangalam, Suhong Moon, Jitendra Malik, Michael W Mahoney, Amir
Gholami, and Kurt Keutzer. Speculative decoding with big little decoder. NeurIPS, 36:39236–
39256, 2023. URL https://proceedings.neurips.cc/paper_files/paper/
2023/hash/7b97adeafa1c51cf65263459ca9d0d7c-Abstract-Conference.
html.

Nikita Kitaev, Lukasz Kaiser, and Anselm Levskaya. Reformer: The efficient Transformers. In
ICLR, 2020. URL https://openreview.net/forum?id=rkgNKkHtvB.

Woosuk Kwon, Zhuohan Li, Siyuan Zhuang, Ying Sheng, Lianmin Zheng, Cody Hao Yu, Joseph E.
Gonzalez, Hao Zhang, and Ion Stoica. Efficient memory management for large language model
serving with PagedAttention. In ACM SIGOPS, 2023. URL https://arxiv.org/abs/
2309.06180.

Yaniv Leviathan, Matan Kalman, and Yossi Matias. Fast inference from Transformers via spec-
ulative decoding. In ICML, pages 19274–19286, 2023. URL https://arxiv.org/abs/
2211.17192.

Yuhong Li, Yingbing Huang, Bowen Yang, Bharat Venkitesh, Acyr Locatelli, Hanchen Ye, Tianle
Cai, Patrick Lewis, and Deming Chen. SnapKV: LLM knows what you are looking for before
generation. NeruIPS, 2024a. URL https://arxiv.org/abs/2404.14469.

13

https://arxiv.org/abs/2501.12948
https://arxiv.org/abs/2407.21783
https://zenodo.org/records/12608602
https://openreview.net/forum?id=ZTpWOwMrzQ
https://openreview.net/forum?id=ZTpWOwMrzQ
https://arxiv.org/abs/2210.15191
https://arxiv.org/abs/2210.15191
https://arxiv.org/abs/1904.09751
https://arxiv.org/abs/1904.09751
https://arxiv.org/abs/2502.19732
https://arxiv.org/abs/2402.14160
https://arxiv.org/abs/2402.14160
https://arxiv.org/abs/2001.08361
https://arxiv.org/abs/2001.08361
https://proceedings.neurips.cc/paper_files/paper/2023/hash/7b97adeafa1c51cf65263459ca9d0d7c-Abstract-Conference.html
https://proceedings.neurips.cc/paper_files/paper/2023/hash/7b97adeafa1c51cf65263459ca9d0d7c-Abstract-Conference.html
https://proceedings.neurips.cc/paper_files/paper/2023/hash/7b97adeafa1c51cf65263459ca9d0d7c-Abstract-Conference.html
https://openreview.net/forum?id=rkgNKkHtvB
https://arxiv.org/abs/2309.06180
https://arxiv.org/abs/2309.06180
https://arxiv.org/abs/2211.17192
https://arxiv.org/abs/2211.17192
https://arxiv.org/abs/2404.14469

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

Yuhui Li, Fangyun Wei, Chao Zhang, and Hongyang Zhang. EAGLE: Speculative sampling requires
rethinking feature uncertainty. ICML, 2024b. URL https://arxiv.org/abs/2401.
15077.

Yuhui Li, Fangyun Wei, Chao Zhang, and Hongyang Zhang. EAGLE-2: Faster inference of
language models with dynamic draft trees. arXiv preprint arXiv: 2406.16858, 2024c. URL
https://arxiv.org/abs/2406.16858.

Yuhui Li, Fangyun Wei, Chao Zhang, and Hongyang Zhang. EAGLE-3: Scaling up inference
acceleration of large language models via training-time test. In NeurIPS, 2025. URL https:
//openreview.net/forum?id=4exx1hUffq.

Baohao Liao, Yuhui Xu, Hanze Dong, Junnan Li, Christof Monz, Silvio Savarese, Doyen Sahoo,
and Caiming Xiong. Reward-guided speculative decoding for efficient LLM reasoning. arXiv
preprint arXiv: 2501.19324, 2025. URL https://arxiv.org/abs/2501.19324.

Ji Lin, Jiaming Tang, Haotian Tang, Shang Yang, Wei-Ming Chen, Wei-Chen Wang, Guangxuan
Xiao, Xingyu Dang, Chuang Gan, and Song Han. AWQ: Activation-aware weight quantization
for LLM compression and acceleration. arXiv preprint arXiv: 2306.00978, 2023. URL https:
//arxiv.org/abs/2306.00978v5.

Fangcheng Liu, Yehui Tang, Zhenhua Liu, Yunsheng Ni, Kai Han, and Yunhe Wang. Kangaroo:
Lossless self-speculative decoding via double early exiting. arXiv preprint arXiv:2404.18911,
2024a. URL https://arxiv.org/abs/2404.18911.

Zechun Liu, Changsheng Zhao, Igor Fedorov, Bilge Soran, Dhruv Choudhary, Raghuraman Kr-
ishnamoorthi, Vikas Chandra, Yuandong Tian, and Tijmen Blankevoort. SpinQuant: LLM
quantization with learned rotations. arXiv preprint arXiv: 2405.16406, 2024b. URL https:
//arxiv.org/abs/2405.16406.

Clara Meister, Tim Vieira, and Ryan Cotterell. If beam search is the answer, what was the question?
arXiv preprint arXiv:2010.02650, 2020. URL https://arxiv.org/abs/2010.02650.

Clara Meister, Tiago Pimentel, Gian Wiher, and Ryan Cotterell. Locally typical sampling. TACL,
11:102–121, 2023. URL https://doi.org/10.1162/tacl_a_00536.

Xupeng Miao, Gabriele Oliaro, Zhihao Zhang, Xinhao Cheng, Zeyu Wang, Zhengxin Zhang, Rae
Ying Yee Wong, Alan Zhu, Lijie Yang, Xiaoxiang Shi, et al. Specinfer: Accelerating genera-
tive large language model serving with tree-based speculative inference and verification. arXiv
preprint arXiv:2305.09781, 2023. URL https://arxiv.org/abs/2305.09781.

