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Abstract

We develop an algorithm to address unsupervised domain adaptation (UDA) in
continual learning (CL) settings. The goal is to update a model continually to learn
distributional shifts across sequentially arriving tasks with unlabeled data while
retaining the knowledge about the past learned tasks. Existing UDA algorithms
address the challenge of domain shift, but they require simultaneous access to the
datasets of the source and the target domains. On the other hand, existing works on
CL can handle tasks with labeled data. Our solution is based on consolidating the
learned internal distribution for improved model generalization on new domains
and benefiting from experience replay to overcome catastrophic forgetting.

1 Introduction

Deep neural networks relax the need to for manual feature engineering by learning to generate
discriminative features in an end-to-end blind training procedure [1, 2]. Despite significant advances
in deep learning, however, robust generalization of deep neural network on unseen data is still a
primary challenge when domain shift exists between the training and the testing data [3, 4]. Domain
shift is a natural challenge in continual learning (CL) [5, 6] where the goal is to learn adaptively and
autonomously when the underlying input distribution drifts over extended time periods. Distributional
shifts over time usually lead to performance degradation of trained models which in turn necessitates
model retraining to acquire knowledge about new distributions. Current CL algorithms mainly
consider tasks, i.e., domains, with fully labeled datasets. Hence, these algorithms require annotating
massive training datasets for new observed domains. Persistent manual data annotation, however, is
practically prohibitive because of being an economically costly and time-consuming process [7].To
relax this constraint, our goal is to develop an algorithm for continual adaptation of a model for
tackling the challenge of domain shift in a CL setting using solely unannotated datasets.

Unsupervised Domain adaptation (UDA) is a highly relevant learning setting to our problem of
interest. The goal in UDA is to train a model for a target domain with unannotated data by transferring
knowledge from a related source domain in which annotated data is accessible [3]. A primary group
of UDA algorithms map the training data points for both domains into a shared latent embedding
space and align the distributions of the source and the target domains in that space [8]. Hence, a
source-trained classifier that receives its input from the shared embedding space would generalize
on the target domain as well. The domain alignment procedure has been implemented either using
generative adversarial learning [9, 10, 11, 12, 13] or by directly minimizing the distance between the
two distributions [14, 15, 16, 17, 18]. Existing UDA algorithms are not suitable for continual learning
because the underlying model can be trained if datasets from both domains are accessible. Moreover,
these methods usually consider only a single target domain and a single source domain. Finally,
simply updating the underlying model to generalize in the current encountered domain is not sufficient.
Because upon updating the model, the network likely would forget the past learned domains as the
result of retroactive interference, referred as the phenomenon of catastrophic forgetting [19, 20] in the
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CL literature. Consequently, we also need to tackle catastrophic forgetting in our unexplored learning
setting. Our method can be considered as an improvement over existing UDA and CL methods.

Contributions: we develop an algorithm for lifelong unsupervised adaptation of a model on new
domains using solely unannotated data. Our idea is based on consolidating the internally learned
distribution that encodes the learned knowledge by the model when the initial source domain is
learned. We use this multimodal distribution to update the model such that the learned distributions
for all subsequent unannotated domains are coupled. To overcome catastrophic forgetting, we store
important representative samples for all tasks and replay them back when the model is updated. We
provide a theoretical analysis to demonstrate that our method mitigates catastrophic forgetting and
also leads to improved generalization. We validate our method using standard UDA benchmarks.

2 Background and Related Work

Lifelong UDA setting lies on the intersection of both UDA and CL learning settings.

Unsupervised domain adaptation: an effective approach for domain alignment in UDA is to use
a probability distance to measure distributional discrepancy and then train an encoder to minimize
the cross-domain distance at its output as a latent shared embedding space [21, 22, 23, 24, 25, 26].
The Wasserstein distance (WD) [27] is a suitable metric for this purpose due to possessing non-
vanishing gradients. This property is beneficial because deep learning optimization problems are
primarily solved using gradient-based optimization techniques [23]. In this work, we rely on the sliced
Wasserstein distance (SWD) [24] variant of the Wasserstein distance because it can be computed
efficiently using a closed form solution via empirical samples of the data distribution.

