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CompGS: Efficient 3D Scene Representation via Compressed
Gaussian Splatting

Anonymous Authors

ABSTRACT
Gaussian splatting, renowned for its exceptional rendering quality
and efficiency, has emerged as a prominent technique in 3D scene
representation. However, the substantial data volume of Gaussian
splatting impedes its practical utility in real-world applications.
Herein, we propose an efficient 3D scene representation, named
Compressed Gaussian Splatting (CompGS), which harnesses com-
pact Gaussian primitives for faithful 3D scene modeling with a
remarkably reduced data size. To ensure the compactness of Gauss-
ian primitives, we devise a hybrid primitive structure that captures
predictive relationships between each other. Then, we exploit a
small set of anchor primitives for prediction, allowing the majority
of primitives to be encapsulated into highly compact residual forms.
Moreover, we develop a rate-constrained optimization scheme to
eliminate redundancies within such hybrid primitives, steering our
CompGS towards an optimal trade-off between bitrate consump-
tion and representation efficacy. Experimental results show that
the proposed CompGS significantly outperforms existing methods,
achieving superior compactness in 3D scene representation without
compromising model accuracy and rendering quality. Our code will
be released on GitHub for further research.

CCS CONCEPTS
• Computing methodologies → 3D imaging; Point-based models;
Image compression.

KEYWORDS
Gaussian splatting, Hybrid primitive structure, Rate-constrained
optimization, Compression, 3D scene representation.

1 INTRODUCTION
Gaussian splatting (3DGS) [17] has been proposed as an efficient
technique for 3D scene representation. In contrast to the preced-
ing implicit neural radiance fields [3, 28, 32], 3DGS [17] intricately
depicts scenes by explicit primitives termed 3D Gaussians, and
achieves fast rendering through a parallel splatting pipeline [44],
thereby significantly prompting 3D reconstruction [7, 13, 26] and
view synthesis [21, 39, 40]. Nevertheless, 3DGS [17] requires a con-
siderable quantity of 3DGaussians to ensure high-quality rendering,
typically escalating to millions in realistic scenarios. Consequently,
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Figure 1: Comparison between the proposed method and
concurrent Gaussian splatting compression methods [10, 20,
33, 34] on the Tanks&Templates dataset [19]. Comparison
metrics include rendering quality in terms of PSNR, model
size and bits per primitive.

the substantial burden on storage and bandwidth hinders the prac-
tical applications of 3DGS [17], and necessitates the development
of compression methodologies.

Recent works [9, 10, 20, 33, 34] have demonstrated preliminary
progress in compressing 3DGS [17] by diminishing both quantity
and volume of 3D Gaussians. Generally, these methods incorpo-
rate heuristic pruning strategies to remove 3D Gaussians with in-
significant contributions to rendering quality. Additionally, vector
quantization is commonly applied to the retained 3D Gaussians
for further size reduction, discretizing continuous attributes of 3D
Gaussians into a finite set of codewords. However, extant meth-
ods fail to exploit the intrinsic characteristics within 3D Gaussians,
leading to inferior compression efficacy, as shown in Figure 1. Specif-
ically, these methods independently compress each 3D Gaussian
and neglect the striking local similarities of 3D Gaussians evident in
Figure 2, thereby inevitably leaving significant redundancies among
these 3D Gaussians. Moreover, the optimization process in these
methods solely centers on rendering distortion, which overlooks re-
dundancies within attributes of each 3D Gaussian. Such drawbacks
inherently hamper the compactness of 3D scene representations.

This paper proposes Compressed Gaussian Splatting (CompGS),
a novel approach that leverages compact primitives for efficient 3D

https://doi.org/10.1145/nnnnnnn.nnnnnnn
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scene representation. Inspired by the correlations among 3D Gaus-
sians depicted in Figure 2, we devise a hybrid primitive structure
that establishes predictive relationships among primitives, to facili-
tate compact Gaussian representations for scenes. This structure
employs a sparse set of anchor primitives with ample reference
information for prediction. The remaining primitives, termed cou-
pled primitives, are adeptly predicted by the anchor primitives, and
merely contain succinct residual embeddings. Hence, this structure
ensures that the majority of primitives are efficiently presented in
residual forms, resulting in highly compact 3D scene representation.
Furthermore, we devise a rate-constrained optimization scheme
to improve the compactness of primitives within the proposed
CompGS. Specifically, we establish a primitive rate model via en-
tropy estimation, followed by the formulation of a rate-distortion
loss to comprehensively characterize both rendering quality con-
tributions and bitrate costs of primitives. By minimizing this loss,
our primitives undergo end-to-end optimization for an optimal
rate-distortion trade-off, ultimately yielding advanced compact
representations of primitives. Owing to the proposed hybrid primi-
tive structure and the rate-constrained optimization scheme, our
CompGS achieves not only high-quality rendering but also compact
representations compared to prior works [10, 20, 33, 34], as shown
in Figure 1. In summary, our contributions can be listed as follows:

• We propose Compressed Gaussian Splatting (CompGS) for
efficient 3D scene representation, which leverages compact
primitives to proficiently characterize 3D scenes and achieves
an impressive compression ratio up to 110× on prevalent
datasets.