Harikrishna Narasimhan, Wittawat Jitkrittum, Ankit Singh Rawat, Seungyeon Kim, Neha Gupta,
Aditya Krishna Menon, and Sanjiv Kumar. Faster cascades via speculative decoding. In ICLR,
2025. URL https://openreview.net/forum?id=vo9t20wsmd.

Jiahao Qiu, Yifu Lu, Yifan Zeng, Jiacheng Guo, Jiayi Geng, Huazheng Wang, Kaixuan Huang,
Yue Wu, and Mengdi Wang. TreeBoN: Enhancing inference-time alignment with speculative
tree-search and best-of-n sampling. arXiv preprint arXiv:2410.16033, 2024. URL https:
//arxiv.org/abs/2410.16033.

Qwen, :, An Yang, Baosong Yang, Beichen Zhang, Binyuan Hui, Bo Zheng, Bowen Yu, Chengyuan
Li, Dayiheng Liu, Fei Huang, Haoran Wei, Huan Lin, Jian Yang, Jianhong Tu, Jianwei Zhang,
Jianxin Yang, Jiaxi Yang, Jingren Zhou, Junyang Lin, Kai Dang, Keming Lu, Keqin Bao, Kexin
Yang, Le Yu, Mei Li, Mingfeng Xue, Pei Zhang, Qin Zhu, Rui Men, Runji Lin, Tianhao Li,
Tianyi Tang, Tingyu Xia, Xingzhang Ren, Xuancheng Ren, Yang Fan, Yang Su, Yichang Zhang,
Yu Wan, Yuqiong Liu, Zeyu Cui, Zhenru Zhang, and Zihan Qiu. Qwen2.5 technical report. arXiv
preprint arXiv: 2412.15115, 2024. URL https://arxiv.org/abs/2412.15115.

Markus N. Rabe and Charles Staats. Self-attention does not need o(n2) memory. arXiv preprint
arXiv: 2112.05682, 2021. URL https://arxiv.org/abs/2112.05682.

14

https://arxiv.org/abs/2401.15077
https://arxiv.org/abs/2401.15077
https://arxiv.org/abs/2406.16858
https://openreview.net/forum?id=4exx1hUffq
https://openreview.net/forum?id=4exx1hUffq
https://arxiv.org/abs/2501.19324
https://arxiv.org/abs/2306.00978v5
https://arxiv.org/abs/2306.00978v5
https://arxiv.org/abs/2404.18911
https://arxiv.org/abs/2405.16406
https://arxiv.org/abs/2405.16406
https://arxiv.org/abs/2010.02650
https://doi.org/10.1162/tacl_a_00536
https://arxiv.org/abs/2305.09781
https://openreview.net/forum?id=vo9t20wsmd
https://arxiv.org/abs/2410.16033
https://arxiv.org/abs/2410.16033
https://arxiv.org/abs/2412.15115
https://arxiv.org/abs/2112.05682

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

David Rein, Betty Li Hou, Asa Cooper Stickland, Jackson Petty, Richard Yuanzhe Pang, Julien
Dirani, Julian Michael, and Samuel R. Bowman. GPQA: A graduate-level Google-proof Q&A
benchmark. arXiv preprint arXiv: 2311.12022, 2023. URL https://arxiv.org/abs/
2311.12022.

Mitchell Stern, Noam Shazeer, and Jakob Uszkoreit. Blockwise parallel decoding for deep autore-
gressive models. NeurIPS, 31, 2018. URL https://arxiv.org/abs/1811.03115.

Gemma Team, Thomas Mesnard, Cassidy Hardin, Robert Dadashi, Surya Bhupatiraju, Shreya
Pathak, Laurent Sifre, Morgane Rivière, Mihir Sanjay Kale, Juliette Love, et al. Gemma: Open
models based on gemini research and technology. arXiv preprint arXiv:2403.08295, 2024. URL
https://arxiv.org/abs/2403.08295.

Vivien Tran-Thien. An optimal lossy variant of speculative decoding,
2023. URL https://vivien000.github.io/blog/journal/
a-provably-optimal-lossy-variant-of-speculative-decoding.html.

Yao-Hung Hubert Tsai, Shaojie Bai, Makoto Yamada, Louis-Philippe Morency, and Ruslan
Salakhutdinov. Transformer dissection: An unified understanding for Transformers’s atten-
tion via the lens of kernel. In EMNLP-IJCNLP, pages 4344–4353, 2019. URL https:
//aclanthology.org/D19-1443.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,
Ł ukasz Kaiser, and Illia Polosukhin. Attention is all you need. In NIPS, volume 30,
2017. URL https://proceedings.neurips.cc/paper_files/paper/2017/
file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf.

Sinong Wang, Belinda Z Li, Madian Khabsa, Han Fang, and Hao Ma. Linformer: Self-attention
with linear complexity. arXiv preprint arXiv:2006.04768, 2020. URL https://arxiv.org/
abs/2006.04768.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, brian ichter, Fei Xia, Ed H. Chi,
Quoc V Le, and Denny Zhou. Chain of thought prompting elicits reasoning in large language
models. In NeurIPS, 2022. URL https://openreview.net/forum?id=_VjQlMeSB_
J.

Thomas Wolf, Lysandre Debut, Victor Sanh, Julien Chaumond, Clement Delangue, Anthony Moi,
Pierric Cistac, Tim Rault, Rémi Louf, Morgan Funtowicz, Joe Davison, Sam Shleifer, Patrick
von Platen, Clara Ma, Yacine Jernite, Julien Plu, Canwen Xu, Teven Le Scao, Sylvain Gugger,
Mariama Drame, Quentin Lhoest, and Alexander M. Rush. HuggingFace’s Transformers: State-
of-the-art natural language processing. arXiv preprint arXiv: 1910.03771, 2019. URL https:
//arxiv.org/abs/1910.03771.

Heming Xia, Tao Ge, Peiyi Wang, Si-Qing Chen, Furu Wei, and Zhifang Sui. Speculative de-
coding: Exploiting speculative execution for accelerating seq2seq generation. arXiv preprint
arXiv:2203.16487, 2022. URL https://arxiv.org/abs/2203.16487.