Continual learning: Existing CL methods primarily use either model regularization or experience
replay to tackle catastrophic forgetting. The idea of model regularization [20, 5] is to identify the
network weights that contribute significantly in retaining knowledge about a past learned task and then
consolidate them when the model is updated to learn the subsequent tasks. Alternatively, the model
can be expanded progressively to learn the new tasks using added weights [28]. We rely on experience
replay which is implemented using pseudo-rehearsal [19]. The idea is to identify important training
data points that contribute significantly to learning a task and store them in a memory buffer [29].
These samples then would be replayed along with the current task’s data to represent the past learned
distributions [30, 31] to retain the acquire knowledge about the past tasks. The major challenge is
to identify the important data points. We rely on the consolidated internal distribution to identify
the important data points. To mitigate the sample selection challenge, some CL algorithms rely on
generative experience replay, where the memory buffer is replaced with the ability of generating
synthetic pseudo-samples that are similar to the samples of the past learned tasks [31, 32, 33, 34].

Domain Adaptation in Continual Learning Settings: Existing works in this direction are highly
limited. Wulfmeier et al. [35] study addressing gradual shifts in changing environments. Bobu et
al. [36] and Wu et al. [37] explore addressing the problem of domain shift in continual learning
settings but both works assume that datasets for all learned tasks are observable at each time-step.
This assumption limits practicality of these works. Porav et al. [38] explore a setting similar to our
setting but the proposed method relies on image translation which makes the work highly domain
specific. In our work, we relax these limitations and develop a more general algorithm.

3 Problem Statement

Consider a classification problem in a source domain S with a labeled training dataset DS = (X0,Y0),
where X0 = [x0

1, . . . ,x
0
N ] ∈ X ⊂ Rd×N , Y0 = [y0

1 , ...,y
0
N ] ∈ Y ⊂ Rk×N , and the training data

points are drawn independently from an unknown source distribution, i.e., x0
i ∼ p0(x). Given a deep

neural network fθ with learnable weights θ, we can solve for an optimal model using the standard
empirical risk minimization (ERM): θ̂0 = argminθ

∑
i L(fθ(x0

i ),y
0
i ), where L(·) is a suitable

loss function. If the training dataset is large enough and the network structure is complex enough,
the ERM optimal model will generalize well on unseen data points, drawn from p0(x) [39]. The
challenge in CL is that the input distribution may be non-stationary. Hence, the testing samples may
be drawn from drifted distributions. The resulting distributional gap will lead to poor generalization
during the testing time. Our goal is to update the source-trained model fθ̂0 continually using solely
unlabeled data to avoid poor generalization without forgetting past experiences. To model this process,
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we consider a set of sequentially arriving target domains T t, t = 1 . . . T, with unlabeled datasets
Dt

T = (Xt), where Xt ∈ Rd×Mt , xt
i ∼ pt(x), and ∀t1, t2 : pt1 ̸= pt2 (see Figure 1). Since these

domains are unlabeled using ERM is implausible. As stated, common UDA methods cannot address
CL settings.

To address challenges of “domain shift” and “catastrophic forgetting”, we consider that the base
network fθ(·) can be decomposed into a deep encoder ϕv(·) : X → Z ⊂ Rp and a classifier
subnetwork hw(·) : Z → Y , i.e., fθ = hw ◦ ϕv, where θ = (w,v). Our method is based on
consolidating the internal distribution that is formed in the embedding space Z . We assume that
as the result of initial training on the source domain, the source classes become separable in Z . If
at each time-steps, we update the model such that the internal distribution remains stable, i.e., the
distance between the distributions ϕ(p0(x0)) and ϕ(pt(x

t)) is minimized, then the model continues
to generalize well on the target domains, despite initially being trained with the source domain
labeled dataset. This strategy has been used extensively by the existing UDA algorithms but we are
constrained with the accessibility of DS in CL, i.e., the term ϕ(p0(x

0)) cannot be computed.

4 Proposed Solution

Figure 1: Architecture and learning procedure for
the proposed lifelong UDA framework. For an en-
larged version, please refer to the Appendix.

Our solution is based on consolidating the in-
termediate distribution that is learned in the dis-
criminative embedding space to retain model
generalizability. Upon learning the initial source
domain, the encoder is trained to map the input
source distribution into a multi-modal distribu-
tion pJ(z) in the embedding space. Each mode
in this distribution corresponds to one of the
input classes and the training data points that
belong to a particular class, are mapped to the
same cluster (see Figure 1, middle). The inter-
nally learned multimodal distribution is repre-
sented empirically by the source domain data
representations {(ϕv(x

0
i ),y

0
i )}Ni=1. We use a

GMM p0J(z) with k component as the paramet-
ric model to estimate the internal distribution:

p0J(z) =

k∑
j=1

α0
jN (z|µ0

j ,Σ
0
j ), (1)

where α0
j denotes the mixture weights, and µ0

j

and Σ0
j denote the mean and co-variance matrices for the components. Computing these parameters

is generally a challenging iterative procedure. But since the labels are accessible, we can compute
the parameters for each mode independently. Let S0

j denote the support set for the mode j, i.e.,
S0
j = {(x0

i ,y
0
i ) ∈ DS | argmaxy0

i = j}. The MAP estimates for the GMM parameters would be:

