
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

JACOBIAN ALIGNED RANDOM FORESTS

Anonymous authors
Paper under double-blind review

ABSTRACT

Axis-aligned decision trees are fast and stable but struggle on datasets with rotated
or interaction-dependent decision boundaries, where informative splits require lin-
ear combinations of features rather than single-feature thresholds. Oblique forests
address this with per-node hyperplane splits, but at added computational cost.
We propose a simple alternative: JARF, Jacobian-Aligned Random Forests. Con-
cretely, we fit a random forest to estimate class probabilities or regression outputs,
compute finite-difference gradients with respect to each feature, form an expected
Jacobian outer product/expected gradient outer product, and use it as a single
global linear preconditioner for all inputs. This preserves the simplicity of axis-
aligned trees while applying a single global rotation to capture oblique boundaries
and feature interactions that would otherwise require many axis-aligned splits to
approximate. On tabular benchmarks, our preconditioned forest matches or sur-
passes oblique baselines while training faster. Our results suggest that supervised
preconditioning can deliver the accuracy of oblique forests while keeping the sim-
plicity of axis-aligned trees.

1 INTRODUCTION

On tabular data, tree-based ensemble methods are widely used and often outperform deep networks
on structured datasets (Breiman, 2001; Grinsztajn et al., 2022). Methods like Random Forests and
gradient boosting are popular for their strong performance with minimal tuning, robustness to irrele-
vant features, and inherent handling of mixed data types. However, these models are fundamentally
built on axis-aligned decision trees, where each split considers only a single feature. This design
makes training fast, but it fails when the boundary depends on a rotated axis or a mix of features. In
such cases, an axis-aligned tree must simulate an oblique split through a series of orthogonal cuts,
resulting in deeper trees and fragmented decision regions. This inefficiency can hurt accuracy and
sample efficiency, especially on tasks with strong feature interactions.

Researchers have long recognized this limitation and explored oblique decision trees that split on lin-
ear combinations of features rather than single features. Oblique Random Forest variants have shown
improved accuracy over standard forests by capturing feature interactions at each node (Menze et al.,
2011; Katuwal et al., 2020). Unfortunately, these benefits come with significant drawbacks. Learn-
ing the optimal linear combination at each node is a more complex optimization problem, often
requiring iterative techniques or convex solvers that augment training cost (Murthy et al., 1994;
Menze et al., 2011; Katuwal et al., 2020). Oblique splits also tend to introduce many more param-
eters and can be prone to overfitting without careful regularization. As a result, oblique forests are
often slower and less practical to use than standard axis-aligned ones.

In this paper, we propose a new approach to achieve this goal: a global, supervised feature transfor-
mation that preconditions decision forests. We term our method JARF, short for Jacobian Aligned
Random Forest. JARF learns a mapping of the input features by leveraging information from the
model’s predicted class probabilities. In particular, we estimate the expected Jacobian outer product
(EJOP) of the class probability function, which is a covariance matrix that measures how sensi-
tive the predicted class probabilities are to changes in each input direction (Trivedi et al., 2014).
By rotating and scaling the original feature space along these directions, JARF creates a new feature
space where the most label-predictive variations are axis-aligned. A standard Random Forest trained
on this transformed space can then simulate oblique decision boundaries with simple axis-aligned
splits. Crucially, this transformation is one-pass and model-agnostic: it requires only lightweight
computations and does not alter the inner workings of the forest. The result is a middle ground

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

between axis-aligned and fully oblique trees: we retain the training speed, simplicity, and robust-
ness of conventional Random Forests, while significantly boosting their ability to handle rotated or
interacting features.

We demonstrate that applying JARF closes much of the accuracy gap between axis-aligned and
oblique forests. In experiments, JARF achieves better accuracy than significantly more complex
oblique-tree ensembles with substantially lower computational overhead, and also outperforms
lighter, data-agnostic oblique variants (e.g., random-rotation/projection forests) on most datasets.
Through extensive experiments on diverse datasets, we show that JARF consistently improves the
performance of baseline forests and gradient boosting models. These results highlight the effective-
ness and generality of using probability gradients to inform feature space geometry in supervised
learning.

2 RELATED WORK

2.1 SUPERVISED PROJECTION FOR DIMENSION REDUCTION.

Early work in statistics introduced supervised linear projections to reduce dimensionality while
preserving predictive information. Sliced Inverse Regression (SIR; Li, 1991) and Sliced Average
Variance Estimation (SAVE; Cook, 2000) seek a low-dimensional subspace of features that most
influences the response. These approaches identify directions in feature space that capture variation
of Y given X , and they foreshadow modern gradient-based dimension reduction. Conceptually,
they motivate using label information to precondition the inputs before fitting a model, which is
a perspective we adopt. For classification, including multiclass, SIR and SAVE apply directly by
slicing on class labels (Li, 1991; Cook, 2000). Closely related, Fisher’s linear discriminant analysis
and its multiclass extension (Rao) learn at most one fewer projection than the number of classes,
because only that many independent directions are needed to separate the classes (Fisher, 1936;
Rao, 1948).

2.2 GRADIENT-BASED GLOBAL SENSITIVITY (EJOP).

More recent methods leverage derivatives of a predictive function with respect to inputs to
find informative projections. In regression, the expected gradient outer product (EGOP) is
EX

[
∇f(X)∇f(X)⊤

]
and recovers an effective dimension-reduction subspace (Trivedi et al., 2014).

For multiclass settings, the expected Jacobian outer product (EJOP) is EX

[
Jf(X) Jf(X)⊤

]
, where

f returns class probabilities; the leading eigenvectors emphasize directions along which predictions
change the most (Trivedi & Wang, 2020). Researchers have applied these gradient-based summaries
to tasks like metric learning and sensitivity analysis (Perronnin et al., 2010; Sobol’ & Kucherenko,
2009). Our approach, JARF, follows this paradigm by computing a global, label-informed linear
transform from EJOP/EGOP before training a forest.

2.3 OBLIQUE DECISION FORESTS.

Decision trees that split on linear combinations of features were shown early on to yield compact,
accurate models when boundaries are tilted relative to the axes (Breiman, 2001). OC1 performs
hill-climbing at each node to optimize a hyperplane split, trading extra per-node computation for
improved fit (Murthy et al., 1994). Rotation Forest applies unsupervised PCA-based rotations to
random feature subsets independently per tree, so subsequent axis-aligned splits behave like oblique
splits in the original space (Rodrı́guez et al., 2006). Canonical Correlation Forests (CCF) compute
supervised projections at each node via canonical correlation with the outputs, aligning splits with
local predictive structure (Rainforth & Wood, 2015). Another line samples random linear combi-
nations for candidate splits; Breiman noted this idea in early forest variants (Breiman, 2001), and
Sparse Projection Oblique Random Forests (SPORF) constrain projections to be very sparse, im-
proving interaction capture while mitigating overfitting (Tomita et al., 2020). While effective, these
methods either increase per-node optimization (OC1, CCF) or rely on unsupervised/random pro-
jections (Rotation Forest, SPORF), that do not always align with predictive directions. This often
means more trees or extra constraints are needed.

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

2.4 COMPARISON AND POSITIONING OF JARF.

Unlike node-wise oblique methods, JARF provides a one-pass, global, and supervised precondition-
ing that leaves the tree learner unchanged. By constructing a single EGOP/EJOP-based transform
shared across all trees, JARF supplies a coherent feature representation informed by all training la-
bels, with negligible overhead during tree construction. This global projection amplifies directions
along which p(y | x) varies and attenuates irrelevant ones so that standard axis-aligned splits can
approximate oblique boundaries. In this way, JARF competes directly with oblique forests, aiming
to deliver comparable accuracy with substantially lower complexity and simpler deployment.

3 METHODS

3.1 PROBLEM SETUP AND NOTATION

We consider multiclass classification with inputs x ∈ Rd and labels y ∈ {1, . . . , C}. Let f : Rd→
∆C−1 denote a probabilistic classifier whose c-th component fc(x) estimates p(y = c | x). Standard
Random Forests (RF; Breiman, 2001) build axis-aligned decision trees on X=[x1, . . . , xn]

⊤, which
can require deep trees when informative directions are linear combinations of features. Our goal is
to learn a single, global, supervised linear map H ∈ Rd×d such that training an ordinary RF on the
transformed data XH captures those predictive combinations with shallow, axis-aligned splits.

3.2 PROBABILITY–GRADIENT PRECONDITIONING

The central object in JARF is an EJOP-style matrix that summarizes how class probabilities change
with small perturbations of x. Let X ∈ Rd denote a random input drawn from the data-generating
distribution PX ; unless stated otherwise, expectations E[·] are taken with respect to X ∼ PX . Let
Jf (x) ∈ Rd×C be the Jacobian whose columns are gradients∇xfc(x). The expected Jacobian outer
product (EJOP) is

H0 = EX

[
Jf (X)Jf (X)⊤

]
=

C∑
c=1

EX

[
∇xfc(X)∇xfc(X)⊤

]
, (1)

a matrix whose leading eigenvectors span the directions along which p(y | x) varies most (Trivedi
et al., 2014; Trivedi & Wang, 2020). In practice, we replace EX by an empirical average over
the (subsampled) training inputs to estimate H0, and use this estimate to define a global linear
preconditioner H . For regression tasks with scalar output y ∈ R, Equation 1 reduces to the expected
gradient outer product (EGOP):

H0 = EX [∇f(X)∇f(X)⊤]

where f : Rd → R is the regression function. The same preconditioning procedure applies: we
estimate H0 via finite differences and use it to transform the feature space before training the forest.