Heming Xia, Zhe Yang, Qingxiu Dong, Peiyi Wang, Yongqi Li, Tao Ge, Tianyu Liu, Wenjie Li, and
Zhifang Sui. Unlocking efficiency in large language model inference: A comprehensive survey
of speculative decoding. In Findings of ACL 2024, pages 7655–7671, 2024. URL https:
//aclanthology.org/2024.findings-acl.456.

An Yang, Anfeng Li, Baosong Yang, Beichen Zhang, Binyuan Hui, Bo Zheng, Bowen Yu, Chang
Gao, Chengen Huang, Chenxu Lv, Chujie Zheng, Dayiheng Liu, Fan Zhou, Fei Huang, Feng Hu,
Hao Ge, Haoran Wei, Huan Lin, Jialong Tang, Jian Yang, Jianhong Tu, Jianwei Zhang, Jianxin
Yang, Jiaxi Yang, Jing Zhou, Jingren Zhou, Junyang Lin, Kai Dang, Keqin Bao, Kexin Yang,
Le Yu, Lianghao Deng, Mei Li, Mingfeng Xue, Mingze Li, Pei Zhang, Peng Wang, Qin Zhu, Rui
Men, Ruize Gao, Shixuan Liu, Shuang Luo, Tianhao Li, Tianyi Tang, Wenbiao Yin, Xingzhang
Ren, Xinyu Wang, Xinyu Zhang, Xuancheng Ren, Yang Fan, Yang Su, Yichang Zhang, Yinger
Zhang, Yu Wan, Yuqiong Liu, Zekun Wang, Zeyu Cui, Zhenru Zhang, Zhipeng Zhou, and Zihan
Qiu. Qwen3 technical report. arXiv preprint arXiv: 2505.09388, 2025a. URL https://
arxiv.org/abs/2505.09388.

15

https://arxiv.org/abs/2311.12022
https://arxiv.org/abs/2311.12022
https://arxiv.org/abs/1811.03115
https://arxiv.org/abs/2403.08295
https://vivien000.github.io/blog/journal/a-provably-optimal-lossy-variant-of-speculative-decoding.html
https://vivien000.github.io/blog/journal/a-provably-optimal-lossy-variant-of-speculative-decoding.html
https://aclanthology.org/D19-1443
https://aclanthology.org/D19-1443
https://proceedings.neurips.cc/paper_files/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://arxiv.org/abs/2006.04768
https://arxiv.org/abs/2006.04768
https://openreview.net/forum?id=_VjQlMeSB_J
https://openreview.net/forum?id=_VjQlMeSB_J
https://arxiv.org/abs/1910.03771
https://arxiv.org/abs/1910.03771
https://arxiv.org/abs/2203.16487
https://aclanthology.org/2024.findings-acl.456
https://aclanthology.org/2024.findings-acl.456
https://arxiv.org/abs/2505.09388
https://arxiv.org/abs/2505.09388

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

Sen Yang, Shujian Huang, Xinyu Dai, and Jiajun Chen. Multi-candidate speculative decoding. arXiv
preprint arXiv:2401.06706, 2024. URL https://arxiv.org/abs/2401.06706.

Wang Yang, Xiang Yue, Vipin Chaudhary, and Xiaotian Han. Speculative thinking: Enhanc-
ing small-model reasoning with large model guidance at inference time. arXiv preprint arXiv:
2504.12329, 2025b. URL https://arxiv.org/abs/2504.12329.

Zhihang Yuan, Yuzhang Shang, Yang Zhou, Zhen Dong, Zhe Zhou, Chenhao Xue, Bingzhe Wu,
Zhikai Li, Qingyi Gu, Yong Jae Lee, Yan Yan, Beidi Chen, Guangyu Sun, and Kurt Keutzer. Llm
inference unveiled: Survey and roofline model insights. arXiv preprint arXiv: 2402.16363, 2024.
URL https://arxiv.org/abs/2402.16363.

Manzil Zaheer, Guru Guruganesh, Kumar Avinava Dubey, Joshua Ainslie, Chris Alberti, Santiago
Ontanon, Philip Pham, Anirudh Ravula, Qifan Wang, Li Yang, et al. Big bird: Transformers
for longer sequences. NeurIPS, 33:17283–17297, 2020. URL https://arxiv.org/abs/
2007.14062.

Zhenyu Zhang, Ying Sheng, Tianyi Zhou, Tianlong Chen, Lianmin Zheng, Ruisi Cai, Zhao Song,
Yuandong Tian, Christopher Ré, Clark Barrett, et al. H2o: Heavy-hitter oracle for efficient gen-
erative inference of large language models. NeruIPS, 36, 2023. URL https://arxiv.org/
abs/2306.14048.

Jeffrey Zhou, Tianjian Lu, Swaroop Mishra, Siddhartha Brahma, Sujoy Basu, Yi Luan, Denny Zhou,
and Le Hou. Instruction-following evaluation for large language models. arXiv preprint arXiv:
2311.07911, 2023. URL https://arxiv.org/abs/2311.07911.

Zixuan Zhou, Xuefei Ning, Ke Hong, Tianyu Fu, Jiaming Xu, Shiyao Li, Yuming Lou, Luning
Wang, Zhihang Yuan, Xiuhong Li, et al. A survey on efficient inference for large language models.
arXiv preprint arXiv:2404.14294, 2024. URL https://arxiv.org/abs/2404.14294.

16

https://arxiv.org/abs/2401.06706
https://arxiv.org/abs/2504.12329
https://arxiv.org/abs/2402.16363
https://arxiv.org/abs/2007.14062
https://arxiv.org/abs/2007.14062
https://arxiv.org/abs/2306.14048
https://arxiv.org/abs/2306.14048
https://arxiv.org/abs/2311.07911
https://arxiv.org/abs/2404.14294

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

A TECHNICAL PROOFS

A.1 PROOF OF THEOREM 1

Observation 1. Given any desired target distribution h and draft model p, the acceptance rate and
recovery probability are defined as

ϕ(xt|x<t) = min

(
h(xt|x<t)

p(xt|x<t)
, 1

)
(1)

and g(xt|x<t) =
h(xt|x<t)− p(xt|x<t)ϕ(xt|x<t)

Ex′∼p[1− ϕ(x′|x<t)]
(2)

respectively. Algorithm 1 samples from h exactly using the above ϕ and g. In addition, this ϕ is the
optimal design of acceptance rate.