α̂0
j =

|S0
j |

N
, µ̂j =

∑
(x0

i ,y
0
i )∈S0

j

1

|S0
j |
ϕv(x

0
i ), Σ̂0

j =
∑

(x0
i ,y

0
i )∈S0

j

1

|S0
j |
(
ϕv(x

0
i )− µ̂0

j

)⊤(
ϕv(x

0
i )− µ̂0

j

)
. (2)

We can update the estimates in Eq. 2 for t > 1, to be described later. Let p̂tJ(z) denote the estimated
GMM at the time-step t. Our idea is to consolidate this distribution to retain model generalization.
In the absence of source data, we adapt the model such that the encoder always aligns the target
distributions with this distribution in the embedding space. We implement this process by drawing
random samples from the GMM and build a labeled pseudo-dataset: D̂t

P = (Zt
P , Ŷ

t

P), where
Zt

P = [zt
1, . . . ,z

t
Np

] ∈ Rp×Np , ŶP = [ŷp,t
1 , ..., ŷp,t

Np
] ∈ Rk×Np , and zt

i ∼ p̂tJ(z). We determine
the labels according to the model predictions. We include only those samples for which the model
prediction confidence-level is more than a preset threshold τ to exclude outlier samples. To retain the
model generalization power, we solve the following problem at time t:

min
v,w

N∑
i=1

L
(
hw(zp

i ), ŷ
p,t
i

)
+ λD

(
ϕv(pt(Xt)), p̂

t
J(Z

t
P)

)
, (3)
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where D(·, ·) denotes a probability discrepancy measure and λ is a trade-off parameter. The first term
enforces the classifier to preserve its generalizability on the internal distribution. The second term
enforces alignment of the target domain distribution with the internally learned distribution in the
embedding space. We use the SWD metric [27] for the term D(·, ·). Upon updating the model, we
can also update the internal distribution p̂tJ(z) using the pseudo-dataset samples.

Solving Eq. (3) would help the model to generalize well on the new domain T t. However, catastrophic
forgetting will remain untackled because the encoder subnetwork is updated unconditionally to mini-
mize the domain discrepancy term in Eq. 3.To tackle catastrophic forgetting, we rely on experience
replay. When a task is learned, we select a small subset of the training data points as representative
samples, to be stored in a memory buffer. These samples are replayed during model adaptation to
mitigate catastrophic forgetting. Possible selection strategies includes mean of features (MoF) [40],
ring buffer [41], and reservoir sampling [42]. Existence of the internal distribution makes MoF a
natural choice. Upon model update at time-step t and then updating the GMM, we can compute the
distance of representations for all the data points of T t from their corresponding cluster mean, i.e.,
dtj,l = ∥µt

j − ϕ(xt
l)∥22,∀xt

l s.t. ŷt
l = argmax fθ̂t(x

t
l) = j. Given a memory budget of Nb samples,

we pick the Mb = Nb/k samples per class that have the closest distance to the mean to form the
buffer-stored dataset Dt

b = Dt−1
b ∪ (Xt

b, Ŷ
t
b ). These samples are the most informative samples to

estimate the internal distributions. We update Eq. (3) to tackle catastrophic forgetting as follows:

min
v,w

N∑
i=1

L
(
hw(zp

i ), ŷ
p,t
i

)
+

Nb∑
i=1

L
(
hw(ϕv(x

b
i )), ŷ

b
i

)
+ λD

(
ϕv(pt(Xt)), p̂

t
J(Z

t
P)

)
+ λD

(
ϕv(pt(X

t
b)), p̂

t
J(Z

t
P)

)
.

(4)

Adding the second supervised term in Eq. (4) helps to mitigate catastrophic forgetting. The fourth
term helps to consolidate the internal distribution across all the previous tasks. Our proposed solution
for lifelong domain adaptation, named Lifelong Domain Adaptation Using Consolidated Internal
Distribution (LDAuCID), is presented and visualized in Algorithm 1 and Figure 1, respectively.