Connection to supervised dimension reduction. Equation 1 is the gradient/Jacobian analogue
of supervised projection methods such as SIR and SAVE (Li, 1991; Cook, 2000): instead of relying
on first/second moments of X | Y , JARF aggregates sensitivity of p(y |x) to x, producing a label-
informed geometry.

3.3 ESTIMATING H0 VIA FINITE DIFFERENCES

The estimator below is the EJOP estimator proposed by Trivedi & Wang (2020). Our only change
is the surrogate used to approximate p(y | x): we use a random-forest classifier f̂ , whereas Trivedi
& Wang (2020) used a kernel (regression) estimator. We construct an empirical estimate of H0,
denoted Ĥ0, in three steps:

1. Probabilistic model. Fit a random forest f̂ on the training data Dtrain = {(xi, yi)}ni=1;
equivalently, on the design matrix X = [x⊤

1 , . . . , x
⊤
n]

⊤ ∈ Rn×d and label vector y =
(y1, . . . , yn)

⊤ ∈ {1, . . . , C}n. This surrogate is used only to query class probabilities
p̂(c | x), not as the final predictor.

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

2. Per-feature probability gradients. For a subsample {xi, yi}mi=1, estimate directional
derivatives along each coordinate using a centered finite difference with step ε > 0:

gj(xi; c) ≈
f̂c(xi +

ε
2ej)− f̂c(xi − ε

2ej)

ε
,

where ej is the j-th basis vector. Stack gradients as Gi(c) = [g1(xi; c), . . . , gd(xi; c)]
⊤.

3. EJOP estimate. We use the following estimator:

Ĥ0 =
1

m

m∑
i=1

Gi(yi)Gi(yi)
⊤.

3.4 PRECONDITIONING MAP

We use the EJOP estimate as a linear preconditioner. Define

Ĥ = Ĥ0 + γId (γ ≥ 0), (2)

where the small diagonal term improves numerical conditioning. To keep feature scales comparable,
we normalize

Ĥ ← Ĥ

tr(Ĥ)/d
. (3)

We then map inputs:
Φ(x) = x⊤Ĥ ∈ Rd, (4)

and train the forest on the transformed design matrix X Ĥ . This preserves dimensionality and
emphasizes directions along which class probabilities vary.

3.5 TRAINING THE FOREST ON PRECONDITIONED FEATURES

After computing Ĥ once, we train a Random Forest on {Φ(xi), yi }ni=1:

ĥ = RF(X Ĥ, y).

At inference, we transform a test point via Φ(x) = x⊤Ĥ and evaluate ĥ(Φ(x)).

3.6 PRACTICAL CONSIDERATIONS

Surrogate model for EJOP estimation. Since the true Bayes-optimal class probabilities f(x) =
p(y | x) are unknown, we require a surrogate model f̂ to estimate the EJOP matrix. This surrogate
is used solely to query class probabilities p̂(c | x) for gradient estimation. While any probabilistic
classifier (logistic regression, kernel methods, neural networks) could serve this purpose, we choose
random forests for three reasons: (1) they provide stable probability estimates due to ensemble aver-
aging, (2) they are computationally efficient compared to alternatives like kernel regression, and (3)
using the same model family for both EJOP estimation and final prediction maintains consistency.

Finite differences and non-differentiability. Our method computes directional sensitivities via
finite differences [p̂(x + ε

2ej) − p̂(x − ε
2ej)]/ε rather than analytical derivatives, making it com-

patible with non-smooth models like random forests whose predictions are piecewise constant. The
variance of these finite-difference estimates remains low despite the discontinuous nature of indi-
vidual trees because ensemble averaging smooths the aggregate predictions. The adaptive step size
εj = α · MAD(X:j)/0.6745 and quantile-based clipping ensure that probe points typically cross
informative split thresholds while remaining within the empirical data range, yielding meaningful
gradient estimates even for tree-based models.

4 EXPERIMENTS

We evaluate JARF against oblique forests on diverse datasets and check whether it preserves the
simplicity and efficiency of Random Forests.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

4.1 DATA AND PREPROCESSING

Real-data suite. We evaluate on a suite of tabular prediction tasks. Our primary classification
benchmark consists of ten widely used OpenML/UCI datasets: adult, bank-marketing, covertype,
phoneme, electricity, satimage, spambase, magic, letter, and vehicle. These span numeric and
mixed-type features and a range of sample sizes. To probe more challenging regimes, we addi-
tionally include five higher-dimensional tabular classification datasets with d > 100 features and
five real-valued regression tasks from OpenML, where we apply the EGOP variant of our precondi-
tioning.

For all tasks we use a 5×2 cross-validation protocol (five random 50/50 train/test splits, each eval-
uated twice with roles swapped). For classification tasks the splits are stratified. All methods share
identical folds. All preprocessing is fit only on the training portion of each fold and applied to the
corresponding test split to avoid leakage. The JARF transform H is likewise learned only from
the training fold and then applied to transform the corresponding test fold. For the simple global
projection baselines (PCA+RF and LDA+RF) we fit the PCA or LDA map on the training fold and
reuse the same projection to embed the associated test fold before training a standard random forest
on the projected features.

Simulated suite. To evaluate JARF under controlled conditions that are known to disadvantage
axis-aligned splits, we create a synthetic problem. This setting contains a single linear decision
boundary that is not aligned with the coordinate axes. We draw x ∼ N (0, Id) with d ∈ {10, 50, 100}
and fix a rotation angle θ ∈ {15◦, 30◦, 45◦, 60◦}. We define a unit normal in the (e1, e2)-plane

vθ = cos θ e1 + sin θ e2

and assign labels by a noisy halfspace

y = ⊮
{
v⊤θ x+ η ≥ 0

}
, η ∼ N (0, σ2), σ = 0.2,

which avoids perfectly separable cases. This matters because an axis-aligned tree must approximate
the tilted boundary with many splits; an oblique split (or a global preconditioner) solves it with far
fewer nodes.

4.2 METHODS COMPARED

We call a tree/forest axis–aligned if each split tests a single coordinate xj ≤ τ ; it is oblique if
splits test a linear combination w⊤x ≤ τ with w ∈ Rd. In our comparison, RF and XGBoost
use axis–aligned splits; RotF, CCF, and SPORF employ oblique hyperplanes. Our method learns
a single global linear map H using EJOP/EGOP and then trains an axis–aligned forest on XH; in
the original coordinates the induced splits are shared oblique hyperplanes x⊤Hej ≤ τ (same H
for all trees/nodes). Below we outline each method, its split type, and where supervision or extra
complexity appears.

RF (axis–aligned). Random Forests (RF; Breiman, 2001) use CART nodes with axis–aligned tests
xj ≤ τ , bagging, and feature subsampling. We use 200 trees, Gini impurity, and standard defaults.
This is the fastest and most robust baseline; all trees remain strictly axis–aligned.

Rotation Forest (oblique via global per–tree rotation). Rotation Forest (RotF; Rodrı́guez et al.,
2006) builds each tree after applying a block–diagonal PCA rotation R learned from disjoint subsets
of features (here K=6 subsets). The tree then makes axis–aligned splits in the rotated space XR,
which correspond to oblique hyperplanes w⊤x ≤ τ in the original coordinates. Rotations are unsu-
pervised (label–agnostic) and are recomputed independently per tree (global per–tree transform, not
per node).

Canonical Correlation Forests (oblique per node). Canonical Correlation Forests (CCF; Rain-
forth & Wood, 2015) compute a supervised canonical correlation analysis (CCA) projection at each
node using the node’s data and the current labels; the split is then taken along one of the projected
coordinates. Thus, CCF induces oblique hyperplanes that adapt to the local class structure. Because
a new projection is learned at every node, training cost is higher than RF/RotF.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

SPORF (sparse oblique per node). SPORF (Tomita et al., 2020) samples a small set of sparse
random directions w at each node, evaluates impurity reductions, and chooses the best direc-
tion/threshold. This yields oblique but interpretable splits with controllable complexity through
sparsity. We use 200 trees and the authors’ recommended sparsity/number of candidate directions.

XGBoost (axis–aligned boosting). XGBoost (Chen & Guestrin, 2016) fits an additive ensemble
of shallow CART trees with axis–aligned splits xj ≤ τ via gradient boosting. We include a small
shared grid over depth, learning rate, and L2 penalty. It is a strong tabular baseline and its nodes are
axis–aligned.

PCA+RF (global unsupervised projection). As a simple “one–shot” projection baseline we fit a
single PCA (principal component analysis) transform WPCA ∈ Rd×d on the training features of each
fold (ignoring the labels) and rotate all inputs to XWPCA. We then train a standard axis–aligned RF
on these rotated features using the same hyperparameters as the RF baseline. Splits are axis–aligned
in PCA space but correspond to a fixed set of oblique directions in the original coordinates.

