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ABSTRACT

Axis-aligned decision trees are fast and stable but struggle on datasets with rotated
or interaction-dependent decision boundaries, where informative splits require
linear combinations of features rather than single-feature thresholds. Oblique
forests address this with per-node hyperplane splits, but at added computational
cost. We propose a simple alternative: JARF, Jacobian-Aligned Random Forests.
Concretely, we fit a random forest to estimate class probabilities, compute finite-
difference gradients with respect to each feature, form an expected Jacobian outer
product (EJOP), and use it as a single global linear preconditioner for all inputs.
This preserves the simplicity of axis-aligned trees while applying a single global
rotation to capture oblique boundaries and feature interactions that would other-
wise require many axis-aligned splits to approximate. On tabular benchmarks, our
preconditioned forest matches or surpasses oblique baselines while training faster.
Our results suggest that supervised preconditioning can deliver the accuracy of
oblique forests while keeping the simplicity of axis-aligned trees.

1 INTRODUCTION

On tabular data, tree-based ensemble methods are widely used and often outperform deep networks
on structured datasets (Breiman, 2001} |Grinsztajn et al.| [2022). Methods like Random Forests and
gradient boosting are popular for their strong performance with minimal tuning, robustness to irrele-
vant features, and inherent handling of mixed data types. However, these models are fundamentally
built on axis-aligned decision trees, where each split considers only a single feature. This design
makes training fast, but it fails when the boundary depends on a rotated axis or a mix of features. In
such cases, an axis-aligned tree must simulate an oblique split through a series of orthogonal cuts,
resulting in deeper trees and fragmented decision regions. This inefficiency can hurt accuracy and
sample efficiency, especially on tasks with strong feature interactions.

Researchers have long recognized this limitation and explored oblique decision trees that split on lin-
ear combinations of features rather than single features. Oblique Random Forest variants have shown
improved accuracy over standard forests by capturing feature interactions at each node (Menze et al.}
20115 |[Katuwal et al.l 2020). Unfortunately, these benefits come with significant drawbacks. Learn-
ing the optimal linear combination at each node is a more complex optimization problem, often
requiring iterative techniques or convex solvers that augment training cost (Murthy et al.l |1994;
Menze et al., 2011; [Katuwal et al., [2020). Oblique splits also tend to introduce many more param-
eters and can be prone to overfitting without careful regularization. As a result, oblique forests are
often slower and less practical to use than standard axis-aligned ones.

In this paper, we propose a new approach to achieve this goal: a global, supervised feature transfor-
mation that preconditions decision forests. We term our method JARF, short for Jacobian Aligned
Random Forest. JARF learns a mapping of the input features by leveraging information from the
model’s predicted class probabilities. In particular, we estimate the expected Jacobian outer product
(EJOP) of the class probability function, which is a covariance matrix that measures how sensi-
tive the predicted class probabilities are to changes in each input direction (Irived: et al., [2014).
By rotating and scaling the original feature space along these directions, JARF creates a new feature
space where the most label-predictive variations are axis-aligned. A standard Random Forest trained
on this transformed space can then simulate oblique decision boundaries with simple axis-aligned
splits. Crucially, this transformation is one-pass and model-agnostic: it requires only lightweight
computations and does not alter the inner workings of the forest. The result is a middle ground
between axis-aligned and fully oblique trees: we retain the training speed, simplicity, and robust-
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ness of conventional Random Forests, while significantly boosting their ability to handle rotated or
interacting features.

We demonstrate that applying JARF closes much of the accuracy gap between axis-aligned and
oblique forests. In experiments, JARF achieves comparable or better accuracy than significantly
more complex oblique-tree ensembles with substantially lower computational overhead, and also
outperforms lighter, data-agnostic oblique variants (e.g., random-rotation/projection forests) on most
datasets. Through extensive experiments on diverse tabular datasets, we show that JARF consistently
improves the performance of baseline forests and gradient boosting models. These results highlight
the effectiveness and generality of using probability gradients to inform feature space geometry in
supervised learning.

2 RELATED WORK

2.1 SUPERVISED PROJECTION FOR DIMENSION REDUCTION.

Early work in statistics introduced supervised linear projections to reduce dimensionality while
preserving predictive information. Sliced Inverse Regression (SIR; [Li, [1991) and Sliced Average
Variance Estimation (SAVE; [Cookl 2000) seek a low-dimensional subspace of features that most
influences the response. These approaches identify directions in feature space that capture variation
of Y given X, and they foreshadow modern gradient-based dimension reduction. Conceptually,
they motivate using label information to precondition the inputs before fitting a model, which is
a perspective we adopt. For classification, including multiclass, SIR and SAVE apply directly by
slicing on class labels (Li, [1991;|Cookl 2000). Closely related, Fisher’s linear discriminant analysis
and its multiclass extension (Rao) learn at most one fewer projection than the number of classes,
because only that many independent directions are needed to separate the classes (Fisher, [1936;
Raol [1948).

