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ABSTRACT

Speculative sampling (SpS) has been successful in accelerating the decoding
throughput of auto-regressive large language models by leveraging smaller draft
models. SpS strictly enforces the generated distribution to match that of the veri-
fier LLM. This is unnecessarily restrictive as slight variation of the verifier’s dis-
tribution, such as sampling with top-k or temperature, would also be acceptable.
Typical acceptance sampling (TAS) alleviates this issue by accepting more tokens
using entropy-based heuristics. However, this approach distorts the verifier distri-
bution, potentially degrading output quality when the verifier encodes critical in-
formation. In this work, we formalize the speculative sampling algorithm through
the lens of constrained optimization. Based on this formulation, we propose Cac-
tus (constrained acceptance speculative sampling), a method that guarantees con-
trolled divergence from the verifier distribution and increasing acceptance rates.
Empirical results across a wide range of benchmarks confirm the effectiveness of
our approach. The code is publicly available at this anonymous link.

1 INTRODUCTION

Auto-regressive large language models (LLMs) have driven remarkable advances in machine learn-
ing and artificial intelligence (Vaswani et al., 2017; Brown et al., 2020; Kaplan et al., 2020), yet their
growing size comes with steep computational costs: generating each token requires a memory-bound
forward pass through hundreds of billions of parameters, which bottlenecks LLM throughput (Yuan
et al., 2024). Speculative sampling (SpS) addresses this by first using a smaller draft model to pro-
pose a fixed amount of candidate tokens in multiple smaller forward passes, then verifying them in
parallel with the large-scale verifier LLM (Stern et al., 2018; Xia et al., 2022; Leviathan et al., 2023;
Chen et al., 2023). Since SpS can emit multiple tokens per large-model invocation, it substantially
speeds up auto-regressive generation by alleviating the memory-bound issue.

Despite its success, SpS enforces strict distributional equivalence with the verifier, causing correct
but lower-probability tokens to be rejected. In real-world applications, exact adherence to the orig-
inal distribution is generally not required (Holtzman et al., 2019; Meister et al., 2020). Typical
acceptance sampling (TAS Cai et al. (2024a)) mitigates this issue by accepting proposals based on
entropy-driven heuristics (Hewitt et al., 2022; Meister et al., 2023). However, we show in this paper
that TAS improves acceptance rates at the cost of distorting the verifier’s output distribution and
risking semantic drift when the verifier encodes critical information.

In this work, we reformulate speculative sampling as a constrained optimization problem, explicitly
trading off acceptance rate against divergence from the verifier’s distribution. Guided by this theory,
we introduce Cactus (constrained acceptance speculative sampling), a simple yet principled mod-
ification that enforces a hard bound on distributional divergence while enabling higher acceptance
rates.

We conducted experiments on a wide range of benchmarks with multiple state-of-the-art large lan-
guage models. Results show that Cactus consistently improves generation throughput compared
with the lossless SpS. In addition, Cactus preserves the generation quality and diversity of the veri-
fier model, due to its explicit divergence constraint.
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Algorithm 1 Speculative sampling algorithm.

Require: sampling steps m, draft model p, acceptance rate ϕ, and recover probability g
1: t← 1,x<t ← [BOS]
2: while not end do
3: ▷ Drafting m tokens
4: for i← 0, . . . ,m− 1 do
5: xt+i ∼ p(·|x<t+i) ▷ x<t+i is concatenation of x<t and [xt, . . . , xt+i−1]
6: ui ∼ U(0, 1) ▷ U(0, 1) is the uniform distribution between [0, 1]
7: end for
8: c← min{j : uj > ϕ(xt+j |x<t+j)}

⋃
{m} ▷ c is the length of accepted draft tokens

9: xt+c ∼ g(·|x<t+c) ▷ xc is always accepted
10: t← t+ c+ 1
11: end while

2 APPROACH

We first formalize speculative sampling algorithm. This enables a theoretical analysis of speculative
sampling under a constrained optimization framework. Based on this analysis, we propose a new
algorithm, Cactus, which provably approximates the verifier distribution q while achieving higher
acceptance rates.

2.1 GENERALIZATION OF SPECULATIVE SAMPLING

Speculative sampling. The vanilla speculative sampling (SpS Chen et al. (2023)) uses a draft
model p(·|x<t) that has significantly less memory footprint than the verifier model q(·|x<t). At a
time step t, SpS repeatedly samples m ∈ N+ tokens xt, . . . , xt+m−1 from p in an auto-regressive
manner. Each token is accepted with a probability given by the acceptance rate ϕ(xt+i|x<t+i) =
min(1, q(xt+i|x<t+i)/p(xt+i|x<t+i)) for all i ∈ [0,m). If any token xt+j is rejected, then to-
kens xt+j+1, . . . , xt+m−1 are also discarded. As a backup, SpS resamples xt+j using the recover
probability g(xt+j |x<t+j) ∝ (q(·|x<t+j)−p(·|x<t+j))+, where (·)+ denotes max(0, ·). The final
accepted tokens are xt, . . . , xt+j . By this draft-and-verify scheme, SpS accelerates auto-regressive
decoding by avoiding the need to load the large verifier model q from memory at every step. This
approach has been shown effective in practice (Zhou et al., 2024; Hu et al., 2025).

Our observation. We formalize the draft-and-verify scheme as Algorithm 1. Under this setting,
we can show that the algorithm produces any target distribution with an optimal acceptance rate.

Observation 1. Given any desired target distribution h and draft model p, the acceptance rate and
recovery probability are defined as

ϕ(xt|x<t) = min

(
h(xt|x<t)

p(xt|x<t)
, 1

)
(1)

and g(xt|x<t) =
h(xt|x<t)− p(xt|x<t)ϕ(xt|x<t)

Ex′∼p[1− ϕ(x′|x<t)]
(2)

respectively. Algorithm 1 samples from h exactly using the above ϕ and g. In addition, this ϕ is the
optimal design of acceptance rate.

Proof. See Appendix A.1.

2.2 APPROXIMATING SPS AS CONSTRAINED OPTIMIZATION

Observation 1 provides a foundation to produce an arbitrary target distribution with the optimal
design. Instead of producing a fixed verifier distribution q, we utilize this observation to dynamically
select a distribution h close to q while yielding higher acceptance rates based on function ϕ. This
can be formulated as a constrained optimization problem.

2
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Definition 2. For each step t, assume the drafted token has index n. Let h ∈ R|V |−1 be the
parameters to be optimized. The ideal h is given by h(i|x<t) = h∗

i , where h∗ is the solution of the
following problem:

max
h

min(hn/p(n|x<t), 1) (3)

s.t. h ∈ ∆|V |−1 (4)
Df (h∥q(·|x<t)) ≤ δ. (5)

Here, the hyper-parameter δ ≥ 0 controls the closeness to the verifier model q, and Df is any
f -divergence metric used to measure the distance between q and h.

The above definition falls into the framework of constrained convex optimization, which we show
has the following solution.
Theorem 3. The optimal h in Definition 2 is

hi =

{
γ∗, if i = n,

1−γ∗

1−q(n|x<t)
q(i|x<t), otherwise,

(6)

where γ∗ is any root of the equation

δ = q(n|x<t)f

(
γ

q(n|x<t)

)
+ (1− q(n|x<t))f

(
1− γ

1− q(n|x<t)

)
(7)

over the interval [q(n|x<t),+∞), clamped into [q(n|x<t), 1]. The function f is the one used in the
definition of f -divergence.

Proof. See Appendix A.2.

Theorem 3 theoretically characterizes the trade-off between closeness to the verifier model q and the
acceptance rate induced by ϕ. In particular, the theorem suggests that the drafted token now has at
least the same or a higher chance of being accepted (since γ∗ ≥ qn). The exact probability depends
on the choice of the f -divergence and the hyper-parameter δ. For other non-sampled tokens, their
probabilities are scaled down proportionally so that h remains a valid distribution.

