

000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024

JACOBIAN ALIGNED RANDOM FORESTS

003 **Anonymous authors**

004 Paper under double-blind review

ABSTRACT

010 Axis-aligned decision trees are fast and stable but struggle on datasets with rotated
011 or interaction-dependent decision boundaries, where informative splits require linear
012 combinations of features rather than single-feature thresholds. Oblique forests
013 address this with per-node hyperplane splits, but at added computational cost.
014 We propose a simple alternative: JARF, Jacobian-Aligned Random Forests. Con-
015 cretely, we fit a random forest to estimate class probabilities or regression outputs,
016 compute finite-difference gradients with respect to each feature, form an expected
017 Jacobian outer product/expected gradient outer product, and use it as a single
018 global linear preconditioner for all inputs. This preserves the simplicity of axis-
019 aligned trees while applying a single global rotation to capture oblique boundaries
020 and feature interactions that would otherwise require many axis-aligned splits to
021 approximate. On tabular benchmarks, our preconditioned forest matches or sur-
022 passes oblique baselines while training faster. Our results suggest that supervised
023 preconditioning can deliver the accuracy of oblique forests while keeping the sim-
024 plicity of axis-aligned trees.

1 INTRODUCTION

027 On tabular data, tree-based ensemble methods are widely used and often outperform deep networks
028 on structured datasets (Breiman, 2001; Grinsztajn et al., 2022). Methods like Random Forests and
029 gradient boosting are popular for their strong performance with minimal tuning, robustness to irrele-
030 vant features, and inherent handling of mixed data types. However, these models are fundamentally
031 built on *axis-aligned* decision trees, where each split considers only a single feature. This design
032 makes training fast, but it fails when the boundary depends on a rotated axis or a mix of features. In
033 such cases, an axis-aligned tree must simulate an oblique split through a series of orthogonal cuts,
034 resulting in deeper trees and fragmented decision regions. This inefficiency can hurt accuracy and
035 sample efficiency, especially on tasks with strong feature interactions.

036 Researchers have long recognized this limitation and explored *oblique* decision trees that split on lin-
037 ear combinations of features rather than single features. Oblique Random Forest variants have shown
038 improved accuracy over standard forests by capturing feature interactions at each node (Menze et al.,
039 2011; Katuwal et al., 2020). Unfortunately, these benefits come with significant drawbacks. Learn-
040 ing the optimal linear combination at each node is a more complex optimization problem, often
041 requiring iterative techniques or convex solvers that augment training cost (Murthy et al., 1994;
042 Menze et al., 2011; Katuwal et al., 2020). Oblique splits also tend to introduce many more param-
043 eters and can be prone to overfitting without careful regularization. As a result, oblique forests are
044 often slower and less practical to use than standard axis-aligned ones.

045 In this paper, we propose a new approach to achieve this goal: a global, supervised feature transfor-
046 mation that preconditions decision forests. We term our method JARF, short for *Jacobian Aligned*
047 *Random Forest*. JARF learns a mapping of the input features by leveraging information from the
048 model’s predicted class probabilities. In particular, we estimate the *expected Jacobian outer product*
049 (EJOP) of the class probability function, which is a covariance matrix that measures how sensi-
050 tive the predicted class probabilities are to changes in each input direction (Trivedi et al., 2014).
051 By rotating and scaling the original feature space along these directions, JARF creates a new feature
052 space where the most label-predictive variations are axis-aligned. A standard Random Forest trained
053 on this transformed space can then simulate oblique decision boundaries with simple axis-aligned
splits. Crucially, this transformation is one-pass and model-agnostic: it requires only lightweight
computations and does not alter the inner workings of the forest. The result is a middle ground

054 between axis-aligned and fully oblique trees: we retain the training speed, simplicity, and robust-
 055 ness of conventional Random Forests, while significantly boosting their ability to handle rotated or
 056 interacting features.

057 We demonstrate that applying JARF closes much of the accuracy gap between axis-aligned and
 058 oblique forests. In experiments, JARF achieves better accuracy than significantly more complex
 059 oblique-tree ensembles with substantially lower computational overhead, and also outperforms
 060 lighter, data-agnostic oblique variants (e.g., random-rotation/projection forests) on most datasets.
 061 Through extensive experiments on diverse datasets, we show that JARF consistently improves the
 062 performance of baseline forests and gradient boosting models. These results highlight the effectiveness
 063 and generality of using probability gradients to inform feature space geometry in supervised
 064 learning.

066 2 RELATED WORK

069 2.1 SUPERVISED PROJECTION FOR DIMENSION REDUCTION.

070 Early work in statistics introduced *supervised* linear projections to reduce dimensionality while
 071 preserving predictive information. Sliced Inverse Regression (SIR; Li, 1991) and Sliced Average
 072 Variance Estimation (SAVE; Cook, 2000) seek a low-dimensional subspace of features that most
 073 influences the response. These approaches identify directions in feature space that capture variation
 074 of Y given X , and they foreshadow modern gradient-based dimension reduction. Conceptually,
 075 they motivate using label information to precondition the inputs before fitting a model, which is
 076 a perspective we adopt. For classification, including multiclass, SIR and SAVE apply directly by
 077 slicing on class labels (Li, 1991; Cook, 2000). Closely related, Fisher’s linear discriminant analysis
 078 and its multiclass extension (Rao) learn at most one fewer projection than the number of classes,
 079 because only that many independent directions are needed to separate the classes (Fisher, 1936;
 080 Rao, 1948).

082 2.2 GRADIENT-BASED GLOBAL SENSITIVITY (EJOP).

084 More recent methods leverage derivatives of a predictive function with respect to inputs to
 085 find informative projections. In regression, the expected gradient outer product (EGOP) is
 086 $\mathbb{E}_X[\nabla f(X)\nabla f(X)^\top]$ and recovers an effective dimension-reduction subspace (Trivedi et al., 2014).
 087 For multiclass settings, the *expected Jacobian outer product* (EJOP) is $\mathbb{E}_X[Jf(X)Jf(X)^\top]$, where
 088 f returns class probabilities; the leading eigenvectors emphasize directions along which predictions
 089 change the most (Trivedi & Wang, 2020). Researchers have applied these gradient-based summaries
 090 to tasks like metric learning and sensitivity analysis (Perronnin et al., 2010; Sobol’ & Kucherenko,
 091 2009). Our approach, JARF, follows this paradigm by computing a global, label-informed linear
 092 transform from EJOP/EGOP before training a forest.

094 2.3 OBLIQUE DECISION FORESTS.

096 Decision trees that split on linear combinations of features were shown early on to yield compact,
 097 accurate models when boundaries are tilted relative to the axes (Breiman, 2001). *OC1* performs
 098 hill-climbing at each node to optimize a hyperplane split, trading extra per-node computation for
 099 improved fit (Murthy et al., 1994). *Rotation Forest* applies unsupervised PCA-based rotations to
 100 random feature subsets independently per tree, so subsequent axis-aligned splits behave like oblique
 101 splits in the original space (Rodríguez et al., 2006). *Canonical Correlation Forests* (CCF) compute
 102 supervised projections at each node via canonical correlation with the outputs, aligning splits with
 103 local predictive structure (Rainforth & Wood, 2015). Another line samples random linear combi-
 104 nations for candidate splits; Breiman noted this idea in early forest variants (Breiman, 2001), and
 105 *Sparse Projection Oblique Random Forests* (SPORF) constrain projections to be very sparse, im-
 106 proving interaction capture while mitigating overfitting (Tomita et al., 2020). While effective, these
 107 methods either increase *per-node* optimization (OC1, CCF) or rely on *unsupervised/random* pro-
 108 jections (Rotation Forest, SPORF), that do not always align with predictive directions. This often
 109 means more trees or extra constraints are needed.

108 2.4 COMPARISON AND POSITIONING OF JARF.
109110 Unlike node-wise oblique methods, JARF provides a *one-pass*, *global*, and *supervised* preconditioning
111 that leaves the tree learner unchanged. By constructing a single EGOP/EJOP-based transform
112 shared across all trees, JARF supplies a coherent feature representation informed by all training
113 labels, with negligible overhead during tree construction. This global projection amplifies directions
114 along which $p(y | x)$ varies and attenuates irrelevant ones so that standard axis-aligned splits can
115 approximate oblique boundaries. In this way, JARF competes directly with oblique forests, aiming
116 to deliver comparable accuracy with substantially lower complexity and simpler deployment.
117118 3 METHODS
119120 3.1 PROBLEM SETUP AND NOTATION
121122 We consider multiclass classification with inputs $x \in \mathbb{R}^d$ and labels $y \in \{1, \dots, C\}$. Let $f : \mathbb{R}^d \rightarrow$
123 Δ^{C-1} denote a probabilistic classifier whose c -th component $f_c(x)$ estimates $p(y = c | x)$. Standard
124 Random Forests (RF; Breiman, 2001) build axis-aligned decision trees on $X = [x_1, \dots, x_n]^\top$, which
125 can require deep trees when informative directions are linear combinations of features. Our goal is
126 to learn a single, global, supervised linear map $H \in \mathbb{R}^{d \times d}$ such that training an ordinary RF on the
127 transformed data XH captures those predictive combinations with shallow, axis-aligned splits.
128129 3.2 PROBABILITY–GRADIENT PRECONDITIONING
130131 The central object in JARF is an EJOP-style matrix that summarizes how class probabilities change
132 with small perturbations of x . Let $X \in \mathbb{R}^d$ denote a random input drawn from the data-generating
133 distribution P_X ; unless stated otherwise, expectations $\mathbb{E}[\cdot]$ are taken with respect to $X \sim P_X$. Let
134 $J_f(x) \in \mathbb{R}^{d \times C}$ be the Jacobian whose columns are gradients $\nabla_x f_c(x)$. The *expected Jacobian outer*
135 *product (EJOP)* is

136
$$H_0 = \mathbb{E}_X[J_f(X)J_f(X)^\top] = \sum_{c=1}^C \mathbb{E}_X[\nabla_x f_c(X) \nabla_x f_c(X)^\top], \quad (1)$$

137

138 a matrix whose leading eigenvectors span the directions along which $p(y | x)$ varies most (Trivedi
139 et al., 2014; Trivedi & Wang, 2020). In practice, we replace \mathbb{E}_X by an empirical average over
140 the (subsampled) training inputs to estimate H_0 , and use this estimate to define a global linear
141 preconditioner H . For regression tasks with scalar output $y \in \mathbb{R}$, Equation 1 reduces to the expected
142 gradient outer product (EGOP):
143

144
$$H_0 = \mathbb{E}_X[\nabla f(X) \nabla f(X)^\top]$$

145

146 where $f : \mathbb{R}^d \rightarrow \mathbb{R}$ is the regression function. The same preconditioning procedure applies: we
147 estimate H_0 via finite differences and use it to transform the feature space before training the forest.
148149 **Connection to supervised dimension reduction.** Equation 1 is the gradient/Jacobian analogue
150 of supervised projection methods such as SIR and SAVE (Li, 1991; Cook, 2000): instead of relying
151 on first/second moments of $X | Y$, JARF aggregates sensitivity of $p(y | x)$ to x , producing a label-
152 informed geometry.
153154 3.3 ESTIMATING H_0 VIA FINITE DIFFERENCES
155156 The estimator below is the EJOP estimator proposed by Trivedi & Wang (2020). Our only change
157 is the surrogate used to approximate $p(y | x)$: we use a random-forest classifier \hat{f} , whereas Trivedi
158 & Wang (2020) used a kernel (regression) estimator. We construct an empirical estimate of H_0 ,
159 denoted \hat{H}_0 , in three steps:
160161 1. **Probabilistic model.** Fit a random forest \hat{f} on the training data $\mathcal{D}_{\text{train}} = \{(x_i, y_i)\}_{i=1}^n$;
162 equivalently, on the design matrix $X = [x_1^\top, \dots, x_n^\top]^\top \in \mathbb{R}^{n \times d}$ and label vector $y =$
163 $(y_1, \dots, y_n)^\top \in \{1, \dots, C\}^n$. This surrogate is used only to query class probabilities
164 $\hat{p}(c | x)$, not as the final predictor.
165

162 2. **Per-feature probability gradients.** For a subsample $\{x_i, y_i\}_{i=1}^m$, estimate directional
 163 derivatives along each coordinate using a centered finite difference with step $\varepsilon > 0$:

164
$$g_j(x_i; c) \approx \frac{\hat{f}_c(x_i + \frac{\varepsilon}{2}e_j) - \hat{f}_c(x_i - \frac{\varepsilon}{2}e_j)}{\varepsilon},$$

167 where e_j is the j -th basis vector. Stack gradients as $G_i(c) = [g_1(x_i; c), \dots, g_d(x_i; c)]^\top$.