2.2 GRADIENT-BASED GLOBAL SENSITIVITY (EJOP).

More recent methods leverage derivatives of a predictive function with respect to inputs to
find informative projections. In regression, the expected gradient outer product (EGOP) is
Ex[Vf(X)Vf(X)T] and recovers an effective dimension-reduction subspace (Trivedi et al.,[2014).

For multiclass settings, the expected Jacobian outer product (EJOP) is Ex[.J f(X) Jf(X)" |, where
f returns class probabilities; the leading eigenvectors emphasize directions along which predictions
change the most (Trivedi & Wang} [2020). Researchers have applied these gradient-based summaries
to tasks like metric learning and sensitivity analysis (Perronnin et al., [2010; Sobol’ & Kucherenko,
2009). Our approach, JARF, follows this paradigm by computing a global, label-informed linear
transform from EJOP before training a forest.

2.3 OBLIQUE DECISION FORESTS.

Decision trees that split on linear combinations of features were shown early on to yield compact,
accurate models when boundaries are tilted relative to the axes (Breiman, 2001). OCI performs
hill-climbing at each node to optimize a hyperplane split, trading extra per-node computation for
improved fit (Murthy et al., [1994). Rotation Forest applies unsupervised PCA-based rotations to
random feature subsets independently per tree, so subsequent axis-aligned splits behave like oblique
splits in the original space (Rodriguez et al.| 2006). Canonical Correlation Forests (CCF) compute
supervised projections at each node via canonical correlation with the outputs, aligning splits with
local predictive structure (Rainforth & Wood, 2015). Another line samples random linear combi-
nations for candidate splits; Breiman noted this idea in early forest variants (Breiman| [2001), and
Sparse Projection Oblique Random Forests (SPORF) constrain projections to be very sparse, im-
proving interaction capture while mitigating overfitting (Tomita et al.,[2020). While effective, these
methods either increase per-node optimization (OC1, CCF) or rely on unsupervised/random pro-
jections (Rotation Forest, SPORF), that do not always align with predictive directions. This often
means more trees or extra constraints are needed.



Under review as a conference paper at ICLR 2026

2.4 COMPARISON AND POSITIONING OF JARF.

Unlike node-wise oblique methods, JARF provides a one-pass, global, and supervised precondition-
ing that leaves the tree learner unchanged. By constructing a single EJOP-based transform shared
across all trees, JARF supplies a coherent feature representation informed by all training labels,
with negligible overhead during tree construction. This global projection amplifies directions along
which p(y | =) varies and attenuates irrelevant ones so that standard axis-aligned splits can approxi-
mate oblique boundaries. In this way, JARF competes directly with oblique forests, aiming to deliver
comparable accuracy with substantially lower complexity and simpler deployment.

3 METHODS

3.1 PROBLEM SETUP AND NOTATION

We consider multiclass classification with inputs 2 € R? and labels y € {1,...,C}. Let f : RY —
A®~1 denote a probabilistic classifier whose c-th component f. () estimates p(y = ¢ | ). Standard
Random Forests (RF; Breiman, [2001) build axis-aligned decision trees on X =[z1, . . ., xn}T, which

can require deep trees when informative directions are linear combinations of features. Our goal is
to learn a single, global, supervised linear map H € R?*? such that training an ordinary RF on the
transformed data X H captures those predictive combinations with shallow, axis-aligned splits.

3.2 PROBABILITY-GRADIENT PRECONDITIONING

The central object in JARF is an EJOP-style matrix that summarizes how class probabilities change
with small perturbations of . Let X € R denote a random input drawn from the data-generating
distribution Py ; unless stated otherwise, expectations [E[-] are taken with respect to X ~ Px. Let
Jt(z) € R4 be the Jacobian whose columns are gradients V. f.(z). The expected Jacobian outer
product (EJOP) is

c

Hy = Ex[J(X)Jp(X)"] = Y Ex[Vafo(X)Vafe(X)T], ey
c=1

a matrix whose leading eigenvectors span the directions along which p(y | z) varies most (Trivedi
et al., 2014; [Trivedi & Wang, 2020). In practice, we replace Ex by an empirical average over
the (subsampled) training inputs to estimate Hj, and use this estimate to define a global linear
preconditioner H.

Connection to supervised dimension reduction. Equation |[l]is the gradient/Jacobian analogue
of supervised projection methods such as SIR and SAVE (L1, 1991} Cook, |2000): instead of relying
on first/second moments of X | Y, JARF aggregates sensitivity of p(y | ) to z, producing a label-
informed geometry.

3.3 ESTIMATING H{ VIA FINITE DIFFERENCES

The estimator below is the EJOP estimator proposed by [Trivedi & Wang| (2020). Our only change

is the surrogate used to approximate p(y | x): we use a random-forest classifier f , whereas |Trivedi
& Wang| (2020) used a kernel (regression) estimator. We construct an empirical estimate of Hy,

denoted Hy, in three steps:

1. Probabilistic model. Fit a random forest f on the training data Dypin = {(24,¥:) 115
equivalently, on the design matrix X = [z],...,z,}]T € R"*¢ and label vector y =

(Y1,---,yn) | € {1,...,C}". This surrogate is used only to query class probabilities
p(c | x), not as the final predictor.

