
DIP-RL: Demonstration-Inferred Preference Learning in Minecraft

Ellen Novoseller 1 Vinicius G. Goecks 1 David Watkins 2 3 Josh Miller 1 Nicholas Waytowich 1

Abstract
In machine learning for sequential decision-
making, an algorithmic agent learns to interact
with an environment while receiving feedback
in the form of a reward signal. However, in
many unstructured real-world settings, such a
reward signal is unknown and humans cannot
reliably craft a reward signal that correctly cap-
tures desired behavior. To solve tasks in such
unstructured and open-ended environments, we
present Demonstration-Inferred Preference Rein-
forcement Learning (DIP-RL), an algorithm that
leverages human demonstrations in three distinct
ways, including training an autoencoder, seed-
ing reinforcement learning (RL) training batches
with demonstration data, and inferring prefer-
ences over behaviors to learn a reward function to
guide RL. We evaluate DIP-RL in a tree-chopping
task in Minecraft. Results suggest that the method
can guide an RL agent to learn a reward func-
tion that reflects human preferences and that DIP-
RL performs competitively relative to baselines.
DIP-RL is inspired by our previous work on
combining demonstrations and pairwise prefer-
ences in Minecraft, which was awarded a research
prize at the 2022 NeurIPS MineRL BASALT
competition, Learning from Human Feedback in
Minecraft. Example trajectory rollouts of DIP-RL
and baselines are located at https://sites.
google.com/view/dip-rl.

1. Introduction
In machine learning for sequential decision-making, an al-
gorithmic agent learns to interact with an environment while
receiving feedback. In particular, a typical reinforcement
learning (RL) agent receives numerical reward feedback

1DEVCOM Army Research Laboratory 2Columbia University,
NY, USA 3Boston Dynamics AI Institute, MA, USA. Correspon-
dence to: Ellen Novoseller <ellen.r.novoseller.civ@army.mil>,
Nicholas Waytowich <nicholas.r.waytowich.civ@army.mil>.

The Many Facets of Preference Learning Workshop at the In-
ternational Conference on Machine Learning (ICML), Honolulu,
Hawaii, USA, 2023. Copyright 2023 by the author(s).

reflecting its performance; however, in many real-world set-
tings, such a reward signal is unknown, and, furthermore,
humans might not reliably handcraft a reward signal that cor-
rectly captures the desired behavior. In addition, real-world
environments are often unstructured and open-ended, with
complex observations and sets of possible actions, making
reward shaping even more difficult. Developing algorithms
to solve tasks in such open-ended and unstructured envi-
ronments without rewards remains a critical challenge for
artificial intelligence (AI).

Minecraft has emerged as a state-of-the-art platform
for benchmarking sequential decision-making algorithms
within the machine learning research community. Minecraft
shares many challenges with the real world, as it is open-
ended, complex, and does not have a known numerical
reward signal. In fact, the Neural Information Processing
Systems Conference (NeurIPS) has recently introduced the
MineRL BASALT Competition (Shah et al., 2021), in which
competing teams train AI agents to compete in a set of four
open-ended Minecraft tasks: finding a cave, building a wa-
terfall, building an animal pen and trapping two of the same
animal within it, and building a village house.

Pairwise preference-based RL has been shown to be a suc-
cessful approach for learning RL reward functions when a
true reward signal is unknown (Christiano et al., 2017; Lee
et al., 2021). In this method, a human compares pairs of tra-
jectory segments and indicates which behavior is preferred
within each pair. Although preference-based RL algorithms
have demonstrated numerous successes, the approach inher-
ently requires tedious human intervention and time in the
decision loop. Furthermore, each pairwise preference label
only provides one bit of information, potentially resulting
in sample-inefficient learning. Furthermore, in early stages
of learning, preference queries often consist exclusively of
behavior pairs that are suboptimal or downright poor.