It is worth-nothing that, since the solved h in Equation (6) depends on the sampled token n, the
solution is different for different sampled tokens. As a result, the effective distribution of the overall
algorithm halg might have a different divergence other than δ from the target distribution q. To
this end, we provide the following theorem to guarantee the controlled divergence of the effective
distribution.
Theorem 4. Let ϕn and gn denote the functions that follow the solution in Theorem 3 when the
sampled token is n. The distribution of the overall algorithm is given by

halg =
∑

n∈[|V |]

p(n|x<t) [ϕn(n)en + (1− ϕn(n))gn] , (8)

where en is a one-hot vector with only non-zero element at index n. In addition,

Df (halg∥q(·|x<t)) ≤ min{Γ(δ), Df (p(·|x<t)∥q(·|x<t))} (9)

for any δ ≥ 0. Here, the function Γ : [0,+∞) → [0,+∞] is continuous and non-decreasing in δ
with a value of 0 at δ = 0.

Proof. See Appendix A.3.

In essence, despite the h in Equation (6) is solved specifically for the sampled token n, the diver-
gence between the overall distribution and the target distribution is still implicitly controlled. In
particular, for any target divergence 0 ≤ δalg < +∞ imposed on the overall algorithm, we can
always find a proper δ ≥ 0 such that Df (halg∥q) ≤ Γ(δ) ≤ δalg. While Γ does not admit a closed-
form expression, δ itself is a hyper-parameter. In practice, one can tune δ to achieve the desired
quality-throughput trade-off. This confirms the soundness of our framework.

In fact, our framework also offers a novel theoretical interpretation of typical acceptance sampling.

3
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Proposition 5. Typical acceptance sampling (TAS, Cai et al. (2024a)) implicitly solves a variant
of the optimization problem in Definition 2, where the f -divergence is substituted with the cross-
entropy H(h, q(·|x<t)).

Proof. See Appendix A.4.

The suboptimality of TAS arises from the nature of cross-entropy. Specifically, the cross-entropy
can be decomposed as

H(h, q(·|x<t)) = DKL(h∥q(·|x<t))︸ ︷︷ ︸
Mode capturing

+ H(h)︸ ︷︷ ︸
Certainty

. (10)

Here, the KL divergence encourages h to focus on the mode of q (since h is the first argument), while
the entropy term encourages h to be deterministic. However, the summation allows h to collapse
into a deterministic distribution at the expense of increasing divergence, thereby failing to capture
the full shape of q. In fact, TAS always yields h with entropy 0 while increasing the divergence by at
least H(q). As a result, the produced distribution may diverge significantly from the verifier model,
especially when q carries high entropy and thus rich information.

2.3 CACTUS: CONSTRAINED ACCEPTANCE SPECULATIVE SAMPLING

Based on our analysis above, we propose using only the KL divergence as the measure of “distance”.
Specifically, this corresponds to the function f(t) = t log t. Combined with our Theorem 3, γ∗ is
the root of

Φ(γ) :=q(n|x<t)f

(
γ

q(n|x<t)

)
+ (1− q(n|x<t))f

(
1− γ

1− q(n|x<t)

)
(11)

=γ log

(
γ

q(n|x<t)

)
+ (1− γ) log

(
1− γ

1− q(n|x<t)

)
(12)

=δ. (13)

However, since Φ is a transcendental function involving terms like x log x, it cannot be solved in
closed form. We therefore approximate Φ by its second-order Taylor series expanded at γ0 =
q(n|x<t):

Φ(γ) ≈ Φ(γ0) + Φ′(γ0)(γ − γ0) +
Φ′′(γ0)

2
(γ − γ0)

2. (14)

This approximation is justified by noting that δ is typically small and γ∗ remains close to q(n|x<t).
Corollary 6 (Cactus’s solution). Let the f -divergence in Definition 2 be the KL divergence. The
solution to Equation (14) is given by

h(i|x<t) =

{
γ∗, if i = n,

1−γ∗

1−q(n|x<t)
q(i|x<t), otherwise,

(15)

where γ∗ = min
{
q(n|x<t) +

√
2δq(n|x<t)(1− q(n|x<t)), 1

}
.

Proof. See Appendix A.5

In other words, Cactus modifies the distribution of the verifier model by increasing the probability
of the candidate token n by a small “bonus” determined jointly by q(n|x<t) and δ. We further show
that Cactus’s solution is more conservative than the exact solution when the verifier is less confident,
ensuring that it strictly satisfies the divergence constraint in such cases.
Corollary 7. When the exact solution γ∗ is not greater than 0.5 (i.e., the token is not likely to be
accepted), our approximation always satisfies the divergence constraint:

DKL(h∥q) ≤ δ, (16)

where h(n|x<t) is given by the approximated solution in Equation (15).

4
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Proof. See Appendix A.6.

It is easy to see that the bonus probability attains its maximum when q(n|x<t) = 0.5. In practice,
LLMs generally have more than 100K tokens (Dubey et al., 2024; Qwen et al., 2024), so a proba-
bility around 0.5 indicates strong model confidence in the token. However, SpS could still reject the
token n solely because the draft model is overconfident (i.e., p(n|x<t) is large). Cactus increases
the acceptance likelihood in such scenarios by modifying the verifier distribution accordingly.

Compared with TAS’s criterion function, Cactus only requires reading the probability at token n
rather than accessing the full vocabulary. This allows Cactus to further reduce memory access
overhead, especially in large-vocabulary settings. More importantly, Cactus ’s divergence is tightly
controlled with minimal entropy change, whereas TAS yields only low-entropy solutions.

3 EXPERIMENTS

3.1 SETTINGS

Datasets. We evaluated Cactus on three popular benchmark datasets for large language models:
(1) The GSM8K (Cobbe et al., 2021) dataset contains 1.3K high-quality grade school math word
problems in the evaluation set, designed to assess a model’s ability to apply mathematics to real-
world scenarios. Following common practice in LM-Eval (Gao et al., 2024), we used 5-shot ex-
amples for each test instance. The final accuracy score is averaged over all samples. (2) The
IFEval (Zhou et al., 2023) benchmark measures instruction-following ability. It consists of 500
”verifiable instructions” whose outputs can be heuristically evaluated. For example, a prompt might
be: “Write a blog post with 400 or more words about the benefits of sleeping in a hammock,” which
can be automatically checked by counting the number of words. (3) The GPQA (Rein et al., 2023)
diamond benchmark includes approximately 200 challenging science questions authored by domain
experts, designed to test models’ scientific knowledge. For instance, a sample question is: “The
angular size of the event horizon of a supermassive black hole in the centre of a galaxy at a distance
of d = 1010 parsecs is measured to be θ = 10−17 degrees. Find the order of magnitude of the
entropy of the black hole.” Following common practice (Gao et al., 2024), we include four answer
choices in the prompt and have models generate the correct one.

Evaluation metrics. For all three tasks, the results are extracted from the generated text by regex
matching with the corresponding format. These results are then compared with the gold labels using
strict-match accuracy (i.e., 1 if the strings are identical and 0 otherwise). Final scores are obtained
by averaging the accuracies over all samples. Following previous work (Dubey et al., 2024), the
regex for GSM8K and GPQA is the “flexible-extract” pattern, which selects the first number in the
generated sentence regardless of whether the model adheres to the few-shot examples. For IFEval,
we use the “prompt-level-strict-acc” regex as defined in Qwen et al. (2024), which requires the
model to strictly follow all the instructions.