Proof. Let n be the selected token and x be the context. Then at each step, the resulting distribution
of the algorithm is:

Pr(n|x) =Pr(n ∼ p(·|x) and u ≤ ϕ(x|x)) +
|V |∑
i=1

p(i|x) Pr(n ∼ g(·|x) and u > ϕ(i|x)) (17)

=p(n|x)ϕ(n|x) + g(n|x) E
i∼p(·|x)

[1− ϕ(i|x)], (18)

where the first term on the right hand side indicates the sampled token n is accepted. The second
term means the originally sampled token is rejected, and the current token n comes from the recover
probability g. Since we would like Pr(n|x) = h(n|x), we have

p(n|x)ϕ(n|x) + g(n|x) E
i∼p(·|x)

[1− ϕ(i|x)] = h(n|x) (19)

⇐⇒ g(n|x) = h(n|x)− p(n|x)ϕ(n|x)
Ei∼p(·|x)[1− ϕ(i|x)]

, (20)

hence proving the expression for g. Here, ϕ can be function that maps to [0, 1] that makes g a
distribution. Since the expression of g is self-normalizing, we only need to make sure that all g(i|x)
are non-negative. Specifically,

0 ≤ g(i|x) (21)
⇐= h(i|x)− p(i|x)ϕ(i|x) ≥ 0 (Image(ϕ) ⊆ [0, 1])

⇐= ϕ(i|x) ≤ h(i|x)
p(i|x)

. (22)

Again, given Image(ϕ) ⊆ [0, 1],

ϕ(i|x) ≤ min

(
h(i|x)
p(i|x)

, 1

)
. (23)

gives the optimal acceptance rate.

A.2 PROOF OF THEOREM 3

Before proceeding to the proof of the theorem, we first show the following technical lemma.
Lemma 8 (Minimal Divergence Allocation). Let f : R+ → R be convex with f(1) = 0. For any
α ∈ [0, 1] and sub-distribution {q(i)}i∈S over S with Q :=

∑
i∈S q(i) > 0, the solution to:

min
{h(i)}

∑
i∈S

q(i)f

(
h(i)

q(i)

)
(24)

s.t.
∑
i∈S

h(i) = α, h(i) ≥ 0 (25)

is h∗(i) = α
Qq(i) for all i ∈ S.

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

Proof. Let λ := α
Q . Define h̃(i) := λq(i). Then:∑

i∈S

h̃(i) = λQ = α (26)

satisfies the constraints. For any feasible h ̸= h̃, define r(i) := h(i)
q(i) . By Jensen’s inequality:

1

Q

∑
i∈S

q(i)f(r(i)) ≥ f

(
1

Q

∑
i∈S

q(i)r(i)

)
= f

(
α

Q

)
(27)

with equality iff r(i) = λ for all i ∈ S. Thus h̃ is the unique minimizer.

We can now show the theorem below.
Theorem 3. The optimal h in Definition 2 is

hi =

{
γ∗, if i = n,

1−γ∗

1−q(n|x<t)
q(i|x<t), otherwise,

(6)

where γ∗ is any root of the equation

δ = q(n|x<t)f

(
γ

q(n|x<t)

)
+ (1− q(n|x<t))f

(
1− γ

1− q(n|x<t)

)
(7)

over the interval [q(n|x<t),+∞), clamped into [q(n|x<t), 1]. The function f is the one used in the
definition of f -divergence.

Proof.

max
h

min

(
hn

p(n|x<t)
, 1

)
(28)

s.t. h ∈ ∆|V |−1, (29)
Df (h∥q(·|x<t)) ≤ δ. (30)

Here, ∆|V |−1 denotes the probability simplex, and

Df (h∥q) =
∑
i∈V

q(i)f

(
h(i)

q(i)

)
(31)

is the f -divergence. The objective

min

(
hn

p(n)
, 1

)
(32)

is maximized when hn

p(n) is as large as possible. However, since min(·, 1) caps the value at 1, the
maximum achievable is 1 (when hn ≥ p(n)). Thus, the problem reduces to maximizing hn under
the constraints, as increasing hn directly improves the objective until hn ≥ p(n). To maximize
hn, we allocate as much probability mass to hn as allowed by the constraints. Let γ = hn. The
remaining mass 1−γ must be distributed over i ̸= n. By Lemma 8, the optimal allocation for i ̸= n
is:

h(i) =
1− γ

1− q(n)
q(i), (33)

where 1−γ
1−q(n) ensures

∑
i̸=n h(i) = 1− γ. Thus, for i ̸= n:

h(i) =
1− γ

1− q(n)
q(i), (34)

where 1−γ
1−q(n) ensures

∑
i̸=n h(i) = 1− γ.

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

Substitute hn = γ and h(i) = 1−γ
1−q(n)q(i) into Df (h∥q):

Df = q(n)f

(
γ

q(n)

)
+
∑
i̸=n

q(i)f

(
1− γ

1− q(n)

)
. (35)

Simplify the second term using
∑

i̸=n q(i) = 1− q(n):

Df = q(n)f

(
γ

q(n)

)
+ (1− q(n))f

(
1− γ

1− q(n)

)
. (36)

The constraint Df ≤ δ becomes an equality at optimality (since increasing γ further would violate
the constraint). Thus, γ∗ solves:

q(n)f

(
γ

q(n)

)
+ (1− q(n))f

(
1− γ

1− q(n)

)
= δ. (37)

Finally, since γ∗ may exceed 1 (when δ is set too large to attain), it is truncated into [q(n), 1] as a
proper probability value.