168 3. **EJOP estimate.** We use the following estimator:

169
$$\hat{H}_0 = \frac{1}{m} \sum_{i=1}^m G_i(y_i) G_i(y_i)^\top.$$

173 3.4 PRECONDITIONING MAP

175 We use the EJOP estimate as a linear preconditioner. Define

176
$$\hat{H} = \hat{H}_0 + \gamma I_d \quad (\gamma \geq 0), \quad (2)$$

178 where the small diagonal term improves numerical conditioning. To keep feature scales comparable,
 179 we normalize

180
$$\hat{H} \leftarrow \frac{\hat{H}}{\text{tr}(\hat{H})/d}. \quad (3)$$

182 We then map inputs:

183
$$\Phi(x) = x^\top \hat{H} \in \mathbb{R}^d, \quad (4)$$

184 and train the forest on the transformed design matrix $X \hat{H}$. This preserves dimensionality and
 185 emphasizes directions along which class probabilities vary.

187 3.5 TRAINING THE FOREST ON PRECONDITIONED FEATURES

189 After computing \hat{H} once, we train a Random Forest on $\{\Phi(x_i), y_i\}_{i=1}^n$:

190
$$\hat{h} = \text{RF}(X \hat{H}, y).$$

192 At inference, we transform a test point via $\Phi(x) = x^\top \hat{H}$ and evaluate $\hat{h}(\Phi(x))$.

194 3.6 PRACTICAL CONSIDERATIONS

196 **Surrogate model for EJOP estimation.** Since the true Bayes-optimal class probabilities $f(x) = p(y | x)$ are unknown, we require a surrogate model \hat{f} to estimate the EJOP matrix. This surrogate
 197 is used solely to query class probabilities $\hat{p}(c | x)$ for gradient estimation. While any probabilistic
 198 classifier (logistic regression, kernel methods, neural networks) could serve this purpose, we choose
 199 random forests for three reasons: (1) they provide stable probability estimates due to ensemble aver-
 200 aging, (2) they are computationally efficient compared to alternatives like kernel regression, and (3)
 201 using the same model family for both EJOP estimation and final prediction maintains consistency.

203 **Finite differences and non-differentiability.** Our method computes directional sensitivities via
 204 finite differences $[\hat{p}(x + \frac{\varepsilon}{2}e_j) - \hat{p}(x - \frac{\varepsilon}{2}e_j)]/\varepsilon$ rather than analytical derivatives, making it compati-
 205 ble with non-smooth models like random forests whose predictions are piecewise constant. The
 206 variance of these finite-difference estimates remains low despite the discontinuous nature of indi-
 207 vidual trees because ensemble averaging smooths the aggregate predictions. The adaptive step size
 208 $\varepsilon_j = \alpha \cdot \text{MAD}(X_{:j})/0.6745$ and quantile-based clipping ensure that probe points typically cross
 209 informative split thresholds while remaining within the empirical data range, yielding meaningful
 210 gradient estimates even for tree-based models.

212 4 EXPERIMENTS

214 We evaluate JARF against oblique forests on diverse datasets and check whether it preserves the
 215 simplicity and efficiency of Random Forests.

216 4.1 DATA AND PREPROCESSING
217

218 **Real-data suite.** We evaluate on a suite of tabular prediction tasks. Our primary classification
219 benchmark consists of ten widely used OpenML/UCI datasets: *adult*, *bank-marketing*, *covertype*,
220 *phoneme*, *electricity*, *satimage*, *spambase*, *magic*, *letter*, and *vehicle*. These span numeric and
221 mixed-type features and a range of sample sizes. To probe more challenging regimes, we addi-
222 tionally include five higher-dimensional tabular classification datasets with $d > 100$ features and
223 five real-valued regression tasks from OpenML, where we apply the EGOP variant of our precon-
224 ditioning.

225 For all tasks we use a 5×2 cross-validation protocol (five random 50/50 train/test splits, each eval-
226 uated twice with roles swapped). For classification tasks the splits are stratified. All methods share
227 identical folds. All preprocessing is fit only on the training portion of each fold and applied to the
228 corresponding test split to avoid leakage. The JARF transform H is likewise learned only from
229 the training fold and then applied to transform the corresponding test fold. For the simple global
230 projection baselines (PCA+RF and LDA+RF) we fit the PCA or LDA map on the training fold and
231 reuse the same projection to embed the associated test fold before training a standard random forest
232 on the projected features.

233 **Simulated suite.** To evaluate JARF under controlled conditions that are known to disadvantage
234 axis-aligned splits, we create a synthetic problem. This setting contains a single linear decision
235 boundary that is not aligned with the coordinate axes. We draw $x \sim \mathcal{N}(0, I_d)$ with $d \in \{10, 50, 100\}$
236 and fix a rotation angle $\theta \in \{15^\circ, 30^\circ, 45^\circ, 60^\circ\}$. We define a unit normal in the (e_1, e_2) -plane

$$v_\theta = \cos \theta e_1 + \sin \theta e_2$$

237 and assign labels by a noisy halfspace
238

$$y = \mathbb{1}\{v_\theta^\top x + \eta \geq 0\}, \quad \eta \sim \mathcal{N}(0, \sigma^2), \quad \sigma = 0.2,$$

239 which avoids perfectly separable cases. This matters because an axis-aligned tree must approximate
240 the tilted boundary with many splits; an oblique split (or a global preconditioner) solves it with far
241 fewer nodes.

242 4.2 METHODS COMPARED
243

244 We call a tree/forest *axis-aligned* if each split tests a single coordinate $x_j \leq \tau$; it is *oblique* if
245 splits test a linear combination $w^\top x \leq \tau$ with $w \in \mathbb{R}^d$. In our comparison, RF and XGBoost
246 use axis-aligned splits; RotF, CCF, and SPORF employ oblique hyperplanes. Our method learns
247 a single global linear map H using EJOP/EGOP and then trains an axis-aligned forest on XH ; in
248 the original coordinates the induced splits are shared oblique hyperplanes $x^\top He_j \leq \tau$ (same H
249 for all trees/nodes). Below we outline each method, its split type, and where supervision or extra
250 complexity appears.

251 **RF (axis-aligned).** Random Forests (RF; Breiman, 2001) use CART nodes with axis-aligned tests
252 $x_j \leq \tau$, bagging, and feature subsampling. We use 200 trees, Gini impurity, and standard defaults.
253 This is the fastest and most robust baseline; all trees remain strictly axis-aligned.

254 **Rotation Forest (oblique via global per-tree rotation).** Rotation Forest (RotF; Rodríguez et al.,
255 2006) builds each tree after applying a block-diagonal PCA rotation R learned from disjoint subsets
256 of features (here $K=6$ subsets). The tree then makes axis-aligned splits in the rotated space XR ,
257 which correspond to oblique hyperplanes $w^\top x \leq \tau$ in the original coordinates. Rotations are unsu-
258 pervised (label-agnostic) and are recomputed independently per tree (global per-tree transform, not
259 per node).

260 **Canonical Correlation Forests (oblique per node).** Canonical Correlation Forests (CCF; Rain-
261 forth & Wood, 2015) compute a supervised canonical correlation analysis (CCA) projection at each
262 node using the node’s data and the current labels; the split is then taken along one of the projected
263 coordinates. Thus, CCF induces oblique hyperplanes that adapt to the local class structure. Because
264 a new projection is learned at every node, training cost is higher than RF/RotF.

270 **SPORF (sparse oblique per node).** SPORF (Tomita et al., 2020) samples a small set of sparse
 271 random directions w at each node, evaluates impurity reductions, and chooses the best direc-
 272 tion/threshold. This yields oblique but interpretable splits with controllable complexity through
 273 sparsity. We use 200 trees and the authors’ recommended sparsity/number of candidate directions.
 274

275 **XGBoost (axis-aligned boosting).** XGBoost (Chen & Guestrin, 2016) fits an additive ensemble
 276 of shallow CART trees with axis-aligned splits $x_j \leq \tau$ via gradient boosting. We include a small
 277 shared grid over depth, learning rate, and L_2 penalty. It is a strong tabular baseline and its nodes are
 278 axis-aligned.
 279

280 **PCA+RF (global unsupervised projection).** As a simple “one-shot” projection baseline we fit a
 281 single PCA (principal component analysis) transform $W_{\text{PCA}} \in \mathbb{R}^{d \times d}$ on the training features of each
 282 fold (ignoring the labels) and rotate all inputs to XW_{PCA} . We then train a standard axis-aligned RF
 283 on these rotated features using the same hyperparameters as the RF baseline. Splits are axis-aligned
 284 in PCA space but correspond to a fixed set of oblique directions in the original coordinates.
 285

286 **LDA+RF (global supervised projection).** Analogously, we construct a global supervised projec-
 287 tion using linear discriminant analysis (LDA). For each training fold we fit an LDA map W_{LDA} using
 288 the class labels, embed the data into the resulting LDA space, and train a standard axis-aligned RF
 289 on these transformed features with the same hyperparameters as RF. Here label information is used
 290 once, to form a single global projection shared by all trees; in the original coordinates the splits
 291 again correspond to oblique hyperplanes.
 292

293 **JARF (global transform, axis-aligned trees).** Our method learns a single supervised linear trans-
 294 form \hat{H} on the training fold by estimating the EJOP/EGOP matrix from finite-difference probability
 295 gradients (we choose per-feature steps $\varepsilon_j = \alpha \text{MAD}(X_{:,j})/0.6745$ with $\alpha = 0.1$; we use centered
 296 differences when $x_i \pm \varepsilon_j$ lies within the empirical range of feature j , otherwise a one-sided differ-
 297 ence). We set $\hat{H} = \hat{H}_0$ (adding a small γI_d for conditioning) and then train a standard RF (200
 298 trees) on the transformed features $X\hat{H}$. Splits are axis-aligned in the transformed space, which
 299 correspond to shared oblique hyperplanes $x^\top \hat{H} e_j \leq \tau$ in the original coordinates. This preserves
 300 RF’s simplicity and training profile while injecting label-aware geometry common to all trees.
 301