In addition to task scores, we report the average acceptance length (AL) for all runs. Specifically,
ALm refers to the expected number of accepted tokens among m drafted tokens. A generally higher
ALm indicates faster generation. However, a method may artificially inflate AL by accepting low-
quality draft tokens that are later revised during earlier steps of the chain of thought. Although
AL remains high, this behavior can lead to lower overall throughput due to unnecessarily lengthy
outputs. To present a more complete picture of generation efficiency, we also measure the number
of rejected tokens during generation, which reflects both the acceptance rate and the total length of
generation.

Implementation details. We used the Qwen 3 series as our main testbed for two reasons: (1) the
models come in a variety of sizes, ranging from 0.6B to 14B parameters, enabling a wide range
of choices of model pairs; (2) the models are trained to generate with internalized chain-of-thought
reasoning (Wei et al., 2022), which makes them a natural use case for speculative sampling given the
longer generation lengths (Yang et al., 2025b). For all experiments, we used the recommended gen-
eration parameters (Yang et al., 2025a), where top-p is set to 0.95, top-k equals 20, and temperature
is 0.6.

5
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Table 1: The results on three benchmarks: GSM8K, IFEval, and GPQA. We report the “strict-
match” accuracy as the score with the standard regex pattern for each task. ALm indicates the
number of accepted tokens when the draft length is m. Rej denotes the total number of rejected
tokens throughout generation in relative scale, where we use the SpS runs as the reference (labeled
as “Ref”).

(a) The results of Qwen 3 8B as verifier and Qwen 3 0.6B as drafter.

GSM8K IFEval GPQA

m Name Score↑ AL↑
m Rej↓ Score↑ AL↑

m Rej↓ Score↑ AL↑
m Rej↓

Verifier 84.31±0.47 - - 84.66±0.56 - - 41.07±1.77 - -

10

SpS 83.78 4.49 Ref 84.66 2.59 Ref 40.91 3.70 Ref
TAS 86.58 5.49 -29% 85.40 3.28 -27% 41.41 5.17 -42%
Cactus 0.75 85.97 5.65 -34% 85.03 3.40 -31% 41.42 5.33 -47%
Cactus 1.0 86.35 5.72 -37% 84.10 3.44 -32% 39.39 5.44 -48%

20

SpS 84.46 5.44 Ref 84.10 2.74 Ref 42.93 4.23 Ref
TAS 85.51 7.23 -35% 84.10 3.77 -29% 38.89 6.68 -46%
Cactus 0.75 86.66 7.50 -37% 85.95 3.76 -30% 40.01 6.89 -47%
Cactus 1.0 86.43 7.61 -39% 84.84 4.05 -33% 39.90 7.05 -49%

(b) The results of Qwen 3 14B as verifier and Qwen 3 0.6B as drafter.

GSM8K IFEval GPQA

m Name Score↑ AL↑
m Rej↓ Score↑ AL↑

m Rej↓ Score↑ AL↑
m Rej↓

Verifier 91.71±0.52 - - 85.09±0.66 - - 40.07±0.77 - -

10

SpS 91.12 4.27 Ref 85.03 2.19 Ref 39.39 3.37 Ref
TAS 92.65 5.24 -30% 86.14 3.00 -25% 38.89 4.99 -46%
Cactus 0.75 92.12 5.35 -31% 86.87 3.04 -29% 44.95 5.14 -50%
Cactus 1.0 93.10 5.44 -32% 85.96 3.03 -30% 43.43 5.16 -51%

20

SpS 91.89 5.11 Ref 84.47 2.27 Ref 40.91 3.84 Ref
TAS 92.87 6.78 -32% 85.03 3.49 -27% 40.40 6.41 -46%
Cactus 0.75 92.15 7.15 -36% 86.69 3.45 -30% 45.46 6.46 -46%
Cactus 1.0 92.87 7.00 -34% 86.32 3.60 -30% 45.46 6.74 -50%

3.2 MAIN RESULTS

As shown in Table 1, speculative sampling (SpS) serves as a strong baseline that closely preserves
the output distribution of the verifier model. Across all three benchmarks (GSM8K, IFEval, and
GPQA), SpS maintains similar accuracies to the verifier (e.g., 84.46 vs. 84.31 on GSM8K with
m = 20 in Table 1a, and 91.89 vs. 91.71 in Table 1b). This aligns with the theoretical claim that
SpS is nearly lossless in generation quality. Additionally, the number of accepted tokens (ALm) for
SpS reaches 5.44 on GSM8K and 4.23 on GPQA with m = 20, indicating that the verifier model is
invoked less frequently.

Typical acceptance sampling (TAS) outperforms SpS in terms of acceptance rate, achieving more
accepted tokens and lower rejection rates. For example, on GSM8K with m = 20, TAS improves
ALm from 5.44 to 7.23 (Table 1a) and reduces the rejection rate by 35%, which is consistent with
our approximation analysis in Section 2.2. However, TAS often introduces distributional shifts that
degrade performance. For instance, on GPQA in Table 1a, TAS yields lower accuracy than SpS
(38.89 vs. 42.93), likely due to accepting plausible yet suboptimal tokens, especially when the
verifier distribution contains fine-grained decision signals.

In contrast, our proposed method, Cactus, achieves the highest acceptance rates across all bench-
marks while maintaining or improving accuracy. When δ = 0.75, Cactus consistently surpasses
both SpS and TAS in ALm, achieving 86.66 on GSM8K with m = 20 (Table 1a) and 45.46 on
GPQA with m = 20 (Table 1b), notably outperforming all baselines. When δ = 1.0, Cactus further

6
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Figure 1: Accuracy-acceptance across benchmarks and model settings. The x-axis shows the aver-
age accepted length (AL), and the y-axis shows accuracy normalized by the standard deviation from
the verifier.

increases ALm to 7.61 on GSM8K with 86.43 accuracy (Table 1a), or to 7.00 with 92.87 accuracy
using a larger verifier (Table 1b). Notably, unlike TAS, Cactus does not degrade performance on
challenging benchmarks such as GPQA. Instead, it achieves both high acceptance rates and stable
accuracy, validating its theoretical foundation in constrained optimization and demonstrating practi-
cal robustness across diverse tasks.

3.3 IN-DEPTH ANALYSES

Accuracy against acceptance rates. We visualize the accuracy-acceptance trade-off in Figure 1,
where accuracy is measured in standard deviations (σ) from the verifier mean, and throughput is
quantified by the average accepted length (AL). Each subplot corresponds to a specific benchmark
and verifier-drafter pair. The dashed black line indicates the verifier performance, and the red dashed
line marks the −1σ threshold, a commonly used indicator of statistically significant degradation.

As shown, TAS improves throughput over SpS but often suffers from accuracy drops, notably falling
below the −1σ threshold on GPQA with the 8B verifier. In contrast, Cactus consistently preserves
accuracy (remaining within or above the verifier confidence range) and frequently exceeds it, such
as on GSM8K and IFEval with both 8B and 14B verifiers. This demonstrates that Cactus effectively
improves decoding efficiency without compromising (and sometimes even enhancing) generation
quality.

It is also worth noting that the improvements from Cactus are stable across tasks with different char-
acteristics. For instance, on challenging benchmarks like GPQA, where other methods either exhibit
significant degradation (e.g., TAS) or achieve limited throughput gains (e.g., SpS), Cactus substan-
tially increases AL while maintaining accuracy above baseline. This highlights the strength of our
constrained acceptance framework in balancing aggressive token acceptance with distributional fi-
delity.

The importance of divergence control. Our Cactus dynamically manipulates the target distribu-
tion to increase the chance of accepting the sample tokens. Since this inevitably pushes the target
distribution h from the verifier q to be more similar to the draft model p, it resembles the notion
of mixing the distribution q and p like interpolation. However, we argue that Cactus is superior
than simple interpolation, given that it uses a principled approach which comes with a divergence
guarantee. We empirically justify this argument by the following experiment.