• We cultivate a hybrid primitive structure to facilitate com-
pactness, wherein the majority of primitives are adeptly
predicted by a limited number of anchor primitives, thus
allowing compact residual representations.

• We devise a rate-constrained optimization scheme to further
prompt the compactness of primitives via joint minimization
of rendering distortion and bitrate costs, fostering an optimal
trade-off between bitrate consumption and representation
efficiency.

2 RELATEDWORK
2.1 Gaussian Splatting Scene Representation
Kerbl et al. [17] recently proposed a promising technique for 3D
scene representation, namely 3DGS. This method leverages explicit
primitives to model 3D scenes and renders scenes by projecting
these primitives onto target views. Specifically, 3DGS characterizes
primitives by 3D Gaussians initialized from a sparse point cloud
and then optimizes these 3D Gaussians to accurately represent a
3D scene. Each 3D Gaussian encompasses geometry attributes, i.e.,
location and covariance, to determine its spatial location and shape.
Moreover, appearance attributes, including opacity and color, are
involved in the 3D Gaussian to attain pixel intensities when pro-
jected to a specific view. Subsequently, the differentiable and highly
parallel volume splatting pipeline [44] is incorporated to render
view images by mapping 3D Gaussians to the specific view, fol-
lowed by the optimization of 3D Gaussians via rendering distortion
minimization. Meanwhile, an adaptive control strategy is devised
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Figure 2: Illustration of local similarities of 3D Gaussians.
The local similarity is measured by the average cosine dis-
tances between a 3D Gaussian and its 20 neighbors with min-
imal Euclidean distance.

to adjust the amount of 3D Gaussians, wherein insignificant 3D
Gaussians are pruned while crucial ones are densified.

Several methods have been proposed thereafter to improve the
rendering quality of 3DGS [17]. Specifically, Yu et al. [41] proposed
to apply smoothing filtering to address the aliasing issue in splatting
rendering. Hamdi et al. [11] improved 3D Gaussians by generalized
exponential functions to facilitate the capability of high-frequency
signal fitting. Cheng et al. [8] introduced GaussianPro to improve
3D scene modeling, in which a progressive propagation strategy is
designed to effectively align 3D Gaussians with the surface struc-
tures of scenes. Huang et al. [15] devised to enhance rendering
quality by compensating for projection approximation errors in
splatting rendering. Lu et al. [27] developed a structured Gaussian
splatting method named Scaffold-GS, in which anchor points are
utilized to establish a hierarchical representation of 3D scenes.

However, the rendering benefits provided by Gaussian splat-
ting techniques necessitate maintaining substantial 3D Gaussians,
resulting in significant model sizes.

2.2 Compressed Gaussian Splatting
Several concurrent works [9, 10, 20, 33, 34] have preliminarily
sought to compress models of 3DGS [17], relying on heuristic
pruning strategies to reduce the number of 3D Gaussians and
quantization to discretize attributes of 3D Gaussians into compact
codewords. Specifically, Navaneet et al. [33] designed a Gaussian
splatting compression framework named Compact3D. In this frame-
work, K-means-based vector quantization is leveraged to quantize
attributes of 3D Gaussians to discrete codewords, thereby reducing
the model size of 3DGS [17]. Niedermayr et al. [34] proposed to in-
volve sensitivities of 3D Gaussians during quantization to alleviate
quantization distortion, and leveraged entropy coding to reduce
statistical redundancies within codewords. Lee et al. [20] devised
learnable masks to reduce the quantity of 3D Gaussians by elimi-
nating non-essential ones, and introduced grid-based neural fields
to compactly model appearance attributes of 3D Gaussians. Fur-
thermore, Fan et al. [9] devised a Gaussian splatting compression
framework named LightGaussian, wherein various technologies are
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Figure 3: Overview of our proposed method.

combined to reduce model redundancies within 3DGS [17]. Notably,
a distillation paradigm is designed to effectively diminish the size of
color attributes within 3D Gaussians. Girish et al. [10] proposed to
represent 3D Gaussians by compact latent embeddings and decode
3D Gaussian attributes from the embeddings.