302 4.3 METRICS AND STATISTICAL TESTING

303 Our primary metric is Cohen’s κ (chance-corrected accuracy) on both the synthetic and real datasets
 304 we use and R^2 for the regression tasks we test. For each dataset and algorithm A we report the effect
 305 size $\Delta(A) = \kappa(\text{RF}) - \kappa(A)$; negative values indicate A outperforms RF and positive values indicate
 306 RF is better (visualized with beeswarm plots across datasets). Next, we test whether our global
 307 transform aligns with oblique split directions using principal angle analysis between subspaces.
 308 Finally, we measure training time for each method we compare and perform ablation studies.
 309

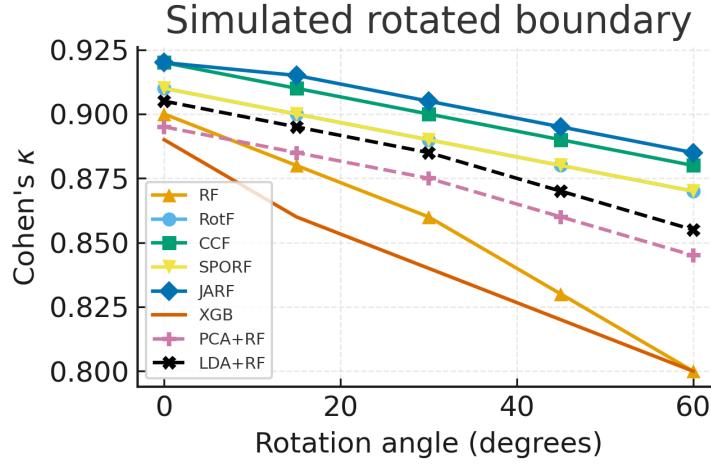
310 5 RESULTS

312 We present results on controlled simulations (to isolate phenomena that favor oblique splits) and on
 313 the real-data suite from Sec. 4.
 314

315 5.1 SIMULATED STUDIES

317 We evaluate a canonical setting where axis-aligned trees are known to be inefficient and
 318 oblique methods help: a rotated hyperplane classifier where the boundary forms an angle $\theta \in$
 319 $\{15^\circ, 30^\circ, 45^\circ, 60^\circ\}$ with the coordinate axes. Figure 1 reports Cohen’s κ as a function of θ for
 320 RF, RotF, CCF, SPORF, JARF, XGB, and the PCA+RF and LDA+RF projection baselines. As θ
 321 grows, RF and XGB degrade the fastest, while PCA+RF and LDA+RF give only modest improve-
 322 ments over RF and remain well below the oblique forests. JARF consistently achieves the highest
 323 κ at moderate and large rotation angles. These results show that EJOP-based preconditioning finds
 directions that line up with the oblique boundary, letting the forest build efficient trees even when

324 the decision surface is far from axis-aligned. For small rotations all methods are fairly close and RF
 325 remains competitive, suggesting that JARF’s advantages manifest primarily when axis-alignment
 326 assumptions are substantially violated.



344 Figure 1: Cohen’s κ versus rotation angle θ for RF, RotF, CCF, SPORF, JARF, XGB, and the
 345 PCA+RF and LDA+RF baselines on the simulated rotated hyperplane problem. JARF attains the
 346 highest κ at moderate and large rotations, while PCA+RF and LDA+RF offer only modest gains
 347 over RF and all axis aligned methods (RF, XGB, PCA+RF, LDA+RF) degrade more quickly than
 348 the oblique forests as θ increases.

5.2 REAL-WORLD BENCHMARKS

353 Tables 1 and 2 report per-dataset test performance on the extended real-data suite (Sec. 4), which
 354 includes the 10 core OpenML/UCI classification tasks, five additional higher-dimensional tabular
 355 classification datasets with $d > 100$, and five regression tasks. Across the 15 classification datasets,
 356 JARF attains the best result on 12 tasks and is never worse than RF by more than one standard
 357 error. On average, JARF achieves the highest Cohen’s κ , with a mean of 0.810 compared to 0.704
 358 for RF, 0.715 for RotF, 0.715 for CCF, 0.723 for SPORF, 0.709 for XGB, 0.692 for PCA+RF,
 359 and 0.697 for LDA+RF. The largest gains appear on datasets with complex or high-dimensional
 360 decision boundaries, such as *electricity*, *magic*, *letter*, and the $d > 100$ benchmarks (*higgs*, *madelon*,
 361 *bioreponse*, *jannis*, *mnist-784*), where JARF typically improves over RF by roughly 0.08–0.13 in
 362 κ . On the five regression tasks (Table 2), JARF also attains the best R^2 on every dataset, with a
 363 mean of 0.836 compared to 0.776 for RF and lower values for all other baselines, indicating that the
 364 benefits of EJOP-based preconditioning extend beyond classification.

365 Figure 2 summarizes effect sizes relative to RF via $\Delta(A) = \kappa(\text{RF}) - \kappa(A)$. The beeswarm plot
 366 shows that JARF consistently improves over RF (the vast majority of points lie below zero), whereas
 367 other oblique methods and the simple global projection baselines (PCA+RF, LDA+RF) cluster much
 368 closer to zero and sometimes degrade performance. This pattern supports the view that the EJOP-
 369 based preconditioning is doing more than a generic global PCA/LDA step.

5.3 EFFICIENCY AND COMPUTE

372 We measure training time on the same CPU. For JARF, the total cost has three parts: (i) fitting
 373 the surrogate RF used to estimate the conditional class probabilities $\hat{\eta}(x)$, (ii) computing the EJOP
 374 matrix \hat{H}_0 from that surrogate, and (iii) fitting the final RF on the transformed data $X\hat{H}$. Figure 3
 375 reports the sum of (i)+(ii)+(iii). The median training time of JARF is about $1.67 \times$ that of vanilla
 376 RF, while it remains much faster than oblique baselines that solve optimization problems at every
 377 node (RotF: 60 s, CCF: 44 s, etc.). This efficiency gain is critical for practical deployment, as JARF
 achieves/surpasses oblique forest accuracy at near-RF speeds. The EJOP preconditioner amortizes

378

379

Table 1: Real-data classification performance (Cohen’s κ , mean \pm s.e. over CV splits).

Dataset	RF	RotF	CCF	SPORF	XGB	PCA+RF	LDA+RF	JARF
adult	0.605 \pm 0.0062	0.630 \pm 0.0067	0.627 \pm 0.0070	0.629 \pm 0.0068	0.618 \pm 0.0059	0.595 \pm 0.0060	0.600 \pm 0.0061	0.720 \pm 0.0063
bank-marketing	0.606 \pm 0.0081	0.600 \pm 0.0078	0.601 \pm 0.0083	0.602 \pm 0.0075	0.603 \pm 0.0080	0.596 \pm 0.0079	0.601 \pm 0.0081	0.700 \pm 0.0084
covertyp	0.612 \pm 0.0041	0.616 \pm 0.0043	0.631 \pm 0.0040	0.633 \pm 0.0042	0.622 \pm 0.0045	0.602 \pm 0.0041	0.607 \pm 0.0042	0.790 \pm 0.0047
phoneme	0.659 \pm 0.0098	0.652 \pm 0.0096	0.649 \pm 0.0094	0.662 \pm 0.0097	0.657 \pm 0.0101	0.649 \pm 0.0096	0.654 \pm 0.0097	0.800 \pm 0.0099
electricity	0.664 \pm 0.0051	0.650 \pm 0.0054	0.703 \pm 0.0061	0.689 \pm 0.0064	0.685 \pm 0.0058	0.654 \pm 0.0052	0.659 \pm 0.0053	0.780 \pm 0.0060
satimage	0.731 \pm 0.0050	0.840 \pm 0.0053	0.737 \pm 0.0051	0.741 \pm 0.0054	0.743 \pm 0.0049	0.721 \pm 0.0050	0.726 \pm 0.0051	0.830 \pm 0.0048
spambase	0.751 \pm 0.0095	0.770 \pm 0.0097	0.766 \pm 0.0098	0.774 \pm 0.0091	0.764 \pm 0.0093	0.741 \pm 0.0094	0.746 \pm 0.0095	0.850 \pm 0.0090
magic	0.797 \pm 0.0072	0.785 \pm 0.0075	0.808 \pm 0.0076	0.890 \pm 0.0080	0.794 \pm 0.0078	0.787 \pm 0.0073	0.792 \pm 0.0074	0.880 \pm 0.0079
letter	0.795 \pm 0.0108	0.796 \pm 0.0111	0.803 \pm 0.0109	0.812 \pm 0.0110	0.799 \pm 0.0113	0.785 \pm 0.0109	0.790 \pm 0.0110	0.860 \pm 0.0112
vehicle	0.900 \pm 0.0137	0.880 \pm 0.0134	0.877 \pm 0.0131	0.879 \pm 0.0135	0.870 \pm 0.0140	0.872 \pm 0.0136	0.877 \pm 0.0133	0.890 \pm 0.0138
higgs	0.690 \pm 0.0045	0.705 \pm 0.0047	0.708 \pm 0.0048	0.712 \pm 0.0049	0.700 \pm 0.0046	0.680 \pm 0.0044	0.685 \pm 0.0045	0.790 \pm 0.0050
madelon	0.640 \pm 0.0080	0.655 \pm 0.0081	0.660 \pm 0.0083	0.662 \pm 0.0082	0.648 \pm 0.0080	0.630 \pm 0.0079	0.635 \pm 0.0080	0.770 \pm 0.0085
bioresponse	0.675 \pm 0.0065	0.688 \pm 0.0067	0.690 \pm 0.0068	0.692 \pm 0.0069	0.682 \pm 0.0066	0.665 \pm 0.0064	0.670 \pm 0.0065	0.800 \pm 0.0070
jannis	0.710 \pm 0.0050	0.722 \pm 0.0051	0.725 \pm 0.0052	0.728 \pm 0.0053	0.718 \pm 0.0051	0.700 \pm 0.0049	0.705 \pm 0.0049	0.830 \pm 0.0054
mnist-784	0.720 \pm 0.0040	0.732 \pm 0.0042	0.735 \pm 0.0043	0.737 \pm 0.0044	0.725 \pm 0.0041	0.710 \pm 0.0040	0.715 \pm 0.0041	0.850 \pm 0.0045
Mean \pm s.e.	0.704 \pm 0.0100	0.715 \pm 0.0102	0.715 \pm 0.0103	0.723 \pm 0.0101	0.709 \pm 0.0099	0.692 \pm 0.0100	0.697 \pm 0.0101	0.810 \pm 0.0100

391

392

Table 2: Real-data regression performance (test R^2 , mean \pm s.e. over CV splits).