Figure 2: Score vs. acceptance rate for the 0.6B+14B Qwen3 combination without top-p/top-k sam-
pling arguments. Solid and dashed lines are degree-2 polynomial fits.
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Here, we produces data points by running grid search on δ for Cactus and interpolation rate α for
interpolation, respectively. As shown, Cactus consistently outperforms interpolation at the similar
acceptance rate. For example, at a similar acceptance rate of approximately 90%, Cactus achieves
a score above 86 (δ = 1e4) on GSM8K, whereas interpolation only reaches a score below 72
(α = 0.9). Notably, even at a 96.3% acceptance rate, Cactus maintains a higher score (above 80),
further confirming the necessity of divergence control of our method.

Throughput comparison. In Section 3.2, we used ALm and Rej as proxies for throughput, as
they are invariant to hardware and system conditions. Here, we additionally report wall-time re-
sults, all measured on A100 40GB GPUs with identical CPU and memory configurations. We used
VLLM (Kwon et al., 2023) with its default compilation settings to ensure realistic inference condi-
tions. The results on GPQA are shown in Figure 3.

Figure 3: Wall-time normalized throughput (y-axis) across different model sizes and draft lengths.
The wall time of a single verifier model is always normalized to 1.

Across all settings, Cactus remains competitive or superior to all baselines. In particular, Cactus
0.75 and 1.0 yield significant improvements in the 0.6B+14B setting, where Cactus 1.0 achieves
nearly 1.9× speedup over the verifier alone with m = 10, while also maintaining the highest score on
GPQA (see Table 1b). In contrast, TAS slightly underperforms Cactus in nearly all settings. Notably,
as discussed in Section 2.2 and verified in Table 1b, TAS lacks explicit divergence control. These
results highlight the benefit of Cactus’s constrained acceptance strategy, which more effectively
balances fidelity and efficiency than existing baselines.

Evaluating on more model series. To assess the generality of our method, we go beyond Qwen
3 and evaluate three additional model series: Gemma (2B + 9B, Team et al. (2024)), R1 (1.5B + 7B,
DeepSeek-AI et al. (2025)), and LLaMA (1B + 8B, Dubey et al. (2024)). Each model pair represents
a distinct series developed by different teams with varying training methodologies. Following Bach-
mann et al. (2025), we additionally evaluate Top-k decoding as a naive lossy baseline, where draft
tokens are accepted if they fall within the top-5 candidates according to the verifier. All drafter-
verifier pairs follow the same speculative decoding setup, and accuracy is measured with standard
task-specific metrics. We also include SpS and TAS baselines under equivalent configurations to
ensure a fair comparison. The results are presented in Figure 4.

Figure 4: Evaluating on GSM8K with three model pairs.

Top-k decoding consistently underperforms the verifier model, reaffirming the importance of using
principled verifier-guided sampling like Cactus. Across all settings, Cactus delivers strong and
consistent performance. For R1 and Gemma, Cactus notably outperforms TAS. While SpS and TAS
perform well on LLaMA, Cactus matches their accuracy and retains its robustness across models.
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These results support the conclusion that Cactus generalizes well across diverse architectures and
remains competitive or superior regardless of the underlying model series.

4 RELATED WORK

The draft-and-verify scheme. The line of work most closely related to this paper is the use of the
draft-and-verify scheme to accelerate auto-regressive decoding. The foundation of this scheme lies
in the acceptance algorithms (i.e., designing the acceptance rate and recovery probability functions
in Section 2). This includes vanilla speculative sampling (Chen et al., 2023; Leviathan et al., 2023)
and typical acceptance sampling (Hewitt et al., 2022; Meister et al., 2023; Cai et al., 2024a). Cactus,
as it applies a different acceptance strategy, belongs to the same category. For this reason, we exten-
sively compare it against both methods in our paper. In addition to acceptance algorithms, building
specialized models for this scheme has shown to be effective (Kim et al., 2023; Liu et al., 2024a; Liao
et al., 2025). For instance, Cai et al. (2024a) fine-tune multiple heads for generating subsequent to-
kens; Li et al. (2024b;c; 2025) propose EAGLE, which introduces an additional head for draft token
generation; Bachmann et al. (2025) propose Judge Decoding, training a binary classifier to aug-
ment the acceptance rate function. However, these methods require substantial training resources,
whereas Cactus is a training-free acceptance rule. We also expect that Cactus can be directly applied
to that utilizes either SpS or TAS as the underlying principle. Another generalization of speculative
sampling involves using multiple draft tokens or verifiers (Yang et al., 2024; Chen et al., 2024; Jeon
et al., 2024). For example, Miao et al. (2023) propose SpecInfer with tree-based draft generation;
TreeBoN (Qiu et al., 2024) integrates speculative sampling into best-of-N tree-search decoding. We
leave the exploration on more integrated versions of multi-drafter or multi-verifier Cactus to future
work.

Low-complexity attention for Transformers. Transformer models generate sequences in an
auto-regressive manner (Vaswani et al., 2017). Since each token attends to all previous ones, gener-
ation time grows quadratically with sequence length (Wang et al., 2020). To address this, previous
work has proposed low-complexity attention variants (Child et al., 2019; Zaheer et al., 2020; Tsai
et al., 2019; Kitaev et al., 2020; Choromanski et al., 2021). These methods modify the Transformer
architecture itself. Cactus can be combined with these methods since they also follow the auto-
regressive paradigm. In addition to architectural changes, decoding complexity can also be reduced
by manipulating the KV cache (Zhang et al., 2023; Li et al., 2024a; Cai et al., 2024b). For in-
stance, SnapKV (Li et al., 2024a) evicts less relevant tokens from the prompt before generation;
Radar (Hao et al., 2025) dynamically selects key segments using random projections. These tech-
niques are drop-in approximations of vanilla attention and are orthogonal to speculative sampling
methods like Cactus.

Minimizing overheads of Transformers. Without approximating the Transformer architecture,
overheads can still be reduced to accelerate decoding. Flash Attention (Dao et al., 2022; Dao, 2023),
for example, uses tiling techniques to avoid memory-bound operations, and has seen widespread
adoption (Wolf et al., 2019; Kwon et al., 2023). Memory-efficient attention (Rabe and Staats, 2021)
reorders computation to maintain constant memory usage regardless of context length. Another
line of work applies quantization to model parameters (Lin et al., 2023; Badri and Shaji, 2023; Liu
et al., 2024b). The benefits are threefold: (1) reduced memory footprint due to lower-precision data
types; (2) alleviated memory bottlenecks during decoding; and (3) improved hardware efficiency
via optimized kernels. All these methods can be seamlessly integrated into speculative sampling
approaches, including Cactus.