2. Per-feature probability gradients. For a subsample {z;,y;}",, estimate directional
derivatives along each coordinate using a centered finite difference with step € > 0:

felwi + 5e;) — folz; — Se;)
gj(xi;c) ~ - )
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where ¢; is the j-th basis vector. Stack gradients as G;(c) = [g1(zi;¢), ..., ga(zi;c)] T

3. EJOP estimate. We use the following estimator:
Hy = Z Gi(yi) Gilys) "

3.4 PRECONDITIONING MAP
We use the EJOP estimate as a linear preconditioner. Define
H = Hy+vls  (720), 0

where the small diagonal term improves numerical conditioning. To keep feature scales comparable,
we normalize

- H
H +— ———. 3)
tr(H)/d
We then map inputs:
®(z) = 2" H e RY, “)

and train the forest on the transformed design matrix X H. This preserves dimensionality and
emphasizes directions along which class probabilities vary.

3.5 TRAINING THE FOREST ON PRECONDITIONED FEATURES
After computing H once, we train a Random Forest on { ®(x;), y; 7
h = RF(X H, y).

At inference, we transform a test point via ®(z) = T H and evaluate i(®(z)).

3.6 PRACTICAL CONSIDERATIONS

Surrogate model for EJOP estimation. Since the true Bayes-optimal class probabilities f(z) =

p(y | =) are unknown, we require a surrogate model f to estimate the EJOP matrix. This surrogate
is used solely to query class probabilities p(c | ) for gradient estimation. While any probabilistic
classifier (logistic regression, kernel methods, neural networks) could serve this purpose, we choose
random forests for three reasons: (1) they provide stable probability estimates due to ensemble aver-
aglng, (2) they are computationally efficient compared to alternatives like kernel regression, and (3)
using the same model family for both EJOP estimation and final prediction maintains consistency.

Finite differences and non-differentiability. Our method computes directional sensitivities via
finite differences [p(z + Se;) — p(x — §e;)]/e rather than analytical derivatives, making it com-
patible with non-smooth models like random forests whose predictions are piecewise constant. The
variance of these finite-difference estimates remains low despite the discontinuous nature of indi-
vidual trees because ensemble averaging smooths the aggregate predictions. The adaptive step size
¢j = a- MAD(X.;)/0.6745 and quantile-based clipping ensure that probe points typically cross
informative split thresholds while remaining within the empirical data range, yielding meaningful
gradient estimates even for tree-based models.

4 EXPERIMENTS

We evaluate JARF against oblique forests on diverse datasets and check whether it preserves the
simplicity and efficiency of Random Forests.
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4.1 DATA AND PREPROCESSING

Real-data suite. We evaluate on ten widely used tabular classification datasets drawn from
OpenML/UCI: adult, bank-marketing, covertype, phoneme, electricity, satimage, spambase, magic,
letter, and vehicle. These span numeric and mixed-type features and small to very large sample
sizes. We use stratified 5x2 cross-validation (five random 50/50 train/test splits, each evaluated
twice with roles swapped) with fixed seeds; all methods share identical folds. All preprocessing is
fit only on training data within each fold and applied to the held-out test split to avoid leakage. The
JAREF transform H is likewise learned only from the training fold and then applied to transform the
corresponding test fold.

Simulated suite. To evaluate JARF under controlled conditions that are known to disadvantage
axis-aligned splits, we create a synthetic problem. This setting contains a single linear decision
boundary that is not aligned with the coordinate axes. We draw = ~ A (0, I;) with d € {10, 50,100}
and fix a rotation angle 6 € {15°,30°,45°,60°}. We define a unit normal in the (ey, e3)-plane

vg = cosf ey +sinfey
and assign labels by a noisy halfspace
y:H‘{v;qunEO}, n~N(0,0?), 0=0.2,

which avoids perfectly separable cases. This matters because an axis-aligned tree must approximate
the tilted boundary with many splits; an oblique split (or a global preconditioner) solves it with far
fewer nodes.

4.2 METHODS COMPARED

We call a tree/forest axis—aligned if each split tests a single coordinate z; < 7; it is oblique if
splits test a linear combination w'z < 7 withw € R%, In our comparison, RF and XGBoost use
axis—aligned splits; RotF, CCF, and SPORF employ oblique hyperplanes. Our method learns a single
global linear map H using EJOP and then trains an axis—aligned forest on X H; in the original coor-
dinates the induced splits are shared oblique hyperplanes = ' H e; < 7 (same H for all trees/nodes).
Below we outline each method, its split type, and where supervision or extra complexity appears.