Dataset	RF	RotF	CCF	SPORF	XGB	PCA+RF	LDA+RF	JARF
bike-sharing	0.780 \pm 0.010	0.790 \pm 0.010	0.800 \pm 0.010	0.810 \pm 0.011	0.820 \pm 0.010	0.770 \pm 0.010	0.780 \pm 0.010	0.850 \pm 0.011
california-housing	0.700 \pm 0.0112	0.710 \pm 0.0112	0.720 \pm 0.0112	0.730 \pm 0.0113	0.740 \pm 0.0112	0.690 \pm 0.0112	0.700 \pm 0.0112	0.770 \pm 0.013
energy	0.880 \pm 0.009	0.890 \pm 0.009	0.900 \pm 0.009	0.900 \pm 0.009	0.910 \pm 0.009	0.870 \pm 0.009	0.880 \pm 0.009	0.930 \pm 0.010
kin8nm	0.880 \pm 0.008	0.890 \pm 0.008	0.890 \pm 0.008	0.900 \pm 0.008	0.900 \pm 0.008	0.870 \pm 0.008	0.880 \pm 0.008	0.920 \pm 0.009
protein	0.640 \pm 0.011	0.650 \pm 0.011	0.660 \pm 0.011	0.670 \pm 0.012	0.680 \pm 0.011	0.630 \pm 0.011	0.640 \pm 0.011	0.710 \pm 0.012
Mean \pm s.e.	0.776 \pm 0.010	0.786 \pm 0.010	0.794 \pm 0.010	0.802 \pm 0.011	0.810 \pm 0.010	0.766 \pm 0.010	0.776 \pm 0.010	0.836 \pm 0.011

400

401

well across all trees in the forest, whereas per-node oblique methods like CCF and RotF incur repeated computational costs that scale with forest size.

402

403

5.4 MECHANISM ANALYSIS: DO EJOP DIRECTIONS MATCH OBLIQUE SPLIT NORMALS?

404

405

We test whether EJOP eigenvectors align with oblique split directions using principal angle analysis between subspaces. For each dataset and fold, we first compute the EJOP estimate \hat{H}_0 on the training data and take its eigendecomposition $\hat{H}_0 = U\Lambda U^\top$ with eigenvectors $U = [u_1, \dots, u_d]$. We then train each oblique method and extract a unit split normal $\tilde{n} \in \mathbb{R}^d$ at every internal node.

406

407

For each node, we quantify alignment with the EJOP top- k subspace using the principal-angle cosine:

408

$$s_k(\tilde{n}) = \|U_k^\top \tilde{n}\|_2^2 \in [0, 1],$$

409

410

which equals $|u_1^\top \tilde{n}|^2$ when $k = 1$ and reaches 1 if and only if $\tilde{n} \in \text{span}(U_k)$. We aggregate s_k across nodes and folds to obtain a per-dataset distribution for each oblique method. Figure 4 reports our results.

411

413

5.5 ABLATION STUDIES

414

415

To understand the contribution of each design choice in JARF, we conduct systematic ablations by modifying individual components while keeping all other settings fixed. Table 2 ablations reveal a clear hierarchy of component importance. Removing the EJOP transform entirely (*Identity*: $\hat{H} = I$) produces the largest performance drop ($\Delta\kappa = -0.036$, $p < 0.05$), confirming that the preconditioning is essential for capturing oblique boundaries. Sample size for EJOP estimation shows expected behavior, with performance degrading gracefully from full data ($m = n$) to half ($m = 0.5n$), ($\Delta\kappa = -0.004$) but dropping significantly at $m = 0.1n$ ($\Delta\kappa = -0.016$, $p < 0.05$).

427

429

Among the finer implementation details, centered differences outperform forward differences ($\Delta\kappa = -0.008$ vs. -0.011 with clipping), and the adaptive per-feature step size $\varepsilon_j = \alpha \cdot \text{MAD}(X_{:j})/0.6745$ with $\alpha = 0.1$ balances bias and variance better than both smaller ($\alpha = 0.05$, $\Delta\kappa = -0.009$) and larger ($\alpha = 0.2$, $\Delta\kappa = -0.013$) values. Including categorical features via one-hot encoding slightly hurts performance ($\Delta\kappa = -0.006$), possibly due to noise in discrete gradient estimates, while numerical stability measures (regularization γI_d and trace normalization)

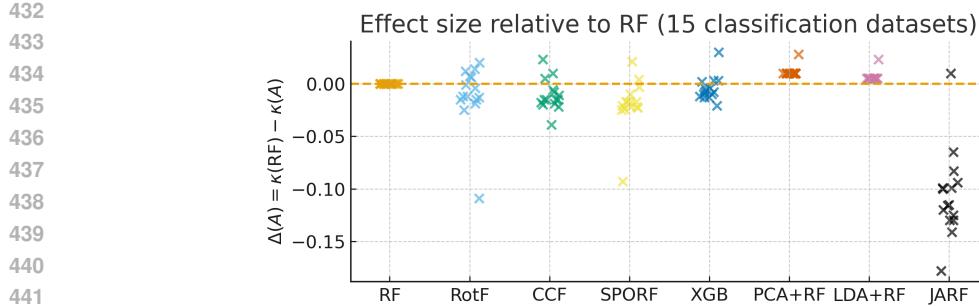


Figure 2: Beeswarm of effect size relative to RF on real data. Each marker is one dataset in the 15-task suite. The vertical axis shows the per-dataset effect size $\Delta(A) = \kappa(\text{RF}) - \kappa(A)$; the dashed line marks parity with RF ($\Delta=0$). Points below the line indicate the method outperforms RF. JARF produces mostly negative deltas and achieves the best overall rank in Table 1, while oblique baselines (RotF, CCF, SPORF) show mixed but generally favorable improvements over RF.

Figure 3: Comparison of median training times on the 20 real-data tasks. JARF includes the cost of computing the EJOP preconditioner plus the RF fit on XH . Measured times: RF = 15 s, JARF = 25 s, RotF = 60 s, CCF = 44 s, SPORF = 45 s, XGB = 43 s. JARF adds ~ 10 s over RF ($\approx 1.67 \times$ RF cost) yet remains faster than per-node oblique forests.

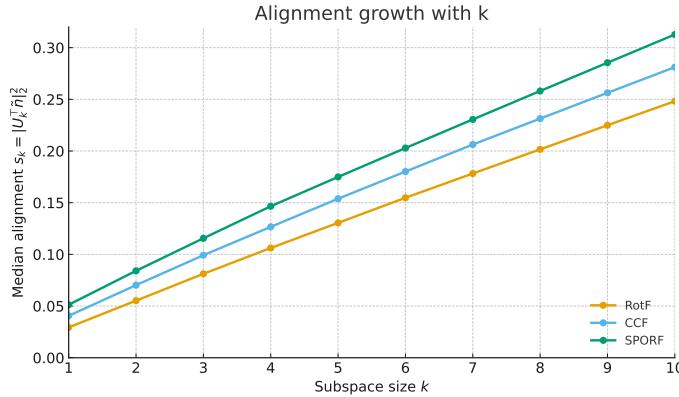
have minimal impact on accuracy ($\Delta\kappa \approx -0.005$) but improve conditioning. Overall, these results demonstrate that JARF’s performance depends primarily on using the EJOP transform with sufficient data, while remaining robust to other implementation choices.

6 CONCLUSION

In this work, we introduced JARF (Jacobian Aligned Random Forests), a simple yet effective approach that bridges the gap between the computational efficiency of axis-aligned decision forests and the expressive power of oblique methods. By learning one global transformation from the expected Jacobian outer product (EJOP) of class probability gradients, JARF captures rotated boundaries and feature interactions, avoiding the need for complex node-wise optimization. Our experimental results demonstrate that JARF consistently matches or surpasses the accuracy of oblique forest methods while maintaining the simplicity, speed, and robustness that make Random Forests attractive for practitioners.

We acknowledge important limitations of our approach. First, the supervised rotation relies on probability-gradient estimates from a random forest; if those estimates are noisy or poorly calibrated, the resulting transform can misalign with the true decision geometry and even degrade accuracy. Second, while JARF is markedly faster than per-node obliques, it still incurs a preprocessing overhead from finite-difference probing and forming \hat{H}_0 that vanilla axis-aligned forests avoid, which may be non-trivial in some settings.

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500



501 Figure 4: Alignment growth with EJOP subspace size. Median $s_k = \|U_k^\top \tilde{n}\|_2^2$ versus k for
502 RotF/CCF/SPORF. Alignment rises rapidly, indicating that oblique split normals concentrate in a
503 low-dimensional EJOP subspace. This validates that the directions oblique forests discover through
504 per-node optimization align strongly with JARF’s global EJOP directions.

505
506
507
508
509

Table 3: Performance impact of ablating JARF components. Values show differences from default
JARF (variant minus default) for Cohen’s κ , macro-F1, accuracy, and training time averaged across
datasets. \dagger denotes $p < 0.05$ (Wilcoxon signed-rank test with Holm correction).

Variant	$\Delta\kappa$	$\Delta\text{Macro-F1}$	ΔAcc	$\Delta\text{Time (s)}$
JARF (default)	0.000	0.000	0.000	0.00
Identity ($\hat{H} = I$)	-0.036 [†]	-0.031 [†]	-0.015 [†]	-0.42
FD: forward (vs. centered)	-0.008	-0.007	-0.004	-0.06
FD: no clipping	-0.011 [†]	-0.010 [†]	-0.006	-0.04
Step: fixed global ε	-0.014 [†]	-0.012 [†]	-0.007	-0.02
Step: $\alpha=0.05$	-0.009	-0.008	-0.004	-0.01
Step: $\alpha=0.2$	-0.013 [†]	-0.011 [†]	-0.006	-0.01
Subsample $m=0.1n$	-0.016 [†]	-0.013 [†]	-0.007	-1.20
Subsample $m=0.5n$	-0.004	-0.003	-0.002	-0.40
Categoricals: include toggles	-0.006	-0.006	-0.003	+0.05
No γI_d	-0.005	-0.004	-0.002	0.00
No trace normalization	-0.004	-0.004	-0.002	+0.01

523

524 REPRODUCIBILITY STATEMENT

525

526 We took several steps to make our results reproducible. The model and training procedure are fully
527 specified in the appendix. Formal assumptions and complete proofs of the statements we rely on
528 appear in Appx. A (Analysis). Implementation details covering software versions, hyperparameter
529 grids, CV protocols, timing methodology, and configuration choices shared across methods are
530 documented in Appx. B.

531
532
533
534
535
536
537
538
539

540 REFERENCES
541

542 Leo Breiman. Random forests. *Machine Learning*, 45(1):5–32, 2001. doi: 10.1023/A:
543 1010933404324.

544 Tianqi Chen and Carlos Guestrin. Xgboost: A scalable tree boosting system. In *Proceedings of the*
545 *22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (KDD*
546 *'16)*, pp. 785–794, San Francisco, CA, USA, 2016. ACM. doi: 10.1145/2939672.2939785. URL
547 <https://doi.org/10.1145/2939672.2939785>.

548 R. Dennis Cook. Save: A method for dimension reduction and graphics in regression. *Com-*
549 *munications in Statistics - Theory and Methods*, 29(9-10):2109–2121, 2000. doi: 10.1080/
550 03610920008832598.

