
Natural Language Processing:
Detecting tCxt @ttåck$ with Robust Density Estimation

Jeanne Devineau
ENSAE

jeanne.devineau@ensae.fr

Adrien Majka
ENSAE

adrien.majka@ensae.fr

Abstract
In Natural Language Processing, detec-
ting adversarial examples is key nowa-
days. A common method is to use den-
sity to detect these attacks, as adversarial
examples tends to have a lower density
than original ones. To upgrade the maxi-
mum likelihood estimator that is com-
monly used, we apply a Robust Den-
sity Estimation method which consists in
using the kernel PCA and Minimum Co-
variance Determinant of our embeddings,
inspired from [20]. We obtained relevant
results with the important IMDB data-
set to which we applied the transformer-
based model BERT [6]. Our results with
RDE showed indeed that the adversa-
rial examples have a lower density than
the original ones. Our auc is convincing
enough (about 0.9) about the power of
this detection model. In future research,
it would be interesting to have a model
that depends less upon the embeddings it
is calibrated on, using the diverse varia-
tions of the BERT transformer models for
example.

1 Problem Framing

1.1 Introduction
The field of Natural Language Processing

(NLP) has seen significant improvements due
to the application of advanced Machine Lear-
ning techniques. Tasks such as sentiment clas-
sification and text categorization have greatly

benefited from these techniques, but criticisms
regarding the reliance on ”black-box” neural
networks persist. One of the primary concerns
is the sensitivity of these models to changes
in input data distribution, which limits their
adoption despite their high accuracy [15, 14].

To address this challenge, it is crucial to de-
velop techniques that can detect shifts in the
distribution of text and sentences [10, 5, 4].
One promising approach is to use latent re-
presentations of tokens to measure their proxi-
mity. This involves creating detectors that can
identify when input samples are out of distri-
bution or even subject to attacks, which is the
focus of our paper. In addition, it is important
to note that this technique can be extended to
various NLP tasks beyond the detection of at-
tacks, providing a more comprehensive solu-
tion to the problem of distributional shifts. Ul-
timately, the development of such techniques
will help ensure the robustness and reliability
of NLP models in real-world applications.

A lot of methods are being developed to re-
cognize OOD or attacks, based on diverse me-
trics comparisons. For example, in [2],for an
out of distribution problem, which is the same
kind of problem, the method is about com-
puting an average latent representation x and
then its OOD score through the (integrated
weighted rank) depth score of x with respect
to the averaged in-distribution law. In another



example, in [9], they look at the input’s tra-
jectory, compared to the reference, because
the distribution is different between in-sample
and out-of-distribution sample.

In our article here, we will reproduce the
method of [20], which has a close idea, since
it compares the distribution of adversarial and
normal samples, which are generally quite dif-
ferent.

1.2 General framework

In [20], the tool of comparison is density
parametric estimation, and it’s made robust
with two methods : kernel PCA and Minimum
Covariance Determinant. The framework is
the following : given an input sample X and a
label space Y , a predictive model F : X → Y
and an oracle model F ∗ : X → Y , an ad-
versarial example xadv of an input x ∈ X
satisfies : F ∗(x) = F (x) ̸= F (xadv) and
Ci(x, xadv) = 1 for i ∈ {1, ..., c} where Ci

is an indicator function for the i-th constraint
between the perturbed text and the original
text, which is 1 when the two texts are in-
distinguishable with respect to the constraint.
The classification model chosen is explained
in section 2.

Then, they fit a parametric density esti-
mation, to yield likelihoods of each sample,
because generally the likelihood of adversa-
ries examples is lower. Let z ∈ Z ⊂ RD

denote the feature. Given a generative mo-
del pθ with mean and covariance as parame-
ters θ = (µ,Σ), we can use the features of
the training samples (Xtrain) to estimate the
parameters. Then, novel adversarial samples,
which are in the unobserved feature space, are
likely to be assigned a low probability, be-
cause the model only used the normal samples
for parameter estimation. For simplicity, we
assume the distributions of the feature z fol-
low a multivariate Gaussian, so we can model
the class conditional probability as pθ(z|y =

k) ∼ N(µk,Σk) α exp(−(z − µk)
TΣ−1

k (z −
µk)), where y indicates the class of a gi-
ven task. Then, the maximum likelihood es-
timate (MLE) is given by the sample mean

µ̃MLE = 1
N

n∑
i=1

zi and sample covariance

Σ̃MLE = 1
N

n∑
i=1

(zi − µ̃MLE)(zi − µ̃MLE)
T

.