RF (axis-aligned). Random Forests (RF; Breiman,2001) use CART nodes with axis—aligned tests
x; < 7, bagging, and feature subsampling. We use 200 trees, Gini impurity, and standard defaults.
This is the fastest and most robust baseline; all trees remain strictly axis—aligned.

Rotation Forest (oblique via global per—tree rotation). Rotation Forest (RotF; Rodriguez et al.,
2000) builds each tree after applying a block—diagonal PCA rotation R learned from disjoint subsets
of features (here K =6 subsets). The tree then makes axis—aligned splits in the rotated space X R,
which correspond to oblique hyperplanes w "z < 7 in the original coordinates. Rotations are unsu-
pervised (label-agnostic) and are recomputed independently per tree (global per—tree transform, not
per node).

Canonical Correlation Forests (oblique per node). Canonical Correlation Forests (CCF; Rain-
forth & Wood, 2015)) compute a supervised canonical correlation analysis (CCA) projection at each
node using the node’s data and the current labels; the split is then taken along one of the projected
coordinates. Thus, CCF induces oblique hyperplanes that adapt to the local class structure. Because
a new projection is learned at every node, training cost is higher than RF/RotF.

SPOREF (sparse oblique per node). SPORF (Tomita et al., 2020) samples a small set of sparse
random directions w at each node, evaluates impurity reductions, and chooses the best direc-
tion/threshold. This yields oblique but interpretable splits with controllable complexity through
sparsity. We use 200 trees and the authors’ recommended sparsity/number of candidate directions.

XGBoost (axis—aligned boosting). XGBoost (Chen & Guestrin, 2016) fits an additive ensemble
of shallow CART trees with axis—aligned splits z; < 7 via gradient boosting. We include a small
shared grid over depth, learning rate, and Ly penalty. It is a strong tabular baseline and its nodes are
axis—aligned.
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JAREF (global transform, axis—aligned trees). Our method learns a single supervised linear trans-
form H on the training fold by estimating the EJOP matrix from finite—difference probability gra-
dients (we choose per-feature steps ¢; = a MAD(X.;)/0.6745 with o = 0.1; we use centered
differences when x; --¢; lies within the empirical range of feature j, otherwise a one-sided differ-

ence). We set H = ﬁo (adding a small v, for conditioning) and then train a standard RF (200
trees) on the transformed features X H. Splits are axis—aligned in the transformed space, which

correspond to shared oblique hyperplanes e H e; < 7 in the original coordinates. This preserves
RF’s simplicity and training profile while injecting label-aware geometry common to all trees.

4.3 METRICS AND STATISTICAL TESTING

Our primary metric is Cohen’s « (chance-corrected accuracy) on both the synthetic and real datasets
we use. For each dataset and algorithm A we report the effect size A(A) = &(RF) — x(A);
negative values indicate A outperforms RF and positive values indicate RF is better (visualized with
beeswarm plots across datasets). Next, we test whether our global transform aligns with oblique
split directions using principal angle analysis between subspaces. Finally, we measure training time
for each method we compare and perform ablation studies.

5 RESULTS

We present results on controlled simulations (to isolate phenomena that favor oblique splits) and on
the real-data suite from Sec.

5.1 SIMULATED STUDIES

We evaluate a canonical setting where axis-aligned trees are known to be inefficient and
oblique methods help: a rotated hyperplane classifier where the boundary forms an angle 6 €
{15°,30°,45°,60°} with the coordinate axes. Figure |1| shows RF degrades much more rapidly
as 0 grows (Cohen’s k drops from 0.90 to 0.78, a 13% decrease), while oblique baselines slowly
taper; JARF closely tracks the best oblique method, maintaining x > 0.82 even at 60°. These re-
sults show that EJOP-based preconditioning finds directions that line up with the oblique boundary,
letting the forest build efficient trees even when the boundary is far from axis-aligned. Notably, at
small rotation angles (¢ = 15°), RF remains competitive, suggesting JARF’s advantages manifest
primarily when axis-alignment assumptions are substantially violated.

Simulated rotated boundary

0.92f RE
RotF

CccF
0.90 SPORF
—4— JARF
0.88 —# XGB

0.86

Cohen's k

0.84

0.82

0.80

6 1‘0 2‘0 3b 4‘0 5‘0 Gb

Rotation angle (degrees)
Figure 1: Cohen’s x versus rotation angle 6 for RF, RotF, CCF, SPORF, JARF, and XGB. Markers
show the mean over the 5 x 2 CV evaluations; error bars are =+ standard error of the mean. JARF
attains the second-highest « at tilt angles beyond five degrees, with the gap over RF growing as 6 in-
creases, indicating that EJOP-based preconditioning aligns the feature space with the tilted decision
boundary.
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5.2 REAL-WORLD BENCHMARKS

Table [T] reports per-dataset test performance on the real-data suite (Sec. ). Across 10 datasets,
JAREF attains the best result on six of the ten tasks. Figure E] summarizes effect sizes relative to RF,
A(A) = k(RF) — k(A). We see that JARF obtains the highest performance compared to other
variants, with a mean Cohen’s s of 0.731 compared to 0.700 for RF. Notably, JARF achieves gains
on datasets with complex decision boundaries (electricity: +0.044, magic: +0.039, letter: +0.020),
where oblique splits provide clear advantages. The beeswarm plot reveals that JARF consistently
outperforms RF (8/10 datasets below the zero line), whereas other oblique methods show more
variable results. RotF and CCF exhibit both positive and negative deltas, suggesting their oblique
strategies may not generalize reliably across diverse data characteristics.