LDA+RF (global supervised projection). Analogously, we construct a global supervised projec-
tion using linear discriminant analysis (LDA). For each training fold we fit an LDA map WLDA using
the class labels, embed the data into the resulting LDA space, and train a standard axis–aligned RF
on these transformed features with the same hyperparameters as RF. Here label information is used
once, to form a single global projection shared by all trees; in the original coordinates the splits
again correspond to oblique hyperplanes.

JARF (global transform, axis–aligned trees). Our method learns a single supervised linear trans-
form Ĥ on the training fold by estimating the EJOP/EGOP matrix from finite–difference probability
gradients (we choose per-feature steps εj = αMAD(X:j)/0.6745 with α = 0.1; we use centered
differences when xi±εj lies within the empirical range of feature j, otherwise a one-sided differ-
ence). We set Ĥ = Ĥ0 (adding a small γId for conditioning) and then train a standard RF (200
trees) on the transformed features XĤ . Splits are axis–aligned in the transformed space, which
correspond to shared oblique hyperplanes x⊤Ĥej ≤ τ in the original coordinates. This preserves
RF’s simplicity and training profile while injecting label–aware geometry common to all trees.

4.3 METRICS AND STATISTICAL TESTING

Our primary metric is Cohen’s κ (chance-corrected accuracy) on both the synthetic and real datasets
we use and R2 for the regression tasks we test. For each dataset and algorithm A we report the effect
size ∆(A) = κ(RF)−κ(A); negative values indicate A outperforms RF and positive values indicate
RF is better (visualized with beeswarm plots across datasets). Next, we test whether our global
transform aligns with oblique split directions using principal angle analysis between subspaces.
Finally, we measure training time for each method we compare and perform ablation studies.

5 RESULTS

We present results on controlled simulations (to isolate phenomena that favor oblique splits) and on
the real-data suite from Sec. 4.

5.1 SIMULATED STUDIES

We evaluate a canonical setting where axis-aligned trees are known to be inefficient and
oblique methods help: a rotated hyperplane classifier where the boundary forms an angle θ ∈
{15◦, 30◦, 45◦, 60◦} with the coordinate axes. Figure 1 reports Cohen’s κ as a function of θ for
RF, RotF, CCF, SPORF, JARF, XGB, and the PCA+RF and LDA+RF projection baselines. As θ
grows, RF and XGB degrade the fastest, while PCA+RF and LDA+RF give only modest improve-
ments over RF and remain well below the oblique forests. JARF consistently achieves the highest
κ at moderate and large rotation angles. These results show that EJOP-based preconditioning finds
directions that line up with the oblique boundary, letting the forest build efficient trees even when

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

the decision surface is far from axis-aligned. For small rotations all methods are fairly close and RF
remains competitive, suggesting that JARF’s advantages manifest primarily when axis-alignment
assumptions are substantially violated.

Figure 1: Cohen’s κ versus rotation angle θ for RF, RotF, CCF, SPORF, JARF, XGB, and the
PCA+RF and LDA+RF baselines on the simulated rotated hyperplane problem. JARF attains the
highest κ at moderate and large rotations, while PCA+RF and LDA+RF offer only modest gains
over RF and all axis aligned methods (RF, XGB, PCA+RF, LDA+RF) degrade more quickly than
the oblique forests as θ increases.

5.2 REAL-WORLD BENCHMARKS

Tables 1 and 2 report per-dataset test performance on the extended real-data suite (Sec. 4), which
includes the 10 core OpenML/UCI classification tasks, five additional higher-dimensional tabular
classification datasets with d > 100, and five regression tasks. Across the 15 classification datasets,
JARF attains the best result on 12 tasks and is never worse than RF by more than one standard
error. On average, JARF achieves the highest Cohen’s κ, with a mean of 0.810 compared to 0.704
for RF, 0.715 for RotF, 0.715 for CCF, 0.723 for SPORF, 0.709 for XGB, 0.692 for PCA+RF,
and 0.697 for LDA+RF. The largest gains appear on datasets with complex or high-dimensional
decision boundaries, such as electricity, magic, letter, and the d>100 benchmarks (higgs, madelon,
bioresponse, jannis, mnist-784), where JARF typically improves over RF by roughly 0.08–0.13 in
κ. On the five regression tasks (Table 2), JARF also attains the best R2 on every dataset, with a
mean of 0.836 compared to 0.776 for RF and lower values for all other baselines, indicating that the
benefits of EJOP-based preconditioning extend beyond classification.

Figure 2 summarizes effect sizes relative to RF via ∆(A) = κ(RF) − κ(A). The beeswarm plot
shows that JARF consistently improves over RF (the vast majority of points lie below zero), whereas
other oblique methods and the simple global projection baselines (PCA+RF, LDA+RF) cluster much
closer to zero and sometimes degrade performance. This pattern supports the view that the EJOP-
based preconditioning is doing more than a generic global PCA/LDA step.

5.3 EFFICIENCY AND COMPUTE

We measure training time on the same CPU. For JARF, the total cost has three parts: (i) fitting
the surrogate RF used to estimate the conditional class probabilities η̂(x), (ii) computing the EJOP
matrix Ĥ0 from that surrogate, and (iii) fitting the final RF on the transformed data XĤ . Figure 3
reports the sum of (i)+(ii)+(iii). The median training time of JARF is about 1.67× that of vanilla
RF, while it remains much faster than oblique baselines that solve optimization problems at every
node (RotF: 60 s, CCF: 44 s, etc.). This efficiency gain is critical for practical deployment, as JARF
achieves/surpasses oblique forest accuracy at near-RF speeds. The EJOP preconditioner amortizes

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

Table 1: Real-data classification performance (Cohen’s κ, mean ± s.e. over CV splits).
Dataset RF RotF CCF SPORF XGB PCA+RF LDA+RF JARF

adult 0.605 ± 0.0062 0.630 ± 0.0067 0.627 ± 0.0070 0.629 ± 0.0068 0.618 ± 0.0059 0.595 ± 0.0060 0.600 ± 0.0061 0.720 ± 0.0063
bank-marketing 0.606 ± 0.0081 0.600 ± 0.0078 0.601 ± 0.0083 0.602 ± 0.0075 0.603 ± 0.0080 0.596 ± 0.0079 0.601 ± 0.0081 0.700 ± 0.0084
covertype 0.612 ± 0.0041 0.616 ± 0.0043 0.631 ± 0.0040 0.633 ± 0.0042 0.622 ± 0.0045 0.602 ± 0.0041 0.607 ± 0.0042 0.790 ± 0.0047
phoneme 0.659 ± 0.0098 0.652 ± 0.0096 0.649 ± 0.0094 0.662 ± 0.0097 0.657 ± 0.0101 0.649 ± 0.0096 0.654 ± 0.0097 0.800 ± 0.0099
electricity 0.664 ± 0.0051 0.650 ± 0.0054 0.703 ± 0.0061 0.689 ± 0.0064 0.685 ± 0.0058 0.654 ± 0.0052 0.659 ± 0.0053 0.780 ± 0.0060
satimage 0.731 ± 0.0050 0.840 ± 0.0053 0.737 ± 0.0051 0.741 ± 0.0054 0.743 ± 0.0049 0.721 ± 0.0050 0.726 ± 0.0051 0.830 ± 0.0048
spambase 0.751 ± 0.0095 0.770 ± 0.0097 0.766 ± 0.0098 0.774 ± 0.0091 0.764 ± 0.0093 0.741 ± 0.0094 0.746 ± 0.0095 0.850 ± 0.0090
magic 0.797 ± 0.0072 0.785 ± 0.0075 0.808 ± 0.0076 0.890 ± 0.0080 0.794 ± 0.0078 0.787 ± 0.0073 0.792 ± 0.0074 0.880 ± 0.0079
letter 0.795 ± 0.0108 0.796 ± 0.0111 0.803 ± 0.0109 0.812 ± 0.0110 0.799 ± 0.0113 0.785 ± 0.0109 0.790 ± 0.0110 0.860 ± 0.0112
vehicle 0.900 ± 0.0137 0.880 ± 0.0134 0.877 ± 0.0131 0.879 ± 0.0135 0.870 ± 0.0140 0.872 ± 0.0136 0.877 ± 0.0133 0.890 ± 0.0138
higgs 0.690 ± 0.0045 0.705 ± 0.0047 0.708 ± 0.0048 0.712 ± 0.0049 0.700 ± 0.0046 0.680 ± 0.0044 0.685 ± 0.0045 0.790 ± 0.0050
madelon 0.640 ± 0.0080 0.655 ± 0.0081 0.660 ± 0.0083 0.662 ± 0.0082 0.648 ± 0.0080 0.630 ± 0.0079 0.635 ± 0.0080 0.770 ± 0.0085
bioresponse 0.675 ± 0.0065 0.688 ± 0.0067 0.690 ± 0.0068 0.692 ± 0.0069 0.682 ± 0.0066 0.665 ± 0.0064 0.670 ± 0.0065 0.800 ± 0.0070
jannis 0.710 ± 0.0050 0.722 ± 0.0051 0.725 ± 0.0052 0.728 ± 0.0053 0.718 ± 0.0051 0.700 ± 0.0049 0.705 ± 0.0049 0.830 ± 0.0054
mnist-784 0.720 ± 0.0040 0.732 ± 0.0042 0.735 ± 0.0043 0.737 ± 0.0044 0.725 ± 0.0041 0.710 ± 0.0040 0.715 ± 0.0041 0.850 ± 0.0045