1.3 Robust density estimation with kPCA
and MCD

However, with the previous method, accu-
rate estimation of the parameters is difficult
with finite amount of samples, especially in
high dimensions (which is often the case with
NLP) due to curse of dimensionality. This
leads to two problems : sparse data points and
fallacious features, and secondly occasional
outliers that influence the parameter estimates.

Besides, using a Gaussian model distribu-
tion for the features to estimate the parameters
can be misleading, because data features have
more of an elliptic distribution, with thicker
tails.

These two problems can be tackled using
robust density estimation combining two me-
thods : kernel PCA, proposed by [19] and Mi-
nimum Covariance Determinant (MCD) [18].

First, we use kPCA to address the issue of
sparse data points and fallacious features. In-
tuitively, it retains the most meaningful fea-
ture dimensions, which explains the data the
most, while reducing spurious features. The
idea is to select top P orthogonal basis that
best explain the variance of the data, thereby
reducing redundant features. The mathemati-
cal formulation is the following : given N cen-
tered samples Ztrain ∈ RN×D = [z1, ...zN ],
and a mapping function ϕ : RD → RD′

,
kPCA projects the data points to the eigen-
vectors with the P largest eigenvalues of the
covariance ϕ(Ztrain)

Tϕ(Ztrain)
2.

Besides, we need the second method,



MCD, to remedy the problem of sample-level
outliers, by removing them. The method is the
following : it finds a subset of h ≤ N samples
that minimize the variance of Σ. As the deter-
minant is proportional to the differential en-
tropy of a Gaussian up to a logarithm (which
is shown by the authors), this results in a ro-
bust covariance estimation consisting of cen-
tered data points rather than outliers.

So, to summarize, we retain relevant and in-
formative features with the kPCA method and
a robust covariance by applying MCD, on the
training dataset. The choice of P and h are
important to discuss. We then have robust es-
timated parameters, letting us evaluate the li-
kelihood of a test sample, and categorizing the
low likelihoods as adversarial examples.

1.4 Performance evaluation

To study performance of models, models
detecting OOD and attacks often use the eva-
luation metric of the area under the recei-
ver operating characteristic AUROC, and
we can also look at the True Positive Rate
TPR, which is the fraction of true adver-
sarial samples out of predicted adversarial
samples, or False Positive Rate FPR. The
AUROC measures the area under TPR vs.
FPR curve. The F1 − score (f1) gives the
harmonic mean of precision and recall. For all
of these metrics, the higher they are, the better.

2 Experiments Protocol

2.1 Data

In [20], they generated adversarial
examples with three datasets with data
of diverse topics and length : IMDB, SST-2
and AG-News. Generating these examples
require a lot of time because of all of the que-
ries it takes (more than 40 hours). Thus, we
will use directly the data of the authors, since
they made it available to the public in their
Github. The data has the advantage of being

really clean, so we won’t need to do a lot
of preprocessing, simply removing brackets
from the text before using the embeddings
directly.

It allowed us to implement the first scenario
from [20], ie we sample two disjoint subsets
S1, S2 ⊂ D where D is the dataset. From S1

we keep only the successful attacks, and form
a test dataset S1∪S2. The model will be tested
on this union, while it will be trained on the
rest of the dataset.

2.2 Model
For data treatment, we use the transformer-

based model BERT, which is a classical NLP
transformer model, fine tuned for the classi-
fication task specific to each dataset. Then,
we apply the robust density estimation me-
thod, transforming our embeddings with the
kernel PCA. After that, we can use the Mi-
nimum Covariance Determinant. In the follo-
wing work, we use the Maximum Likelihood
Estimation to compare our robust estimation
to the simple MLE one. We expect different
densities, the RDE showing more difference
for adverse examples than the MLE one.

Then, we use our RDE method to compare
adversarial and original examples from the da-
taset. The metric used to assess the quality of
the detection is explained in the ”Evaluation
metrics” section.

2.3 Attacks
Finally, to test how our RDE model re-

sponds to attacks, we use different types of
attacks : there are Textfooler [12] attacks,
Probability Weighted Word Saliency (PWWS)
[17] attacks and BAE attacks [8].