Demonstrations provide an effective means of acquiring
examples of good behavior from the outset. Behavioral
cloning (BC) is a simple and widely adopted imitation learn-
ing method that learns from demonstrations through super-
vised learning (Argall et al., 2009). However, despite its
popularity and ease of implementation, BC can suffer from
distribution drift, which hampers its long-term efficacy. Re-
cent state-of-the-art methods in imitation learning, such as

https://sites.google.com/view/dip-rl
https://sites.google.com/view/dip-rl


DIP-RL: Demonstration-Inferred Preference Learning in Minecraft

Soft Q Imitation Learning (SQIL) (Reddy et al., 2020), have
made progress toward addressing these issues.

Combining the strengths of imitation and preference learn-
ing, this work extends previous work on the combination
of demonstrations and pairwise preferences in Minecraft
(Shah et al., 2022) and is inspired by our solution for the
2022 MineRL BASALT Competition at NeurIPS (Milani
et al., 2023), which was awarded a research prize. This
hybrid method, which we call Demonstration-Inferred Pref-
erence Reinforcement Learning (DIP-RL), aims to harness
the benefits of both pairwise preference learning and demon-
strations by inferring preferences from an existing human
demonstration dataset while avoiding the burden normally
incurred by collecting pairwise preferences.

Our approach leverages the key insight that even when it
is difficult for people to specify numerical reward signals
or online feedback, human demonstrations may still encode
significant intuition about human preference for how a task
should be performed. Therefore, our approach uses human
demonstrations to guide the learning process. In particular,
we infer a task reward function using the demonstration data
by comparing behavior segments from the expert demon-
strations and from agent rollouts obtained during learning,
forming a dataset of pairwise comparisons in which demon-
strations are preferred to agent behaviors. Pairwise com-
parison data are beneficial, since qualitative comparisons
can be more reliable than handcrafted absolute numerical
scores (Basu et al., 2017; Sui et al., 2018; Joachims et al.,
2017). Using pairwise comparisons between demonstrated
behaviors and agent-environment interaction, we model the
underlying reward that captures the desired behavior.

The contributions of this work are as follows:

1. We propose Demonstration-Inferred Preference Rein-
forcement Learning (DIP-RL), a framework for learn-
ing from human demonstrations to solve complex
tasks. DIP-RL leverages demonstrations in three dis-
tinct ways: a) to train an autoencoder that transforms
images to vector embeddings, b) to seed an RL replay
buffer, and c) to provide expert trajectory segments to
train a reward function.

2. We provide an evaluation of DIP-RL in a tree-chopping
task in Minecraft and compare the performance of DIP-
RL with a) human demonstrations, b) BC from demon-
strations, c) RL without human demonstrations, and d)
SQIL (Reddy et al., 2020), a state-of-the-art imitation
learning algorithm. The results suggest that DIP-RL
performs competitively relative to these baselines.

2. Related Work
2.1. Learning from Demonstrations and Preferences

Pairwise preference-based feedback has shown promise as
an intuitive method for incorporating human feedback into
policy learning algorithms (Akrour et al., 2011; Christiano
et al., 2017; Lee et al., 2021). In a seminal work, Christiano
et al. (2017) take advantage of deep RL to train an agent
from human feedback, learning a deep reward model from
human evaluations in the form of pairwise comparisons
between trajectory segments. The application of pairwise
preferences was further advanced by active querying meth-
ods for designing informative preference queries (Sadigh
et al., 2017; Bıyık et al., 2020). PEBBLE (Lee et al., 2021)
improves on prior preference-based RL work by leveraging
unsupervised pre-training methods, updating a policy and
critic via off-policy RL, and relabeling rewards in the replay
buffer as the reward model improves. These preference-
based RL approaches demonstrate the ability to effectively
utilize real-time human feedback to learn complex tasks.

While preference-based RL methods consider comparisons
over the learning agent’s behaviors, several works learn re-
wards from relative rankings over demonstrations (Brown
et al., 2019; 2020b;a). For instance, Trajectory-ranked Re-
ward EXtrapolation (T-REX) (Brown et al., 2019) employs
ranked suboptimal demonstrations to infer and optimize to-
ward a user’s intent beyond the quality of the demonstrations.
In contrast to works that consider pairwise comparisons
purely between the learning agent’s behaviors or between
demonstrations, DIP-RL leverages both demonstrations and
agent experience to generate pairwise comparisons, and thus
can learn rewards while benefiting from both initial high-
quality examples and from the agent’s online experience.