5 Theoretical Analysis Algorithm 1 LDAuCID (λ, τ,Nb)

1: Source Training:
2: Input: source labeled dataset DS = (X0,Y0)

3: θ̂0 = (ŵ0, v̂0) = argminθ

∑
i L(fθ(x

0
i ),y

0
i )

4: Internal Distribution Estimation:
5: Use Eq. (2) and estimate α0

j ,µ
0
j , and Σ0

j

6: Memory Buffer Initialization
7: D0

b = (X0
b , Ŷ

0
b )

Pick the Nb/k samples with the least
dtj,l = ∥µt

j − ϕ(xt
l)∥22, ŷ0,i

b =

argmax f
θ̂t
(x

0,Nb
b )

8: Continual Unsupervised Domain Adaptation:
9: for t = 1, . . . , T do

10: Input: target unlabeled dataset Dt
T = (Xt)

11: Pseudo-Dataset Generation:
12: D̂t

P = (Zt
P , Ŷ

t

P) =
13: ([zp,t

1 , . . . , zp,t
N ], [ŷp,t

1 , . . . , ŷp,t
N ]), where:

zp,t
i ∼ p̂t−1

J (z), 1 ≤ i ≤ Np and
ŷp,t
i = argmaxj{hŵt(z

p,t
i )} if with

confidence τ : maxj{hŵt(z
p,t
i )} > τ

14: for itr = 1, . . . , ITR do
15: draw data batches from Dt

T and D̂P
16: Update the model by solving Eq. (4)
17: end for
18: Internal Distribution Estimate Update:
19: Use Eq. (2) similar to step 5 above.
20: Memory Buffer Update
21: Dt

b = Dt−1
b ∪ (Xt

b , Ŷ
t
b ), where (Xt

b , Ŷ
t
b )

is computed similar to step 7 above.
22: end for

We provide an analysis within a standard PAC-
learning framework [39]. Consider the set of
classifier sub-networks H = {hw(·)|hw(·) :
Z → Rk,v ∈ RV } as the hypothesis class
within PAC-learning. Let e0 denote the ex-
pected error on the source domain, et de-
note the expected error on the target do-
mains, and eJt denote the expected error on
the pseudo-dataset for a given h ∈ H. Also,
let p̂0(x) = 1

N

∑N
n=1 δ(ϕv(x

s
n)) and p̂t(x) =

1
Mt

∑Mt

m=1 δ(ϕv(x
t
m)) denote the empirical

source and target distributions in the embedding
space. We provide the following theorem.

Theorem 1: Consider LDAuCID algorithm at
learning time-step t = T . Then for all the previ-
ously learned tasks t < T , the following holds:

et ≤ eJT−1 +W (ϕ(p̂t), p̂tJ) +

T−2∑
s=t

W (p̂sJ , p̂
s+1
J )

+ e(w∗) +

√(
2 log(

1

ξ
)/ζ

)(√ 1

Mt
+

√
1

Np

+

√
1

Nb

)
,

(5)

where e(w∗) denotes expected error for the best
joint-trained optimal model in the hypothesis
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space, i.e., the model trained as w∗ = argminw ec(w) = argminw{et(h) + etJ(h)}, W (·, ·)
denotes the WD distance, and ζ and ξ are two constants.

Proof: Included in the Appendix.

Theorem 1 explains why LDAuCID algorithm is effective. Major terms in the right-hand side of
Eq. 5, as an upperbound for the expected error for each task (domain), are continually minimized by
LDAuCID. The first term is minimized because the internal distribution random samples are used to
minimize the empirical error term as the first term of Eq. (4). The second term is minimized as the
third terms of Eq. (4) when the task distribution is aligned with the empirical internal distribution
in the embedding space at time t. The third term which is a summation which models the effect
of continual learning. The sth term in this sum is minimized when the task T s is learned and we
deliberately update the internal distribution. This additive term grows as more tasks are learned after
learning a particular task which can potentially make the upperbound looser, leading to forgetting
effects. The fourth term is a constant small term if the tasks are related, i.e., share the same classes.
LDAuCID does not minimize this terms. It just suggests that the model should work well for a
joint-training scenario in order to perform well in a sequential learning setting. The last term is a
constant term which is negligible if we have sufficient numbers of source and target training data
points. It also states that storing more samples in the memory buffer leads to better performance, as
expected. We conclude if the upperbound in Eq. (5) is sufficiently tight, the domains are relevant, and
the hypothesis space is a suitable space to learn the tasks, then adapting the model using LDAuCID
can both tackle catastrophic forgetting and also improve model generalization on the target domains.

6 Empirical Validation

Our implemented code is accessible as an Appendix.

6.1 Data Sets and Tasks

We are not aware of any prior work that addresses UDA in a lifelong learning setting that we can
directly compare against. For this reason, we use four existing UDA benchmark datasets, adopt them
to build sequential UDA tasks, and validate our method on these classic datasets. For comparison
purpose, we run our algorithm in the learning setting of the existing UDA methods with one source
and one target domains. For fair comparison against these works, we have followed the evaluation
protocols that are used by most of the recent classic UDA papers.