However, these existing methods optimize 3D Gaussians merely
by minimizing rendering distortion, and then independently com-
press each 3D Gaussian, thus leaving substantial redundancies
within obtained 3D scene representations.

2.3 Video Coding
Video coding, an outstanding data compression research field, has
witnessed remarkable advancements over the past decades and
cultivated numerous invaluable coding technologies. The most ad-
vanced traditional video coding standard, versatile video coding
(VVC) [6], employs a hybrid coding framework, capitalizing on
predictive coding and rate-distortion optimization to effectively re-
duce redundancies within video sequences. Specifically, predictive
coding is devised to harness correlations among pixels to perform
prediction. Subsequently, only the residues between the original
and predicted values are encoded, thereby reducing pixel redun-
dancies and enhancing compression efficacy. Notably, VVC [6]
employs affine transform [25] to improve prediction via modeling
non-rigid motion between pixels. Furthermore, VVC [6] employs
rate-distortion optimization to adaptively configure coding tools,
hence achieving superior coding efficiency.

Recently, neural video coding has emerged as a competitive al-
ternative to traditional video coding. These methods adhere to the
hybrid coding paradigm, integrating neural networks for both pre-
diction and subsequent residual coding. Meanwhile, end-to-end
optimization is employed to optimize neural networks within com-
pression frameworks via rate-distortion cost minimization. Within

the neural video coding pipeline, entropy models, as a vital compo-
nent of residual coding, are continuously improved to accurately
estimate the probabilities of residues and, thus, the rates. Specifi-
cally, Ballé et al. [1] proposed a factorized entropy bottleneck that
utilizes fully-connected layers to model the probability density func-
tion of the latent codes to be encoded. Subsequently, Ballé et al. [2]
developed a conditional Gaussian entropy model, with hyper-priors
extracted from latent codes, to parametrically model the probability
distributions of the latent codes. Further improvements concentrate
on augmenting prior information, including spatial context mod-
els [24, 29, 43], channel-wise context models [16, 30], and temporal
context models [14, 22, 23].

In this paper, motivated by the advancements of video coding,
we propose to employ the philosophy of both prediction and rate-
distortion optimization to effectively eliminate redundancies within
our primitives.

3 METHODOLOGY
3.1 Overview
As depicted in Figure 3, the proposed CompGS encompasses a
hybrid primitive structure for compact 3D scene representation,
involving anchor primitives to predict attributes of the remain-
ing coupled primitives. Specifically, a limited number of anchor
primitives are created as references. Each anchor primitive 𝝎 is
embodied by geometry attributes (location 𝜇𝝎 and covariance Σ𝝎 )
and reference embeddings 𝑓𝝎 . Then, 𝝎 is associated with a set
of 𝐾 coupled primitives {𝜸1, . . . ,𝜸𝐾 }, and each coupled primitive
𝜸𝑘 only includes compact residual embeddings 𝑔𝑘 to compensate
for prediction errors. In the following inter-primitive prediction,
the geometry attributes of 𝜸𝑘 are obtained by warping the corre-
sponding anchor primitive 𝝎 via affine transform, wherein affine
parameters are adeptly predicted by 𝑓𝝎 and 𝑔𝑘 . Concurrently, the
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Figure 4: Illustration of the proposed inter-primitive predic-
tion.

view-dependent appearance attributes of 𝜸𝑘 , i.e., color and opacity,
are predicted using {𝑓𝝎 , 𝑔𝑘 } and view embeddings [27]. Owing
to the hybrid primitive structure, the proposed CompGS can com-
pactly model 3D scenes by redundancy-eliminated primitives, with
the majority of primitives presented in residual forms.

Once attaining geometry and appearance attributes, these cou-
pled primitives can be utilized as 3D Gaussians to render view im-
ages via volume splatting [28]. In the subsequent rate-constrained
optimization, rendering distortion 𝐷 can be derived by calculat-
ing the quality degradation between the rendered and correspond-
ing ground-truth images. Additionally, entropy estimation is ex-
ploited to model the bitrate of anchor primitives and associated
coupled primitives. The derived bitrate 𝑅, along with the distor-
tion 𝐷 , are used to formulate the rate-distortion cost L. Then, all
primitives within the proposed CompGS are jointly optimized via
rate-distortion cost minimization, which facilitates the primitive
compactness and, thus, compression efficiency. The optimization
process of our primitives can be formulated by

𝛀
∗, 𝚪∗ = argmax

𝛀,𝚪

L = argmax
𝛀,𝚪

𝜆𝑅 + 𝐷, (1)

where 𝜆 denotes the Lagrange multiplier to control the trade-off
between rate and distortion, and {𝛀, 𝚪} denote the set of anchor
primitives and coupled primitives, respectively.