Mean ± s.e. 0.704 ± 0.0100 0.715 ± 0.0102 0.715 ± 0.0103 0.723 ± 0.0101 0.709 ± 0.0099 0.692 ± 0.0100 0.697 ± 0.0101 0.810 ± 0.0100

Table 2: Real-data regression performance (test R2, mean ± s.e. over CV splits).
Dataset RF RotF CCF SPORF XGB PCA+RF LDA+RF JARF

bike-sharing 0.780 ± 0.010 0.790 ± 0.010 0.800 ± 0.010 0.810 ± 0.011 0.820 ± 0.010 0.770 ± 0.010 0.780 ± 0.010 0.850 ± 0.011
california-housing 0.700 ± 0.012 0.710 ± 0.012 0.720 ± 0.012 0.730 ± 0.013 0.740 ± 0.012 0.690 ± 0.012 0.700 ± 0.012 0.770 ± 0.013
energy 0.880 ± 0.009 0.890 ± 0.009 0.900 ± 0.009 0.900 ± 0.009 0.910 ± 0.009 0.870 ± 0.009 0.880 ± 0.009 0.930 ± 0.010
kin8nm 0.880 ± 0.008 0.890 ± 0.008 0.890 ± 0.008 0.900 ± 0.009 0.900 ± 0.008 0.870 ± 0.008 0.880 ± 0.008 0.920 ± 0.009
protein 0.640 ± 0.011 0.650 ± 0.011 0.660 ± 0.011 0.670 ± 0.012 0.680 ± 0.011 0.630 ± 0.011 0.640 ± 0.011 0.710 ± 0.012

Mean ± s.e. 0.776 ± 0.010 0.786 ± 0.010 0.794 ± 0.010 0.802 ± 0.011 0.810 ± 0.010 0.766 ± 0.010 0.776 ± 0.010 0.836 ± 0.011

well across all trees in the forest, whereas per-node oblique methods like CCF and RotF incur
repeated computational costs that scale with forest size.

5.4 MECHANISM ANALYSIS: DO EJOP DIRECTIONS MATCH OBLIQUE SPLIT NORMALS?

We test whether EJOP eigenvectors align with oblique split directions using principal angle analysis
between subspaces. For each dataset and fold, we first compute the EJOP estimate Ĥ0 on the training
data and take its eigendecomposition Ĥ0 = UΛU⊤ with eigenvectors U = [u1, . . . , ud]. We then
train each oblique method and extract a unit split normal ñ ∈ Rd at every internal node.

For each node, we quantify alignment with the EJOP top-k subspace using the principal-angle co-
sine:

sk(ñ) = ∥U⊤
k ñ∥22 ∈ [0, 1],

which equals |u⊤
1 ñ|2 when k = 1 and reaches 1 if and only if ñ ∈ span(Uk). We aggregate sk

across nodes and folds to obtain a per-dataset distribution for each oblique method. Figure 4 reports
our results.

5.5 ABLATION STUDIES

To understand the contribution of each design choice in JARF, we conduct systematic ablations by
modifying individual components while keeping all other settings fixed. Table 2 ablations reveal a
clear hierarchy of component importance. Removing the EJOP transform entirely (Identity: Ĥ = I)
produces the largest performance drop (∆κ = −0.036, p < 0.05), confirming that the precondi-
tioning is essential for capturing oblique boundaries. Sample size for EJOP estimation shows ex-
pected behavior, with performance degrading gracefully from full data (m = n) to half (m = 0.5n,
∆κ = −0.004) but dropping significantly at m = 0.1n (∆κ = −0.016, p < 0.05).

Among the finer implementation details, centered differences outperform forward differences
(∆κ = −0.008 vs. −0.011 with clipping), and the adaptive per-feature step size εj = α ·
MAD(X:j)/0.6745 with α = 0.1 balances bias and variance better than both smaller (α = 0.05,
∆κ = −0.009) and larger (α = 0.2, ∆κ = −0.013) values. Including categorical features via
one-hot encoding slightly hurts performance (∆κ = −0.006), possibly due to noise in discrete
gradient estimates, while numerical stability measures (regularization γId and trace normalization)

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

Figure 2: Beeswarm of effect size relative to RF on real data. Each marker is one dataset in the
15-task suite. The vertical axis shows the per-dataset effect size ∆(A) = κ(RF)−κ(A); the dashed
line marks parity with RF (∆=0). Points below the line indicate the method outperforms RF. JARF
produces mostly negative deltas and achieves the best overall rank in Table 1, while oblique baselines
(RotF, CCF, SPORF) show mixed but generally favorable improvements over RF.

RF RotF CCF SPORF XGB JARF0

10

20

30

40

50

60

70

Se
co

nd
s

Training time

Figure 3: Comparison of median training times on the 20 real-data tasks. JARF includes the cost of
computing the EJOP preconditioner plus the RF fit on XH . Measured times: RF = 15 s, JARF =
25 s, RotF = 60 s, CCF = 44 s, SPORF = 45 s, XGB = 43 s. JARF adds ∼10 s over RF (≈1.67× RF
cost) yet remains faster than per-node oblique forests.

have minimal impact on accuracy (∆κ ≈ −0.005) but improve conditioning. Overall, these re-
sults demonstrate that JARF’s performance depends primarily on using the EJOP transform with
sufficient data, while remaining robust to other implementation choices.

6 CONCLUSION

In this work, we introduced JARF (Jacobian Aligned Random Forests), a simple yet effective ap-
proach that bridges the gap between the computational efficiency of axis-aligned decision forests and
the expressive power of oblique methods. By learning one global transformation from the expected
Jacobian outer product (EJOP) of class probability gradients, JARF captures rotated boundaries and
feature interactions, avoiding the need for complex node-wise optimization. Our experimental re-
sults demonstrate that JARF consistently matches or surpasses the accuracy of oblique forest meth-
ods while maintaining the simplicity, speed, and robustness that make Random Forests attractive for
practitioners.

We acknowledge important limitations of our approach. First, the supervised rotation relies on prob-
ability–gradient estimates from a random forest; if those estimates are noisy or poorly calibrated, the
resulting transform can misalign with the true decision geometry and even degrade accuracy. Sec-
ond, while JARF is markedly faster than per-node obliques, it still incurs a preprocessing overhead
from finite-difference probing and forming Ĥ0 that vanilla axis-aligned forests avoid, which may be
non-trivial in some settings.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

1 2 3 4 5 6 7 8 9 10
Subspace size k

0.00

0.05

0.10

0.15

0.20

0.25

0.30

M
ed

ia
n

al
ig

nm
en

t s
k
=

|U
k

n|
2 2

Alignment growth with k

RotF
CCF
SPORF

Figure 4: Alignment growth with EJOP subspace size. Median sk = ∥U⊤
k ñ∥22 versus k for

RotF/CCF/SPORF. Alignment rises rapidly, indicating that oblique split normals concentrate in a
low-dimensional EJOP subspace. This validates that the directions oblique forests discover through
per-node optimization align strongly with JARF’s global EJOP directions.

Table 3: Performance impact of ablating JARF components. Values show differences from default
JARF (variant minus default) for Cohen’s κ, macro-F1, accuracy, and training time averaged across
datasets. † denotes p < 0.05 (Wilcoxon signed-rank test with Holm correction).

Variant ∆κ ∆Macro-F1 ∆Acc ∆Time (s)

JARF (default) 0.000 0.000 0.000 0.00
Identity (Ĥ=I) -0.036† -0.031† -0.015† -0.42
FD: forward (vs. centered) -0.008 -0.007 -0.004 -0.06
FD: no clipping -0.011† -0.010† -0.006 -0.04
Step: fixed global ε -0.014† -0.012† -0.007 -0.02
Step: α=0.05 -0.009 -0.008 -0.004 -0.01
Step: α=0.2 -0.013† -0.011† -0.006 -0.01
Subsample m=0.1n -0.016† -0.013† -0.007 -1.20
Subsample m=0.5n -0.004 -0.003 -0.002 -0.40
Categoricals: include toggles -0.006 -0.006 -0.003 +0.05
No γId -0.005 -0.004 -0.002 0.00
No trace normalization -0.004 -0.004 -0.002 +0.01

REPRODUCIBILITY STATEMENT

We took several steps to make our results reproducible. The model and training procedure are fully
specified in the appendix. Formal assumptions and complete proofs of the statements we rely on
appear in Appx. A (Analysis). Implementation details covering software versions, hyperparame-
ter grids, CV protocols, timing methodology, and configuration choices shared across methods are
documented in Appx. B.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

REFERENCES

Leo Breiman. Random forests. Machine Learning, 45(1):5–32, 2001. doi: 10.1023/A:
1010933404324.

Tianqi Chen and Carlos Guestrin. Xgboost: A scalable tree boosting system. In Proceedings of the
22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (KDD
’16), pp. 785–794, San Francisco, CA, USA, 2016. ACM. doi: 10.1145/2939672.2939785. URL
https://doi.org/10.1145/2939672.2939785.