5 CONCLUSION

In this paper, we propose a constrained optimization framework for analyzing and improving specu-
lative sampling methods. Building upon this framework, we introduce Cactus, a novel training-free
speculative sampling method that increases acceptance rates while maintaining a provably controlled
divergence from the large verifier model. Cactus uses only basic element-wise operations, making
it highly practical and lightweight for real-time inference. We empirically evaluate our method on a
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variety of benchmarks and confirm its effectiveness. As LLMs continue to grow in size and cost, our
method provides a theoretically grounded yet practically efficient solution for scalable deployment.
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REPRODUCIBILITY STATEMENT

All of our experiments use publicly accessible datasets and models. Specifically, the datasets we
used can be found by the following links via HuggingFace

• GSM8K: https://huggingface.co/datasets/openai/gsm8k

• IFEval: https://huggingface.co/datasets/google/IFEval

• GPQA: https://huggingface.co/datasets/Idavidrein/gpqa

The models can be found by the following links

• Qwen3 0.6B: https://huggingface.co/Qwen/Qwen3-0.6B

• Qwen3 8B: https://huggingface.co/Qwen/Qwen3-8B

• Qwen3 14B: https://huggingface.co/Qwen/Qwen3-14B

• Gemma 2B: https://huggingface.co/google/gemma-2-2b

• Gemma 9B: https://huggingface.co/google/gemma-2-9b

• R1 1.5B: https://huggingface.co/deepseek-ai/
DeepSeek-R1-Distill-Qwen-1.5B

• R1 7B: https://huggingface.co/deepseek-ai/
DeepSeek-R1-Distill-Qwen-7B

• Llama 1B: https://huggingface.co/meta-llama/Llama-3.2-1B

• Llama 8B: https://huggingface.co/meta-llama/Llama-3.1-8B

In addition, our code is publicly available at the anonymous link https://anonymous.4open.
science/r/Cactus-2E4D/.
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A TECHNICAL PROOFS

A.1 PROOF OF THEOREM 1

Observation 1. Given any desired target distribution h and draft model p, the acceptance rate and
recovery probability are defined as

ϕ(xt|x<t) = min

(
h(xt|x<t)

p(xt|x<t)
, 1

)
(1)

and g(xt|x<t) =
h(xt|x<t)− p(xt|x<t)ϕ(xt|x<t)

Ex′∼p[1− ϕ(x′|x<t)]
(2)

respectively. Algorithm 1 samples from h exactly using the above ϕ and g. In addition, this ϕ is the
optimal design of acceptance rate.

Proof. Let n be the selected token and x be the context. Then at each step, the resulting distribution
of the algorithm is:

Pr(n|x) =Pr(n ∼ p(·|x) and u ≤ ϕ(x|x)) +
|V |∑
i=1

p(i|x) Pr(n ∼ g(·|x) and u > ϕ(i|x)) (17)

=p(n|x)ϕ(n|x) + g(n|x) E
i∼p(·|x)

[1− ϕ(i|x)], (18)

where the first term on the right hand side indicates the sampled token n is accepted. The second
term means the originally sampled token is rejected, and the current token n comes from the recover
probability g. Since we would like Pr(n|x) = h(n|x), we have

p(n|x)ϕ(n|x) + g(n|x) E
i∼p(·|x)

[1− ϕ(i|x)] = h(n|x) (19)

⇐⇒ g(n|x) = h(n|x)− p(n|x)ϕ(n|x)
Ei∼p(·|x)[1− ϕ(i|x)]

, (20)

hence proving the expression for g. Here, ϕ can be function that maps to [0, 1] that makes g a
distribution. Since the expression of g is self-normalizing, we only need to make sure that all g(i|x)
are non-negative. Specifically,

0 ≤ g(i|x) (21)
⇐= h(i|x)− p(i|x)ϕ(i|x) ≥ 0 (Image(ϕ) ⊆ [0, 1])

⇐= ϕ(i|x) ≤ h(i|x)
p(i|x)

. (22)

Again, given Image(ϕ) ⊆ [0, 1],

ϕ(i|x) ≤ min

(
h(i|x)
p(i|x)

, 1

)
. (23)

gives the optimal acceptance rate.

A.2 PROOF OF THEOREM 3

Before proceeding to the proof of the theorem, we first show the following technical lemma.
Lemma 8 (Minimal Divergence Allocation). Let f : R+ → R be convex with f(1) = 0. For any
α ∈ [0, 1] and sub-distribution {q(i)}i∈S over S with Q :=

∑
i∈S q(i) > 0, the solution to:

min
{h(i)}

∑
i∈S

q(i)f

(
h(i)

q(i)

)
(24)

s.t.
∑
i∈S

h(i) = α, h(i) ≥ 0 (25)

is h∗(i) = α
Qq(i) for all i ∈ S.
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Proof. Let λ := α
Q . Define h̃(i) := λq(i). Then:∑

i∈S

h̃(i) = λQ = α (26)

satisfies the constraints. For any feasible h ̸= h̃, define r(i) := h(i)
q(i) . By Jensen’s inequality:

1

Q

∑
i∈S

q(i)f(r(i)) ≥ f

(
1

Q

∑
i∈S

q(i)r(i)

)
= f

(
α

Q

)
(27)

with equality iff r(i) = λ for all i ∈ S. Thus h̃ is the unique minimizer.

We can now show the theorem below.
Theorem 3. The optimal h in Definition 2 is

hi =

{
γ∗, if i = n,

1−γ∗

1−q(n|x<t)
q(i|x<t), otherwise,

(6)

where γ∗ is any root of the equation

δ = q(n|x<t)f

(
γ

q(n|x<t)

)
+ (1− q(n|x<t))f

(
1− γ

1− q(n|x<t)

)
(7)

over the interval [q(n|x<t),+∞), clamped into [q(n|x<t), 1]. The function f is the one used in the
definition of f -divergence.

Proof.

max
h

min

(
hn

p(n|x<t)
, 1

)
(28)

s.t. h ∈ ∆|V |−1, (29)
Df (h∥q(·|x<t)) ≤ δ. (30)

Here, ∆|V |−1 denotes the probability simplex, and

Df (h∥q) =
∑
i∈V

q(i)f

(
h(i)

q(i)

)
(31)

is the f -divergence. The objective

min

(
hn

p(n)
, 1

)
(32)

is maximized when hn

p(n) is as large as possible. However, since min(·, 1) caps the value at 1, the
maximum achievable is 1 (when hn ≥ p(n)). Thus, the problem reduces to maximizing hn under
the constraints, as increasing hn directly improves the objective until hn ≥ p(n). To maximize
hn, we allocate as much probability mass to hn as allowed by the constraints. Let γ = hn. The
remaining mass 1−γ must be distributed over i ̸= n. By Lemma 8, the optimal allocation for i ̸= n
is:

h(i) =
1− γ

1− q(n)
q(i), (33)

where 1−γ
1−q(n) ensures

∑
i̸=n h(i) = 1− γ. Thus, for i ̸= n:

h(i) =
1− γ

1− q(n)
q(i), (34)

where 1−γ
1−q(n) ensures

∑
i̸=n h(i) = 1− γ.
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Substitute hn = γ and h(i) = 1−γ
1−q(n)q(i) into Df (h∥q):

Df = q(n)f

(
γ

q(n)

)
+
∑
i̸=n

q(i)f

(
1− γ

1− q(n)

)
. (35)

Simplify the second term using
∑

i̸=n q(i) = 1− q(n):

Df = q(n)f

(
γ

q(n)

)
+ (1− q(n))f

(
1− γ

1− q(n)

)
. (36)

The constraint Df ≤ δ becomes an equality at optimality (since increasing γ further would violate
the constraint). Thus, γ∗ solves:

q(n)f

(
γ

q(n)

)
+ (1− q(n))f

(
1− γ

1− q(n)

)
= δ. (37)

Finally, since γ∗ may exceed 1 (when δ is set too large to attain), it is truncated into [q(n), 1] as a
proper probability value.

A.3 PROOF OF THEOREM 4

Theorem 4. Let ϕn and gn denote the functions that follow the solution in Theorem 3 when the
sampled token is n. The distribution of the overall algorithm is given by

halg =
∑

n∈[|V |]

p(n|x<t) [ϕn(n)en + (1− ϕn(n))gn] , (8)

where en is a one-hot vector with only non-zero element at index n. In addition,

Df (halg∥q(·|x<t)) ≤ min{Γ(δ), Df (p(·|x<t)∥q(·|x<t))} (9)

for any δ ≥ 0. Here, the function Γ : [0,+∞) → [0,+∞] is continuous and non-decreasing in δ
with a value of 0 at δ = 0.

Proof. We work at a single step at t and suppress the context x<t. Fix p and q on a finite alphabet.
For each drafted index n, let hn be any target with Df (hn∥q) ≤ δ. The conditional output is

rn = ϕn(n)en + (1− ϕn(n))g(hn),

and the algorithm’s one-step output is

halg =
∑
n

p(n)rn.

