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1 Introduction

Fullerenes are cage-like carbon allotropes composed of atoms arranged in closed
polyhedral geometries with a combination of pentagonal and hexagonal faces.
This structure gives rise to diverse molecules (with Cgp being the most iconic)
and applications in photovoltaics, energy storage, drug delivery and photother-
apy [9,2]. Predicting the quantum properties of fullerenes is therefore crucial
for accelerating carbon-based materials discovery and biomedical applications.

While graph neural networks (GNNs) have achieved strong performance in
molecular property prediction [10,5,4], fullerenes pose unique challenges: uni-
form sp? hybridisation creates nearly identical local atomic environments, and
standard message passing neural networks (MPNNs) overlook their multi-scale
cage geometry. Informed by observed structure-property dependencies [6], we
propose a hierarchical message passing network that models atom-, face-, and
cage-level interactions, leveraging 5- and 6-fold symmetries for more expres-
sive and symmetry-aware representations. Our approach outperforms standard
MPNNSs on fullerene energy prediction, providing a principled geometric frame-
work for symmetric molecular systems that has potential for generalisation to
larger or more diverse nanoparticle, lattice, or carbon allotrope systems.

2 Method

Notations and Preliminaries: Let Gatom = (Vatom, Eatom) denote the atom-
level graph, where each node v; € Vatom represents a carbon atom (with spatial
coordinates x; € R?), and edges correspond to covalent bonds forming a 3-regular
graph. Let Gtace = (Vtace, Etace) denote the dual face-level graph, where each
node fr € Veace represents a pentagonal or hexagonal face, with edges defined
by shared bonds in G,tom- By Euler’s polyhedral theorem, all fullerenes contain
exactly 12 pentagons: Viace = Fpen U Fhex, With |Fpen| = 12. Formal definitions
of vertices, edges, coordinates, and associated features are summarised in Table 2
(Appendix A). Fig. 1 illustrates the atom—face dual hierarchy.

Model Details Our hierarchical message passing architecture consists of L
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Fig. 1. Highlighted Atom-level graph (left) and face-level dual graph (right).

layers, each performing three sequential operations that respect fullerene’s multi-
scale structure. Fig. 2 provides an overview.
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Fig. 2. Hierarchical message passing scheme. Different message passing networks are
denoted using dashed lines of different colours.

Level 1: Intra-Face Message Passing. We model ring structures on the
fullerene surface using hop-based message passing that respects cyclic symmetry.
Separate networks for pentagons (C5-MPNN) and hexagons (Cs-MPNN) use
hop-specific parameters to capture intra-ring interactions. This enables learning
of distinct patterns based on ring geometry in a single step.

At level I, atom features are summed to pool the corresponding face-level
representations hy, , where A(fy) denotes the set of atoms belonging to face fj:

h{) = POOL (n) | v; € A()) (1)

Level 2: Global Face-to-Face Processing. We capture cage-level interactions
through global face-to-face message passing. E(3)-invariant geometric features-
centroid distances and normal-vector angles-are computed between adjacent
faces and expanded via radial basis functions. Three specialised networks handle
distinct face-pair types (pentagon—pentagon, pentagon—hexagon, hexagon—hexagon),
allowing type-specific interaction learning. Face embeddings are then updated

by aggregating messages from neighbouring faces.
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Level 3: Face-to-Atom Distribution. Each atom belongs to multiple faces.
Face-level information is propagated back to atoms, combining local and global
structural context, for richer atomic representations.

h(+) = COMBINE | h{), € Y 2)

frvi€A(fr)

Energy Prediction. After L layers, atom features capture multi-scale geomet-
ric information. A final molecular energy prediction is obtained by aggregating
atomic representations and applying a MLP.

3 Experiments

We evaluate on the 2,487 neutral fullerenes from the Fullerene dataset [1], which
includes Deunsity functional tight binding (DFTB) relaxed structures and 7 quan-
tum properties. We focus on distortion energy, band gap, and Fermi energy (Er)
due to their relevance to stability and electronic behaviour.