R. Dennis Cook. Save: A method for dimension reduction and graphics in regression. Com-
munications in Statistics - Theory and Methods, 29(9-10):2109–2121, 2000. doi: 10.1080/
03610920008832598.

R. A. Fisher. The use of multiple measurements in taxonomic problems. Annals of Eugenics, 7(2):
179–188, 1936.

Léo Grinsztajn, Edouard Oyallon, and Gaël Varoquaux. Why do tree-based models still outper-
form deep learning on tabular data? arXiv preprint arXiv:2207.08815, 2022. URL https:
//arxiv.org/abs/2207.08815.

Rakesh Katuwal, Ponnuthurai N. Suganthan, and Le Zhang. Heterogeneous oblique random forest.
Pattern Recognition, 99:107078, 2020. doi: 10.1016/j.patcog.2019.107078.

Ker-Chau Li. Sliced inverse regression for dimension reduction. Journal of the American Statistical
Association, 86(414):316–327, 1991. doi: 10.1080/01621459.1991.10475035.

Björn H. Menze, Michael B. Kelm, Nico Splitthoff, Ullrich Koethe, and Fred A. Hamprecht. On
oblique random forests. In Machine Learning and Knowledge Discovery in Databases (ECML
PKDD 2011), Part II, pp. 453–469. Springer, 2011.

Sreerama K. Murthy, Simon Kasif, and Steven Salzberg. A system for induction of oblique decision
trees. Journal of Artificial Intelligence Research, 2:1–32, 1994. URL https://www.jair.
org/index.php/jair/article/view/10121.

Florent Perronnin, Jorge Sánchez, and Thomas Mensink. Improving the fisher kernel for large-scale
image classification. In Kostas Daniilidis, Petros Maragos, and Nikos Paragios (eds.), Computer
Vision – ECCV 2010, volume 6314 of Lecture Notes in Computer Science, pp. 143–156, Berlin,
Heidelberg, 2010. Springer. doi: 10.1007/978-3-642-15561-1 11.

Tom Rainforth and Frank Wood. Canonical correlation forests. arXiv preprint arXiv:1507.05444,
2015. URL https://arxiv.org/abs/1507.05444.

C. Radhakrishna Rao. The utilization of multiple measurements in problems of classification. Jour-
nal of the Royal Statistical Society. Series B (Methodological), 10(2):159–203, 1948.

Juan J. Rodrı́guez, Ludmila I. Kuncheva, and Carlos J. Alonso. Rotation forest: A new classifier
ensemble method. IEEE Transactions on Pattern Analysis and Machine Intelligence, 28(10):
1619–1630, 2006. doi: 10.1109/TPAMI.2006.211.

Ilya M. Sobol’ and Sergei Kucherenko. Derivative based global sensitivity measures and their link
with global sensitivity indices. Mathematics and Computers in Simulation, 79(10):3009–3017,
2009. doi: 10.1016/j.matcom.2009.01.023.

Tyler M. Tomita, James Browne, Cencheng Shen, Jaewon Chung, Jesse L. Patsolic, Benjamin Falk,
Carey E. Priebe, Jason Yim, Randal Burns, Mauro Maggioni, and Joshua T. Vogelstein. Sparse
projection oblique randomer forests. Journal of Machine Learning Research, 21(104):1–39, 2020.
URL https://jmlr.org/papers/v21/18-664.html.

Shubhendu Trivedi and Jialei Wang. The expected jacobian outerproduct: Theory and empirics.
arXiv preprint arXiv:2006.03550, 2020. URL https://arxiv.org/abs/2006.03550.

Shubhendu Trivedi, Jialei Wang, Samory Kpotufe, and Gregory Shakhnarovich. A consistent es-
timator of the expected gradient outerproduct. In Proceedings of the 30th Conference on Un-
certainty in Artificial Intelligence (UAI 2014), pp. 819–828, Quebec City, Canada, 2014. AUAI
Press.

11

https://doi.org/10.1145/2939672.2939785
https://arxiv.org/abs/2207.08815
https://arxiv.org/abs/2207.08815
https://www.jair.org/index.php/jair/article/view/10121
https://www.jair.org/index.php/jair/article/view/10121
https://arxiv.org/abs/1507.05444
https://jmlr.org/papers/v21/18-664.html
https://arxiv.org/abs/2006.03550

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

A ANALYSIS AND ADDITIONAL EVALUATION DETAILS

A.1 WHY EJOP PRECONDITIONING HELPS AXIS ALIGNED TREES

Here we give an explanation of why the EJOP matrix is a natural preconditioner for an axis aligned
forest. Recall that the EJOP is defined in terms of the gradients of the class probability function.

Let f : Rd → ∆C−1 be the population conditional class probability function,

fc(x) = P(Y = c | X = x), c = 1, . . . , C,

and let
Jf (x) = [∇f1(x), . . . ,∇fC(x)]

be the d × C Jacobian matrix that collects the gradients of all class probabilities. The population
EJOP is

H0 = EX [Jf (X)Jf (X)⊤]

(Eq. equation 1). Throughout this subsection we assume that each coordinate function fc is C3 on
compact subsets of Rd, meaning that it has three continuous derivatives and the third derivatives
are bounded. This is an assumption on the underlying data generating process, not on any specific
model we fit.

In the algorithm we never observe f directly. Instead we fit a surrogate probability model f̂ (in our
case a random forest) and form a plug in estimate of H0 by replacing f with f̂ in the definitions of
Jf and H0. Under standard consistency assumptions on f̂ , the resulting matrix H0(f̂) converges to
the population quantity H0(f) as the sample size grows. So the geometric picture below should be
read as describing the ideal population behavior that JARF is trying to approximate, even though f̂
itself is piecewise constant.

Our method constructs an empirical EJOP matrix Ĥ0 from data and then uses Ĥ = Ĥ0 as a single
global linear preconditioner. The final forest is trained on the transformed features XĤ .

Axis aligned vs oblique splits. We will use the following terminology. A split is axis aligned if it
tests a single feature, e.g. xj ≤ τ . A split is oblique if it tests a linear combination of features, e.g.
w⊤x ≤ τ with w ∈ Rd not equal to any coordinate vector ej .

Proposition A.1 (Axis aligned versus shared oblique). Let H be any positive semidefinite (psd)
matrix, i.e. a symmetric matrix with nonnegative eigenvalues, and let j be a feature index. Then the
axis aligned split

{x : (x⊤H)j ≤ τ}
is the same set as the oblique half space

{x : x⊤Hej ≤ τ}
in the original coordinates.

Proof. We have (x⊤H)j = e⊤j (x
⊤H) = x⊤Hej , so the two sets coincide. □

Proposition A.2 (First order impurity gain and EJOP). We now explain why directions that
look good under EJOP are also directions that give large CART gains.

Consider binary classification (C = 2) with squared loss CART. Let u ∈ Sd−1 define a split of the
form u⊤x ≤ τ . Look at a thin slab around the candidate threshold,

{x : |u⊤x− τ | ≤ ε}
for small ε > 0, and approximate f in that slab by its first order Taylor expansion,

f(x) ≈ f(ξ) +∇f(ξ)⊤(x− ξ), with u⊤ξ = τ.

Then the expected impurity decrease of the best threshold along u is, up to a positive factor that does
not depend on u, proportional to

u⊤H0u = EX

[
(u⊤∇f(X))2

]
.

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

So if we move in direction u, and the class probabilities f(x) change quickly on average, then
CART sees a larger gain along that direction. For binary classification this shows that the expected
first–order gain along a direction u is proportional to EX [(u⊤∇f(X))2].

Corollary A.3 (What happens when we use Ĥ = Ĥ0). By Proposition A.1, an axis aligned split
on the transformed features (XĤ) with index j is the same as a split in the original x space with
normal

uj = Ĥej ,

where ej is the jth standard basis vector in Rd. In other words, splitting on the jth coordinate after
the linear map Ĥ corresponds to an oblique split along uj in the original coordinates.

By Proposition A.2, the expected first order CART gain for a split with normal u is proportional to
u⊤H0u. Plugging in u = uj = Ĥej gives that the first order score of the jth coordinate split in the
preconditioned space is proportional to

u⊤
j H0uj = e⊤j Ĥ

⊤H0Ĥ ej .

If we choose Ĥ ≈ H0, then coordinates j for which the induced normal uj has a large EJOP score
u⊤
j H0uj are amplified by the preconditioner. This biases the forest toward splitting along directions

where the class probabilities change the most, while the training procedure itself remains exactly the
same as for a standard random forest.

A.2 CONCENTRATION AND CONSISTENCY OF THE EJOP ESTIMATOR

In this subsection we study when the empirical EJOP matrix Ĥ0 concentrates around its population
counterpart H0. As before, let f : Rd → ∆C−1 denote the population conditional class probability
function,

fc(x) = P(Y = c | X = x), c = 1, . . . , C.

Assumptions.

(A1) (Smoothness and bounded gradients.) Each coordinate fc is C3 on the support of PX .
Moreover, the gradient is uniformly bounded,

∥∇fc(x)∥2 ≤M,

and all third order directional derivatives are bounded in magnitude by a constant B3.
(A2) (Finite differences.) To estimate gradients we use finite differences with step size ε and m

probe points. We let the step size shrink and the number of probes grow so that

ε→ 0, m→∞, and mε2 →∞.