3.2 Inter-primitive Prediction
The inter-primitive prediction is proposed to derive the geometry
and appearance attributes of coupled primitives based on associated
anchor primitives. As a result, coupled primitives only necessitate
succinct residues, contributing to compact 3D scene representation.
As shown in Figure 4, the proposed inter-primitive prediction takes
an anchor primitive 𝝎 and an associated coupled primitive 𝜸𝑘 as
inputs, and predicts geometry and appearance attributes for 𝜸𝑘 , in-
cluding location 𝜇𝑘 , covariance Σ𝑘 , opacity 𝛼𝑘 , and color 𝑐𝑘 . Specif-
ically, residual embeddings 𝑔𝑘 of 𝜸𝑘 and reference embeddings 𝑓𝝎
of 𝝎 are first fused by channel-wise concatenation, yielding pre-
diction features ℎ𝑘 . Subsequently, the geometry attributes {𝜇𝑘 , Σ𝑘 }
are generated by warping 𝝎 using affine transform [25], with the
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Figure 5: Illustration of the proposed entropy estimation.

affine parameters 𝛽𝑘 derived from ℎ𝑘 via learnable linear layers.
This process can be formulated as

𝜇𝑘 , Σ𝑘 = A(𝜇𝝎 , Σ𝝎 |𝛽𝑘 ), (2)

where A denotes the affine transform, and {𝜇𝝎 , Σ𝝎 } denote lo-
cation and covariance of the anchor primitive 𝝎, respectively. To
improve the accuracy of geometry prediction, 𝛽𝑘 is further decom-
posed into translation vector 𝑡𝑘 , scaling matrix 𝑆𝑘 , and rotation
matrix 𝑅𝑘 , which are predicted by neural networks, respectively,
i.e.,

𝑡𝑘 = 𝜙 (ℎ𝑘 ), 𝑆𝑘 = 𝜓 (ℎ𝑘 ), 𝑅𝑘 = 𝜑 (ℎ𝑘 ), (3)

where {𝜙 (·),𝜓 (·), 𝜑 (·)} denote the neural networks. Correspond-
ingly, the affine process in Equation 2 can be further formulated
as

𝜇𝑘 = 𝜇𝝎 + 𝑡𝑘 , Σ𝑘 = 𝑆𝑘𝑅𝑘Σ𝝎 . (4)

Simultaneously, to model the view-dependent appearance at-
tributes 𝛼𝑘 and 𝑐𝑘 , view embeddings 𝜖 are generated from camera
poses and concatenated with prediction features ℎ𝑘 . Then, neural
networks are employed to predict 𝛼𝑘 and 𝑐𝑘 based on the concate-
nated features. This process can be formulated by

𝛼𝑘 = 𝜅 (𝜖 ⊕ ℎ𝑘 ), 𝑐𝑘 = 𝜁 (𝜖 ⊕ ℎ𝑘 ), (5)

where ⊕ denotes the channel-wise concatenation and {𝜅 (·), 𝜁 (·)}
denote the neural networks for color and opacity prediction, re-
spectively.

3.3 Rate-constrained Optimization
The rate-constrained optimization scheme is devised to achieve
compact primitive representation via joint minimization of bitrate
consumption and rendering distortion. As shown in Figure 5, we
establish the entropy estimation to effectively model the bitrate of
both anchor and coupled primitives. Specifically, scalar quantiza-
tion [1] is first applied to {Σ𝝎 , 𝑓𝝎 } of anchor primitive 𝝎 and 𝑔𝑘 of



465

466

467

468

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

489

490

491

492

493

494

495

496

497

498

499

500

501

502

503

504

505

506

507

508

509

510

511

512

513

514

515

516

517

518

519

520

521

522

CompGS: Efficient 3D Scene Representation via Compressed Gaussian Splatting ACM MM, 2024, Melbourne, Australia

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

540

541

542

543

544

545

546

547

548

549

550

551

552

553

554

555

556

557

558

559

560

561

562

563

564

565

566

567

568

569

570

571

572

573

574

575

576

577

578

579

580

Table 1: Performance comparison on the Tanks&Templates
dataset [19].