Table 1: Real-data performance (Cohen’s «, mean = s.e. over CV splits).

Dataset RF RotF CCF SPORF XGB JARF

adult 0.605 £ 0.0062  0.630 £ 0.0067 0.627 +0.0070 0.629 £+ 0.0068 0.618 £ 0.0059 0.632 £ 0.0063
bank-marketing  0.606 = 0.0081 0.600 + 0.0078 0.601 £ 0.0083 0.602 £ 0.0075 0.603 £ 0.0080 0.605 + 0.0084
covertype 0.612 £ 0.0041 0.616 £0.0043 0.631 +0.0040 0.633 +0.0042 0.622 £ 0.0045 0.637 £ 0.0047
phoneme 0.659 £ 0.0098 0.652 £ 0.0096 0.649 £+ 0.0094 0.662 + 0.0097 0.657 £ 0.0101  0.664 £ 0.0099
electricity 0.664 £ 0.0051 0.650 + 0.0054 0.703 £ 0.0061 0.689 £+ 0.0064 0.685 £ 0.0058 0.708 + 0.0060
satimage 0.731 £ 0.0050 0.744 £ 0.0053 0.737 £0.0051 0.741 £ 0.0054 0.743 £ 0.0049 0.742 £ 0.0048
spambase 0.751 £0.0095 0.770 £ 0.0097 0.766 £ 0.0098 0.774 £ 0.0091 0.764 £ 0.0093  0.776 + 0.0090
magic 0.797 £ 0.0072  0.785 £ 0.0075 0.808 £ 0.0076  0.838 + 0.0080 0.794 £ 0.0078 0.836 £ 0.0079
letter 0.795 £0.0108 0.796 +0.0111  0.803 £ 0.0109 0.812 +0.0110 0.799 £0.0113  0.815 + 0.0112
vehicle 0.882 + 0.0137 0.880 £0.0134 0.877 £0.0131 0.879 £ 0.0135 0.870 £ 0.0140 0.881 £ 0.0138
Mean =+ s.e. 0.700 £ 0.0098 0.706 £ 0.0102 0.719 +£0.0103 0.726 = 0.0101 0.716 £ 0.0099 0.731 £ 0.0100

Effect size relative to RF

0.01f
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K(RF) — k(A)
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AA) =
x
x

—0.03f
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RF RotF CCF SPORF XGB JARF

Figure 2: Beeswarm of effect size relative to RF on real data. Each marker is one dataset in the
10-task suite. The vertical axis shows the per-dataset effect size A(A) = x(RF) — k(A); the dashed
line marks parity with RF (A=0). Points below the line indicate the method outperforms RF. JARF
produces mostly negative deltas (8/10 below zero) and achieves the best overall rank in Table
while oblique baselines (RotF, CCF, SPORF) show mixed but generally favorable improvements

over RE.

5.3 EFFICIENCY AND COMPUTE

We measure training time on the same CPU. The total training time of JARF decomposes into the
EJOP transform overhead (probing + forming Hy) and the RF fit on X H. Figure |3| shows median
times across datasets. JARF comes second in training time, right behind a Random Forest. By
rotating/scaling inputs using H derived from equation[I} JARF aligns high-sensitivity directions and
suppresses flat/noisy directions. As a result, shallow trees in the transformed space can approximate
hyperplane boundaries that would otherwise require many oblique or deep axis-aligned splits. The
computational overhead is modest: JARF requires only 25 seconds total, making it 1.67x slower than
vanilla RF but faster than other oblique methods that must solve optimization problems at each node
(RotF: 60s, CCF: 44s). This efficiency gain is critical for practical deployment, as JARF achieves
oblique forest accuracy at near-RF speeds. The EJOP preconditioner amortizes well across all trees
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in the forest, whereas per-node oblique methods like CCF and RotF incur repeated computational
costs that scale with forest size.

Training time
70

Seconds
= N w B w ()]
o o o o o o o

RF RotF CCF SPORF XGB JARF

Figure 3: Comparison of median training times on the 10 real-data tasks. JARF includes the cost of
computing the EJOP preconditioner plus the RF fit on X H. Measured times: RF = 155, JARF =
25s, RotF = 60s, CCF =44s, SPORF =455, XGB = 43s. JARF adds ~10s over RF (=1.67x RF
cost) yet remains faster than per-node oblique forests.