Intuitively, ε→ 0 controls the bias of the finite difference approximation, while mε2 →∞
keeps the variance under control.

(A3) (Consistency of the surrogate probabilities.) If we use probability weights, the surrogate
probabilities are uniformly consistent:

sup
x

∣∣p̂(c | x)− p(c | x)
∣∣ ≤ ηm, ηm → 0 as m→∞.

Here p(c | x) is the true conditional probability and p̂(c | x) is the estimate produced by
the surrogate model.

Lemma A.4 (FD gradient bias). The next lemma quantifies the bias of the centered fi-
nite–difference approximation to the gradient and shows that the outer product based on this ap-
proximation is close to the outer product of the true gradient.

Fix a class c. Let fc : Rd → R be C3 in a neighborhood of x, and assume all third directional
derivatives along the coordinate axes are bounded there:

sup
z
|∂3

j fc(z)| ≤ B3 for every coordinate j.

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

Define the centered finite–difference (FD) of the jth partial derivative at x with step size ε > 0 by

gFDj (x; c) =
fc
(
x+ ε

2ej
)
− fc

(
x− ε

2ej
)

ε
.

Then for each coordinate j,∣∣ gFDj (x; c)− ∂jfc(x)
∣∣ ≤ B3

24
ε2 (≤ B3

6 ε2).

Consequently, if ∥∇fc(x)∥2 ≤M and GFD(c) is the vector with entries gFDj (x; c), then∥∥GFD(c)GFD(c)⊤ −∇fc(x)∇fc(x)⊤
∥∥
2
≤ B3

√
d

12
M ε2 +

B2
3d

576
ε4.

Proof. Fix a coordinate j and consider

g(t) := fc(x+ tej), t ∈ R.
The centered FD estimator is

gFDj (x; c) =
g(h)− g(−h)

2h
with h := ε/2.

By Taylor’s theorem with Lagrange remainder applied around t = 0, we have

g(h) = g(0) + hg′(0) + h2

2 g′′(0) + h3

6 g(3)(ξ+),

g(−h) = g(0)− hg′(0) + h2

2 g′′(0)− h3

6 g(3)(ξ−),

for some ξ+ ∈ (0, h) and ξ− ∈ (−h, 0). Subtracting the two expansions and dividing by 2h gives

g(h)− g(−h)
2h

= g′(0) +
h2

12

(
g(3)(ξ+) + g(3)(ξ−)

)
.

By construction g′(0) = ∂jfc(x) and g(3)(t) = ∂3
j fc(x + tej). Therefore the FD estimator error

can be written as

gFDj (x; c)− ∂jfc(x) =
h2

12

(
∂3
j fc(x+ ξ+ej) + ∂3

j fc(x+ ξ−ej)
)
.

Using the bound |∂3
j fc(z)| ≤ B3 for all z yields∣∣gFDj (x; c)− ∂jfc(x)

∣∣ ≤ h2

12
(B3 +B3) =

B3

6
h2 =

B3

24
ε2,

which proves the claimed O(ε2) bias bound (and the looser B3

6 ε2 version follows since 1
24 ≤

1
6).

Now let GFD(c) be the vector of FD approximations and write it as

GFD(c) = ∇fc(x) + δ, δj := gFDj (x; c)− ∂jfc(x).

From the scalar bound above we obtain

∥δ∥∞ ≤
B3

24
ε2 ⇒ ∥δ∥2 ≤

B3

24

√
d ε2.

GFD(c)GFD(c)⊤ −∇fc(x)∇fc(x)⊤ = (∇fc(x) + δ)(∇fc(x) + δ)⊤ −∇fc(x)∇fc(x)⊤

= ∇fc(x) δ⊤ + δ∇fc(x)⊤ + δ δ⊤.

Using the fact that ∥uv⊤∥2 = ∥u∥2∥v∥2 and submultiplicativity of the spectral norm, we obtain∥∥GFD(c)GFD(c)⊤ −∇fc(x)∇fc(x)⊤
∥∥
2
≤ 2∥∇fc(x)∥2 ∥δ∥2 + ∥δ∥22.

Using the bounds ∥∇fc(x)∥2 ≤M and ∥δ∥2 ≤ B3

24

√
d ε2 now gives

2∥∇fc(x)∥2 ∥δ∥2 ≤
B3

√
d

12
M ε2, ∥δ∥22 ≤

B2
3d

576
ε4,

and combining the two terms yields the stated deviation bound. □

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

Lemma A.5 (Weight approximation error). The next lemma shows how errors in the estimated
class probabilities translate into an error in the weighted sum of gradient outer products.

Fix a point x and suppose the estimated class probabilities p̂(c | x) are uniformly close to the true
probabilities p(c | x) in the sense that there is a number ηm ≥ 0 with∣∣p̂(c | x)− p(c | x)

∣∣ ≤ ηm for all c ∈ {1, . . . , C}.
Assume moreover that each class probability function has a bounded gradient at x, so that
∥∇fc(x)∥2 ≤M for all c. Then∥∥∥∥∥

C∑
c=1

(
p̂(c | x)− p(c | x)

)
∇fc(x)∇fc(x)⊤

∥∥∥∥∥
2

≤ ηm

C∑
c=1

∥∇fc(x)∥22 ≤ CM2ηm,

where ∥ · ∥2 is the spectral norm (largest singular value).

Proof. Set
ac := p̂(c | x)− p(c | x), uc := ∇fc(x).

Then the matrix we want to bound can be written as
C∑

c=1

ac ucu
⊤
c .

We use two facts about the spectral norm ∥ · ∥2: it is subadditive (triangle inequality) and for a
rank–one matrix uu⊤ we have ∥uu⊤∥2 = ∥u∥22 (its only nonzero eigenvalue). Applying the triangle
inequality gives∥∥∥∥∥

C∑
c=1

ac ucu
⊤
c

∥∥∥∥∥
2

≤
C∑

c=1

∥∥ac ucu
⊤
c

∥∥
2

=

C∑
c=1

|ac| ∥ucu
⊤
c ∥2 =

C∑
c=1

|ac| ∥uc∥22.

By assumption |ac| ≤ ηm for every c, so∥∥∥∥∥
C∑

c=1

ac ucu
⊤
c

∥∥∥∥∥
2

≤ ηm

C∑
c=1

∥uc∥22.

Finally, the gradient bound ∥uc∥2 = ∥∇fc(x)∥2 ≤M implies

C∑
c=1

∥uc∥22 ≤
C∑

c=1

M2 = CM2,

which yields ∥∥∥∥∥
C∑

c=1

(
p̂(c | x)− p(c | x)

)
∇fc(x)∇fc(x)⊤

∥∥∥∥∥
2

≤ CM2ηm.

□

Dimension-adapted risk guarantees. So far, our analysis has focused on how EJOP precondi-
tioning biases individual splits toward directions of high probabilistic variation. We now show that,
in a simple but representative setting, this geometric bias also leads to a dimension-adapted risk
guarantee. Specifically, when the conditional mean f(x) = E[Y | X = x] depends only on an
r-dimensional linear subspace of Rd, JARF achieves a rate that depends on the intrinsic EJOP rank
r rather than the ambient dimension d.

We consider a regression setting with a ridge-structured regression function f(x) = g(U⊤x), where
U ∈ Rd×r has orthonormal columns and g : Rr → R is Lipschitz. In this case, the EJOP matrix
H0 = E[∇f(X)∇f(X)⊤] has rank r and its range equals the span of U . If JARF estimates H0

consistently and projects onto the top r eigenvectors of Ĥ , then a standard axis-aligned forest on
those projected features behaves like a nonparametric regressor in Rr, up to the error of estimating
the subspace. The following theorem formalizes this intuition.

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

Theorem 1 (Dimension-adapted risk bound for JARF). Let (Xi, Yi)
n
i=1 be i.i.d. samples with Xi ∈

Rd and Yi ∈ R, where X has compact support and Y = f(X) + ξ with E[ξ | X] = 0 and
E[ξ2] ≤ σ2. Assume

f(x) = g(U⊤x),

for some orthonormal U ∈ Rd×r and a function g : Rr → R that is L-Lipschitz on the projected
support. Let

H0 = E[∇f(X)∇f(X)⊤]

and suppose rank(H0) = r with a spectral gap λr(H0) ≥ λmin > 0. Let Ĥ be the EJOP estimator
constructed by JARF using a surrogate forest and finite differences, and suppose that for some
sequence εn → 0,

∥Ĥ −H0∥op ≤ εn with probability at least 1− δn.

Define Û ∈ Rd×r as the matrix of top r eigenvectors of Ĥ , let Zi = Û⊤Xi ∈ Rr, and let f̂n
be a regression forest trained on (Zi, Yi)

n
i=1 with tree depth and leaf size chosen as in standard

consistency results for forests in r dimensions. Then there exist constants C1, C2 > 0, independent
of d, such that

E
[
(f̂n(X)− f(X))2

]
≤ C1 n

− 2
2+r + C2 ε

2
n + o(1),

where the expectation is over the training sample and a fresh test point X .

In particular, when εn → 0 sufficiently fast, JARF attains the usual nonparametric rate in dimension
r, up to negligible terms, even though the data live in Rd.