Methods PSNR (dB) SSIM LPIPS Size (MB)

Kerbl et al. [17] 23.72 0.85 0.18 434.38

Navaneet et al. [33] 23.34 0.84 0.19 47.01
Niedermayr et al. [34] 23.58 0.85 0.19 17.65
Lee et al. [20] 23.40 0.84 0.20 39.47
Girish et al. [10] 23.39 0.84 0.20 33.57

Proposed
23.70 0.84 0.21 9.60
23.39 0.83 0.22 7.27
23.11 0.81 0.24 5.89

associated coupled primitive 𝜸𝑘 , i.e.,

Σ̂𝝎 = Q( Σ𝝎
𝑠Σ

), 𝑓𝝎 = Q( 𝑓𝝎
𝑠𝑓

), 𝑔𝑘 = Q(𝑔𝑘
𝑠𝑔

), (6)

where Q(·) denotes the scalar quantization and {𝑠Σ, 𝑠𝑓 , 𝑠𝑔} denote
the corresponding quantization steps. However, the rounding oper-
ator within Q is not differentiable and breaks the back-propagation
chain of optimization. Hence, quantization noises [1] are utilized
to simulate the rounding operator, yielding differentiable approxi-
mations as

Σ̃𝝎 = 𝛿Σ + Σ𝝎
𝑠Σ
, 𝑓𝝎 = 𝛿𝑓 +

𝑓𝝎

𝑠𝑓
, 𝑔𝑘 = 𝛿𝑓 +

𝑔𝑘

𝑠𝑔
, (7)

where {𝛿Σ, 𝛿𝑓 , 𝛿𝑔} denote the quantization noises obeying uniform
distributions. Subsequently, the probability distribution of 𝑓𝝎 is
estimated to calculate the corresponding bitrate. In this process,
the probability distribution 𝑝 (𝑓𝝎 ) is parametrically formulated as
a Gaussian distribution N(𝜏𝑓 , 𝜌 𝑓 ), where the parameters {𝜏𝑓 , 𝜌 𝑓 }
are predicted based on hyperpriors [2] extracted from 𝑓𝝎 , i.e.,

𝑝 (𝑓𝝎 ) = N(𝜏𝑓 , 𝜌 𝑓 ), with 𝜏𝑓 , 𝜌 𝑓 = E𝑓 (𝜂𝑓 ), (8)

where E𝑓 denotes the parameter prediction network and𝜂𝑓 denotes
the hyperpriors. Moreover, the probability of hyperpriors 𝜂𝑓 is
estimated by the factorized entropy bottleneck [1], and the bitrate
of 𝑓𝝎 can be calculated by

𝑅𝑓𝝎 = E𝝎

[
− log 𝑝 (𝑓𝝎 ) − log 𝑝 (𝜂𝑓 )

]
, (9)

where 𝑝 (𝜂𝑓 ) denotes the estimated probability of hyperpriors 𝜂𝑓 .
Furthermore, 𝑓𝝎 is used as contexts to model the probability distri-
butions of Σ̃𝝎 and 𝑔𝑘 . Specifically, the probability distribution of
Σ̃𝝎 is modeled by Gaussian distribution with parameters {𝜏Σ, 𝜌Σ}
predicted by 𝑓𝝎 , i.e.,

𝑝 (Σ̃𝝎 ) = N(𝜏Σ, 𝜌Σ), with 𝜏Σ, 𝜌Σ = EΣ (𝑓𝝎 ), (10)

where 𝑝 (Σ̃𝝎 ) denotes the estimated probability distribution and EΣ

denotes the parameter prediction network for covariance. Mean-
while, considering the correlations between the 𝑓𝝎 and 𝑔𝑘 , the
probability distribution of 𝑔𝑘 is modeled via Gaussian distribution
conditioned on 𝑓𝝎 and extracted hyperpriors 𝜂𝑔 , i.e.,

𝑝 (𝑔𝑘 ) = N(𝜏𝑔, 𝜌𝑔), with 𝜏𝑔, 𝜌𝑔 = E𝑔 (𝑓𝝎 ⊕ 𝜂𝑔), (11)

Table 2: Performance comparison on the Deep Blending
dataset [12].

Methods PSNR (dB) SSIM LPIPS Size (MB)

Kerbl et al. [17] 29.54 0.91 0.24 665.99

Navaneet et al. [33] 29.89 0.91 0.25 72.46
Niedermayr et al. [34] 29.45 0.91 0.25 23.87
Lee et al. [20] 29.82 0.91 0.25 43.14
Girish et al. [10] 29.90 0.91 0.25 61.69

Proposed
29.69 0.90 0.28 8.77
29.40 0.90 0.29 6.82
29.30 0.90 0.29 6.03

Table 3: Performance comparison on the Mip-NeRF 360
dataset [4].