This work extends the method presented in the 2021 Min-
eRL BASALT competition by Team NotYourRL (Shah et al.,
2022). The approach in Shah et al. (2022) builds on the
method proposed in Ibarz et al. (2018), and integrates Deep
Q-learning from Demonstrations (DQfD) with a reward
model learned from comparisons between demonstrations
and agent behaviors. The team used prioritized experience
replay and autolabeling of preferences to train a reward
model. However, despite promising results, the team found
that model performance was not significantly improved by
this reward signal, suggesting a potential area for future re-
search. We propose here the use of an autoencoder that trans-
forms images into embeddings for more sample-efficient use
with RL. Our main baseline comparison is Soft Q Imitation
Learning (SQIL) (Reddy et al., 2020), which labels human
demonstration data with +1 rewards while labeling agent
experience with rewards of 0. This differs from our method
in that SQIL directly labels experience with binary rewards,
while DIP-RL uses the demonstrations and agent experience
to infer preferences and learn a continuous reward.



DIP-RL: Demonstration-Inferred Preference Learning in Minecraft

2.2. Minecraft as a Learning Environment

Minecraft has emerged as a popular platform for RL re-
search due to its open-world nature and complex dynamics,
and offers researchers a rich and diverse environment in
which to train and test RL agents. Johnson et al. (2016) in-
troduced Project Malmo, a platform for AI experimentation
built on top of Minecraft that provides a sophisticated inter-
face for RL research, opening a wide range of complex tasks
to study. To promote the development of sample-efficient
RL algorithms, Guss et al. (2019) subsequently introduced
MineRL, a large-scale dataset of human demonstrations in
Minecraft.

Based on the MineRL project, the MineRL Benchmark
for Agents that Solve Almost-Lifelike Tasks (MineRL
BASALT1) competition (Shah et al., 2021) used the
Minecraft environment to promote research in learning from
human feedback to enable agents to accomplish tasks that
lack easily-definable reward functions. Tasks were defined
by a human-readable description with no reward function.
Shah et al. (2022); Goecks et al. (2021); Milani et al. (2023)
describe some of the most promising solutions from the
2021 and 2022 competitions.

3. Problem Setting
We consider a learning agent that interacts with the
Minecraft environment. In this setting, the agent does not
observe the full-world state but instead receives an image
observation based on its current location and orientation.
Additionally, the agent does not observe numerical rewards.

Therefore, we consider a reinforcement learning (RL) prob-
lem setting characterized by an episodic, partially-observed
Markov decision process without rewards (POMDP\R),
M = (S,O,A, P, Pe, µ, T ). Here, S is the underlying
state space, O is the observation space, A is the action
space, P : S ×A× S → [0, 1] yields state transition prob-
abilities, Pe : S ×O → [0, 1] yields observation emission
probabilities, µ : S → [0, 1] is the initial state probability
distribution, and T is the episode time horizon.

The agent interacts with the environment through a series of
roll-out trajectories τ = (o1, a1, o2, a2, . . . , oT , aT , oT+1),
in which the agent receives observations o1, . . . , oT+1 ∈ O
and takes actions a1, . . . , aT ∈ A. A policy is a mapping
of observations to actions, π : O × A → [0, 1], such that
π(a | o) yields the probability that the agent selects action
a ∈ A given observation o ∈ O.

We assume that the agent has access to a set of demonstra-
tions of human interaction with the environment, Ddemo =
{(oi, ai)}Mi=1, where M is the number of experience tuples

1MineRL BASALT Competition: https://minerl.io/
basalt/.

in the demonstration dataset.