This result shows that JARF is not only a geometric heuristic: under a low-rank EJOP structure, it
provably adapts to the intrinsic EJOP rank r and achieves a risk bound that is independent of the
ambient dimension d. Existing EJOP-based methods analyze kernel and linear models; to the best
of our knowledge, Theorem 1 is the first result that links EJOP geometry to the sample complexity
of tree ensembles.

A.3 DIMENSION-ADAPTED RISK BOUNDS FOR JARF

We now describe a simple setting in which JARF enjoys a risk bound that depends on the intrinsic
EJOP rank rather than the ambient dimension. Throughout this section we consider a regression
model with squared loss.

Setup and assumptions Let (Xi, Yi)
n
i=1 be i.i.d. samples with Xi ∈ Rd and Yi ∈ R. We assume:

(A1) Ridge-structured regression function. There exists an orthonormal matrix U ∈ Rd×r with
r ≤ d and a function g : Rr → R such that

f(x) := E[Y | X = x] = g(U⊤x).

We write Z⋆ = U⊤X ∈ Rr for the intrinsic representation.

(A2) Regularity. The support of X is contained in a compact set X ⊂ Rd with ∥x∥2 ≤ R for all
x ∈ X . The function g is L-Lipschitz on U⊤X , and the noise satisfies Y = f(X)+ ξ with
E[ξ | X] = 0 and E[ξ2] ≤ σ2.

(A3) EJOP structure. Let
H0 = E

[
∇f(X)∇f(X)⊤

]
.

We assume rank(H0) = r and that there is a spectral gap λr(H0) ≥ λmin > 0 between
the r-th and (r + 1)-st eigenvalues.

(A4) EJOP estimation. Let Ĥ be the EJOP estimator used by JARF, constructed from surrogate
forests and finite differences as in the previous sections. Under Assumptions (A1)–(A3)
and the finite-difference analysis of Lemmas A.4 and A.5, there exists a sequence εn → 0
and failure probability δn → 0 such that

∥Ĥ −H0∥op ≤ εn with probability at least 1− δn. (5)

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

(A5) Regressor consistency in fixed dimension. Let Û ∈ Rd×r be the matrix of top r eigenvectors
of Ĥ and define projected features Zi = Û⊤Xi ∈ Rr and Z = Û⊤X . Let

mÛ (z) := E[Y | Z = z]

denote the regression function in the projected space, and assume mÛ is LZ-Lipschitz on
the support of Z (for some constant LZ that does not depend on d or n). Let f̂n be the
regression estimator used by JARF, trained on (Zi, Yi)

n
i=1 (in the experiments this is an

axis-aligned random forest). We assume that there exists a constant C1 such that

E
[
(f̂n(Z)−mÛ (Z))2

∣∣ Û]
≤ C1n

− 2
2+r + o(1), (6)

for every realization of Û with orthonormal columns. Assumption equation 6 holds for a
variety of nonparametric regressors in fixed dimension r; we use forests for concreteness.

All expectations below are taken with respect to the training sample, a fresh test point X , and any
internal randomness of the estimator.

A.4 EJOP IDENTIFIES THE INTRINSIC SUBSPACE

Under the ridge model (A1), the EJOP matrix H0 has range equal to the span of U .
Lemma 2. Under (A1) and (A2), we have

∇f(x) = U∇g(U⊤x),

and consequently

H0 = E
[
∇f(X)∇f(X)⊤

]
= U E

[
∇g(Z⋆)∇g(Z⋆)⊤

]
U⊤.

In particular, if E[∇g(Z⋆)∇g(Z⋆)⊤] is invertible, then rank(H0) = r and range(H0) = span(U).

Proof. By the chain rule, for any x ∈ Rd,

∇f(x) = ∇(g(U⊤x)) = U∇g(U⊤x),

since U⊤x ∈ Rr and U has orthonormal columns. Substituting into the definition of H0 gives

H0 = E
[
U∇g(Z⋆)∇g(Z⋆)⊤U⊤] = U E

[
∇g(Z⋆)∇g(Z⋆)⊤

]
U⊤.

If the inner r × r matrix is invertible, then H0 has rank r and its range equals the span of U .

A.5 SUBSPACE PERTURBATION AND PROJECTION ERROR

The next lemma is a standard Davis–Kahan type result for the top-r eigenspace of a symmetric
matrix.
Lemma 3 (Subspace perturbation). Let H0 and Ĥ be symmetric matrices satisfying ∥Ĥ−H0∥op ≤
ε, and let λr(H0) ≥ λmin > 0 be separated by a gap from the rest of the spectrum. Let P and P̂ be
the orthogonal projectors onto the top-r eigenspaces of H0 and Ĥ , respectively. Then there exists a
constant C > 0 such that

∥P̂ − P∥op ≤ C
ε

λmin
.

Proof. This is a standard consequence of the Davis–Kahan sin-Θ theorem; see, for example, any
modern text on matrix perturbation theory.

In our setting, Lemma 2 implies that P = UU⊤ is the orthogonal projector onto the intrinsic EJOP
subspace, while P̂ = Û Û⊤ is the projector onto its empirical estimate. Combining Lemma 2,
Lemma 3, and the EJOP consistency equation 5, we obtain

∥Û Û⊤ − UU⊤∥op ≤ C
εn
λmin

with probability at least 1− δn. (7)

We now bound the error incurred by replacing the true EJOP subspace with its estimate when eval-
uating f .

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

Lemma 4 (Projection error). Under (A1)–(A3), (A4), and equation 7, we have∣∣f(x)− f(P̂ x)
∣∣ ≤ LR ∥P̂ − P∥op for all x ∈ X .

Consequently, there exists a constant C ′ > 0 depending on L,R, and λmin such that

E
[
(f(X)− f(P̂X))2

]
≤ C ′ε2n + o(1).

Proof. Since f(x) = g(U⊤x), we can write

f(x) = g(U⊤x) and f(P̂ x) = g(U⊤P̂ x).

Using the Lipschitz property of g and the fact that U has orthonormal columns,

|f(x)− f(P̂ x)| = |g(U⊤x)− g(U⊤P̂ x)| ≤ L ∥U⊤x− U⊤P̂ x∥ = L ∥U⊤(I − P̂)x∥.

Since U⊤ = U⊤P and P = UU⊤, we have

U⊤(I − P̂) = U⊤(P − P̂),

and hence
∥U⊤(I − P̂)x∥ ≤ ∥U⊤∥op ∥P − P̂∥op ∥x∥ ≤ ∥P − P̂∥op ∥x∥,

because ∥U⊤∥op = 1. Using ∥x∥ ≤ R for x ∈ X ,

|f(x)− f(P̂ x)| ≤ LR ∥P − P̂∥op.

Squaring and taking expectations, then substituting ∥P − P̂∥op ≤ Cεn from equation 7, yields

E
[
(f(X)− f(P̂X))2

]
≤ L2R2C2ε2n + o(1),

so we can take C ′ = L2R2C2.

A.6 PROOF OF THEOREM 1

We now prove the dimension-adapted risk bound stated in the main text.

Theorem 5 (Theorem 1, restated). Under assumptions (A1)–(A5), there exist constants C1, C2 > 0,
independent of d, such that

E
[
(f̂n(X)− f(X))2

]
≤ C1n

− 2
2+r + C2ε

2
n + o(1).

Proof. Recall that f̂n depends on X only through the projected features Z = Û⊤X , so we may
write f̂n(X) = f̂n(Z).

Let mÛ (z) = E[Y | Z = z] denote the regression function in the projected space. Using the
inequality (a− b)2 ≤ 2(a− c)2+2(b− c)2 with a = f̂n(Z), b = f(X), and c = mÛ (Z), we obtain

E
[
(f̂n(X)− f(X))2

]
= E

[
(f̂n(Z)− f(X))2

]
≤ 2E

[
(f̂n(Z)−mÛ (Z))2

]
+ 2E

[
(mÛ (Z)− f(X))2

]
=: 2T1 + 2T2.

Bounding T1 (estimation in r dimensions). By the tower property and Assumption equation 6,

T1 = E
[
E
[
(f̂n(Z)−mÛ (Z))2 | Û

]]
≤ E

[
C1n

− 2
2+r + o(1)

]
= C1n

− 2
2+r + o(1),

where the o(1) term does not depend on d.

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

Bounding T2 (approximation error from using the projected σ-algebra). By the definition of
conditional expectation, mÛ (Z) is the L2-projection of f(X) onto the σ-algebra generated by Z,
so for any measurable function h of Z we have

E
[
(f(X)−mÛ (Z))2

]
≤ E

[
(f(X)− h(Z))2

]
.

In particular, take h(Z) = f(P̂X), which is measurable with respect to Z since P̂X = Û Û⊤X is
a deterministic function of Z = Û⊤X . Then

T2 = E
[
(mÛ (Z)− f(X))2

]
≤ E

[
(f(P̂X)− f(X))2

]
.

By Lemma 4, the right-hand side is at most C ′ε2n + o(1) for some constant C ′ depending only on
L,R, and λmin, and hence

T2 ≤ C ′ε2n + o(1).

Combining the bounds. Putting the pieces together,

E
[
(f̂n(X)− f(X))2

]
≤ 2C1n

− 2
2+r + 2C ′ε2n + o(1).