2.4 Evaluation metrics
The primary metrics we looked was the

AUC, as it is a metric quite robust to class im-
balance, which could occur during our expe-
rience as we kept only successful attacks from



the model. It gives a quite visual understan-
ding of how the model is working. Moreover,
and contrary to the F1 score and true positive
rate (TPR), it encompass global information
on false positive rate and true positive rate
(TPR), while F1-score and TPR needs FPR
to be fixed. This being said, for the sake of
completeness we also calculated F1-score and
TPR for the different experiments we conduc-
ted, with a FPR to 0.1 similarly to [20].

2.5 Implementation details

We directly implemented the algorithm of
attack detection on the dataset proposed by
[20], as we encountered some difficulties in
implementation when trying to run the attacks
(Textfooler, BAE and PWWS). Most of the al-
gorithmic work, notably the implementation
of MCD, was done thanks to Scikit-learn li-
brary [13]. Most of the rest of the work was
straight calculation feasible with the classic
numpy library. What asked for much more
work was to familiarize ourselves with deep
learning library. Hopefully, we quickly disco-
vered the SentenceTransformers library [16],
with which we made all the embeddings.

3 Results
Note that the code is available at

https://github.com/Adrien-Mcode/
Text-adversarial-attack-NLP3A.git

3.1 Qualitative results
First of all, let’s discuss the results of the Robust

Density Estimation method, compared to a simple MLE
method, both tested on the IMDB dataset.

The graph 1 shows the result of the density estima-
tions when we use the Maximum Likelihood estimator,
without the robust density estimation. As we see, there
is not much difference in the density. It is also very large
which give us a hint on the scale of the first eigenvalue
of the covariance matrix and the conditionning of the
matrix which is empirically pretty bad.

Then, we apply the kernel PCA and Minimum Cova-
riance Determinant to have a more robust estimation. As
we see in the following graph 2, there is now a difference
in the density, and the density is much more concentra-
ted around big cluster of point. We can see this very well

FIGURE 1 – Normal multivariate distribution esti-
mated via MLE

FIGURE 2 – Normal multivariate distribution esti-
mated via RDE

with the graph 3

Indeed, we see that the density with the MLE esti-
mation is very close for almost every point in the da-
taset, while for the RDE estimation the density mass is
concentrated around cluster with a lot of point and ra-
pidly decrease outside of it. This is of course an advan-
tage to discriminate out of sample attack.

Knowing this, we can use the RDE method to diffe-
rentiate the adversarial examples from the original ones
of our IMDB dataset, by looking at the density, expec-
ting the density of adversarial examples to be lower. In
the following graph, we plot the density of points from
the adversarial examples, and the one of original text
samples. We see a difference in the graphs indeed.

https://github.com/Adrien-Mcode/Text-adversarial-attack-NLP3A.git
https://github.com/Adrien-Mcode/Text-adversarial-attack-NLP3A.git


FIGURE 3 – Comparison of density at each point
with respect to MLE and RDE estimation

3.2 Model performance
Let’s now look at our model performance display in

4 in terms of metric. We can see here that the RDE me-
thod is clearly above in terms of performance than the
MLE, for all metrics considered. Moreover, even when
the MLE performs poorly, the RDE is still efficient. It’s
worth noticing also the stability of metrics across the
different attacks, notably the true positive rate, which
might let us think that RDE is well suited as a defense
mechanism against all attacks studied here.

4 Discussion/Conclusion
In conclusion, the method used in this study has

shown promising and stable results in terms of robust-
ness against attacks, while remaining relatively simple
and easy to implement. However, there are still oppor-
tunities for further improvement. One area for potential
enhancement is testing the method in a multimodal set-
ting [7], where the input data includes information from
multiple modalities such as text, images, and audio. Ad-
ditionally, testing the method in the context of sequence
generation tasks [3, 11, 1] would be valuable, as this
presents a unique set of challenges that may require mo-
difications to the current approach.

Another aspect that could be improved is the depen-
dence of the BERT model on the embeddings used. As
such, future research could focus on exploring alterna-
tive embedding techniques that may provide better per-
formance in terms of robustness against attacks. Overall,
these potential enhancements can help to further streng-
then the reliability and efficacy of the current method,
opening up new possibilities for its application in va-
rious domains.
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