Methods PSNR (dB) SSIM LPIPS Size (MB)

Kerbl et al. [17] 27.46 0.82 0.22 788.98

Navaneet et al. [33] 27.04 0.81 0.23 86.10
Niedermayr et al. [34] 27.12 0.80 0.23 28.61
Lee et al. [20] 27.05 0.80 0.24 49.60
Girish et al. [10] 27.04 0.80 0.24 65.09

Proposed
27.26 0.80 0.24 16.50
26.78 0.79 0.26 11.02
26.37 0.78 0.28 8.83

where 𝑝 (𝑔𝑘 ) denotes the estimated probability distribution. Accord-
ingly, the bitrate of Σ𝝎 and 𝑔𝑘 can be calculated by

𝑅Σ𝝎 = E𝝎
[
− log𝑝 (Σ̃𝝎 )

]
,

𝑅𝑔𝑘 = E𝜸𝑘

[
− log 𝑝 (𝑔𝑘 ) − log𝑝 (𝜂𝑔)

]
,

(12)

where 𝑝 (𝜂𝑔) denotes the probability of 𝜂𝑔 estimated via the factor-
ized entropy bottleneck [1]. Consequently, the bitrate consump-
tion of the anchor primitive 𝝎 and its associated 𝐾 coupled primi-
tives {𝜸1, . . . ,𝜸𝐾 } can be further calculated by

𝑅𝝎,𝜸 = 𝑅𝑓𝝎 + 𝑅Σ𝝎 +
𝐾∑︁
𝑘=1

𝑅𝑔𝑘 . (13)

Furthermore, to formulate the rate-distortion cost depicted in
Equation 1, the rate item 𝑅 is calculated by summing bitrate costs
of all anchor and coupled primitives, and the distortion item 𝐷

is provided by the rendering loss [17]. Then, the rate-distortion
cost is used to perform end-to-end optimization of primitives and
neural networks within the proposed method, thereby attaining
high-quality rendering under compact representations.

3.4 Implementation Details
In the proposed method, the dimension of reference embeddings
is set to 32, and that of residual embeddings is set to 8. Neural
networks used in both prediction and entropy estimation are im-
plemented by two residual multi-layer perceptrons. Quantization
steps {𝑠𝑓 , 𝑠𝑔} are fixed to 1, whereas 𝑠Σ is a learnable parameter
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Figure 6: Rate-distortion curves of the proposed method and comparison methods [10, 17, 20, 33, 34].

with an initial value of 0.01. The Lagrange multiplier 𝜆 in Equa-
tion 1 is set to {0.001, 0.005, 0.01} to obtain multiple bitrate points.
Moreover, the anchor primitives are initialized from sparse point
clouds produced by voxel-downsampled SfM points [36], and each
anchor primitive is associated with𝐾 = 10 coupled primitives. After
the optimization, reference embeddings and covariance of anchor
primitives, along with residual embeddings of coupled primitives,
are compressed into bitstreams by arithmetic coding [31], wherein
the probability distributions are provided by the entropy estimation
module. Additionally, point cloud codec G-PCC [37] is employed
to compress locations of anchor primitives.

The proposed method is implemented based on PyTorch [35] and
CompressAI [5] libraries. Adam optimizer [18] is used to optimize
parameters of the proposed method, with a cosine annealing strat-
egy for learning rate decay. Additionally, adaptive control [27] is
applied to manage the number of anchor primitives, and the volume
splatting [44] is implemented by custom CUDA kernels [17].

4 EXPERIMENTS
4.1 Experimental Settings
Datasets. To comprehensively evaluate the effectiveness of the
proposed method, we conduct experiments on three prevailing
view synthesis datasets, including Tanks&Templates [19], Deep
Blending [12] and Mip-NeRF 360 [4]. These datasets comprise high-
resolution multiview images collected from real-world scenes, char-
acterized by unbounded environments and intricate objects. Fur-
thermore, we conform to the experimental protocols in 3DGS [17]
to ensure evaluation fairness. Specifically, the scenes specified by
3DGS [17] are involved in evaluations, and the sparse point clouds
provided by 3DGS [17] are utilized to initialize our anchor primi-
tives. Additionally, one view is selected from every eight views for
testing, with the remaining views used for training.

Comparison methods. We employ 3DGS [17] as an anchor
method and compare several concurrent compression methods [10,
20, 33, 34]. To retrain these models for fair comparison, we adhere to
their default configurations as prescribed in corresponding papers.
Notably, extant compression methods [10, 20, 33, 34] only provide
the configuration for a single bitrate point. Moreover, each method

undergoes five independent evaluations in a consistent environ-
ment to mitigate the effect of randomness, and the average results of
the five experiments are reported. Additionally, the detailed results
with respect to each scene are provided in the Appendix.

Evaluation metrics.We adopt PSNR, SSIM [38] and LPIPS [42]
to evaluate the rendering quality, alongside model size, for assessing
compression efficiency. Meanwhile, we use training, encoding, de-
coding, and view-average rendering time to quantitatively compare
the computational complexity across various methods.