Digit recognition tasks: the common MNIST (M), the USPS (U), and the SVHN (S) datasets are
used as three domains. Majority of the existing UDA methods report their results on three tasks
defined between these domains: M → U , U → M, and S → M tasks. We perform experiments on
two S → M → U and S → U → M sequential UDA tasks to cover the three classic UDA tasks.

ImageCLEF-DA Dataset: this dataset consists of the 12 shared image classes between the Caltech-
256 (C), the ILSVRC 2012 (I), and the Pascal VOC 2012 (P) visual recognition datasets. The dataset
is fully balanced with 50 images per class, i.e., 600 images for each domain. There are six possible
binary UDA tasks. We perform experiments on C → I → P and C → I → P ternary domain tasks.

Office-Home Dataset: this a more challenging object recognition dataset which consists of
15, 500images in office and home settings. The images are grouped into 65 classes. There are
4 domains with relatively large gaps: Artistic images (A), Clip Art (C), Product images (P ), and
Real-World images (R) which leads to possibility of defining 12 pair-wise binary UDA tasks. We
preform experiments on the sequential UDA tasks A → C → P → R and R → P → C → A tasks.

Office-Caltech Dataset: this object recognition dataset is built using the 10 shared classes between
the Office-31 and Caltech-256 datasets. There are four visual domains: Amazon (A), Caltech (C),
DSLR (D), and Webcam (W ) with 2533 images in total. There are 12 definable binary UDA tasks.
We perform experiments on the sequential UDA tasks A → C → D → W and W → D → C → A.

6.2 Network Structure and Evaluation Protocol:

We use the VGG16 network as the base model for the digit recognition tasks. Following the literature,
we use the Decaf6 features for the Office-Caltech tasks. For the other two datasets, we use the
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(a) S → M → U (b) C → I → P (c) A → C → P → R (d) A → C → D → W

(e) S → U → M (f) P → I → C (g) R → P → C → A (h) W → D → C → A

Figure 2: Learning curves for sequential UDA tasks on (a,e) digit, (b,f) ImageClef, (c,g) Office-Home,
and (d,h) Office-Caltech datasets. (Best viewed in color).

ResNet-50 network which is pre-trained on the ImageNet dataset as the backbone of the network. To
study the model learning dynamics over time, we generate learning curves by reporting the model
performance on the testing split of the learned tasks versus the training epochs. Our purpose is
simulate continual training during execution time. Providing the learning curves allows to study
dynamics of learning. For comparison purpose and after learning a target domain task, we report
the average classification rate and the standard deviation on the target domain for five runs for each
task. We train the base model using the source labeled data. We report the performance of the model
before adaptation as a simple ablation study to demonstrate the effect of domain shift. Then we adapt
the model using the target unlabeled data using LDAuCID algorithm and report the performance of
LDAuCID on the target domain. For more details on implementation, please refer to the Appendix.

6.3 Results

Learning curves for the above eight sequential UDA tasks are visualized in Figure 2. In these learning
curves, the model has been trained for 100 epochs, i.e., a notion for time, for each task and then
we have moved forward to learn the subsequent task. We have stored 10 samples per class per
domain in the memory buffer for experience replay. We first observe that domain shift leads to an
initial performance drop on the target domain in all the eight tasks, however there is a jumpstart in
performance. That is, the learning curves for the subsequent target tasks initialize significantly higher
than random label assignment. For example, we observe in Figure 2a the initial testing accuracies
for the domain M and U are in the +60% range. This initial jumpstart occurs due to similarities
between the domains, leading to knowledge transfer from past experiences. The rising behavior of the
learning curves after this initial performance, when the model is being trained on T t, demonstrates
that LDAuCID effectively improves performance of the source-trained model. This improvement
occurs for all the target domain tasks. We note that this the final performance improvements on the
Office-Home dataset is less because domain gap between the domains are larger for this dataset.

The second important observation is that catastrophic forgetting has been mitigated quite well. We
observe that after moving forward to learn the subsequent domains for all the eight tasks, the model
performance on the previously learned tasks is relatively stable and forgetting effect is not dramatic.
We note that the forgetting effects for the SVHN dataset in S → U → M and S → M → U
tasks are more severe. This is likely because this dataset is more challenging and hence a larger
number of samples in the memory buffer may be required. We conclude that LDAuCID algorithm
has successfully improved the model generalization while mitigating catastrophic forgetting.