Let

Hδ :=
{
(hn)n : Df (hn∥q) ≤ δ ∀n, q(i) = 0⇒ hn(i) = 0

}
, (38)

F
(
(hn)n

)
:=Df

(
halg∥q

)
. (39)

Define

Γ(δ) := sup
(hn)∈Hδ

F
(
(hn)n

)
∈ [0,∞], (40)

and note that Γ depends only on (p, q, f) and the budget δ. By construction,

Df

(
halg∥q

)
≤ Γ(δ) for every feasible family (hn) ∈ Hδ. (41)

It is straight-forward to show that Df

(
halg∥q

)
≤ Df (p∥q) given that the all-acceptance distribution

is simply p. Thus it remains to show that Γ has the claimed shape: non-decreasing, Γ(0) = 0, and
continuous in the extended-real sense.
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Basic properties of Γ. (i) Γ(0) = 0. If δ = 0 then hn = q for all n, so halg = q and thus
Γ(0) = Df (q∥q) = 0.

(ii) Monotonicity. If δ2 ≥ δ1 thenHδ1 ⊆ Hδ2 , so Γ(δ1) ≤ Γ(δ2) by definition of the supremum.

(iii) Continuity. We show right- and left-continuity. On a finite alphabet, the set of probability
distributions is compact (a simplex), and with support alignment the feasible set Hδ is closed (as
the preimage of [0, δ] under the continuous function maxn Df (·∥q)) and thus compact. The map
(hn)n 7→ halg is continuous (operations involved are continuous on their domains), hence F is
continuous.

We first show the right-continuity. Let δk ↓ δ. For each k pick (h
(k)
n )n ∈ Hδk with F ((h

(k)
n )n) ≥

Γ(δk)− εk, where εk ↓ 0. Since the alphabet is finite, the feasible families live in a finite product of
simplices, which is compact; therefore, there exists a subsequence (not relabeled) such that h(k)

n →
h⋆
n for each n. By continuity of Df (·∥q), Df (h

⋆
n∥q) = limk Df (h

(k)
n ∥q) ≤ limk δk = δ, so

(h⋆
n)n ∈ Hδ . Continuity of F gives

lim sup
k→∞

Γ(δk) ≤ lim
k→∞

(
F ((h(k)

n )n) + εk
)
= F ((h⋆

n)n) ≤ Γ(δ).

Monotonicity gives Γ(δ) ≤ lim infk→∞ Γ(δk), hence limk→∞ Γ(δk) = Γ(δ).

We then show the left-continuity. Let δk ↑ δ and fix ε > 0. Choose (h⋆
n)n ∈ Hδ with F ((h⋆

n)n) ≥
Γ(δ) − ε. For θ ∈ (0, 1) define hn,θ := (1 − θ)h⋆

n + θq. By convexity of Df (·∥q) in its first
argument,

Df (hn,θ∥q) ≤ (1− θ)Df (h
⋆
n∥q) + θDf (q∥q) ≤ (1− θ)δ < δ,

so (hn,θ)n ∈ H(1−θ)δ . By continuity of F , for sufficiently small θ > 0 we have

F ((hn,θ)n) ≥ F ((h⋆
n)n)− ε ≥ Γ(δ)− 2ε.

For all large k with δk > (1− θ)δ, monotonicity gives

Γ(δk) ≥ Γ((1− θ)δ) ≥ F ((hn,θ)n) ≥ Γ(δ)− 2ε.

Thus lim infk→∞ Γ(δk) ≥ Γ(δ), and since monotonicity gives lim supk→∞ Γ(δk) ≤ Γ(δ), we have
limk→∞ Γ(δk) = Γ(δ).

In conclusion, by definition of Γ, for every feasible family (hn) ∈ Hδ ,

Df

(
halg∥q

)
≤ Γ(δ),

with Γ non-decreasing, continuous on [0,∞), and Γ(0) = 0. This proves the theorem.

A.4 PROOF OF PROPOSITION 5

Proposition 5. Typical acceptance sampling (TAS, Cai et al. (2024a)) implicitly solves a variant
of the optimization problem in Definition 2, where the f -divergence is substituted with the cross-
entropy H(h, q(·|x<t)).

Proof. Given the optimization problem:

max
h

min

(
hn

p(n)
, 1

)
s.t. h ∈ ∆|V |−1, (42)

H(h, q) ≤ H(q) + δ, (43)

where H(q) is the entropy. The optimal solution concentrates mass on {n,m}. Equation (43) is
equivalent to ∑

i

[q(i)− h(i)] log
1

q(i)
≥ −δ. (44)
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To maximize hn = γ, we must minimize the LHS of (44). Based on Lemma 9, the resulting
distribution is always two-point distribution. Let m = argmaxi q(i). For fixed hn = γ, the optimal
allocation places all remaining mass on m:

h(i) =


γ, i = n

1− γ, i = m

0, otherwise
(45)

Substituting the optimal form into (43):

γ log
1

q(n)
+ (1− γ) log

1

q(m)
≤ H(q) + δ

γ

(
log

1

q(n)
− log

1

q(m)

)
≤ H(q) + δ − log

1

q(m)

γ ≤
H(q) + δ − log 1

q(m)

log q(m)
q(n)

(46)

Sine γ is a probability, its maximum is reached when

γ = 1 ⇐⇒ log
q(m)

q(n)
≤ H(q) + δ − log

1

q(m)

⇐⇒ q(n) ≥ exp (−H(q)) exp(−δ), (47)

which is the acceptance rate used in TAS.

It should be noted that our theory here is used to reveal the soundness of the TAS acceptance func-
tion, without aiming to replicate the exact TAS algorithm. However, based on our framework, one
can derive the exact TAS algorithm by adding an H(h) = 0 constraint and an ϵ threshold to the
cross-entropy limit, which we omitted for simplicity.

In the proof above, we invoked the following technical lemma.

Lemma 9. For any γ ∈ [0, 1], the minimal value of
∑

i̸=n[q(i)− h(i)] log 1
q(i) is achieved when:

h(m) = 1− γ, h(i) = 0 ∀i ̸= n,m. (48)

We provide the proof below.

Proof. Let h(i) = αi(1− γ) for i ̸= n, where
∑

i αi = 1. Then:∑
i̸=n

[q(i)− αi(1− γ)] log
1

q(i)
(49)

is minimized when αi concentrates on m = argmax q(i), since log 1
q(i) is minimized at i = m.

A.5 PROOF OF THEOREM 6

Corollary 6 (Cactus’s solution). Let the f -divergence in Definition 2 be the KL divergence. The
solution to Equation (14) is given by

h(i|x<t) =

{
γ∗, if i = n,

1−γ∗

1−q(n|x<t)
q(i|x<t), otherwise,

(15)

where γ∗ = min
{
q(n|x<t) +

√
2δq(n|x<t)(1− q(n|x<t)), 1

}
.
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Proof. We first compute the derivatives of Φ at γ0:

Φ(γ0) =Φ′(γ0) = 0, (50)

and Φ′′(γ0) =
1

q(n|x<t)(1− q(n|x<t))
. (51)

The unique root in [q(n|x<t),+∞) is then

γ0 +

√
2δ

Φ′′(γ0)
= q(n|x<t) +

√
2δq(n|x<t)(1− q(n|x<t)).

We clip this value to the interval [q(n|x<t), 1] to ensure validity as a probability.

A.6 PROOF OF COROLLARY 7

Corollary 7. When the exact solution γ∗ is not greater than 0.5 (i.e., the token is not likely to be
accepted), our approximation always satisfies the divergence constraint:

DKL(h∥q) ≤ δ, (16)

where h(n|x<t) is given by the approximated solution in Equation (15).