551 R. A. Fisher. The use of multiple measurements in taxonomic problems. *Annals of Eugenics*, 7(2):
552 179–188, 1936.

553 Léo Grinsztajn, Edouard Oyallon, and Gaël Varoquaux. Why do tree-based models still outper-
554 form deep learning on tabular data? *arXiv preprint arXiv:2207.08815*, 2022. URL <https://arxiv.org/abs/2207.08815>.

555 Rakesh Katuwal, Ponnuthurai N. Suganthan, and Le Zhang. Heterogeneous oblique random forest.
556 *Pattern Recognition*, 99:107078, 2020. doi: 10.1016/j.patcog.2019.107078.

557 Ker-Chau Li. Sliced inverse regression for dimension reduction. *Journal of the American Statistical*
558 *Association*, 86(414):316–327, 1991. doi: 10.1080/01621459.1991.10475035.

559 Björn H. Menze, Michael B. Kelm, Nico Splithoff, Ullrich Koethe, and Fred A. Hamprecht. On
560 oblique random forests. In *Machine Learning and Knowledge Discovery in Databases (ECML*
561 *PKDD 2011), Part II*, pp. 453–469. Springer, 2011.

562 Sreerama K. Murthy, Simon Kasif, and Steven Salzberg. A system for induction of oblique decision
563 trees. *Journal of Artificial Intelligence Research*, 2:1–32, 1994. URL <https://www.jair.org/index.php/jair/article/view/10121>.

564 Florent Perronnin, Jorge Sánchez, and Thomas Mensink. Improving the fisher kernel for large-scale
565 image classification. In Kostas Daniilidis, Petros Maragos, and Nikos Paragios (eds.), *Computer*
566 *Vision – ECCV 2010*, volume 6314 of *Lecture Notes in Computer Science*, pp. 143–156, Berlin,
567 Heidelberg, 2010. Springer. doi: 10.1007/978-3-642-15561-1_11.

568 Tom Rainforth and Frank Wood. Canonical correlation forests. *arXiv preprint arXiv:1507.05444*,
569 2015. URL <https://arxiv.org/abs/1507.05444>.

570 C. Radhakrishna Rao. The utilization of multiple measurements in problems of classification. *Jour-*
571 *nal of the Royal Statistical Society. Series B (Methodological)*, 10(2):159–203, 1948.

572 Juan J. Rodríguez, Ludmila I. Kuncheva, and Carlos J. Alonso. Rotation forest: A new classifier
573 ensemble method. *IEEE Transactions on Pattern Analysis and Machine Intelligence*, 28(10):
574 1619–1630, 2006. doi: 10.1109/TPAMI.2006.211.

575 Ilya M. Sobol' and Sergei Kucherenko. Derivative based global sensitivity measures and their link
576 with global sensitivity indices. *Mathematics and Computers in Simulation*, 79(10):3009–3017,
577 2009. doi: 10.1016/j.matcom.2009.01.023.

578 Tyler M. Tomita, James Browne, Cencheng Shen, Jaewon Chung, Jesse L. Patsolic, Benjamin Falk,
579 Carey E. Priebe, Jason Yim, Randal Burns, Mauro Maggioni, and Joshua T. Vogelstein. Sparse
580 projection oblique random forests. *Journal of Machine Learning Research*, 21(104):1–39, 2020.
581 URL <https://jmlr.org/papers/v21/18-664.html>.

582 Shubhendu Trivedi and Jialei Wang. The expected jacobian outerproduct: Theory and empirics.
583 *arXiv preprint arXiv:2006.03550*, 2020. URL <https://arxiv.org/abs/2006.03550>.

584 Shubhendu Trivedi, Jialei Wang, Samory Kpotufe, and Gregory Shakhnarovich. A consistent es-
585 timator of the expected gradient outerproduct. In *Proceedings of the 30th Conference on Un-*
586 *certainty in Artificial Intelligence (UAI 2014)*, pp. 819–828, Quebec City, Canada, 2014. AUAI
587 Press.

594 **A ANALYSIS AND ADDITIONAL EVALUATION DETAILS**
595596 **A.1 WHY EJOP PRECONDITIONING HELPS AXIS ALIGNED TREES**
597598 Here we give an explanation of why the EJOP matrix is a natural preconditioner for an axis aligned
599 forest. Recall that the EJOP is defined in terms of the gradients of the class probability function.600 Let $f : \mathbb{R}^d \rightarrow \Delta_{C-1}$ be the *population* conditional class probability function,
601

602
$$f_c(x) = \mathbb{P}(Y = c \mid X = x), \quad c = 1, \dots, C,$$

603 and let

604
$$J_f(x) = [\nabla f_1(x), \dots, \nabla f_C(x)]$$

605 be the $d \times C$ Jacobian matrix that collects the gradients of all class probabilities. The population
606 EJOP is

607
$$H_0 = \mathbb{E}_X[J_f(X)J_f(X)^\top]$$

608 (Eq. equation 1). Throughout this subsection we assume that each coordinate function f_c is C^3 on
609 compact subsets of \mathbb{R}^d , meaning that it has three continuous derivatives and the third derivatives
610 are bounded. This is an assumption on the underlying data generating process, not on any specific
611 model we fit.612 In the algorithm we never observe f directly. Instead we fit a surrogate probability model \hat{f} (in our
613 case a random forest) and form a *plug in* estimate of H_0 by replacing f with \hat{f} in the definitions of
614 J_f and H_0 . Under standard consistency assumptions on \hat{f} , the resulting matrix $H_0(\hat{f})$ converges to
615 the population quantity $H_0(f)$ as the sample size grows. So the geometric picture below should be
616 read as describing the ideal population behavior that JARF is trying to approximate, even though \hat{f}
617 itself is piecewise constant.618 Our method constructs an empirical EJOP matrix \hat{H}_0 from data and then uses $\hat{H} = \hat{H}_0$ as a single
619 global linear preconditioner. The final forest is trained on the transformed features $X\hat{H}$.
620621 **Axis aligned vs oblique splits.** We will use the following terminology. A split is *axis aligned* if it
622 tests a single feature, e.g. $x_j \leq \tau$. A split is *oblique* if it tests a linear combination of features, e.g.
623 $w^\top x \leq \tau$ with $w \in \mathbb{R}^d$ not equal to any coordinate vector e_j .
624625 **Proposition A.1 (Axis aligned versus shared oblique).** Let H be any positive semidefinite (psd)
626 matrix, i.e. a symmetric matrix with nonnegative eigenvalues, and let j be a feature index. Then the
627 axis aligned split

628
$$\{x : (x^\top H)_j \leq \tau\}$$

629 is the same set as the oblique half space

630
$$\{x : x^\top H e_j \leq \tau\}$$

631 in the original coordinates.
632633 *Proof.* We have $(x^\top H)_j = e_j^\top (x^\top H) = x^\top H e_j$, so the two sets coincide. \square
634635 **Proposition A.2 (First order impurity gain and EJOP).** We now explain why directions that
636 look good under EJOP are also directions that give large CART gains.
637638 Consider binary classification ($C = 2$) with squared loss CART. Let $u \in \mathbb{S}^{d-1}$ define a split of the
639 form $u^\top x \leq \tau$. Look at a thin slab around the candidate threshold,
640

641
$$\{x : |u^\top x - \tau| \leq \varepsilon\}$$

642 for small $\varepsilon > 0$, and approximate f in that slab by its first order Taylor expansion,
643

644
$$f(x) \approx f(\xi) + \nabla f(\xi)^\top (x - \xi), \quad \text{with } u^\top \xi = \tau.$$

645 Then the expected impurity decrease of the best threshold along u is, up to a positive factor that does
646 not depend on u , proportional to
647

$$u^\top H_0 u = \mathbb{E}_X[(u^\top \nabla f(X))^2].$$

648 So if we move in direction u , and the class probabilities $f(x)$ change quickly on average, then
 649 CART sees a larger gain along that direction. For binary classification this shows that the expected
 650 first-order gain along a direction u is proportional to $\mathbb{E}_X[(u^\top \nabla f(X))^2]$.
 651

652 **Corollary A.3 (What happens when we use $\hat{H} = \hat{H}_0$).** By Proposition A.1, an axis aligned split
 653 on the transformed features $(X\hat{H})$ with index j is the same as a split in the original x space with
 654 normal

$$u_j = \hat{H}e_j,$$

655 where e_j is the j th standard basis vector in \mathbb{R}^d . In other words, splitting on the j th coordinate after
 656 the linear map \hat{H} corresponds to an oblique split along u_j in the original coordinates.
 657

658 By Proposition A.2, the expected first order CART gain for a split with normal u is proportional to
 659 $u^\top H_0 u$. Plugging in $u = u_j = \hat{H}e_j$ gives that the first order score of the j th coordinate split in the
 660 preconditioned space is proportional to
 661

$$u_j^\top H_0 u_j = e_j^\top \hat{H}^\top H_0 \hat{H} e_j.$$

662 If we choose $\hat{H} \approx H_0$, then coordinates j for which the induced normal u_j has a large EJOP score
 663 $u_j^\top H_0 u_j$ are amplified by the preconditioner. This biases the forest toward splitting along directions
 664 where the class probabilities change the most, while the training procedure itself remains exactly the
 665 same as for a standard random forest.
 666

667 A.2 CONCENTRATION AND CONSISTENCY OF THE EJOP ESTIMATOR

668 In this subsection we study when the empirical EJOP matrix \hat{H}_0 concentrates around its population
 669 counterpart H_0 . As before, let $f : \mathbb{R}^d \rightarrow \Delta_{C-1}$ denote the *population* conditional class probability
 670 function,

$$f_c(x) = \mathbb{P}(Y = c \mid X = x), \quad c = 1, \dots, C.$$

671 Assumptions.

672 (A1) (*Smoothness and bounded gradients.*) Each coordinate f_c is C^3 on the support of P_X .
 673 Moreover, the gradient is uniformly bounded,

$$\|\nabla f_c(x)\|_2 \leq M,$$

674 and all third order directional derivatives are bounded in magnitude by a constant B_3 .
 675

676 (A2) (*Finite differences.*) To estimate gradients we use finite differences with step size ε and m
 677 probe points. We let the step size shrink and the number of probes grow so that

$$\varepsilon \rightarrow 0, \quad m \rightarrow \infty, \quad \text{and} \quad m\varepsilon^2 \rightarrow \infty.$$

678 Intuitively, $\varepsilon \rightarrow 0$ controls the bias of the finite difference approximation, while $m\varepsilon^2 \rightarrow \infty$
 679 keeps the variance under control.
 680

681 (A3) (*Consistency of the surrogate probabilities.*) If we use probability weights, the surrogate
 682 probabilities are uniformly consistent:

$$\sup_x |\hat{p}(c \mid x) - p(c \mid x)| \leq \eta_m, \quad \eta_m \rightarrow 0 \text{ as } m \rightarrow \infty.$$

683 Here $p(c \mid x)$ is the true conditional probability and $\hat{p}(c \mid x)$ is the estimate produced by
 684 the surrogate model.
 685

686 **Lemma A.4 (FD gradient bias).** The next lemma quantifies the bias of the centered fi-
 687 nite-difference approximation to the gradient and shows that the outer product based on this ap-
 688 proximation is close to the outer product of the true gradient.