To measure ability of our algorithm, we also compare LDAuCID against existing UDA. We are
not aware of any prior work that addresses UDA in a lifelong learning setting. For this reason, we
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Method M → U U → M S → M Method M → U U → M S → M
GtA [10] 92.8 ± 0.9 90.8 ± 1.3 92.4 ± 0.9 CDAN [13] 93.9 96.9 88.5

CoGAN [46] 91.2 ± 0.8 89.1 ± 0.8 - SHOT [47] 89.6±5.0 96.8±0.4 91.9±0.4
ADDA [3] 89.4 ± 0.2 90.1 ± 0.8 76.0 ± 1.8 CyCADA [48] 95.6 ± 0.2 96.5 ± 0.1 90.4 ± 0.4

RevGrad [15] 77.1 ± 1.8 73.0 ± 2.0 73.9 JDDA [44] - 97.0 ±0.2 93.1 ±0.2
DRCN [21] 91.8 ± 0.1 73.7 ± 0.4 82.0 ± 0.2 OPDA [27] 70.0 60.2 -
ETD [49] 96.4± 0.3 96.3± 0.1 97.9± 0.4 MML [50] 77.9 60.5 62.9

Source Only 90.1±2.6 80.2±5.7 67.3±2.6 LDAuCID 96.8 ± 0.2 98.4 ± 0.1 91.4 ± 2.2

Table 1: Classification accuracy for UDA tasks between MNIST, USPS, and SVHN datasets.

employ our algorithm in the special case of having only two domains and compare its performance
with the classic UDA algorithms. We consider that only one target domain exists and report our
performance on this domain. We still address UDA in a sequential learning setting, but is the
best we can do for comparison. For comparison, we included the classic UDA methods: GtA [10],
DANN [43], ADDA [3], MADA [11], DAN [14], DRCN [21], RevGrad [15], JAN [16], JDDA [44],
and UDAwSD [45]. We include results of these works in case the original paper have reported
performance on the corresponding dataset. In the Tables, bold font denotes the best performance.

Comparative results for six bi-domain digit recognition tasks are summarized in Table 1. In each
table, we have included the Source Only performance as a baseline. It reports the performance of
the source-trained model on the target domain without adapting the model. Despite the fact that
the classic UDA methods use the full source dataset for joint-training, we observe that LDAuCID
outperforms the UDA methods in two of the tasks and its performance on the remaining task is
competitive. We observe that ETD is outperforming LDAuCID and on average possesses the highest
performance. This is not unexpected because this method is quite close to our method. ETD relies on
a version of WD distance for improvement for classic UDA joint-training scheme.

Table 2 presents the results for the ImageCLEF-DA dataset tasks. We note LDAuCID has lead to a
significant improvement on this dataset. As mentioned, this dataset is fully balanced both in terms
of number of data points per domain and also per class. Note that in our method we rely on the
empirical versions of the distributions for domain alignment (check the Appendix for details). A
balanced dataset makes the empirical distribution a less biased approximation of the real distribution.
We conclude that balanced datasets across the domains can boost performance of our method.

Table 3 summarizes the comparative results for the Office-Home dataset. We observe that CDAN has
the best average performance but LDAuCID is still competitive and on four of the tasks outperforms
CDAN. As we discussed, domains of this dataset has larger gap compared to the rest of the datasets
we used. This could be verified in Figure 2 from the lower jumpstart performance value. As a result,
minimizing the second term of the upperbound in Eq. 5 is more challenging for the Office-Home
dataset. Performance of CDAN is higher likely because CDAN aligns the two distributions class-
conditionally. We conclude that a possible direction to improve our method further in the future is to
benefit from class-conditional alignment techniques, e.g, pseudo-labeling the target domain data.

From inspecting Tables 1–4, we conclude that LDAuCID performs quite competitively on all the UDA
tasks, despite addressing lifelong UDA constrains in which most of the source domain data points
are not accessible. Although LDAuCID likely needs be upperbounded by classic UDA algorithms in
terms of performance, but we observe it outperforms many of these UDA methods on some of the
standard UDA tasks. Although our motivation was to address UDA in a CL setting, our observations
conclude LDAuCID can be used for addressing classic UDA. We hope that development of subsequent
methods for lifelong UDA learning regime would make a more thorough comparison possible.