Learning Objective. While the environment does not in-
clude a numerical reward signal, we assume that the human
demonstrations in Ddemo reflect an unknown underlying re-
ward function, r : S × A → R. The agent’s objective is
to learn a behavior that maximizes r, such that the optimal
policy π∗ is given by:

π∗ = argmaxπ

T∑
t=1

E(st,at)∼µ,P,Pe,π[r(st, at)]. (1)

4. Demonstration-Inferred Preference
Reinforcement Learning

We present Demonstration-Inferred Preference Reinforce-
ment Learning (DIP-RL), illustrated in Figure 1. DIP-RL in-
fers pairwise preferences from human demonstrations and
agent experience to facilitate learning. We learn a reward
function from pairwise preferences that compare agent be-
haviors and demonstration segments. This reward function
is then used to inform an RL process, similarly to preference-
based RL (Christiano et al., 2017; Lee et al., 2021), but in
which we also inject demonstration data. Finally, we use the
demonstrations to train an autoencoder that transforms im-
age observations into embeddings to achieve a more sample-
efficient RL policy.

4.1. Preferences between Agent and Human Behaviors

We use pairwise preferences to learn a reward function
r̂ψ : O × A → R, parameterized by ψ, to inform the RL
process. Each preference is given between a demonstration
segment τdemo and an agent segment τagent. Although most
of the work on preference-based RL compares pairs of agent
behaviors (Christiano et al., 2017; Lee et al., 2021), we hy-
pothesize that comparing demonstration-agent pairs will
result in preference queries in which the demonstrated tra-
jectory is clearly preferable; in contrast, standard preference-
based RL often initially only generates preference queries
involving clearly bad behaviors, since no well-performing
agent behaviors are yet available.

Preference labels could be assigned either by automatically
preferring demonstrated behaviors to agent behaviors or
manually by a human. Our experiments consider prefer-
ences in which demonstrated behaviors are always preferred
to agent behaviors, as first proposed by Team NotYourRL
in Shah et al. (2022).

Given a dataset of pairwise preferences Dpref = {τ (i)1 ≻
τ
(i)
2 }Ni=1, where N is the number of pairwise preferences in

the dataset, we can model the probability of each preference
in terms of the learned reward r̂ψ via the Bradley-Terry

https://minerl.io/basalt/
https://minerl.io/basalt/


DIP-RL: Demonstration-Inferred Preference Learning in Minecraft

Figure 1. System diagram of the Demonstration-Inferred Preference Reinforcement Learning (DIP-RL) algorithm. DIP-RL leverages
human demonstrations in three distinct ways: to 1) train an autoencoder to learn a compact state representation (the autoencoder training
data can include nontask-specific demonstrations as well as task-specific trajectories), 2) provide trajectory segments for pairwise
preference queries, and 3) provide experience to seed the RL replay buffer. The demonstration-inferred pairwise preferences are used to
learn a reward function to inform a reinforcement learning algorithm.

model (Christiano et al., 2017; Lee et al., 2021):

P (τi ≻ τj) =
1

1 + exp{−(R̂ψ(τi)− R̂ψ(τj))}
, (2)

where R̂ψ(τ) =
∑

(o,a)∈τ r̂ψ(o, a) is the total predicted
reward in trajectory τ .

The reward function r̂ψ is then optimized by minimizing
the negative log-likelihood of the preference dataset Dpref :

Jr̂(ψ) = − log(Dpref) = −
∑

(τi≻τj)∈Dpref

logP (τi ≻ τj).

We regularize the reward learning objective via both a
weight decay term regularizing the reward network weights
and an L2-penalty on the magnitude of the predicted re-
wards, which we found necessary to achieve stable learning.

4.2. Off-Policy RL via Soft Actor-Critic

Our method leverages Soft Actor-Critic (SAC) (Haarnoja
et al., 2018) as its RL engine. Notably, DIP-RL does not
require the use of SAC, but rather could be paired with any
off-policy RL algorithm. SAC is a state-of-the-art off-policy
actor-critic RL algorithm that attempts to learn a policy that
optimizes the maximum entropy objective:

J(π) =

T∑
t=1

E(st,at)[rψ(st, at) + αH(π(· | st))], (3)

where H is entropy. SAC iterates between updating a critic
(Q-function) and performing a policy improvement step.