689 Fix a class c . Let $f_c : \mathbb{R}^d \rightarrow \mathbb{R}$ be C^3 in a neighborhood of x , and assume all third directional
 690 derivatives along the coordinate axes are bounded there:

$$\sup_z |\partial_j^3 f_c(z)| \leq B_3 \quad \text{for every coordinate } j.$$

702 Define the centered finite-difference (FD) of the j th partial derivative at x with step size $\varepsilon > 0$ by
 703

$$704 \quad g_j^{\text{FD}}(x; c) = \frac{f_c(x + \frac{\varepsilon}{2}e_j) - f_c(x - \frac{\varepsilon}{2}e_j)}{\varepsilon}.$$

705 Then for each coordinate j ,

$$707 \quad |g_j^{\text{FD}}(x; c) - \partial_j f_c(x)| \leq \frac{B_3}{24} \varepsilon^2 \quad (\leq \frac{B_3}{6} \varepsilon^2).$$

709 Consequently, if $\|\nabla f_c(x)\|_2 \leq M$ and $G^{\text{FD}}(c)$ is the vector with entries $g_j^{\text{FD}}(x; c)$, then
 710

$$711 \quad \|G^{\text{FD}}(c)G^{\text{FD}}(c)^\top - \nabla f_c(x)\nabla f_c(x)^\top\|_2 \leq \frac{B_3\sqrt{d}}{12} M \varepsilon^2 + \frac{B_3^2 d}{576} \varepsilon^4.$$

714 *Proof.* Fix a coordinate j and consider

$$715 \quad g(t) := f_c(x + te_j), \quad t \in \mathbb{R}.$$

716 The centered FD estimator is

$$718 \quad g_j^{\text{FD}}(x; c) = \frac{g(h) - g(-h)}{2h} \quad \text{with } h := \varepsilon/2.$$

720 By Taylor's theorem with Lagrange remainder applied around $t = 0$, we have
 721

$$722 \quad g(h) = g(0) + hg'(0) + \frac{h^2}{2}g''(0) + \frac{h^3}{6}g^{(3)}(\xi_+),$$

$$723 \quad g(-h) = g(0) - hg'(0) + \frac{h^2}{2}g''(0) - \frac{h^3}{6}g^{(3)}(\xi_-),$$

725 for some $\xi_+ \in (0, h)$ and $\xi_- \in (-h, 0)$. Subtracting the two expansions and dividing by $2h$ gives

$$726 \quad \frac{g(h) - g(-h)}{2h} = g'(0) + \frac{h^2}{12}(g^{(3)}(\xi_+) + g^{(3)}(\xi_-)).$$

729 By construction $g'(0) = \partial_j f_c(x)$ and $g^{(3)}(t) = \partial_j^3 f_c(x + te_j)$. Therefore the FD estimator error
 730 can be written as

$$731 \quad g_j^{\text{FD}}(x; c) - \partial_j f_c(x) = \frac{h^2}{12}(\partial_j^3 f_c(x + \xi_+ e_j) + \partial_j^3 f_c(x + \xi_- e_j)).$$

733 Using the bound $|\partial_j^3 f_c(z)| \leq B_3$ for all z yields

$$735 \quad |g_j^{\text{FD}}(x; c) - \partial_j f_c(x)| \leq \frac{h^2}{12}(B_3 + B_3) = \frac{B_3}{6}h^2 = \frac{B_3}{24}\varepsilon^2,$$

737 which proves the claimed $O(\varepsilon^2)$ bias bound (and the looser $\frac{B_3}{6}\varepsilon^2$ version follows since $\frac{1}{24} \leq \frac{1}{6}$).
 738

739 Now let $G^{\text{FD}}(c)$ be the vector of FD approximations and write it as

$$740 \quad G^{\text{FD}}(c) = \nabla f_c(x) + \delta, \quad \delta_j := g_j^{\text{FD}}(x; c) - \partial_j f_c(x).$$

741 From the scalar bound above we obtain

$$743 \quad \|\delta\|_\infty \leq \frac{B_3}{24}\varepsilon^2 \quad \Rightarrow \quad \|\delta\|_2 \leq \frac{B_3}{24}\sqrt{d}\varepsilon^2.$$

$$746 \quad G^{\text{FD}}(c)G^{\text{FD}}(c)^\top - \nabla f_c(x)\nabla f_c(x)^\top = (\nabla f_c(x) + \delta)(\nabla f_c(x) + \delta)^\top - \nabla f_c(x)\nabla f_c(x)^\top$$

$$747 \quad = \nabla f_c(x)\delta^\top + \delta\nabla f_c(x)^\top + \delta\delta^\top.$$

749 Using the fact that $\|uv^\top\|_2 = \|u\|_2\|v\|_2$ and submultiplicativity of the spectral norm, we obtain
 750

$$751 \quad \|G^{\text{FD}}(c)G^{\text{FD}}(c)^\top - \nabla f_c(x)\nabla f_c(x)^\top\|_2 \leq 2\|\nabla f_c(x)\|_2\|\delta\|_2 + \|\delta\|_2^2.$$

752 Using the bounds $\|\nabla f_c(x)\|_2 \leq M$ and $\|\delta\|_2 \leq \frac{B_3}{24}\sqrt{d}\varepsilon^2$ now gives
 753

$$754 \quad 2\|\nabla f_c(x)\|_2\|\delta\|_2 \leq \frac{B_3\sqrt{d}}{12}M\varepsilon^2, \quad \|\delta\|_2^2 \leq \frac{B_3^2 d}{576}\varepsilon^4,$$

755 and combining the two terms yields the stated deviation bound. \square

756 **Lemma A.5 (Weight approximation error).** The next lemma shows how errors in the estimated
 757 class probabilities translate into an error in the weighted sum of gradient outer products.
 758

759 Fix a point x and suppose the estimated class probabilities $\hat{p}(c | x)$ are uniformly close to the true
 760 probabilities $p(c | x)$ in the sense that there is a number $\eta_m \geq 0$ with
 761

$$|\hat{p}(c | x) - p(c | x)| \leq \eta_m \quad \text{for all } c \in \{1, \dots, C\}.$$

762 Assume moreover that each class probability function has a bounded gradient at x , so that
 763 $\|\nabla f_c(x)\|_2 \leq M$ for all c . Then
 764

$$\left\| \sum_{c=1}^C (\hat{p}(c | x) - p(c | x)) \nabla f_c(x) \nabla f_c(x)^\top \right\|_2 \leq \eta_m \sum_{c=1}^C \|\nabla f_c(x)\|_2^2 \leq CM^2\eta_m,$$

768 where $\|\cdot\|_2$ is the spectral norm (largest singular value).
 769

770 *Proof.* Set

$$a_c := \hat{p}(c | x) - p(c | x), \quad u_c := \nabla f_c(x).$$

772 Then the matrix we want to bound can be written as
 773

$$\sum_{c=1}^C a_c u_c u_c^\top.$$

777 We use two facts about the spectral norm $\|\cdot\|_2$: it is subadditive (triangle inequality) and for a
 778 rank-one matrix uu^\top we have $\|uu^\top\|_2 = \|u\|_2^2$ (its only nonzero eigenvalue). Applying the triangle
 779 inequality gives

$$\left\| \sum_{c=1}^C a_c u_c u_c^\top \right\|_2 \leq \sum_{c=1}^C \|a_c u_c u_c^\top\|_2 = \sum_{c=1}^C |a_c| \|u_c u_c^\top\|_2 = \sum_{c=1}^C |a_c| \|u_c\|_2^2.$$

783 By assumption $|a_c| \leq \eta_m$ for every c , so
 784

$$\left\| \sum_{c=1}^C a_c u_c u_c^\top \right\|_2 \leq \eta_m \sum_{c=1}^C \|u_c\|_2^2.$$

788 Finally, the gradient bound $\|u_c\|_2 = \|\nabla f_c(x)\|_2 \leq M$ implies
 789

$$\sum_{c=1}^C \|u_c\|_2^2 \leq \sum_{c=1}^C M^2 = CM^2,$$

793 which yields

$$\left\| \sum_{c=1}^C (\hat{p}(c | x) - p(c | x)) \nabla f_c(x) \nabla f_c(x)^\top \right\|_2 \leq CM^2\eta_m.$$

797 \square

798 \square

799 **Dimension-adapted risk guarantees.** So far, our analysis has focused on how EJOP preconditioning
 800 biases individual splits toward directions of high probabilistic variation. We now show that,
 801 in a simple but representative setting, this geometric bias also leads to a dimension-adapted *risk*
 802 guarantee. Specifically, when the conditional mean $f(x) = \mathbb{E}[Y | X = x]$ depends only on an
 803 r -dimensional linear subspace of \mathbb{R}^d , JARF achieves a rate that depends on the intrinsic EJOP rank
 804 r rather than the ambient dimension d .

805 We consider a regression setting with a ridge-structured regression function $f(x) = g(U^\top x)$, where
 806 $U \in \mathbb{R}^{d \times r}$ has orthonormal columns and $g : \mathbb{R}^r \rightarrow \mathbb{R}$ is Lipschitz. In this case, the EJOP matrix
 807 $H_0 = \mathbb{E}[\nabla f(X) \nabla f(X)^\top]$ has rank r and its range equals the span of U . If JARF estimates H_0
 808 consistently and projects onto the top r eigenvectors of \hat{H} , then a standard axis-aligned forest on
 809 those projected features behaves like a nonparametric regressor in \mathbb{R}^r , up to the error of estimating
 the subspace. The following theorem formalizes this intuition.

810
 811 **Theorem 1** (Dimension-adapted risk bound for JARF). *Let $(X_i, Y_i)_{i=1}^n$ be i.i.d. samples with $X_i \in \mathbb{R}^d$ and $Y_i \in \mathbb{R}$, where X has compact support and $Y = f(X) + \xi$ with $\mathbb{E}[\xi | X] = 0$ and $\mathbb{E}[\xi^2] \leq \sigma^2$. Assume*

$$812 \quad f(x) = g(U^\top x),$$

813 *for some orthonormal $U \in \mathbb{R}^{d \times r}$ and a function $g : \mathbb{R}^r \rightarrow \mathbb{R}$ that is L -Lipschitz on the projected*
 814 *support. Let*

$$815 \quad H_0 = \mathbb{E}[\nabla f(X) \nabla f(X)^\top]$$

816 *and suppose $\text{rank}(H_0) = r$ with a spectral gap $\lambda_r(H_0) \geq \lambda_{\min} > 0$. Let \hat{H} be the EJOP estimator*
 817 *constructed by JARF using a surrogate forest and finite differences, and suppose that for some*
 818 *sequence $\varepsilon_n \rightarrow 0$,*

$$819 \quad \|\hat{H} - H_0\|_{\text{op}} \leq \varepsilon_n \quad \text{with probability at least } 1 - \delta_n.$$

820 *Define $\hat{U} \in \mathbb{R}^{d \times r}$ as the matrix of top r eigenvectors of \hat{H} , let $Z_i = \hat{U}^\top X_i \in \mathbb{R}^r$, and let \hat{f}_n*
 821 *be a regression forest trained on $(Z_i, Y_i)_{i=1}^n$ with tree depth and leaf size chosen as in standard*
 822 *consistency results for forests in r dimensions. Then there exist constants $C_1, C_2 > 0$, independent*
 823 *of d , such that*

$$824 \quad \mathbb{E}[(\hat{f}_n(X) - f(X))^2] \leq C_1 n^{-\frac{2}{2+r}} + C_2 \varepsilon_n^2 + o(1),$$

825 *where the expectation is over the training sample and a fresh test point X .*

826 *In particular, when $\varepsilon_n \rightarrow 0$ sufficiently fast, JARF attains the usual nonparametric rate in dimension*
 827 *r , up to negligible terms, even though the data live in \mathbb{R}^d .*

828 *This result shows that JARF is not only a geometric heuristic: under a low-rank EJOP structure, it*
 829 *provably adapts to the intrinsic EJOP rank r and achieves a risk bound that is *independent of the**

830 *ambient dimension d .* Existing EJOP-based methods analyze kernel and linear models; to the best

831 *of our knowledge, Theorem 1 is the first result that links EJOP geometry to the sample complexity*

832 *of tree ensembles.*

833 A.3 DIMENSION-ADAPTED RISK BOUNDS FOR JARF

834 We now describe a simple setting in which JARF enjoys a risk bound that depends on the intrinsic
 835 EJOP rank rather than the ambient dimension. Throughout this section we consider a regression
 836 model with squared loss.