A.3 PROOF OF THEOREM 4

Theorem 4. Let ϕn and gn denote the functions that follow the solution in Theorem 3 when the
sampled token is n. The distribution of the overall algorithm is given by

halg =
∑

n∈[|V |]

p(n|x<t) [ϕn(n)en + (1− ϕn(n))gn] , (8)

where en is a one-hot vector with only non-zero element at index n. In addition,

Df (halg∥q(·|x<t)) ≤ min{Γ(δ), Df (p(·|x<t)∥q(·|x<t))} (9)

for any δ ≥ 0. Here, the function Γ : [0,+∞) → [0,+∞] is continuous and non-decreasing in δ
with a value of 0 at δ = 0.

Proof. We work at a single step at t and suppress the context x<t. Fix p and q on a finite alphabet.
For each drafted index n, let hn be any target with Df (hn∥q) ≤ δ. The conditional output is

rn = ϕn(n)en + (1− ϕn(n))g(hn),

and the algorithm’s one-step output is

halg =
∑
n

p(n)rn.

Let

Hδ :=
{
(hn)n : Df (hn∥q) ≤ δ ∀n, q(i) = 0⇒ hn(i) = 0

}
, (38)

F
(
(hn)n

)
:=Df

(
halg∥q

)
. (39)

Define

Γ(δ) := sup
(hn)∈Hδ

F
(
(hn)n

)
∈ [0,∞], (40)

and note that Γ depends only on (p, q, f) and the budget δ. By construction,

Df

(
halg∥q

)
≤ Γ(δ) for every feasible family (hn) ∈ Hδ. (41)

It is straight-forward to show that Df

(
halg∥q

)
≤ Df (p∥q) given that the all-acceptance distribution

is simply p. Thus it remains to show that Γ has the claimed shape: non-decreasing, Γ(0) = 0, and
continuous in the extended-real sense.

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

Basic properties of Γ. (i) Γ(0) = 0. If δ = 0 then hn = q for all n, so halg = q and thus
Γ(0) = Df (q∥q) = 0.

(ii) Monotonicity. If δ2 ≥ δ1 thenHδ1 ⊆ Hδ2 , so Γ(δ1) ≤ Γ(δ2) by definition of the supremum.

(iii) Continuity. We show right- and left-continuity. On a finite alphabet, the set of probability
distributions is compact (a simplex), and with support alignment the feasible set Hδ is closed (as
the preimage of [0, δ] under the continuous function maxn Df (·∥q)) and thus compact. The map
(hn)n 7→ halg is continuous (operations involved are continuous on their domains), hence F is
continuous.

We first show the right-continuity. Let δk ↓ δ. For each k pick (h
(k)
n)n ∈ Hδk with F ((h

(k)
n)n) ≥

Γ(δk)− εk, where εk ↓ 0. Since the alphabet is finite, the feasible families live in a finite product of
simplices, which is compact; therefore, there exists a subsequence (not relabeled) such that h(k)

n →
h⋆
n for each n. By continuity of Df (·∥q), Df (h

⋆
n∥q) = limk Df (h

(k)
n ∥q) ≤ limk δk = δ, so

(h⋆
n)n ∈ Hδ . Continuity of F gives

lim sup
k→∞

Γ(δk) ≤ lim
k→∞

(
F ((h(k)

n)n) + εk
)
= F ((h⋆

n)n) ≤ Γ(δ).

Monotonicity gives Γ(δ) ≤ lim infk→∞ Γ(δk), hence limk→∞ Γ(δk) = Γ(δ).

We then show the left-continuity. Let δk ↑ δ and fix ε > 0. Choose (h⋆
n)n ∈ Hδ with F ((h⋆

n)n) ≥
Γ(δ) − ε. For θ ∈ (0, 1) define hn,θ := (1 − θ)h⋆

n + θq. By convexity of Df (·∥q) in its first
argument,

Df (hn,θ∥q) ≤ (1− θ)Df (h
⋆
n∥q) + θDf (q∥q) ≤ (1− θ)δ < δ,

so (hn,θ)n ∈ H(1−θ)δ . By continuity of F , for sufficiently small θ > 0 we have

F ((hn,θ)n) ≥ F ((h⋆
n)n)− ε ≥ Γ(δ)− 2ε.

For all large k with δk > (1− θ)δ, monotonicity gives

Γ(δk) ≥ Γ((1− θ)δ) ≥ F ((hn,θ)n) ≥ Γ(δ)− 2ε.

Thus lim infk→∞ Γ(δk) ≥ Γ(δ), and since monotonicity gives lim supk→∞ Γ(δk) ≤ Γ(δ), we have
limk→∞ Γ(δk) = Γ(δ).

In conclusion, by definition of Γ, for every feasible family (hn) ∈ Hδ ,

Df

(
halg∥q

)
≤ Γ(δ),

with Γ non-decreasing, continuous on [0,∞), and Γ(0) = 0. This proves the theorem.

A.4 PROOF OF PROPOSITION 5

Proposition 5. Typical acceptance sampling (TAS, Cai et al. (2024a)) implicitly solves a variant
of the optimization problem in Definition 2, where the f -divergence is substituted with the cross-
entropy H(h, q(·|x<t)).

Proof. Given the optimization problem:

max
h

min

(
hn

p(n)
, 1

)
s.t. h ∈ ∆|V |−1, (42)

H(h, q) ≤ H(q) + δ, (43)

where H(q) is the entropy. The optimal solution concentrates mass on {n,m}. Equation (43) is
equivalent to ∑

i

[q(i)− h(i)] log
1

q(i)
≥ −δ. (44)

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

To maximize hn = γ, we must minimize the LHS of (44). Based on Lemma 9, the resulting
distribution is always two-point distribution. Let m = argmaxi q(i). For fixed hn = γ, the optimal
allocation places all remaining mass on m:

h(i) =


γ, i = n

1− γ, i = m

0, otherwise
(45)

Substituting the optimal form into (43):

γ log
1

q(n)
+ (1− γ) log

1

q(m)
≤ H(q) + δ

γ

(
log

1

q(n)
− log

1

q(m)

)
≤ H(q) + δ − log

1

q(m)

γ ≤
H(q) + δ − log 1

q(m)

log q(m)
q(n)

(46)

Sine γ is a probability, its maximum is reached when

γ = 1 ⇐⇒ log
q(m)

q(n)
≤ H(q) + δ − log

1

q(m)

⇐⇒ q(n) ≥ exp (−H(q)) exp(−δ), (47)

which is the acceptance rate used in TAS.