The critic is trained by minimizing the objective,

JQ(θ) = E(ot,at,ot+1)∼D

[
(Qθ(ot, at)− Q̂(ot, at, ot+1))

2
]
,

where θ are the parameters of the Q-network Qθ, D is an
experience replay buffer, and

Q̂(ot, at, ot+1) = r̂ψ(ot, at) + γV̄θ̄(ot+1),

where V̄θ̄(o) is the soft target value function,

V̄θ̄(o) = Ea∼πϕ(·|o)[Qθ̄(o, a)− α̂ log πϕ(a | o)],

where ϕ parameterizes the policy, θ̄ is a slowly-moving av-
erage of the weights θ and parameterizes the critic target
network Qθ̄(o, a), α̂ is a hyperparameter, and the expec-
tation is approximated via Monte Carlo estimation. As in
the PEBBLE algorithm (Lee et al., 2021), the most current
reward model r̂ψ is used to label each sampled batch of RL
training data.

SAC then performs policy updates by minimizing the KL-
divergence between the policy and a Boltzmann distribution
given by the Q-function:

Jπ(ϕ) = Eo∼D [KL(πϕ(· | o) || Qθ(o, ·))] ,

where Qθ(o, ·) ∝ exp{Qθ(o, ·)}.

Finally, DIP-RL samples RL training batches that mix to-
gether data from the experience replay buffer D and the
demonstration dataset Ddemo in pre-specified proportions.

4.3. Autoencoder and Model Architecture

We transform image observations into vector embeddings
by training an autoencoder on Minecraft image data. This



DIP-RL: Demonstration-Inferred Preference Learning in Minecraft

approach is inspired by Yarats et al. (2021), in which the
authors propose using an autoencoder to improve the sam-
ple efficiency of model-free RL with image observations.
Similarly to Yarats et al. (2021), we regularize autoencoder
training through both weight decay and an L2 penalty on im-
age reconstructions. Unlike in Yarats et al. (2021), however,
we do not continue to update the pre-trained autoencoder
during RL, since we did not find that this improved perfor-
mance. This may be because we pre-trained the autoencoder
on a sufficiently diverse Minecraft demonstration dataset.

The image embeddings are then passed through a policy
head, two Q-heads, and a reward prediction head. Note
that we utilize two Q-heads, as this has shown success in
previous work with model-free RL (Van Hasselt et al., 2016;
Haarnoja et al., 2018).

5. Results
5.1. Task Setup and Demonstration Data Collection

We evaluate DIP-RL and comparisons on a custom variant
of the MineRLTreechop-v0 (MineRL documentation) envi-
ronment. In this task, the agent must collect wood blocks
by hitting trees in the environment. We modify the envi-
ronment to yield 128x128 image observations (rather than
64x64) and require the agent to collect a maximum of 4
logs. Because this environment provides a numerical re-
ward signal (+1 reward every time the agent collects a log),
we can straightforwardly evaluate algorithm performance;
notably, however, this reward information is hidden from
DIP-RL. We fix the environment-world seed in all trials
(i.e., the agent always spawns in identical surroundings),
and collect 25 human demonstrations of the task.

5.2. Methods Compared

We compare our method, DIP-RL, with the following base-
line comparisons: Behavioral Cloning (BC) trained on the
demonstration dataset, RL with SAC (which receives the
numerical environment reward), and Soft-Q Imitation Learn-
ing (SQIL) (Reddy et al., 2020), in which agent experience
is labeled with a reward of 0, while demonstration experi-
ence tuples are labeled with rewards of +1. We also report
the performance achieved in the human demonstrations.

5.3. Performance Metrics

In order to quantify the success of our approach, we report
1) the number of logs collected by the agent versus the
number of environment steps taken during training, and 2)
the maximum number of logs collected by each method
compared in this work. These numbers are obtained from
experience collected as part of algorithm training for the
DIP-RL, SAC, and SQIL comparisons, while BC—which

does not interact with the environment during training—is
evaluated after completion of training.

5.4. Implementation Details

We resized the Minecraft images (originally in R360×640×3)
to RGB images in R128×128×3. The autoencoder was
trained on the combination of 1) the TreeChop dataset de-
scribed in Section 5.1 and 2) the publicly available FindCave
demonstration dataset from the BASALT competition (Mi-
lani et al., 2023), in which the demonstrators navigate the
environment until they find a cave. We found that this com-
bination balances task-specific images with a diverse range
of Minecraft images. Each autoencoder training data batch
was composed ≈ 10% of images from the TreeChop demon-
stration data, while the remainder of the training data was
drawn from the cave dataset.