6.4 Analytic and Ablative Studies

To study the effect of the algorithm empirically, we have analyzed the geometry of data points in
the embedding space. Data geometry approximates the distributions that are learned in the output of
the encoder, i.e., empirical version of the internally learned distribution. For this purpose, we take
advantage of the UMAP [54] visualization tool to reduce the dimension of the data representations in
the embedding space for 2D visualization purpose. In Figure 3, we have visualized the testing splits
of the source domain and the two target domains along with a number of randomly drawn samples of
the internally learned GMM distribution for the S → M → U digit recognition task. In this figure,

7



Method I → P P → I I → C C → I C → P P → C Average
Source Only [9] 74.8 ± 0.3 83.9 ± 0.1 91.5 ± 0.3 78.0 ± 0.2 65.5 ± 0.3 91.2 ± 0.3 80.8

DANN [43] 82.0 ± 0.4 96.9 ± 0.2 99.1 ± 0.1 79.7 ± 0.4 68.2 ± 0.4 67.4 ± 0.5 82.2
MADA [11] 75.0 ± 0.3 87.9 ± 0.2 96.0 ± 0.3 88.8 ± 0.3 75.2 ± 0.2 92.2 ± 0.3 85.9
CDAN [13] 76.7 ± 0.3 90.6 ± 0.3 97.0 ± 0.4 90.5 ± 0.4 74.5 ± 0.3 93.5 ± 0.4 87.1
DAN [14] 74.5 ± 0.4 82.2 ± 0.2 92.8 ± 0.2 86.3 ± 0.4 69.2 ± 0.4 89.8 ± 0.4 82.4

RevGrad [15] 75.0 ± 0.6 86.0 ± 0.3 96.2 ± 0.4 87.0 ± 0.5 74.3 ± 0.5 91.5 ± 0.6 85.0
JAN [16] 76.8 ± 0.4 88.0 ± 0.2 94.7 ± 0.2 89.5 ± 0.3 74.2 ± 0.3 91.7 ± 0.3 85.7
ETD [49] 81.0 91.7 97.9 93.3 79.5 95.0 89.7
LDAuCID 87.8 ± 1.4 99.1 ± 0.2 100 ± 0.0 99.8 ± 0.0 88.8 ± 1.0 99.5 ± 0.3 95.8

Table 2: Classification accuracy for UDA tasks for ImageCLEF-DA dataset.

Method A→C A→P A→R C→A C→P C→R P→A P→C P→R R→A R→C R→P Average
Source Only [9] 34.9 50.0 58.0 37.4 41.9 46.2 38.5 31.2 60.4 53.9 41.2 59.9 46.1

DANN [43] 45.6 59.3 70.1 47.0 58.5 60.9 46.1 43.7 68.5 63.2 51.8 76.8 57.6
CDAN [13] 49.0 69.3 74.5 55.4 66.0 68.4 55.6 48.3 75.9 68.4 55.4 80.5 63.9
DAN [14] 43.6 57.0 67.9 45.8 56.5 60.4 44.0 43.6 67.7 63.1 51.5 74.3 56.3
JAN [16] 45.9 61.2 68.9 50.4 59.7 61.0 45.8 43.4 70.3 63.9 52.4 76.8 58.3
DJT [23] 39.7 50.4 62.4 39.5 54.3 53.1 36.7 39.2 63.5 52.2 45.4 70.4 50.6

LDAuCID 48.3 67.4 74.1 48.7 61.9 63.8 49.6 42.1 71.3 60.3 47.6 76.6 59.4

Table 3: Classification accuracy for UDA tasks of Office-Home dataset.

Method A→C A→D A→W W→A W→D W→C D→A D→W D→C C→A C→W C→D Average
Source Only 84.6 81.1 75.6 79.8 98.3 79.6 84.6 96.8 80.5 92.4 84.2 87.7 85.4
DANN [43] 87.8 82.5 77.8 83.0 100 81.3 84.7 99.0 82.1 93.3 89.5 91.2 87.7
MMAN [51] 88.7 97.5 96.6 94.2 100 89.4 94.3 99.3 87.9 93.7 98.3 98.1 94.6
RevGrad [15] 85.7 89.2 90.8 93.8 98.7 86.9 90.6 98.3 83.7 92.8 88.1 87.9 88.9

DAN [14] 84.1 91.7 91.8 92.1 100 81.2 90.0 98.5 80.3 92.0 90.6 89.3 90.1
CORAL [52] 86.2 91.2 90.5 88.4 100 88.6 85.8 97.9 85.4 93.0 92.6 89.5 90.8
WDGRL [53] 87.0 93.7 89.5 93.7 100 89.4 91.7 97.9 90.2 93.5 91.6 94.7 92.7

LDAuCID 99.6 100.0 86.5 96.1 100 99.8 88.5 100.0 95.7 99.3 96.4 99.8 96.8

Table 4: Performance comparison for UDA tasks of Office-Caltech dataset.