5.4 MECHANISM ANALYSIS: DO EJOP DIRECTIONS MATCH OBLIQUE SPLIT NORMALS?

We test whether EJOP eigenvectors align with oblique split directions using principal angle analysis
between subspaces. For each dataset and fold, we first compute the EJOP estimate H on the training
data and take its eigendecomposition Hy = UAU T with eigenvectors U = [uy, .. .,uy]. We then
train each oblique method and extract a unit split normal 72 € R? at every internal node.

For each node, we quantify alignment with the EJOP top-k subspace using the principal-angle co-
sine:

sk(R) = [U¢ 3 € [0,1],
which equals |u{ 71|?> when k& = 1 and reaches 1 if and only if 7 € span(Uy). We aggregate sy,

across nodes and folds to obtain a per-dataset distribution for each oblique method. Figure 4 reports
our results.
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Figure 4: Alignment growth with EJOP subspace size. Median s, = ||U, 71||3 versus k for

RotF/CCF/SPORF. Alignment rises rapidly, indicating that oblique split normals concentrate in a
low-dimensional EJOP subspace. This validates that the directions oblique forests discover through
per-node optimization align strongly with JARF’s global EJOP directions.



Under review as a conference paper at ICLR 2026

Table 2: Table 2: Performance impact of ablating JARF components. Values show differences from
default JARF (variant minus default) for Cohen’s «, macro-F1, accuracy, and training time averaged
across datasets. T denotes p < 0.05 (Wilcoxon signed-rank test with Holm correction).

Variant Arx  AMacro-F1 AAcc  ATime (s)
JARF (default) 0.000 0.000 0.000 0.00
Identity (ﬁ:I) -0.036f -0.0317  -0.015F -0.42
FD: forward (vs. centered) -0.008 -0.007  -0.004 -0.06
FD: no clipping -0.0117 -0.010"  -0.006 -0.04
Step: fixed global € -0.014f -0.012F  -0.007 -0.02
Step: a=0.05 -0.009 -0.008  -0.004 -0.01
Step: a=0.2 -0.013% -0.011T  -0.006 -0.01
Subsample m=0.1n -0.0161 -0.013"  -0.007 -1.20
Subsample m=0.5n -0.004 -0.003  -0.002 -0.40
Categoricals: include toggles  -0.006 -0.006  -0.003 +0.05
No I, -0.005 -0.004  -0.002 0.00
No trace normalization -0.004 -0.004  -0.002 +0.01

5.5 ABLATION STUDIES

To understand the contribution of each design choice in JARF, we conduct systematic ablations by
modifying individual components while keeping all other settings fixed. Table 2 ablations reveal a

clear hierarchy of component importance. Removing the EJOP transform entirely (Identity: H=1I )
produces the largest performance drop (Ax = —0.036, p < 0.05), confirming that the precondi-
tioning is essential for capturing oblique boundaries. Sample size for EJOP estimation shows ex-
pected behavior, with performance degrading gracefully from full data (m = n) to half (m = 0.5n,
Ak = —0.004) but dropping significantly at m = 0.1n (Ax = —0.016, p < 0.05).

Among the finer implementation details, centered differences outperform forward differences
(Ax = —0.008 vs. —0.011 with clipping), and the adaptive per-feature step size ¢; = « -
MAD(X.;)/0.6745 with o = 0.1 balances bias and variance better than both smaller (o = 0.05,
Ak = —0.009) and larger (o« = 0.2, Ak = —0.013) values. Including categorical features via
one-hot encoding slightly hurts performance (Ax = —0.006), possibly due to noise in discrete
gradient estimates, while numerical stability measures (regularization vI; and trace normalization)
have minimal impact on accuracy (Ax = —0.005) but improve conditioning. Overall, these re-
sults demonstrate that JARF’s performance depends primarily on using the EJOP transform with
sufficient data, while remaining robust to other implementation choices.

6 CONCLUSION

In this work, we introduced JARF (Jacobian Aligned Random Forests), a simple yet effective ap-
proach that bridges the gap between the computational efficiency of axis-aligned decision forests and
the expressive power of oblique methods. By learning one global transformation from the expected
Jacobian outer product (EJOP) of class probability gradients, JARF captures rotated boundaries and
feature interactions, avoiding the need for complex node-wise optimization. Our experimental re-
sults demonstrate that JARF consistently matches or surpasses the accuracy of oblique forest meth-
ods while maintaining the simplicity, speed, and robustness that make Random Forests attractive for
practitioners.

We acknowledge important limitations of our approach. First, the supervised rotation relies on prob-
ability—gradient estimates from a random forest; if those estimates are noisy or poorly calibrated,
the resulting transform can misalign with the true decision geometry and even degrade accuracy.
Second, while JARF is markedly faster than per-node obliques, it still incurs a preprocessing over-
head from finite-difference probing and forming Hy that vanilla axis-aligned forests avoid, which
may be non-trivial in some settings. For future work, extending JARF to regression tasks through
the expected gradient outer product (EGOP) could broaden its applicability beyond classification.
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REPRODUCIBILITY STATEMENT

We took several steps to make our results reproducible. The model and training procedure are fully
specified in the appendix. Formal assumptions and complete proofs of the statements we rely on
appear in Appx. [A] (Analysis). Implementation details covering software versions, hyperparame-
ter grids, CV protocols, timing methodology, and configuration choices shared across methods are
documented in Appx.