It should be noted that our theory here is used to reveal the soundness of the TAS acceptance func-
tion, without aiming to replicate the exact TAS algorithm. However, based on our framework, one
can derive the exact TAS algorithm by adding an H(h) = 0 constraint and an ϵ threshold to the
cross-entropy limit, which we omitted for simplicity.

In the proof above, we invoked the following technical lemma.

Lemma 9. For any γ ∈ [0, 1], the minimal value of
∑

i̸=n[q(i)− h(i)] log 1
q(i) is achieved when:

h(m) = 1− γ, h(i) = 0 ∀i ̸= n,m. (48)

We provide the proof below.

Proof. Let h(i) = αi(1− γ) for i ̸= n, where
∑

i αi = 1. Then:∑
i̸=n

[q(i)− αi(1− γ)] log
1

q(i)
(49)

is minimized when αi concentrates on m = argmax q(i), since log 1
q(i) is minimized at i = m.

A.5 PROOF OF THEOREM 6

Corollary 6 (Cactus’s solution). Let the f -divergence in Definition 2 be the KL divergence. The
solution to Equation (14) is given by

h(i|x<t) =

{
γ∗, if i = n,

1−γ∗

1−q(n|x<t)
q(i|x<t), otherwise,

(15)

where γ∗ = min
{
q(n|x<t) +

√
2δq(n|x<t)(1− q(n|x<t)), 1

}
.

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2026

Proof. We first compute the derivatives of Φ at γ0:

Φ(γ0) =Φ′(γ0) = 0, (50)

and Φ′′(γ0) =
1

q(n|x<t)(1− q(n|x<t))
. (51)

The unique root in [q(n|x<t),+∞) is then

γ0 +

√
2δ

Φ′′(γ0)
= q(n|x<t) +

√
2δq(n|x<t)(1− q(n|x<t)).

We clip this value to the interval [q(n|x<t), 1] to ensure validity as a probability.

A.6 PROOF OF COROLLARY 7

Corollary 7. When the exact solution γ∗ is not greater than 0.5 (i.e., the token is not likely to be
accepted), our approximation always satisfies the divergence constraint:

DKL(h∥q) ≤ δ, (16)

where h(n|x<t) is given by the approximated solution in Equation (15).

Proof. Let q := q
(
n
∣∣x<t

)
for brevity and define the quadratic-approximate root

γ̂ := q +
√

2δ q(1− q). (52)

Because Φ′(γ) = log γ
q − log 1−γ

1−q , we have Φ′(γ) > 0 for every γ ∈ (q, 1); hence Φ is strictly
increasing on [q, 1] and the equation Φ(γ) = δ admits a unique root γ⋆ ∈ (q, 1].

Taylor’s theorem with the Lagrange remainder, expanded at γ0 = q, gives, for some ξ ∈ (q, γ),

Φ(γ) =
Φ′′(q)

2
(γ − q)2︸ ︷︷ ︸

=:T2(γ)

+
Φ′′′(ξ)

6
(γ − q)3. (53)

For the Bernoulli KL,

Φ′′(γ) =
1

γ(1− γ)
, Φ′′′(γ) = − 1− 2γ

γ2(1− γ)2
. (54)

Whenever γ ≤ 1
2 , the factor 1− 2γ is non-negative and therefore Φ′′′(ξ) ≤ 0. It follows that

Φ(γ) ≤ T2(γ) =
(γ − q)2

2q(1− q)
, ∀γ ∈ (q, 1

2]. (∗)

Choose γ̂ such that T2(γ̂) = δ, this yields the expression given above. If γ̂ ≤ 1
2 or equivalently

δ ≤ (1/2− q)2

2q(1− q)
(55)

then the above inequality gives Φ(γ̂) < δ. Since Φ is strictly increasing, we obtain

γ̂ < γ⋆. (56)

This result ensures that our approximation never overestimate γ when the verifier model is not
confident about the current sampled token.

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2026

B ADDITIONAL EXPERIMENTS

Mentored decoding. A blog post proposed Mentored decoding (Tran-Thien, 2023), which uses
binary search to generate a target distribution q̃ such that DKL(q∥q̃) ≤ δ is met. Compared with
Cactus, there are two major differences: (1) Mentored decoding allows sampled tokens to be ac-
cepted even when the verifier has zero probability, violating the principle of adhering to the ver-
ifier’s mode; (2) more importantly, the solution is found via a numerical optimization procedure,
significantly slowing down the decoding speed and defying the purpose of high-throughput decod-
ing. We conduct additional experiments to compare Cactus and Mentored decoding (using δ = 1 as
recommended).

As shown in Table 2, Mentored decoding has the least acceptance rate gain at the cost of increasing
the per-step generation time. For example, on GSM8K, the overall wall time is even longer than that
of the naive SpS method by 20

Speculative cascading. More recently, Narasimhan et al. (2025) proposed speculative cascading
(SpecCas), which dynamically decides if the sampled token will be verified by the large model
based on the difference between the two distributions. Essentially, it is mathematically equivalent to
mixing the draft and verifier distributions as the target distribution at different steps. We therefore
conduct experiments with SpecCas (the [OPT] variant and α = 0.1 for better quality).

The results in Table 2 show that SpecCas significantly increases the acceptance rate and the decoding
speed. However, its generation quality is not as good as that of other methods, even when we choose
hyperparameters to favor higher generation quality. On the other hand, we also ran experiments
with δ = 10 for Cactus. With a similar wall-time acceleration on GSM8K and GPQA, Cactus ’s
generation quality is considerably higher. We hypothesize that this is due to the lack of explicit
divergence control in SpecCas, whereas the other methods (especially Cactus) guarantee controlled
“distances.” Given that the primary focus of this paper is to introduce a new, principled method, we
leave a deeper investigation of these methods to future work.