Note that DIP-RL, SQIL, and the SAC baseline all use
the same pre-trained autoencoder and leverage SAC as the
underlying RL method.

In the 2022 MineRL BASALT competition, the baseline
agent was controlled by the hierarchical discrete action
space in Baker et al. (2022), which comprises all possi-
ble combinations of binary buttons (e.g. attack, sprint, jump,
sneak) and discretized camera commands in, by default, 11
bins each for the horizontal and vertical directions. This
scheme led to an action space too large to learn with our
dataset, with 8641 possible button combinations and 121
possible camera commands. This presented an unnecessary
challenge for our RL algorithms since not all button com-
binations are relevant for completing the proposed task. To
reduce the action space, we disabled all nonrelevant actions,
giving the agent access to only the attack, move forward,
move backward, and jump buttons, and restricted camera
movements to a single increment to the left, right, up, and
down directions. This reduced the action space from 8641
buttons and 121 discretized camera combinations to 24 but-
tons and 9 discretized camera combinations.

DIP-RL, SQIL, and SAC were each trained in an experiment
run that included 800,000 steps in the environment.

5.5. Results

Results are illustrated in Figure 2, which presents the maxi-
mum and average numbers of logs collected by each method.
For DIP-RL, SQIL, and SAC, the maximum and average
are taken over all training episodes during the algorithm run.
The human demonstrations serve as an oracle baseline, since
the human always collects the maximum number of logs,
while BC illustrates the performance of the agent trained
with no reward function, either learned or returned from the
environment.

Figure 2(a) suggests that our proposed methodology, DIP-



DIP-RL: Demonstration-Inferred Preference Learning in Minecraft

(a) (b)

Figure 2. a) Maximum number of logs collected over all episodes by DIP-RL and RL-based baseline comparisons during training, as well
as by BC during evaluation (since BC does not perform environment rollouts during training) and by the human demonstrator. b) Number
of logs collected per episode by DIP-RL and each RL-based baseline, averaged over all RL training episodes.

RL, may best align with human performance in terms of the
the maximum number of logs collected over all episodes.
It is closely followed by SQIL, with SAC and BC demon-
strating comparable performance to each other. Figure 2(b)
reflects the performance of the three RL-based methods on
average over all training episodes. SQIL appears the most
consistent over time, exhibiting a 13.8% increase in the av-
erage quantity of logs collected per episode relative to our
proposed DIP-RL method.

In terms of the mean log count collected per episode, both
DIP-RL and SQIL surpass the standalone RL method, with
enhancements of 149.4% and 183.7%, respectively.

6. Discussion
Our results suggest that Demonstration-Inferred Preference
Reinforcement Learning (DIP-RL) can effectively utilize
human demonstrations to learn reward functions from in-
ferred preferences to train RL agents. This indicates that
DIP-RL may be a valuable tool in complex and unstructured
environments that lack reward signal information.

From the results presented in Figure 2, we see that DIP-RL
is able to reach the maximum number of logs collectable in
a single episode, aligning with human performance. Incon-
sistency in performance across training episodes suggests
a possible sensitivity to initial conditions or algorithm hy-
perparameters. The Soft Q-learning from Imitation (SQIL)
method gathered more logs on average per episode than DIP-
RL, despite being outperformed in the maximum log count.
SQIL’s increased average log collection relative to DIP-RL
may occur because DIP-RL learns from a reward signal that

evolves over time, which could lead to learning instability.
However, DIP-RL may hold more potential to represent
nuances in reward, since unlike SQIL, it has the potential
to assign high reward labels when the agent performs well
relative to the demonstrations. It would be interesting to
further compare the rewards learned in DIP-RL to the binary
reward labels assigned in SQIL.