Proof. Let q := q
(
n
∣∣x<t

)
for brevity and define the quadratic-approximate root

γ̂ := q +
√

2δ q(1− q). (52)

Because Φ′(γ) = log γ
q − log 1−γ

1−q , we have Φ′(γ) > 0 for every γ ∈ (q, 1); hence Φ is strictly
increasing on [q, 1] and the equation Φ(γ) = δ admits a unique root γ⋆ ∈ (q, 1].

Taylor’s theorem with the Lagrange remainder, expanded at γ0 = q, gives, for some ξ ∈ (q, γ),

Φ(γ) =
Φ′′(q)

2
(γ − q)2︸ ︷︷ ︸

=:T2(γ)

+
Φ′′′(ξ)

6
(γ − q)3. (53)

For the Bernoulli KL,

Φ′′(γ) =
1

γ(1− γ)
, Φ′′′(γ) = − 1− 2γ

γ2(1− γ)2
. (54)

Whenever γ ≤ 1
2 , the factor 1− 2γ is non-negative and therefore Φ′′′(ξ) ≤ 0. It follows that

Φ(γ) ≤ T2(γ) =
(γ − q)2

2q(1− q)
, ∀γ ∈ (q, 1

2 ]. (∗)

Choose γ̂ such that T2(γ̂) = δ, this yields the expression given above. If γ̂ ≤ 1
2 or equivalently

δ ≤ (1/2− q)2

2q(1− q)
(55)

then the above inequality gives Φ(γ̂) < δ. Since Φ is strictly increasing, we obtain

γ̂ < γ⋆. (56)

This result ensures that our approximation never overestimate γ when the verifier model is not
confident about the current sampled token.
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B ADDITIONAL EXPERIMENTS

Mentored decoding. A blog post proposed Mentored decoding (Tran-Thien, 2023), which uses
binary search to generate a target distribution q̃ such that DKL(q∥q̃) ≤ δ is met. Compared with
Cactus, there are two major differences: (1) Mentored decoding allows sampled tokens to be ac-
cepted even when the verifier has zero probability, violating the principle of adhering to the ver-
ifier’s mode; (2) more importantly, the solution is found via a numerical optimization procedure,
significantly slowing down the decoding speed and defying the purpose of high-throughput decod-
ing. We conduct additional experiments to compare Cactus and Mentored decoding (using δ = 1 as
recommended).

As shown in Table 2, Mentored decoding has the least acceptance rate gain at the cost of increasing
the per-step generation time. For example, on GSM8K, the overall wall time is even longer than that
of the naive SpS method by 20

Speculative cascading. More recently, Narasimhan et al. (2025) proposed speculative cascading
(SpecCas), which dynamically decides if the sampled token will be verified by the large model
based on the difference between the two distributions. Essentially, it is mathematically equivalent to
mixing the draft and verifier distributions as the target distribution at different steps. We therefore
conduct experiments with SpecCas (the [OPT] variant and α = 0.1 for better quality).

The results in Table 2 show that SpecCas significantly increases the acceptance rate and the decoding
speed. However, its generation quality is not as good as that of other methods, even when we choose
hyperparameters to favor higher generation quality. On the other hand, we also ran experiments
with δ = 10 for Cactus. With a similar wall-time acceleration on GSM8K and GPQA, Cactus ’s
generation quality is considerably higher. We hypothesize that this is due to the lack of explicit
divergence control in SpecCas, whereas the other methods (especially Cactus) guarantee controlled
“distances.” Given that the primary focus of this paper is to introduce a new, principled method, we
leave a deeper investigation of these methods to future work.

Table 2: The results with Qwen 3 14B as verifier and Qwen 3 0.6B as drafter.

GSM8K IFEval GPQA

m Name Score↑ AL↑
m Wall↓ Score↑ AL↑

m Wall↓ Score↑ AL↑
m Wall↓

10

SpS 91.12 4.27 1.00x 85.03 2.19 1.00x 39.39 3.37 1.00x
Mentored 91.66 4.51 1.20x 61.37 2.88 0.96x 40.91 4.31 0.93x
SpecCas 88.40 6.42 0.85x 69.50 5.02 0.54x 32.83 6.27 0.68x
TAS 92.65 5.24 0.86x 86.14 3.00 0.82x 38.89 4.99 0.72x
Cactus 1 93.10 5.44 0.87x 85.96 3.03 0.78x 43.43 5.16 0.70x
Cactus 10 92.72 5.73 0.83x 84.66 3.41 0.74x 39.40 5.71 0.69x

Scaling to larger models. To evaluate the scalability of our method under more memory-intensive
conditions, we conduct experiments on a larger model pair: Qwen 3 1.7B (drafter) and 32B (verifier).
This setting involves significantly higher parameter counts than the reported 14B maximum in the
main table, serving to verify performance where memory bottlenecks are typically more prominent.
We maintain the standard speculative decoding setup with a draft length of m = 10 and report both
accuracy and acceptance length (AL).

Table 3: The results of Qwen 3 32B as verifier and Qwen 3 1.7B as drafter on three benchmarks:
GSM8K, IFEval, and GPQA. We report the “strict-match” accuracy and the acceptance length (AL).

GSM8K IFEval GPQA

m Name Score↑ AL↑
m Score↑ AL↑

m Score↑ AL↑
m

10
SpS 95.30 5.03 83.36 2.61 40.40 3.73
TAS 94.10 7.02 83.73 4.16 40.40 6.12
Ours (δ = 1) 94.40 7.13 85.21 4.47 41.92 6.36
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As shown in Table 3, Cactus demonstrates superior efficiency (achieving the longest acceptance
lengths) across all three benchmarks. In terms of task performance, it notably surpasses TAS and
SpS on IFEval and GPQA, while remaining a comparable result on GSM8K. These findings confirm
that the effectiveness of Cactus naturally extends to larger models, delievering consistent improve-
ments in acceptance rates while maintaining the accuracy.

Evaluations on Spec-Bench. To provide a more comprehensive assessment of Cactus across di-
verse scenarios, we conduct evaluations on Spec-Bench (Xia et al., 2024), a unified benchmark
designed to test speculative decoding methods across multiple distinct domains, including multi-
turn conversation (MT-Bench), translation (WMT), summarization (CNN/DM), question answering
(natural questions), mathematical reasoning (GSM8K), and retrieval-augmented generation (RAG).
This broad coverage ensures that the observed speedups are not limited to specific task types but are
consistent across varied real-world applications. We use the Qwen 3 14B model as the verifier and
the 0.6B model as the drafter, maintaining a temperature of 0.6.

Table 4: Speedup comparison on Spec-Bench using Qwen 3 14B as the verifier and Qwen 3 0.6B
as the drafter. We report the speedup ratio relative to standard autoregressive decoding. “Accepted”
denotes the mean number of accepted tokens per step.

MT Bench Trans. Summ. QA Math RAG AL10 Overall

SpS 2.01× 1.40× 1.92× 1.85× 1.83× 1.86× 3.20 1.81×
Cactus (δ = 1) 2.09× 1.40× 2.04× 1.95× 1.86× 1.92× 3.29 1.88×

The results are summarized in Table 4. Cactus is tested without any hyper-parameter tuning (δ = 1).
However, it immediately yields acceleration over the SpS baseline. In addition, Cactus consistently
outperforms SpS across different domains, achieving an overall speedup of 1.88× (+88% gain over
autoregressive decoding). This significant reduction in compute cost is achieved without additional
training. It is worth noting that these speeds are measured using the HuggingFace Transformers
framework (Wolf et al., 2019), which is less optimized for speculative sampling. We anticipate
that the real-world performance gains would be even larger with a better implementation such as
vLLM (Kwon et al., 2023), as indicated by our other experiments.