Table 2: The results with Qwen 3 14B as verifier and Qwen 3 0.6B as drafter.

GSM8K IFEval GPQA

m Name Score↑ AL↑
m Wall↓ Score↑ AL↑

m Wall↓ Score↑ AL↑
m Wall↓

10

SpS 91.12 4.27 1.00x 85.03 2.19 1.00x 39.39 3.37 1.00x
Mentored 91.66 4.51 1.20x 61.37 2.88 0.96x 40.91 4.31 0.93x
SpecCas 88.40 6.42 0.85x 69.50 5.02 0.54x 32.83 6.27 0.68x
TAS 92.65 5.24 0.86x 86.14 3.00 0.82x 38.89 4.99 0.72x
Cactus 1 93.10 5.44 0.87x 85.96 3.03 0.78x 43.43 5.16 0.70x
Cactus 10 92.72 5.73 0.83x 84.66 3.41 0.74x 39.40 5.71 0.69x

Scaling to larger models. To evaluate the scalability of our method under more memory-intensive
conditions, we conduct experiments on a larger model pair: Qwen 3 1.7B (drafter) and 32B (verifier).
This setting involves significantly higher parameter counts than the reported 14B maximum in the
main table, serving to verify performance where memory bottlenecks are typically more prominent.
We maintain the standard speculative decoding setup with a draft length of m = 10 and report both
accuracy and acceptance length (AL).

Table 3: The results of Qwen 3 32B as verifier and Qwen 3 1.7B as drafter on three benchmarks:
GSM8K, IFEval, and GPQA. We report the “strict-match” accuracy and the acceptance length (AL).

GSM8K IFEval GPQA

m Name Score↑ AL↑
m Score↑ AL↑

m Score↑ AL↑
m

10
SpS 95.30 5.03 83.36 2.61 40.40 3.73
TAS 94.10 7.02 83.73 4.16 40.40 6.12
Ours (δ = 1) 94.40 7.13 85.21 4.47 41.92 6.36

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2026

As shown in Table 3, Cactus demonstrates superior efficiency (achieving the longest acceptance
lengths) across all three benchmarks. In terms of task performance, it notably surpasses TAS and
SpS on IFEval and GPQA, while remaining a comparable result on GSM8K. These findings confirm
that the effectiveness of Cactus naturally extends to larger models, delievering consistent improve-
ments in acceptance rates while maintaining the accuracy.

Evaluations on Spec-Bench. To provide a more comprehensive assessment of Cactus across di-
verse scenarios, we conduct evaluations on Spec-Bench (Xia et al., 2024), a unified benchmark
designed to test speculative decoding methods across multiple distinct domains, including multi-
turn conversation (MT-Bench), translation (WMT), summarization (CNN/DM), question answering
(natural questions), mathematical reasoning (GSM8K), and retrieval-augmented generation (RAG).
This broad coverage ensures that the observed speedups are not limited to specific task types but are
consistent across varied real-world applications. We use the Qwen 3 14B model as the verifier and
the 0.6B model as the drafter, maintaining a temperature of 0.6.

Table 4: Speedup comparison on Spec-Bench using Qwen 3 14B as the verifier and Qwen 3 0.6B
as the drafter. We report the speedup ratio relative to standard autoregressive decoding. “Accepted”
denotes the mean number of accepted tokens per step.

MT Bench Trans. Summ. QA Math RAG AL10 Overall

SpS 2.01× 1.40× 1.92× 1.85× 1.83× 1.86× 3.20 1.81×
Cactus (δ = 1) 2.09× 1.40× 2.04× 1.95× 1.86× 1.92× 3.29 1.88×

The results are summarized in Table 4. Cactus is tested without any hyper-parameter tuning (δ = 1).
However, it immediately yields acceleration over the SpS baseline. In addition, Cactus consistently
outperforms SpS across different domains, achieving an overall speedup of 1.88× (+88% gain over
autoregressive decoding). This significant reduction in compute cost is achieved without additional
training. It is worth noting that these speeds are measured using the HuggingFace Transformers
framework (Wolf et al., 2019), which is less optimized for speculative sampling. We anticipate
that the real-world performance gains would be even larger with a better implementation such as
vLLM (Kwon et al., 2023), as indicated by our other experiments.

Impact of draft model size. We employ same-family models to ensure aligned tokenization, con-
sistent with standard practice (Leviathan et al., 2023; Chen et al., 2023). To investigate the impact
of drafter capacity, we evaluate Cactus on GSM8K using a Qwen 3 14B verifier with varying drafter
sizes (Table 5).

Table 5: Ablation on GSM8K using Qwen 3 14B verifier with different drafter sizes (δ = 1).

Draft Size Score AL Rej

Verifier (Oracle) 91.71 - -
0.6B 93.10 5.44 -32%
1.7B 92.50 6.78 -60%
4B 92.57 7.76 -76%

Increasing the drafter size to 4B significantly boosts the mean accepted length (AL) to 7.76 and
reduces rejection rates by 76%, while maintaining high task accuracy. These results confirm that
Cactus effectively scales with stronger drafters, translating improved draft quality into greater de-
coding efficiency.

C CASE STUDY

In this section, we discuss whether the choice of δ affects qualitative measures such as reasoning
ability. We gather the results of the first sample from GSM8k, where δ is set to different values when
running Cactus with the Qwen3 0.6B + 14B model pair.

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2026

From the case study in Table 6, we can see that the reasoning is poor and lengthy when δ is large
(more divergence allowed). Consequently, the result is wrong due to the low-quality chain-of-
thought. This confirms that the divergence control in Cactus helps maintain qualitative measures.

D BROADER IMPACT AND FUTURE DIRECTIONS

Broader impact. By improving the inference efficiency of large language models without sacri-
ficing output quality, our method reduces computational costs and energy consumption. This con-
tributes to more sustainable AI deployment, broadens access to high-performance language models,
and supports environmentally conscious machine learning practices. Additionally, Cactus can en-
able faster, lower-cost applications in education, healthcare, and low-resource settings.