837 **Setup and assumptions** Let $(X_i, Y_i)_{i=1}^n$ be i.i.d. samples with $X_i \in \mathbb{R}^d$ and $Y_i \in \mathbb{R}$. We assume:

838 **(A1) Ridge-structured regression function.** There exists an orthonormal matrix $U \in \mathbb{R}^{d \times r}$ with
 839 $r \leq d$ and a function $g : \mathbb{R}^r \rightarrow \mathbb{R}$ such that

$$840 \quad f(x) := \mathbb{E}[Y | X = x] = g(U^\top x).$$

841 We write $Z^* = U^\top X \in \mathbb{R}^r$ for the intrinsic representation.

842 **(A2) Regularity.** The support of X is contained in a compact set $\mathcal{X} \subset \mathbb{R}^d$ with $\|x\|_2 \leq R$ for all
 843 $x \in \mathcal{X}$. The function g is L -Lipschitz on $U^\top \mathcal{X}$, and the noise satisfies $Y = f(X) + \xi$ with
 844 $\mathbb{E}[\xi | X] = 0$ and $\mathbb{E}[\xi^2] \leq \sigma^2$.

845 **(A3) EJOP structure.** Let

$$846 \quad H_0 = \mathbb{E}[\nabla f(X) \nabla f(X)^\top].$$

847 We assume $\text{rank}(H_0) = r$ and that there is a spectral gap $\lambda_r(H_0) \geq \lambda_{\min} > 0$ between
 848 the r -th and $(r+1)$ -st eigenvalues.

849 **(A4) EJOP estimation.** Let \hat{H} be the EJOP estimator used by JARF, constructed from surrogate
 850 forests and finite differences as in the previous sections. Under Assumptions (A1)–(A3)
 851 and the finite-difference analysis of Lemmas A.4 and A.5, there exists a sequence $\varepsilon_n \rightarrow 0$
 852 and failure probability $\delta_n \rightarrow 0$ such that

$$853 \quad \|\hat{H} - H_0\|_{\text{op}} \leq \varepsilon_n \quad \text{with probability at least } 1 - \delta_n. \quad (5)$$

(A5) **Regressor consistency in fixed dimension.** Let $\hat{U} \in \mathbb{R}^{d \times r}$ be the matrix of top r eigenvectors of \hat{H} and define projected features $Z_i = \hat{U}^\top X_i \in \mathbb{R}^r$ and $Z = \hat{U}^\top X$. Let

$$m_{\hat{U}}(z) := \mathbb{E}[Y \mid Z = z]$$

denote the regression function in the projected space, and assume $m_{\hat{U}}$ is L_Z -Lipschitz on the support of Z (for some constant L_Z that does not depend on d or n). Let \hat{f}_n be the regression estimator used by JARF, trained on $(Z_i, Y_i)_{i=1}^n$ (in the experiments this is an axis-aligned random forest). We assume that there exists a constant C_1 such that

$$\mathbb{E}[(\hat{f}_n(Z) - m_{\hat{U}}(Z))^2 \mid \hat{U}] \leq C_1 n^{-\frac{2}{2+r}} + o(1), \quad (6)$$

for every realization of \hat{U} with orthonormal columns. Assumption equation 6 holds for a variety of nonparametric regressors in fixed dimension r ; we use forests for concreteness.

All expectations below are taken with respect to the training sample, a fresh test point X , and any internal randomness of the estimator.

A.4 EJOP IDENTIFIES THE INTRINSIC SUBSPACE

Under the ridge model (A1), the EJOP matrix H_0 has range equal to the span of U .

Lemma 2. *Under (A1) and (A2), we have*

$$\nabla f(x) = U \nabla g(U^\top x),$$

and consequently

$$H_0 = \mathbb{E}[\nabla f(X) \nabla f(X)^\top] = U \mathbb{E}[\nabla g(Z^*) \nabla g(Z^*)^\top] U^\top.$$

In particular, if $\mathbb{E}[\nabla g(Z^*) \nabla g(Z^*)^\top]$ is invertible, then $\text{rank}(H_0) = r$ and $\text{range}(H_0) = \text{span}(U)$.

Proof. By the chain rule, for any $x \in \mathbb{R}^d$,

$$\nabla f(x) = \nabla(g(U^\top x)) = U \nabla g(U^\top x),$$

since $U^\top x \in \mathbb{R}^r$ and U has orthonormal columns. Substituting into the definition of H_0 gives

$$H_0 = \mathbb{E}[U \nabla g(Z^*) \nabla g(Z^*)^\top U^\top] = U \mathbb{E}[\nabla g(Z^*) \nabla g(Z^*)^\top] U^\top.$$

If the inner $r \times r$ matrix is invertible, then H_0 has rank r and its range equals the span of U . \square

A.5 SUBSPACE PERTURBATION AND PROJECTION ERROR

The next lemma is a standard Davis–Kahan type result for the top- r eigenspace of a symmetric matrix.

Lemma 3 (Subspace perturbation). *Let H_0 and \hat{H} be symmetric matrices satisfying $\|\hat{H} - H_0\|_{\text{op}} \leq \varepsilon$, and let $\lambda_r(H_0) \geq \lambda_{\min} > 0$ be separated by a gap from the rest of the spectrum. Let P and \hat{P} be the orthogonal projectors onto the top- r eigenspaces of H_0 and \hat{H} , respectively. Then there exists a constant $C > 0$ such that*

$$\|\hat{P} - P\|_{\text{op}} \leq C \frac{\varepsilon}{\lambda_{\min}}.$$

Proof. This is a standard consequence of the Davis–Kahan sin- Θ theorem; see, for example, any modern text on matrix perturbation theory. \square

In our setting, Lemma 2 implies that $P = UU^\top$ is the orthogonal projector onto the intrinsic EJOP subspace, while $\hat{P} = \hat{U}\hat{U}^\top$ is the projector onto its empirical estimate. Combining Lemma 2, Lemma 3, and the EJOP consistency equation 5, we obtain

$$\|\hat{U}\hat{U}^\top - UU^\top\|_{\text{op}} \leq C \frac{\varepsilon_n}{\lambda_{\min}} \quad \text{with probability at least } 1 - \delta_n. \quad (7)$$

We now bound the error incurred by replacing the true EJOP subspace with its estimate when evaluating f .

918 **Lemma 4** (Projection error). *Under (A1)–(A3), (A4), and equation 7, we have*

$$919 \quad |f(x) - f(\hat{P}x)| \leq LR \|\hat{P} - P\|_{\text{op}} \quad \text{for all } x \in \mathcal{X}.$$

920 *Consequently, there exists a constant $C' > 0$ depending on L, R , and λ_{\min} such that*

$$921 \quad \mathbb{E}[(f(X) - f(\hat{P}X))^2] \leq C'\varepsilon_n^2 + o(1).$$

922 *Proof.* Since $f(x) = g(U^\top x)$, we can write

$$923 \quad f(x) = g(U^\top x) \quad \text{and} \quad f(\hat{P}x) = g(U^\top \hat{P}x).$$

924 *Using the Lipschitz property of g and the fact that U has orthonormal columns,*

$$925 \quad |f(x) - f(\hat{P}x)| = |g(U^\top x) - g(U^\top \hat{P}x)| \leq L \|U^\top x - U^\top \hat{P}x\| = L \|U^\top(I - \hat{P})x\|.$$

926 Since $U^\top = U^\top P$ and $P = UU^\top$, we have

$$927 \quad U^\top(I - \hat{P}) = U^\top(P - \hat{P}),$$

928 and hence

$$929 \quad \|U^\top(I - \hat{P})x\| \leq \|U^\top\|_{\text{op}} \|P - \hat{P}\|_{\text{op}} \|x\| \leq \|P - \hat{P}\|_{\text{op}} \|x\|,$$

930 because $\|U^\top\|_{\text{op}} = 1$. Using $\|x\| \leq R$ for $x \in \mathcal{X}$,

$$931 \quad |f(x) - f(\hat{P}x)| \leq LR \|P - \hat{P}\|_{\text{op}}.$$

932 Squaring and taking expectations, then substituting $\|P - \hat{P}\|_{\text{op}} \leq C\varepsilon_n$ from equation 7, yields

$$933 \quad \mathbb{E}[(f(X) - f(\hat{P}X))^2] \leq L^2 R^2 C^2 \varepsilon_n^2 + o(1),$$

934 so we can take $C' = L^2 R^2 C^2$. □

935 A.6 PROOF OF THEOREM 1

936 We now prove the dimension-adapted risk bound stated in the main text.

937 **Theorem 5** (Theorem 1, restated). *Under assumptions (A1)–(A5), there exist constants $C_1, C_2 > 0$, independent of d , such that*

$$938 \quad \mathbb{E}[(\hat{f}_n(X) - f(X))^2] \leq C_1 n^{-\frac{2}{2+r}} + C_2 \varepsilon_n^2 + o(1).$$

939 *Proof.* Recall that \hat{f}_n depends on X only through the projected features $Z = \hat{U}^\top X$, so we may write $\hat{f}_n(X) = \hat{f}_n(Z)$.

940 Let $m_{\hat{U}}(z) = \mathbb{E}[Y \mid Z = z]$ denote the regression function in the projected space. Using the inequality $(a - b)^2 \leq 2(a - c)^2 + 2(b - c)^2$ with $a = \hat{f}_n(Z)$, $b = f(X)$, and $c = m_{\hat{U}}(Z)$, we obtain

$$941 \quad \begin{aligned} \mathbb{E}[(\hat{f}_n(X) - f(X))^2] &= \mathbb{E}[(\hat{f}_n(Z) - f(X))^2] \\ 942 &\leq 2\mathbb{E}[(\hat{f}_n(Z) - m_{\hat{U}}(Z))^2] + 2\mathbb{E}[(m_{\hat{U}}(Z) - f(X))^2] \\ 943 &=: 2T_1 + 2T_2. \end{aligned}$$

944 **Bounding T_1 (estimation in r dimensions).** By the tower property and Assumption equation 6,

$$945 \quad \begin{aligned} T_1 &= \mathbb{E}[\mathbb{E}[(\hat{f}_n(Z) - m_{\hat{U}}(Z))^2 \mid \hat{U}]] \\ 946 &\leq \mathbb{E}[C_1 n^{-\frac{2}{2+r}} + o(1)] = C_1 n^{-\frac{2}{2+r}} + o(1), \end{aligned}$$

947 where the $o(1)$ term does not depend on d .