We implement a 2-layer model with hidden dimension 128, using one intra-
face and three inter-face message passing steps per layer. Training uses AdamW
[7] (learning rate 10~*, weight decay 10~%), batch size 64, and early stopping
over 100 epochs (patience 10). Gradient clipping (max norm 1.0) is applied. The
model has 1-2M parameters, and the best checkpoint is selected based on vali-
dation performance.

Baselines: (la-b) 66 domain expert-defined global geometric features fit with
classical ML models - Random Forest (RF), artificial neural network (ANN); (2a-
d) standard MPNNs using atom- and face-level graphs with geometric inputs
(distance and angles) and (3) MEGNet [3], which represents state-of-the-art
molecule models which are also tractable on larger fullerenes.

Table 1. Model comparison for fullerene energy predictions.

Distortion E Er Band Gap

Model Input MAE R’ |MAE R’ |MAE R
(1a) Random Forest |Expert Tabular|[0.5187 0.95 |0.0595 0.60 {0.1334 0.86
(1b) ANN Expert Tabular||1.5916 0.66 [0.1490 —1.14/0.2363 0.60
(2a) MPNN Distance|Atom Graph 1.4212  0.69 |0.0839 0.22 |0.0461 0.68
(2b) MPNN Distance|Face Graph 2.1487 0.30 ]0.0848 0.19 |0.0453 0.70
(2c) MPNN Angular |Atom Graph |[2.0507 0.35 |0.0843 0.20 |0.0465 0.69
(2d) MPNN Angular |[Face Graph 1.9998 0.37 |0.0858 0.19 |0.0488 0.69
(3) MEGNet [Atom Graph [[2.8714 —0.08 [0.0934 0.00 [0.4087 -0.04

Ours [Atom+Face [[0.9303 0.82 [0.0791 0.37 [0.1614 0.79

Results: Table 1 reports mean average error (MAE) and R? scores, while Fig. 3
shows predicted vs. ground truth values. Our model outperforms all benchmarks
except for the domain expert-defined features. The improvement over standard
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atom-level MPNNs is achieved by capturing two key aspects: (1) ring symmetries
via hop-based intra-ring message passing; and (2) cage-level interactions through
face-to-face updates.
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Fig. 3. Predicted energies vs. ground truth. distortion energy (left), Fermi energy Er
(center), and band gap (right).

While our hierarchical GNN captures structural patterns critical for distor-
tion and band gap prediction, it struggles with low range values of Fr (as does
the MPNN), this is likely due to this property’s dependence on global electronic
structure. Some longer-range or global structural detail may be necessary for
accurate E'p prediction, or incorporating electronic structure representations,
such as orbital information or long-range electronic correlations. Notably, RF
models using hand-crafted global features is the strongest performing baseline,
highlighting the effectiveness of domain-informed descriptors. Our method offers
a geometry-aware alternative with better interpretability and generalisability for
symmetric molecular systems or repetitive lattice structures like fullerenes.

4 Conclusion

We propose a hierarchical message passing network exploiting fullerene’s multi-
scale structure that substantially outperforms standard MPNNs on 2,487 fullerene
structures. While hand-crafted features with RF remain the benchmark on accu-
racy, our work demonstrates that hierarchical architectures respecting C5 and Cy
ring symmetries are fundamentally better suited to highly symmetric molecular
systems-and crucially, our method is generalisable across polyhedral structures
without expensive quantum chemical pre-computation. This has direct impli-
cations for drug delivery and biomedical applications: efficient computational
property prediction on large fullerenes enables rapid virtual screening of biocom-
patible candidates. This is critical for designing functionalised fullerenes that are
promising therapeutic carriers with tunable optoelectronic and delivery proper-
ties for drug delivery, phototherapy, and diagnostics [2, 8]. This work establishes
principles for designing symmetry-aware GNNs applicable to carbon nanotubes,
nanoparticles, and other biologically relevant polyhedral systems, opening new
possibilities for materials discovery in medicine.
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Appendices

A Dual-level Representation

Table 2. Graph representations for fullerenes

Component Atom-level Face-level

Vertices {v; }Natom Fpen U Fhex (| Fpen| = 12)
Edges Covalent bonds Shared edges in Gatom
Positions  x; € R? (atomic coord.) cr € R? (face centers)
Node Radial distance from origin Face type, area,