10
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A ANALYSIS AND ADDITIONAL EVALUATION DETAILS

A.1 WHY EJOP PRECONDITIONING HELPS AXIS—ALIGNED TREES

We recall f : R? — Aq_y, Jy(@) = [VAi@),-..,Vfc()], and Hy = Ex[J;(X)J (X )7
(Eq.|L ' Our method constructs HO and uses H = HO (optionally ++1;) as a global linear precon-
ditioner; the forest is trained on X H.

Proposition A.1 (Ax1s—allgned & shared-oblique). For any psd H and feature index 7, the axis-
aligned split {z : (z" H); < 7} equals the oblique half-space {z : " He; < 7} in the original
coordinates.

Proof. (x"H)j =e] (x"H) = 2" He;. O

Proposition A.2 (First-order impurity gain aligns with EJOP). Consider binary classification
(C = 2) and squared-loss CART. Let u € S?4-1 define a split w'z < 7. In a thin slab around T,
linearize f: f(x) ~ f(£) + V(&) T (z — &) withu " & = 7. Then the expected impurity decrease of
the best threshold along w is, up to a positive factor independent of u, proportional to

u' Hyu =Ex[(u" VF(X))?].

Hence directions with larger v " Hyu yield larger first-order gains. The multiclass case follows by
summing over ¢ via Jy.J ;.

Proof. For squared loss, the CART gain equals the between-child variance of u(z) = E[Y |
X=x] = f(x). Within a thin slab, Ay ~ (u'Vf(£)) As; the expected squared change (opti-
mizing 7 locally) is proportional to E[(u V f(£))2]. Density/coverage terms factor out and do not
depend on w at first order. (|

Corollary A.3 (Effect of usmg H=H 0). By Prop. A.1, an axis-aligned split on (X H ) with index
J corresponds to normal u; = H e; in z-space. By Prop. A.2, its first-order score is eTH T HOH €j.

Taking H~ Hj amplifies coordinates whose induced normals have large EJOP scores, biasing the
search toward high-sensitivity directions while keeping standard RF training.

A.2 CONCENTRATION AND CONSISTENCY OF THE EJOP ESTIMATOR
~ . . id
We analyze Hj under mild smoothness and boundedness assumptions. Let Xy,..., X, S Px be

the subsample used for probing; for each X; we compute (central) finite-difference approximations
Gi(c) € R%to Vf.(X;) and form

1 m C
= — ZZwic Gi(c)Gi(e)T,

where the weights w;. are either 1 (unweighted EJOP) or p(c | X;) (probability-weighted variant).
Define the population target

H" = EX{ZwC ) VE(X) VLLX)T]
c=1
with w.(X) € {1, p(c| X)} matching the chosen variant.

Assumptions. (A1) Each f. is C? with ||V f.(z)|l2 < M and third derivatives bounded by B3 on
the support of Py. (A2) Finite-difference step sizes satisfy ¢ — 0 while m — oo with me? — oc.
(A3) If probability weights are used, sup,, | p(c|z) — p(c|x) | < nm — 0. (A4) The FD evaluations
are clipped to a compact domain containing the support of Px.

12
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Lemma A.4 (FD gradient bias). Fix a class c¢. Let f, : R? — R be C? in a neighborhood
of z, and assume all third directional derivatives along the coordinate axes are bounded there:
sup, |02 fo(2)| < Bj for every j. Define the centered finite-difference estimator with step € > 0 by

felx + 5e5) = f(x — 5e5) .

3

g; " (w5c) =
Then for each coordinate j,

B
| giP(zi¢) — 9;fu(x) | < e (< Bae?).

24
Consequently, if ||V fe(z)|l2 < M and G¥P(c) is the vector with entries g} (x; ), then
BsVd B3d
FD () GFD )T 3 2 3¢ 4
HG G ( ) —Vfc( )vfc H2 = 12 Me® + %E .

Fix j and write the univariate function ¢(t) := f.(z + te;) for ¢ € R. By Taylor’s theorem with
Lagrange remainder around ¢ = 0 with h := /2,

2 3
g(h) = g(0) + hg'(0) + A ¢"(0) + g (&),
g(=h) = g(0) — hg'(0) + 5¢"(0) — &g (c-),
for some {4 € (0,h) and £_ € (—h,0). Subtracting and dividing by 2h gives

g(h) —g(=h) _ , e 3)
g =00+ 5 (7€) +9P ).
Since ¢'(0) = 0; fo(z) and ¢® (¢) = G?fc(:c + te;), our FD estimator satisfies
h2
9P (@) = 0fe(@) = 15 (01el@ + Eres) + O fulw +Eey) ).