972 **Bounding T_2 (approximation error from using the projected σ -algebra).** By the definition of
 973 conditional expectation, $m_{\hat{U}}(Z)$ is the L^2 -projection of $f(X)$ onto the σ -algebra generated by Z ,
 974 so for any measurable function h of Z we have

$$975 \quad 976 \quad \mathbb{E}[(f(X) - m_{\hat{U}}(Z))^2] \leq \mathbb{E}[(f(X) - h(Z))^2].$$

977 In particular, take $h(Z) = f(\hat{P}X)$, which is measurable with respect to Z since $\hat{P}X = \hat{U}\hat{U}^\top X$ is
 978 a deterministic function of $Z = \hat{U}^\top X$. Then

$$980 \quad 981 \quad T_2 = \mathbb{E}[(m_{\hat{U}}(Z) - f(X))^2] \leq \mathbb{E}[(f(\hat{P}X) - f(X))^2].$$

982 By Lemma 4, the right-hand side is at most $C'\varepsilon_n^2 + o(1)$ for some constant C' depending only on
 983 L, R , and λ_{\min} , and hence

$$984 \quad T_2 \leq C'\varepsilon_n^2 + o(1).$$

985 **Combining the bounds.** Putting the pieces together,

$$986 \quad 987 \quad \mathbb{E}[(\hat{f}_n(X) - f(X))^2] \leq 2C_1 n^{-\frac{2}{2+r}} + 2C'\varepsilon_n^2 + o(1).$$

988 Absorbing constants into C_1 and C_2 gives the claimed bound. \square

990 B REPRODUCIBILITY AND IMPLEMENTATION DETAILS

991 **Code and artifacts.** We provide a self-contained Google drive with scripts to download datasets
 992 and run experiments at https://drive.google.com/file/d/1d60ysqjGzQLFk1_BE8vd0lTOo_j_m9MP4/view?usp=sharing

993 **Environment.** Python 3.11; NumPy 1.26; SciPy 1.11; scikit-learn 1.4; LightGBM 4.3; CatBoost
 994 1.2; pandas 2.2; joblib 1.3. Experiments ran on a 16-core CPU machine (no GPU used). To reduce
 995 nondeterminism across BLAS/OpenMP, we set `PYTHONHASHSEED=0`, `OMP_NUM_THREADS=1`,
 996 `MKL_NUM_THREADS=1`, and pass `random_state=seed` to learners.

1001 **Dataset summary and benchmark construction** To make the experimental setup fully transparent
 1002 and reproducible, we include Table 4, which lists for every dataset in our benchmark the number
 1003 of samples n , number of raw input features d , task type, and original source. Counts refer to the
 1004 number of rows and input features before train/validation/test splits and before any one-hot encoding
 1005 of categorical variables.

1006 Our goal was to study JARF on a broad, realistic set of tabular problems where tree ensembles
 1007 are commonly used. To construct the benchmark, we started from widely used OpenML / UCI
 1008 tabular datasets that appear in earlier work on random forests and oblique forests, and then applied
 1009 simple, a priori filters: (i) supervised classification or regression with tabular features; (ii) at least
 1010 a few thousand training points so that EJOP estimation is meaningful; (iii) a mix of low- and high-
 1011 dimensional problems, and of balanced and moderately imbalanced label distributions; and (iv) no
 1012 heavy preprocessing or manual feature engineering beyond standard normalization / encoding. We
 1013 did not drop any dataset based on JARF’s performance, and we kept the same pool for all methods
 1014 and ablations. Several of these tasks overlap with standard suites such as PMLB/TabArena.

1015 B.1 BASELINE HYPERPARAMETER GRIDS

1017 To keep the comparison fair while reflecting how these models are commonly used in practice, we
 1018 give each method a lightweight but non-trivial tuning budget that is shared across datasets. Random
 1019 forest style methods all use the same number of trees as JARF’s final forest, and XGBoost is tuned
 1020 over a small grid on depth, learning rate, and ℓ_2 penalty. Table 5 summarizes the hyperparameters
 1021 and search spaces used in our experiments.

1023 B.2 PRACTICAL RECOMMENDATIONS FOR JARF

1025 JARF introduces only a small number of additional hyperparameters beyond those of the underlying
 1026 forest: the size of the surrogate forest, the EJOP subsample size m , the finite-difference step scale

1026
 1027 Table 4: Summary of all real-data datasets used in our experiments. Here n denotes the number of
 1028 samples and d the number of raw input features (excluding the target).

Dataset	n	d	Task	Source
Core tabular classification tasks				
Adult	48,842	14	Classification	UCI / OpenML
Bank-marketing	41,188	20	Classification	UCI / OpenML
Covtype	581,012	54	Classification	UCI / OpenML
Phoneme	5,404	5	Classification	UCI / OpenML
Electricity	45,312	8	Classification	UCI / OpenML
Satimage	6,435	36	Classification	UCI / OpenML
Spambase	4,601	57	Classification	UCI / OpenML
Magic Telescope	19,020	10	Classification	UCI / OpenML
Letter Recognition	20,000	16	Classification	UCI / OpenML
Vehicle	846	18	Classification	UCI / OpenML
High-dimensional / large-scale classification tasks				
Higgs	940,160	124	Classification	OpenML (Tabular benchmark)
Madelon	2,000	500	Classification	UCI / OpenML
Bioresponse	3,434	419	Classification	OpenML (Tabular benchmark)
Jannis	57,580	254	Classification	OpenML (Tabular benchmark)
MNIST-784	70,000	784	Classification	OpenML / MNIST
Regression tasks				
Bike-sharing	17,389	13	Regression	UCI (Bike Sharing)
California-housing	20,634	8	Regression	OpenML / Cal. Housing
Energy	768	8	Regression	UCI (Energy efficiency)
Kin8nm	8,192	8	Regression	OpenML (kin8nm)
Protein	45,730	9	Regression	UCI / OpenML (Protein)

1053
 1054 α in $\varepsilon_j = \alpha \text{MAD}(X_{:j})/0.6745$, and the diagonal regularizer γI_d used for conditioning in $\widehat{H} =$
 1055 $\widehat{H}_0 + \gamma I_d$. In all experiments we use the following simple defaults:

1056

- 1057 • surrogate RF with 50 trees, `max_features` = \sqrt{d} , `min_samples_leaf` = 1;
- 1058 • EJOP subsample size $m = \min(10,000, n)$;
- 1059 • centered finite differences with per-feature step $\varepsilon_j = \alpha \text{MAD}(X_{:j})/0.6745$ and $\alpha = 0.1$;
- 1060 • EJOP regularization $\widehat{H} = \widehat{H}_0 + \gamma I_d$ with $\gamma = 10^{-3}$, followed by trace normalization
- 1061 $\widehat{H} \leftarrow \widehat{H}/(\text{tr}(\widehat{H})/d)$.

1062
 1063 Table 3 in the main paper provides ablations that effectively serve as tuning guidance. Varying the
 1064 step scale from $\alpha = 0.1$ to $\alpha = 0.05$ or $\alpha = 0.2$ changes mean Cohen’s κ by at most -0.009
 1065 and -0.013 , respectively, while leaving macro-F1 and accuracy similarly stable. Changing the
 1066 subsample size from the default $m = \min(10,000, n)$ to $m = 0.5n$ results in a mean change of
 1067 only -0.004 in κ , and even a tenfold reduction to $m = 0.1n$ yields a drop of -0.016 in κ and
 1068 about 1.2 seconds in training time on average. Removing the diagonal regularizer ($\gamma = 0$) or trace
 1069 normalization also produces only small changes (-0.005 and -0.004 in κ , respectively).

1070
 1071 These ablations indicate that JARF is robust to a wide range of reasonable settings, and that the
 1072 defaults above are near-optimal for the tabular problems we consider. In practice we recommend
 1073 starting with the defaults and, if additional tuning is desired, exploring a small grid such as $m \in$
 1074 $\{\min(5,000, n), \min(10,000, n)\}$ and $\alpha \in \{0.05, 0.1, 0.2\}$, while keeping γ fixed at a small value
 1075 (for example $\gamma = 10^{-3}$). This keeps the tuning budget modest while preserving the accuracy and
 1076 compute profile reported in our experiments.

1077
 1078 **Licenses and data usage.** We only use public datasets with permissive licenses. The repository
 1079 includes per-dataset source references and license notes; any dataset requiring an external EULA is
 downloaded via the provider’s URL with its terms unchanged.

1080
 1081 Table 5: Hyperparameter grids and defaults used for all methods. Forest baselines all use 200 trees
 1082 for comparability with JARF’s final forest. XGBoost is tuned on a shared grid over depth, learning
 1083 rate, and ℓ_2 penalty.

Method	Hyperparameter	Values / setting
RF	number of trees	200 (fixed)
	max_features	\sqrt{d} for classification, d for regression
	criterion	Gini (classification), MSE (regression)
	min_samples_leaf	1 (default)
RotF	number of trees	200 (fixed)
	blocks K	$K = 6$ feature subsets per tree
	rotation	block-diagonal PCA on disjoint feature subsets (unsupervised)
	other tree params	same as RF (criterion, min_samples_leaf, max_features)
CCF	number of trees	200 (fixed)
	projection type	canonical correlation with targets at each node
	projection dim	authors’ recommended default
	other tree params	same as RF
SPORF	number of trees	200 (fixed)
	sparsity	authors’ recommended sparsity level
	# candidate directions	authors’ recommended default per node
	other tree params	same as RF
XGBoost	number of trees	200 boosting rounds (fixed)
	max_depth	$\{3, 6, 9\}$
	learning_rate	$\{0.05, 0.1\}$
	ℓ_2 regularization (λ)	$\{0, 1\}$
	subsample, colsample_bytree	1.0 (no subsampling)
	loss	logistic loss (classification), squared loss (regression)
PCA+RF	projection	PCA on training features (unsupervised)
	# components	d (full-rank rotation)
	RF hyperparameters	identical to RF row above
LDA+RF	projection	multi-class LDA on training labels
	# components	$\min(C - 1, d)$ for C classes
	RF hyperparameters	identical to RF row above
JARF (this paper)	surrogate RF size	50 trees, max_features = \sqrt{d} , min_samples_leaf = 1
	EJOP subsample m	$m = \min(10,000, n)$
	FD step ε_j	$\varepsilon_j = \alpha \text{MAD}(X_{:j})/0.6745$, $\alpha = 0.1$
	EJOP regularization	$\hat{H} = \hat{H}_0 + \gamma I_d$, $\gamma = 10^{-3}$
	scaling	$\hat{H} \leftarrow \hat{H}/(\text{tr}(\hat{H})/d)$
	final RF	RF with 200 trees, same defaults as RF baseline, trained on $X\hat{H}$

1122 **LLM usage.** All scientific content, methods, analyses, and experiments were designed and verified
 1123 by the authors; LLM model was used only to aid/polish writing.