each point represents one data point and each color represents one of the ten digit classes. Each row of
Figure 3 represents the data geometry at the embedding space at the end of time-step t. For example,
the second row shows data geometry after learning the SVHN and MNIST datasets. This means that
if we check the sub-figures vertically for each of the domains, i.e., a column of the figure, we can
inspect the effect of learning more tasks versus time. Checking all the columns, we see that upon
learning a task, the learned knowledge is retained when the model is adapted in the future, i.e., the
next bottom rows, because classes stay relatively separable. This stability suggests that catastrophic
forgetting has been continually mitigated when the model is updated. We can also see at the last row,
all the domains share the same distribution similar to the internally learned GMM distribution. This
observation suggests that our method successfully aligns the distributions to share the same internal
distribution. Finally and as an example, if we compare the distribution of the MNIST dataset in the
first row versus the second row, we see that as the result of domain adaptation, its distribution in the
embedding space becomes more similar to the SVHN dataset (source domain). We conclude that
Figure 3 empirically confirms the result that we could deduce analytically from Theorem 1.

Similar to most learning algorithms, setting up the proper values for the hyperparamters is important
for optimal performance. We have studied the effect of the values for the hyperparameters λ and τ
on the model performance for the binary UDA task S → M in Figure 3e and Figure 3f to suggest
how to tune these parameters for practical usage. We have visualized the average performance with a
dark curve. The lighter shaded region around the curve denotes the standard deviation. We observe in
Figure 3e that the value for the parameter λ does not have a significant effect on performance. This
observation is according to expectation because the ERM loss term L(·) in Eq. (3) is relatively small
prior to beginning of the alignment process as a result of pre-training on the source domain. In other
words, since the dominant term for optimization is the domain-alignment term in Eq. (3), careful
finetuning of the trade-off parameter λ is not necessary. We also observe in Figure 3f that when the
confidence parameter is τ ≈ 1, the model performance on the target domain improves. This accords
with our intuition because potential outlier GMM distribution samples cause label pollution which is
a challenge for domain alignment in UDA. From the results presented in this section, we can deduce
that our method is effective and the empirical observations support our theoretical analysis.
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(a) SVHN (b) MNIST (c) USPS (d) GMM (e) (f)

Figure 3: (a-d) UMAP visualization for the testing split of the domains in the UDA task S → M → U
and the fitted GMM at time-steps t = 0, 1, 2. Visualizations at each of the rows are computed after
learning the tth task prior to the time-step t+ 1. Enlarged version is included in the Appendix. (e-f)
Effect of the values for the hyperparameters λ and τ on model generalization in the target domain for
the binary UDA task S → M. (Best viewed in color and on screen.)

Imbalanced Dataset Nb = 50 Nb = 100
Time-step t = 0 t = 1 t = 2 Time-step t = 0 t = 1 t = 2 Time-step t = 0 t = 1 t = 2

S 89.8 84.8 80.2 S 92.3 83.6 82.0 S 93.3 83.6 83.1
M - 93.2 93.0 M - 94.2 95.6 M - 95.6 97.1
U - - 93.1 U - - 91.9 U - - 94.6

Table 5: Analytic experiments using the S → M → U digit recognition task.

We have provided additional controlled experiments on the S → M → U task in Table 5 to draw
better intuitions about our proposed algorithm. Since we observed that our algorithm is more effective
for balanced datasets, we first study the robustness of our algorithm with respect to data imbalance.
To this end, we introduced data imbalance for all domains in the S → M → U task by considering
that for digit i, only i+1

10 portion of the data points are available. We have reported the observed
performance in Table 5, where each row shows performance for each task at the end of learning period
for task t. We observe that despite reduced performance, our method still addresses catastrophic
forgetting and leads to improved performance in the target domains for this imbalanced dataset.

Finally, we note another unexplored aspect in our algorithm is the effect of Nb on performance as we
set its value arbitrarily. We set Nb = 10 in previous experiments because compared to the sizes of the
datasets, Nb would be very small. We studied effect of increasing Nb in Table 5 for Nb = 50 and
Nb = 100. As expected, we observe that using a larger buffer size leads to improvements. In practice,
the buffer size should be selected to be as large as possible given the hardware storage limitations.

7 Conclusions

We develop an algorithm for domain adaptation in a continual learning setting. The core assumption
is that when we train a neural classifier, the input distribution is mapped to an internal distribution, in
an embedding space modeled by a neural network hidden layer. Our method is based on consolidating
this internally learned distributional such that all learned tasks share a similar distribution in the
embedding space. As a result, the model generalizability is retained when new tasks are learned.
Additionally, catastrophic forgetting is mitigated using experience replay by storing and then replaying
the input samples that are more informative for estimating the internally learned distribution. We
used a simple approach to estimate the internal distribution but we foresee that better estimations
of the internal distribution can boost the continual learning performance. Future research includes
studying the effect the tasks’ order on continual learning performance and extensions to incremental
learning setting, where new classes can be learned beyond the initial training phase.
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