Future directions. Our goal in this paper is to introduce and analyze the draft–verify framework,
not to exhaustively optimize every dimension of the system. Accordingly, we scope out several
extensions and leave them for future exploration by the community: (1) Model scale. We capped
evaluation at 14B parameters to keep the methodology clear and costs tractable. Pushing to sub-
stantially larger backbones could reveal scaling behavior (e.g., effects on acceptance rates, latency,
and robustness) and is best investigated in follow-on work, including studies of scaling laws and
distributed inference. (2) Model training. We emphasize a training-free method to highlight the
mechanism itself. While targeted tuning (e.g., LoRA for the draft, verifier calibration, joint dis-
tillation) may further improve proposal quality and reduce disagreement error, such engineering is
orthogonal to our core contribution and thus deferred. (3) Memory usage. Draft-and-verify intro-
duces extra memory for the draft model and caches. Techniques like quantization, weight sharing,
cache reuse, selective offloading, and early-exit heuristics could lower this footprint, but a thorough
treatment would distract from the main result; we leave these optimizations to future work. (4)
Leveraging ensemble effects. In our main experiments, we observe that Cactus often performs better
than the verifier model. For example, Cactus surpasses the verifier’s accuracy by 2 standard devi-
ations on both IFEval and GPQA. We hypothesize that this is because Cactus enables a “healthy”
ensemble effect by combining two model distributions. Leveraging ensemble effects in speculative
sampling could be explored in future work.

E THE USE OF LARGE LANGUAGE MODELS

Throughout this paper (with this paragraph being an exemption), we use large language models to
help identify grammar errors. Specifically, we prompt ChatGPT to “Revise grammar errors with
minimal changes of the original text”, followed by the latex source code of each paragraph. In
addition, we use ChatGPT and DeepSeek R1 to triple-check all technical proofs. The code for
plotting all the figures is initially generated by ChatGPT, which is further revised by the authors
according to the authors’ taste. We certify that the originality and scientific contributions of our
method do not come from any large language models.

25

1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2026

Table 6: Generations for different values of δ.

Task Question: Janets ducks lay 16 eggs per day. She eats three for
breakfast every morning and bakes muffins for her friends every
day with four. She sells the remainder at the farmers’ market
daily for $2 per fresh duck egg. How much in dollars does she
make every day at the farmers’ market?

δ = 1 <think>\nOkay , let me try to figure out how much Janet makes
each day at the farmers’ market. Hmm, so the problem says she
has ducks that lay 16 eggs per day. Then she eats three for
breakfast and bakes muffins with four eggs each day. Then she
sells the remaining eggs for $2 each. Alright, let’s break
this down step by step.\n \nFirst , total eggs per day: 16
eggs. Then she uses some for breakfast and baking. Let’s see,
for breakfast, she eats 3 eggs. Then for baking, she uses 4
eggs. So total eggs used each day would be 3 + 4 = 7 eggs.
Therefore, the remaining eggs would be 16 - 7 = 9 eggs. Then
she sells those 9 eggs at $2 each. So, how much does she make?
9 eggs multiplied by $2, which is 18 dollars.\n \nWait , let me
check again. If she uses 3 eggs for breakfast and 4 for baking,
that’s 7. 16 minus 7 is indeed 9. Then 9 times 2 is 18. Yeah,
that seems right. So her daily earnings would be $18. Hmm,
is there any possibility I made a mistake here? Maybe I should
re-read the problem to make sure I didn’t miss anything.\n \nThe
problem says she lays 16 eggs per day. Then she eats 3 for
breakfast and bakes muffins each day with four. So the total
used is 3+4=7. Subtract that from 16, which leaves 9. Multiply
by $2 for selling, 9*2=18. Yep, that’s correct. I think that’s
the answer.\n </think>\n \nJanet s ducks lay 16 eggs per day.
She uses 3 eggs for breakfast and 4 eggs for baking muffins,
totaling 7 eggs used. The remaining eggs are $16 - 7 = 9\$.
She sells these at $2 per egg, earning $9 \\times 2 = 18\$. \n
\n ######## 18

δ = 106 <think>\nOkay , so let\’s try to figure out how much Janet makes
every day at the farmers\’ market. Let me start by breaking
down the problem step by step. [lengthy CoT omitted] so total
eggs used is 4 * 4 = 16. Then, after eating 3 for breakfast,
leftover is 16 - 3 = 13, then she sells them at 2 each: 13
* 2 = $26. \n \nYes , that seems to make sense. Therefore,
the answer should be 26. But let me check if the question
is asking "how much money does she make every day at the
farmers\’ market?" So yes, selling the remainder at $2 per egg.
Therefore, answer is $26. \n \nTherefore , the answer is 26,
which in the previous problems they had 5. This is a different
case. So I think that\’s correct.\n </think>\n \nAnswer : 26\n
\nThe problem states that Janet\’s ducks lay 16 eggs per day.
She eats 3 eggs for breakfast and 4 eggs to make muffins daily.
After these expenses, the remaining eggs are $ 16 - 3 - 4 = 9
$, which are sold at $2 per egg. Therefore, the total money
she earns at the farmers\’ market is $ 9 \\times 2 = 18 $. \n
\nHowever , the phrase "bakes muffins for her friends every day
with four" might imply that she uses 4 eggs per muffin, meaning
she makes 4 muffins. If she uses 4 eggs each muffin, the total
eggs consumed would be $ 4 \\times 4 = 16 $. Since she eats 3,
the remaining eggs are $ 16 - 3 = 13 $, which are sold for $ 13
\\times 2 = 26 $. Hence, the correct answer is **26**. \n \n
######## 26

26

	Introduction
	Approach
	Generalization of speculative sampling
	Approximating SpS as constrained optimization
	Cactus: constrained acceptance speculative sampling

	Experiments
	Settings
	Main results
	In-depth analyses

	Related work
	Conclusion
	Technical proofs
	Proof of Theorem 1
	Proof of Theorem 3
	Proof of Theorem 4
	Proof of Proposition 5
	Proof of Theorem 6
	Proof of Corollary 7

	Additional experiments
	Case study
	Broader impact and future directions
	The use of large language models