7. Conclusion
This work presented DIP-RL, an approach that uses human
demonstrations in three ways to inform an RL agent. In
particular, DIP-RL uses both demonstration and agent tra-
jectories to infer preference comparisons and learn a reward
function to train RL agents in unstructured environments.
We tested DIP-RL on a tree chopping task in Minecraft and
found that it could match human performance in terms of
the maximum log count per episode and is competitive with
baselines.

Our initial results support the potential of DIP-RL, and of
pairwise comparisons between agent and demontration be-
haviors, especially in scenarios where reward signals are
difficult to define but demonstrations are available. In future
work, we aim to improve the learning stability of DIP-RL
and to evaluate its performance across different tasks. We
believe that DIP-RL can contribute significantly to RL and
imitation learning as a method to efficiently leverage demon-
strations and to infer preferences from demonstrations, and
that DIP-RL can be a useful tool for machine learning prac-
titioners working in open-ended and unstructured environ-
ments.



DIP-RL: Demonstration-Inferred Preference Learning in Minecraft

Acknowledgements
This research was sponsored by the Army Research Labora-
tory and was accomplished under Cooperative Agreement
Numbers W911NF-23-2-0072, W911NF-18-2-0244, and
W911NF-22-2-0084. The views and conclusions contained
in this document are those of the authors and should not be
interpreted as representing the official policies, either ex-
pressed or implied, of the Army Research Laboratory or the
U.S. Government. The U.S. Government is authorized to
reproduce and distribute reprints for Government purposes
notwithstanding any copyright notation herein.

References
Akrour, R., Schoenauer, M., and Sebag, M. Preference-

based policy learning. In Gunopulos, D., Hofmann, T.,
Malerba, D., and Vazirgiannis, M. (eds.), Machine Learn-
ing and Knowledge Discovery in Databases, pp. 12–27,
Berlin, Heidelberg, 2011. Springer Berlin Heidelberg.
ISBN 978-3-642-23780-5.

Argall, B. D., Chernova, S., Veloso, M., and Browning, B.
A survey of robot learning from demonstration. Robotics
and autonomous systems, 57(5):469–483, 2009.

Baker, B., Akkaya, I., Zhokov, P., Huizinga, J., Tang, J.,
Ecoffet, A., Houghton, B., Sampedro, R., and Clune, J.
Video pretraining (VPT): Learning to act by watching
unlabeled online videos. Advances in Neural Information
Processing Systems, 35:24639–24654, 2022.

Basu, C., Yang, Q., Hungerman, D., Singhal, M., and Dra-
gan, A. D. Do you want your autonomous car to drive
like you? In Proceedings of the 2017 ACM/IEEE Inter-
national Conference on Human-Robot Interaction, pp.
417–425, 2017.

Brown, D., Goo, W., Nagarajan, P., and Niekum, S. Extrap-
olating beyond suboptimal demonstrations via inverse re-
inforcement learning from observations. In International
conference on machine learning, pp. 783–792. PMLR,
2019.

Brown, D., Coleman, R., Srinivasan, R., and Niekum, S.
Safe imitation learning via fast Bayesian reward infer-
ence from preferences. In International Conference on
Machine Learning, pp. 1165–1177. PMLR, 2020a.

Brown, D. S., Goo, W., and Niekum, S. Better-than-
demonstrator imitation learning via automatically-ranked
demonstrations. In Conference on robot learning, pp.
330–359. PMLR, 2020b.

Bıyık, E., Palan, M., Landolfi, N. C., Losey, D. P., Sadigh,
D., et al. Asking easy questions: A user-friendly ap-
proach to active reward learning. In Conference on Robot
Learning, pp. 1177–1190. PMLR, 2020.

Christiano, P. F., Leike, J., Brown, T., Martic, M., Legg,
S., and Amodei, D. Deep reinforcement learning from
human preferences. Advances in neural information pro-
cessing systems, 30, 2017.

Goecks, V. G., Waytowich, N., Watkins, D., and Prakash,
B. Combining learning from human feedback and knowl-
edge engineering to solve hierarchical tasks in minecraft.
arXiv preprint arXiv:2112.03482, 2021.