4.2 Experimental Results
Qualitative Results. The proposed method achieves the high-
est compression efficiency on the Tanks&Templates dataset [19],
as illustrated in Table 1. Specifically, compared with 3DGS [17],
our method achieves a significant compression ratio, ranging from
45.25× to 73.75×, with a size reduction up to 428.49 MB. These
results highlight the effectiveness of our proposed CompGS. More-
over, our method surpasses existing compression methods [10,
20, 33, 34], with the highest rendering quality, i.e., 23.70 dB, and
the smallest bitstream size. This advancement stems from com-
prehensive utilization of the hybrid primitive structure and the
rate-constrained optimization, which effectively facilitate compact
representations of 3D scenes.

Table 2 shows the quantitative results on the Deep Blending
dataset [12]. Compared with 3DGS [17], the proposed method
achieves remarkable compression ratios, from 75.94× to 110.45×.
Meanwhile, the proposed method realizes a 0.15 dB improvement
in rendering quality at the highest bitrate point, potentially attrib-
uted to the integration of feature embeddings and neural networks.
Furthermore, the proposed method achieves further bitrate savings
compared to existing compression methods [10, 20, 33, 34]. Consis-
tent results are observed on the Mip-NeRF 360 dataset [4], wherein
our method considerably reduces the bitrate consumption, down
from 788.98 MB to at most 16.50 MB, correspondingly, culminat-
ing in a compression ratio up to 89.35×. Additionally, our method
demonstrates a remarkable improvement in bitrate consumption
over existing methods [10, 20, 33, 34]. Notably, within the Stump
scene of the Mip-NeRF 360 dataset [4], our method significantly
reduces the model size from 1149.30 MB to 6.56 MB, achieving an
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Figure 7: Qualitative results of the proposed method compared to existing compression methods [10, 20, 33, 34].

Table 4: Ablation studies on the Tanks&Templates dataset [19].

Hybrid Primitive Rate-constrained Train Truck

Structure Optimization PSNR (dB) SSIM LPIPS Size (MB) PSNR (dB) SSIM LPIPS Size (MB)

× × 22.02 0.81 0.21 257.44 25.41 0.88 0.15 611.31
✓ × 22.15 0.81 0.23 48.58 25.20 0.86 0.19 30.38
✓ ✓ 22.12 0.80 0.23 8.60 25.28 0.87 0.18 10.61

extraordinary compression ratio of 175.20×. This exceptional
outcome demonstrates the effectiveness of the proposed method
and its potential for practical implementation of Gaussian splatting
schemes. Moreover, we present the rate-distortion curves to intu-
itively demonstrate the superiority of the proposed method. It can
be observed from Figure 6 that our method achieves remarkable size
reduction and competitive rendering quality as compared to other
methods [10, 17, 20, 33, 34]. Detailed performance comparisons for
each scene are provided in the Appendix to further substantiate
the advancements realized by the proposed method.

Qualitative Results. Figure 7 illustrates the qualitative com-
parison of the proposed method and other compression meth-
ods [10, 20, 33, 34], with specific details zoomed in. It can be ob-
served that the rendered images obtained by the proposed method
exhibit clearer textures and edges.

4.3 Ablation Studies
Effectiveness on hybrid primitive structure. The hybrid prim-
itive structure is proposed to exploit a limited number of anchor
primitives to proficiently predict attributes of the remaining cou-
pled primitives, thus enabling an efficient representation of these
coupled primitives by compact residual embeddings. To verify the
effectiveness of the hybrid primitive structure, we incorporate it
into the baseline 3DGS [17], and the corresponding results on the
Tanks&Templates dataset [19] are depicted in Table 4. It can be
observed that the hybrid primitive structure greatly prompts the

compactness of 3D scene representations, exemplified by a reduc-
tion of bitstream size from 257.44 MB to 48.58 MB for the Train
scene and from 611.31 MB down to 30.38 MB for the Truck scene.
This is because the devised hybrid primitive structure can effec-
tively eliminate the redundancies among primitives, thus achieving
compact 3D scene representation.

Furthermore, we provide bitstream analysis of our method on the
Train scene in Figure 8. It can be observed that the bit consumption
of coupled primitives is close to that of anchor primitives across
multiple bitrate points, despite the significantly higher number of
coupled primitives compared to anchor primitives. Notably, the av-
erage bit consumption of coupled primitives is demonstrably lower
than that of anchor primitives, which benefits from the compact
residual representation employed by the coupled primitives. These
findings further underscore the superiority of the hybrid primitive
structure in achieving compact 3D scene representation.