Using the bound |03 fo| < Bs yields |g¥P(x;c) — 9; fe(x)| < h2 (B3 + Bs) = Bap? = Bag2

proving the first claim (and the looser 363 2 bound follows since ﬂ < 6)
For the matrix deviation, write

G'P(c) = V fe(x) + §j = g; " (x50) = 0;fe(),
50 [|6]|oc < £3€2 and hence [|6]|> < £2 \/(35 Then

GG ()" = Vfel(@)Vfe(@)" = Vfe(2) 8T +5Vfel(x)" + 607,
so by submultiplicativity and ||uv " ||z = |Ju||2]|v||2,
33\/E B3d o,
576

|G™P(@G(Q)T = Vul@)Vola) T |, < 201V el 6]z + 11513 <

as claimed.

Me? +

Lemma A.5 (Weight approximation error). Fix x and assume a uniform probability—weight
error 1), > 0 so that [p(c | 2) — p(c | )| < np, forall ¢ € {1,...,C} If |V fe(x)[2 < M for all
¢, then

c

> (Blelz) —ple|2)) V(@) V fola)T

c=1

< an”chc I < CM21,.
2 c=1

Write a. := p(c | ) — p(c | x) and u. := V f.(z). Using the triangle inequality for the operator

norm,
C C
S acuenl]| < 3 faclfuca o
c=1 2 c=1

For any vector u, the rank-one matrix uu' has spectral norm |juu |2 = ||u||2 (its only nonzero
eigenvalue). Hence

C C C
ZCLCUCUZ < ZMC‘ lucll3 < anHUCHgv
c=1 2 c=1 c=1

because |a.| < 7y, forall ¢. Finally, [[uc|lo < M gives X5, [uc|2 < S5, M2 = CM?, yielding
the stated bound.
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B REPRODUCIBILITY AND IMPLEMENTATION DETAILS

Code and artifacts. We provide a self-contained Google drive with scripts to download datasets
and run experiments at https://drive.google.com/file/d/1d60ysqjGzQLFk]l_
BE8vd01TOo0j_m9MP4/view?usp=sharing

Environment. Python 3.11; NumPy 1.26; SciPy 1.11; scikit-learn 1.4; LightGBM 4.3; CatBoost
1.2; pandas 2.2; joblib 1.3. Experiments ran on a 16-core CPU machine (no GPU used). To reduce
nondeterminism across BLAS/OpenMP, we set PYTHONHASHSEED=0, OMP _NUM_THREADS=1,
MKL_NUM_THREADS=1, and pass random_state=seed to learners.

Datasets and preprocessing. Continuous features: median imputation, then z-score within each
training fold; categorical: one-hot encoding within fold. No test-time statistics leak from train-
ing. We clip EJOP probing points to the empirical [qg 59, g99.5%) range per feature. We evaluate
on ten widely used tabular classification datasets from OpenML/UCI: adult (48,842x14), bank-
marketing (41,188x20), covertype (581,012x54), phoneme (5,404x5), electricity (45,312x8),
satimage (6,435x%36), spambase (4,601 x57), magic (19,020x10), letter (20,000 16), and vehicle
(846x18), where we report (n x d) with d the raw feature count before one-hot encoding.

Evaluation protocol. We use 5 repeats of stratified 5-fold CV (25 fits per method per dataset).
Metrics: Cohen’s x (primary), Macro-F1, and Accuracy (secondary). For cross-dataset compar-
isons we report average ranks; significance via Wilcoxon signed-rank vs. the top comparator with
Holm correction (critical-difference diagrams shown in the appendix). Wall-clock is split into EJOP
probing and final model fit; timing uses t ime . perf_counter ().

JARF specifics. Surrogate f: Random Forest (50 trees, max_features=\sqrt",
min_samples_leaf=1); final forest: RF (200 trees, same defaults unless the public baseline spec-
ifies otherwise). EJOP: centered finite differences with per-feature step e, = a MAD(X.;)/0.6745
(default o« = 0.1); subsample size m = min(10,000, n); exclude one-hot columns from FD gradi-
ents by default (a discrete toggle variant is reported in ablations). EJOP matrix H o is used directly;
we add Iy with v = 1073 for conditioning and rescale by tr(ﬁ )/d to keep feature magnitudes
comparable. The transformed design matrix is X H.

Determinism and variance. Tree methods can exhibit slight run-to-run variation due to threading
and data-parallelism. We report means =+ standard errors across repeats and publish raw per-fold
outputs. Setting the environment variables above and fixing seeds reproduces our tables within
reported error bars.

Licenses and data usage. We only use public datasets with permissive licenses. The repository
includes per-dataset source references and license notes; any dataset requiring an external EULA is
downloaded via the provider’s URL with its terms unchanged.

LLM usage. Allscientific content, methods, analyses, and experiments were designed and verified
by the authors; LLM model was used only to aid/polish writing.
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