Guss, W. H., Houghton, B., Topin, N., Wang, P., Codel, C.,
Veloso, M., and Salakhutdinov, R. MineRL: a large-scale
dataset of Minecraft demonstrations. In Proceedings
of the 28th International Joint Conference on Artificial
Intelligence, pp. 2442–2448, 2019.

Haarnoja, T., Zhou, A., Abbeel, P., and Levine, S. Soft
actor-critic: Off-policy maximum entropy deep reinforce-
ment learning with a stochastic actor. In International
conference on machine learning, pp. 1861–1870. PMLR,
2018.

Ibarz, B., Leike, J., Pohlen, T., Irving, G., Legg, S., and
Amodei, D. Reward learning from human preferences and
demonstrations in Atari. Advances in neural information
processing systems, 31, 2018.

Joachims, T., Granka, L., Pan, B., Hembrooke, H., and Gay,
G. Accurately interpreting clickthrough data as implicit
feedback. In Acm Sigir Forum, volume 51, pp. 4–11. Acm
New York, NY, USA, 2017.

Johnson, M., Hofmann, K., Hutton, T., and Bignell, D. The
Malmo platform for artificial intelligence experimenta-
tion. In Proceedings of the Twenty-Fifth International
Joint Conference on Artificial Intelligence, IJCAI’16, pp.
4246–4247. AAAI Press, 2016. ISBN 9781577357704.

Lee, K., Smith, L. M., and Abbeel, P. PEBBLE: Feedback-
efficient interactive reinforcement learning via relabeling
experience and unsupervised pre-training. In Interna-
tional Conference on Machine Learning, pp. 6152–6163.
PMLR, 2021.

Milani, S., Kanervisto, A., Ramanauskas, K., Schulhoff, S.,
Houghton, B., Mohanty, S., Galbraith, B., Chen, K., Song,
Y., Zhou, T., et al. Towards solving fuzzy tasks with hu-
man feedback: A retrospective of the MineRL BASALT
2022 competition. arXiv preprint arXiv:2303.13512,
2023.

MineRL documentation. MineRLTreechop-v0 environment.
https://minerl.io/docs/environments/
#minerltreechop-v0. Accessed: 2023-06-15.

Reddy, S., Dragan, A. D., and Levine, S. SQIL: Imitation
learning via reinforcement learning with sparse rewards.
In International Conference on Learning Representations,
2020.

https://minerl.io/docs/environments/#minerltreechop-v0
https://minerl.io/docs/environments/#minerltreechop-v0


DIP-RL: Demonstration-Inferred Preference Learning in Minecraft

Sadigh, D., Dragan, A. D., Sastry, S., and Seshia, S. A.
Active preference-based learning of reward functions. In
Robotics: Science and Systems, 2017.

Shah, R., Wild, C., Wang, S. H., Alex, N., Houghton, B.,
Guss, W., Mohanty, S., Kanervisto, A., Milani, S., Topin,
N., et al. The MineRL BASALT competition on learning
from human feedback. arXiv preprint arXiv:2107.01969,
2021.

Shah, R., Wang, S. H., Wild, C., Milani, S., Kanervisto,
A., Goecks, V. G., Waytowich, N., Watkins-Valls, D.,
Prakash, B., Mills, E., et al. Retrospective on the 2021
MineRL BASALT competition on learning from human
feedback. In NeurIPS 2021 Competitions and Demon-
strations Track, pp. 259–272. PMLR, 2022.

Sui, Y., Zoghi, M., Hofmann, K., and Yue, Y. Advance-
ments in dueling bandits. In Proceedings of the 27th
International Joint Conference on Artificial Intelligence,
pp. 5502–5510, 2018.

Van Hasselt, H., Guez, A., and Silver, D. Deep reinforce-
ment learning with double q-learning. In Proceedings of
the AAAI conference on artificial intelligence, volume 30,
2016.

Yarats, D., Zhang, A., Kostrikov, I., Amos, B., Pineau, J.,
and Fergus, R. Improving sample efficiency in model-
free reinforcement learning from images. In Proceedings
of the AAAI Conference on Artificial Intelligence, vol-
ume 35, pp. 10674–10681, 2021.