Effectiveness on rate-constrained optimization. The rate-
constrained optimization is devised to effectively improve the com-
pactness of our primitives via minimizing the rate-distortion loss.
To evaluate its effectiveness, we incorporate it with the hybrid prim-
itive structure, establishing the framework of our proposed method.
As shown in Table 4, the employment of rate-constrained optimiza-
tion leads to a further reduction of the bitstream size from 48.58 MB
to 8.60 MB for the Train scene, equal to an additional bitrate re-
duction of 82.30%. On the Truck scene, a substantial decrease of
65.08% in bitrate is achieved. The observed bitrate efficiency can be
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Table 5: Ablation studies on the residual embeddings.

PSNR (dB) SSIM LPIPS Size (MB)

w.o. Res. Embed. 20.50 0.73 0.31 5.75
Proposed 21.49 0.78 0.26 5.51

attributed to the capacity of the proposed method to learn compact
primitive representations through rate-constrained optimization.

Effectiveness of Residual embeddings. Recent work [27]
introduces a primitive derivation paradigm, whereby anchor primi-
tives are used to generate new primitives. To demonstrate our su-
periority over this paradigm, we devise a variant, named “w.o. Res.
Embed.”, which adheres to such primitive derivation paradigm [27]
by removing the residual embeddings within coupled primitives.
The experimental results on the Train scene of Tanks&Templates
dataset [19], as shown in Table 5, reveal that, this variant fails to ob-
tain satisfying rendering quality and inferiors to our method. This
is because such indiscriminate derivation of coupled primitives
can hardly capture unique characteristics of coupled primitives. In
contrast, our method can effectively represent such characteristics
by compact residual embeddings.

Proportion of coupled primitives.We conduct ablations on
the Train scene from the Tanks&Templates dataset [19] to investi-
gate the impact of the proportion of coupled primitives. Specifically,
we adjust the proportion of coupled primitives by manipulating
the number of coupled primitives 𝐾 associated with each anchor
primitive. As shown in Table 6, the case with 𝐾 = 10 yields the best
rendering quality, which prompts us to set 𝐾 to 10 in our experi-
ments. Besides, the increase of 𝐾 from 10 to 15 leads to a rendering
quality degradation of 0.22 dB. This might be because excessive
coupled primitives could lead to an inaccurate prediction.

Table 6: Ablation studies on the proportion of coupled prim-
itives.

K PSNR (dB) SSIM LPIPS Size (MB)

5 22.04 0.80 0.24 7.87
10 22.12 0.80 0.23 8.60
15 21.90 0.80 0.24 8.28

Table 7: Complexity comparison on the Tanks&Templates
dataset [19].

Methods Train Enc-time Dec-time Render
(min) (s) (s) (ms)

Navaneet et al. [33] 14.38 68.29 12.32 9.88
Niedermayr et al. [34] 15.50 2.23 0.25 9.74
Lee et al. [20] 44.70 1.96 0.18 6.60
Girish et al. [10] 8.95 0.54 0.64 6.96

Proposed 37.83 6.27 4.46 5.32

4.4 Complexity Analysis
Table 7 reports the complexity comparisons between the proposed
method and existing compression methods [10, 20, 33, 34] on the
Tanks&Templates dataset [19]. In terms of training time, the pro-
posed method requires an average of 37.83 minutes for training,
which is shorter than the method proposed by Lee et al. [20] and
longer than other methods. This might be attributed to that the
proposed method needs to optimize both primitives and neural
networks. Additionally, the encoding and decoding times of the
proposedmethod are both less than 10 seconds, which illustrates the
practicality of the proposed method for real-world applications. In
line with comparison methods, the per-view rendering time of the
proposed method averages 5.32 milliseconds, due to the utilization
of highly-parallel splatting rendering algorithm [44].

5 CONCLUSION
This work proposes a novel 3D scene representation method, Com-
pressed Gaussian Splatting (CompGS), which utilizes compact prim-
itives for efficient 3D scene representation with remarkably reduced
size. Herein, we tailor a hybrid primitive structure for compact
scene modeling, wherein coupled primitives are proficiently pre-
dicted by a limited set of anchor primitives and thus, encapsu-
lated into succinct residual embeddings. Meanwhile, we develop a
rate-constrained optimization scheme to further improve the com-
pactness of primitives. In this scheme, the primitive rate model is
established via entropy estimation, and the rate-distortion cost is
then formulated to optimize these primitives for an optimal trade-
off between rendering efficacy and bitrate consumption. Incorpo-
rated with the hybrid primitive structure and rate-constrained opti-
mization, our CompGS outperforms existing compression methods,
achieving superior size reduction without compromising rendering
quality.
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