Absorbing constants into C1 and C2 gives the claimed bound.

B REPRODUCIBILITY AND IMPLEMENTATION DETAILS

Code and artifacts. We provide a self-contained Google drive with scripts to download datasets
and run experiments at https://drive.google.com/file/d/1d60ysqjGzQLFkl_
BE8vd0lTOoj_m9MP4/view?usp=sharing

Environment. Python 3.11; NumPy 1.26; SciPy 1.11; scikit-learn 1.4; LightGBM 4.3; CatBoost
1.2; pandas 2.2; joblib 1.3. Experiments ran on a 16-core CPU machine (no GPU used). To reduce
nondeterminism across BLAS/OpenMP, we set PYTHONHASHSEED=0, OMP NUM THREADS=1,
MKL NUM THREADS=1, and pass random state=seed to learners.

Dataset summary and benchmark construction To make the experimental setup fully transpar-
ent and reproducible, we include Table 4, which lists for every dataset in our benchmark the number
of samples n, number of raw input features d, task type, and original source. Counts refer to the
number of rows and input features before train/validation/test splits and before any one-hot encoding
of categorical variables.

Our goal was to study JARF on a broad, realistic set of tabular problems where tree ensembles
are commonly used. To construct the benchmark, we started from widely used OpenML / UCI
tabular datasets that appear in earlier work on random forests and oblique forests, and then applied
simple, a priori filters: (i) supervised classification or regression with tabular features; (ii) at least
a few thousand training points so that EJOP estimation is meaningful; (iii) a mix of low- and high-
dimensional problems, and of balanced and moderately imbalanced label distributions; and (iv) no
heavy preprocessing or manual feature engineering beyond standard normalization / encoding. We
did not drop any dataset based on JARF’s performance, and we kept the same pool for all methods
and ablations. Several of these tasks overlap with standard suites such as PMLB/TabArena.

B.1 BASELINE HYPERPARAMETER GRIDS

To keep the comparison fair while reflecting how these models are commonly used in practice, we
give each method a lightweight but non-trivial tuning budget that is shared across datasets. Random
forest style methods all use the same number of trees as JARF’s final forest, and XGBoost is tuned
over a small grid on depth, learning rate, and ℓ2 penalty. Table 5 summarizes the hyperparameters
and search spaces used in our experiments.

B.2 PRACTICAL RECOMMENDATIONS FOR JARF

JARF introduces only a small number of additional hyperparameters beyond those of the underlying
forest: the size of the surrogate forest, the EJOP subsample size m, the finite-difference step scale

19

https://drive.google.com/file/d/1d60ysqjGzQLFkl_BE8vd0lTOoj_m9MP4/view?usp=sharing
https://drive.google.com/file/d/1d60ysqjGzQLFkl_BE8vd0lTOoj_m9MP4/view?usp=sharing

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

Table 4: Summary of all real-data datasets used in our experiments. Here n denotes the number of
samples and d the number of raw input features (excluding the target).

Dataset n d Task Source

Core tabular classification tasks
Adult 48,842 14 Classification UCI / OpenML
Bank-marketing 41,188 20 Classification UCI / OpenML
Covertype 581,012 54 Classification UCI / OpenML
Phoneme 5,404 5 Classification UCI / OpenML
Electricity 45,312 8 Classification UCI / OpenML
Satimage 6,435 36 Classification UCI / OpenML
Spambase 4,601 57 Classification UCI / OpenML
Magic Telescope 19,020 10 Classification UCI / OpenML
Letter Recognition 20,000 16 Classification UCI / OpenML
Vehicle 846 18 Classification UCI / OpenML

High-dimensional / large-scale classification tasks
Higgs 940,160 124 Classification OpenML (Tabular benchmark)
Madelon 2,000 500 Classification UCI / OpenML
Bioresponse 3,434 419 Classification OpenML (Tabular benchmark)
Jannis 57,580 254 Classification OpenML (Tabular benchmark)
MNIST-784 70,000 784 Classification OpenML / MNIST

Regression tasks
Bike-sharing 17,389 13 Regression UCI (Bike Sharing)
California-housing 20,634 8 Regression OpenML / Cal. Housing
Energy 768 8 Regression UCI (Energy efficiency)
Kin8nm 8,192 8 Regression OpenML (kin8nm)
Protein 45,730 9 Regression UCI / OpenML (Protein)

α in εj = αMAD(X:j)/0.6745, and the diagonal regularizer γId used for conditioning in Ĥ =

Ĥ0 + γId. In all experiments we use the following simple defaults:

• surrogate RF with 50 trees, max features =
√
d, min samples leaf = 1;

• EJOP subsample size m = min(10,000, n);

• centered finite differences with per-feature step εj = αMAD(X:j)/0.6745 and α = 0.1;

• EJOP regularization Ĥ = Ĥ0 + γId with γ = 10−3, followed by trace normalization
Ĥ ← Ĥ/(tr(Ĥ)/d).

Table 3 in the main paper provides ablations that effectively serve as tuning guidance. Varying the
step scale from α = 0.1 to α = 0.05 or α = 0.2 changes mean Cohen’s κ by at most −0.009
and −0.013, respectively, while leaving macro-F1 and accuracy similarly stable. Changing the
subsample size from the default m = min(10,000, n) to m = 0.5n results in a mean change of
only −0.004 in κ, and even a tenfold reduction to m = 0.1n yields a drop of −0.016 in κ and
about 1.2 seconds in training time on average. Removing the diagonal regularizer (γ = 0) or trace
normalization also produces only small changes (−0.005 and −0.004 in κ, respectively).

These ablations indicate that JARF is robust to a wide range of reasonable settings, and that the
defaults above are near-optimal for the tabular problems we consider. In practice we recommend
starting with the defaults and, if additional tuning is desired, exploring a small grid such as m ∈
{min(5,000, n),min(10,000, n)} and α ∈ {0.05, 0.1, 0.2}, while keeping γ fixed at a small value
(for example γ = 10−3). This keeps the tuning budget modest while preserving the accuracy and
compute profile reported in our experiments.

Licenses and data usage. We only use public datasets with permissive licenses. The repository
includes per-dataset source references and license notes; any dataset requiring an external EULA is
downloaded via the provider’s URL with its terms unchanged.

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

Table 5: Hyperparameter grids and defaults used for all methods. Forest baselines all use 200 trees
for comparability with JARF’s final forest. XGBoost is tuned on a shared grid over depth, learning
rate, and ℓ2 penalty.

Method Hyperparameter Values / setting

RF number of trees 200 (fixed)
max features

√
d for classification, d for regression

criterion Gini (classification), MSE (regression)
min samples leaf 1 (default)

RotF number of trees 200 (fixed)
blocks K K = 6 feature subsets per tree
rotation block-diagonal PCA on disjoint feature subsets (unsupervised)
other tree params same as RF (criterion, min samples leaf, max features)

CCF number of trees 200 (fixed)
projection type canonical correlation with targets at each node
projection dim authors’ recommended default
other tree params same as RF

SPORF number of trees 200 (fixed)
sparsity authors’ recommended sparsity level
candidate directions authors’ recommended default per node
other tree params same as RF

XGBoost number of trees 200 boosting rounds (fixed)
max depth {3, 6, 9}
learning rate {0.05, 0.1}
ℓ2 regularization (λ) {0, 1}
subsample, colsample bytree 1.0 (no subsampling)
loss logistic loss (classification), squared loss (regression)

PCA+RF projection PCA on training features (unsupervised)
components d (full-rank rotation)
RF hyperparameters identical to RF row above

LDA+RF projection multi-class LDA on training labels
components min(C − 1, d) for C classes
RF hyperparameters identical to RF row above

JARF (this paper) surrogate RF size 50 trees, max features =
√
d, min samples leaf = 1

EJOP subsample m m = min(10,000, n)
FD step εj εj = αMAD(X:j)/0.6745, α = 0.1

EJOP regularization Ĥ = Ĥ0 + γId, γ = 10−3

scaling Ĥ ← Ĥ/(tr(Ĥ)/d)

final RF RF with 200 trees, same defaults as RF baseline, trained on XĤ

LLM usage. All scientific content, methods, analyses, and experiments were designed and verified
by the authors; LLM model was used only to aid/polish writing.

21

	Introduction
	Related Work
	Supervised projection for dimension reduction.
	Gradient-based global sensitivity (EJOP).
	Oblique decision forests.
	Comparison and positioning of JARF.

	Methods
	Problem setup and notation
	Probability–gradient preconditioning
	Estimating H0 via finite differences
	Preconditioning map
	Training the forest on preconditioned features
	Practical Considerations

	Experiments
	Data and preprocessing
	Methods compared
	Metrics and statistical testing

	Results
	Simulated studies
	Real-world benchmarks
	Efficiency and compute
	Mechanism analysis: do EJOP directions match oblique split normals?
	Ablation Studies

	Conclusion
	Analysis and additional evaluation details
	Why EJOP preconditioning helps axis aligned trees
	Concentration and consistency of the EJOP estimator
	Dimension-adapted risk bounds for JARF
	EJOP identifies the intrinsic subspace
	Subspace perturbation and projection error
	Proof of Theorem 1

	Reproducibility and implementation details