Features Pentagon /hexagon membership radial distance from origin

Property  3-regular [Vtace| — |Erace| + [Vatom| = 2
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B Computational Efficiency and Practical Advantages

B.1 Training and Inference Time Complexity

Our hierarchical architecture exhibits linear time complexity per layer. Each
layer performs three sequential operations:

— Intra-face message passing: O(|Vace|)

— Inter-face message passing: O(|Viace|) with fixed message-passing steps (or
O(|[Viace|?) if a fully-connected dual graph is considered

— Face-to-atom distribution: O(|Vatom|)

Given the fullerene topology constrains that the structures are made up of
12 pentagons and (|Vatom|/2 — 10) hexagons, the overall complexity per layer is
O(|[Vatom|), linear in molecular size.

Empirically, on a single GPU (NVIDIA RTX 4090), training takes approx-
imately 10 minutes per epoch on the 2,487 fullerenes using the above hyper-
parameter setting. These times are competitive with standard 2-layer MPNN
baselines.

B.2 Feature Extraction Cost and Practical Advantages

A critical practical distinction emerges when accounting for feature prepara-
tion costs—an often-overlooked consideration in molecular machine learning
pipelines.

Tabular Baseline: The 66 hand-engineered features (extracted from a pool of
830 features) underlying the RF baseline are not "free"—they require extensive
domain expertise and specialised computation.

Our Hierarchical GNN: Face and atom initial features are pre-computed
during graph construction with linear complexity in molecular size, dominated
by adjacency matrix construction. On average, it takes 0.1 seconds per molecule
in the dataset.

B.3 Generalisation Capability and Transferability

Beyond computational accuracy and efficiency, our approach offers a critical
practical advantage: generalisability across polyhedral structures. The hierar-
chical architecture naturally transfers to unexplored carbon topologies (larger
fullerenes, carbon nanotubes, Goldberg polyhedra) without structural redesign
or re-training on domain-specific descriptors.

In contrast, the tabular features are fullerene-specific and cannot be trans-
ferred to other cage structures without extensive re-engineering of feature defi-
nitions and potentially additional quantum chemical calculations. For materials
discovery pipelines exploring diverse structural classes, this transferability elim-
inates the need for bespoke feature engineering at each new system, which is a
significant advantage for rapid materials screening in biomedical and nanotech-
nology applications.
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C Remaining challenges and future work

C.1 Addressing Fermi Energy Prediction

GNN-based methods require explicit electronic structure information to predict
Fermi energy accurately. Future work should incorporate: (1) orbital-level fea-
tures from quantum mechanical calculations, (2) long-range electronic interac-
tions beyond geometric adjacency, and (3) mechanisms to capture global charge
distributions. Additionally, analysing whether certain fullerene sizes are under-
represented in training may reveal data limitations versus architectural con-
straints.

C.2 Geometric Enhancements

Incorporating higher-order geometric information could improve performance:
(1) surface curvatures and local geometric descriptors, (2) explicit point group
symmetries through group-theoretic message passing, and (3) long-range pen-
tagon clustering effects—current model captures only adjacent face interactions,
but global pentagon distributions also influence cage stability.

C.3 Architecture Improvements

Equivariant architectures (SE(3) or E(3)-based) may better preserve 3D con-
straints. Attention mechanisms learning which geometric features matter for
each property could improve flexibility beyond hand-designed hop distances.
Hybrid models combining hierarchical message passing with learned electronic
descriptors may bridge geometric and electronic reasoning.

C.4 Generalisation

Extending to larger fullerenes, charge species, and other polyhedral molecules
(carbon nanotubes, MOFs) would assess generalisation.

C.5 Inverse Design Applications

Forward property prediction may insufficiently test hierarchical structure learn-
ing. Inverse design that generates structures with target properties inherently
requires simultaneous reasoning about local (ring stability) and global (pentagon
distribution) constraints, and would likely demonstrate hierarchical inductive bi-
ases more convincingly.