Impact of draft model size. We employ same-family models to ensure aligned tokenization, con-
sistent with standard practice (Leviathan et al., 2023; Chen et al., 2023). To investigate the impact
of drafter capacity, we evaluate Cactus on GSM8K using a Qwen 3 14B verifier with varying drafter
sizes (Table 5).

Table 5: Ablation on GSM8K using Qwen 3 14B verifier with different drafter sizes (δ = 1).

Draft Size Score AL Rej

Verifier (Oracle) 91.71 - -
0.6B 93.10 5.44 -32%
1.7B 92.50 6.78 -60%
4B 92.57 7.76 -76%

Increasing the drafter size to 4B significantly boosts the mean accepted length (AL) to 7.76 and
reduces rejection rates by 76%, while maintaining high task accuracy. These results confirm that
Cactus effectively scales with stronger drafters, translating improved draft quality into greater de-
coding efficiency.

C CASE STUDY

In this section, we discuss whether the choice of δ affects qualitative measures such as reasoning
ability. We gather the results of the first sample from GSM8k, where δ is set to different values when
running Cactus with the Qwen3 0.6B + 14B model pair.
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From the case study in Table 6, we can see that the reasoning is poor and lengthy when δ is large
(more divergence allowed). Consequently, the result is wrong due to the low-quality chain-of-
thought. This confirms that the divergence control in Cactus helps maintain qualitative measures.

D BROADER IMPACT AND FUTURE DIRECTIONS

Broader impact. By improving the inference efficiency of large language models without sacri-
ficing output quality, our method reduces computational costs and energy consumption. This con-
tributes to more sustainable AI deployment, broadens access to high-performance language models,
and supports environmentally conscious machine learning practices. Additionally, Cactus can en-
able faster, lower-cost applications in education, healthcare, and low-resource settings.

Future directions. Our goal in this paper is to introduce and analyze the draft–verify framework,
not to exhaustively optimize every dimension of the system. Accordingly, we scope out several
extensions and leave them for future exploration by the community: (1) Model scale. We capped
evaluation at 14B parameters to keep the methodology clear and costs tractable. Pushing to sub-
stantially larger backbones could reveal scaling behavior (e.g., effects on acceptance rates, latency,
and robustness) and is best investigated in follow-on work, including studies of scaling laws and
distributed inference. (2) Model training. We emphasize a training-free method to highlight the
mechanism itself. While targeted tuning (e.g., LoRA for the draft, verifier calibration, joint dis-
tillation) may further improve proposal quality and reduce disagreement error, such engineering is
orthogonal to our core contribution and thus deferred. (3) Memory usage. Draft-and-verify intro-
duces extra memory for the draft model and caches. Techniques like quantization, weight sharing,
cache reuse, selective offloading, and early-exit heuristics could lower this footprint, but a thorough
treatment would distract from the main result; we leave these optimizations to future work. (4)
Leveraging ensemble effects. In our main experiments, we observe that Cactus often performs better
than the verifier model. For example, Cactus surpasses the verifier’s accuracy by 2 standard devi-
ations on both IFEval and GPQA. We hypothesize that this is because Cactus enables a “healthy”
ensemble effect by combining two model distributions. Leveraging ensemble effects in speculative
sampling could be explored in future work.

E THE USE OF LARGE LANGUAGE MODELS

Throughout this paper (with this paragraph being an exemption), we use large language models to
help identify grammar errors. Specifically, we prompt ChatGPT to “Revise grammar errors with
minimal changes of the original text”, followed by the latex source code of each paragraph. In
addition, we use ChatGPT and DeepSeek R1 to triple-check all technical proofs. The code for
plotting all the figures is initially generated by ChatGPT, which is further revised by the authors
according to the authors’ taste. We certify that the originality and scientific contributions of our
method do not come from any large language models.
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Table 6: Generations for different values of δ.

Task Question: Janets ducks lay 16 eggs per day. She eats three for
breakfast every morning and bakes muffins for her friends every
day with four. She sells the remainder at the farmers’ market
daily for $2 per fresh duck egg. How much in dollars does she
make every day at the farmers’ market?

δ = 1 <think>\nOkay , let me try to figure out how much Janet makes
each day at the farmers’ market. Hmm, so the problem says she
has ducks that lay 16 eggs per day. Then she eats three for
breakfast and bakes muffins with four eggs each day. Then she
sells the remaining eggs for $2 each. Alright, let’s break
this down step by step.\n \nFirst , total eggs per day: 16
eggs. Then she uses some for breakfast and baking. Let’s see,
for breakfast, she eats 3 eggs. Then for baking, she uses 4
eggs. So total eggs used each day would be 3 + 4 = 7 eggs.
Therefore, the remaining eggs would be 16 - 7 = 9 eggs. Then
she sells those 9 eggs at $2 each. So, how much does she make?
9 eggs multiplied by $2, which is 18 dollars.\n \nWait , let me
check again. If she uses 3 eggs for breakfast and 4 for baking,
that’s 7. 16 minus 7 is indeed 9. Then 9 times 2 is 18. Yeah,
that seems right. So her daily earnings would be $18. Hmm,
is there any possibility I made a mistake here? Maybe I should
re-read the problem to make sure I didn’t miss anything.\n \nThe
problem says she lays 16 eggs per day. Then she eats 3 for
breakfast and bakes muffins each day with four. So the total
used is 3+4=7. Subtract that from 16, which leaves 9. Multiply
by $2 for selling, 9*2=18. Yep, that’s correct. I think that’s
the answer.\n </think>\n \nJanet s ducks lay 16 eggs per day.
She uses 3 eggs for breakfast and 4 eggs for baking muffins,
totaling 7 eggs used. The remaining eggs are $16 - 7 = 9\$.
She sells these at $2 per egg, earning $9 \\times 2 = 18\$. \n
\n ######## 18

δ = 106 <think>\nOkay , so let\’s try to figure out how much Janet makes
every day at the farmers\’ market. Let me start by breaking
down the problem step by step. [lengthy CoT omitted] so total
eggs used is 4 * 4 = 16. Then, after eating 3 for breakfast,
leftover is 16 - 3 = 13, then she sells them at 2 each: 13
* 2 = $26. \n \nYes , that seems to make sense. Therefore,
the answer should be 26. But let me check if the question
is asking "how much money does she make every day at the
farmers\’ market?" So yes, selling the remainder at $2 per egg.
Therefore, answer is $26. \n \nTherefore , the answer is 26,
which in the previous problems they had 5. This is a different
case. So I think that\’s correct.\n </think>\n \nAnswer : 26\n
\nThe problem states that Janet\’s ducks lay 16 eggs per day.
She eats 3 eggs for breakfast and 4 eggs to make muffins daily.
After these expenses, the remaining eggs are $ 16 - 3 - 4 = 9
$, which are sold at $2 per egg. Therefore, the total money
she earns at the farmers\’ market is $ 9 \\times 2 = 18 $. \n
\nHowever , the phrase "bakes muffins for her friends every day
with four" might imply that she uses 4 eggs per muffin, meaning
she makes 4 muffins. If she uses 4 eggs each muffin, the total
eggs consumed would be $ 4 \\times 4 = 16 $. Since she eats 3,
the remaining eggs are $ 16 - 3 = 13 $, which are sold for $ 13
\\times 2 = 26 $. Hence, the correct answer is **26**. \n \n
######## 26

26


	Introduction
	Approach
	Generalization of speculative sampling
	Approximating SpS as constrained optimization
	Cactus: constrained acceptance speculative sampling

	Experiments
	Settings
	Main results
	In-depth analyses

	Related work
	Conclusion
	Technical proofs
	Proof of Theorem 1
	Proof of Theorem 3
	Proof of Theorem 4
	Proof of Proposition 5
	Proof of Theorem 6
	Proof of Corollary 7

	Additional experiments
	Case study
	Broader impact and future directions
	The use of large language models

