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ABSTRACT

Algorithmic Recourse (AR) aims to provide users with actionable steps to over-
turn unfavourable decisions made by machine learning predictors. However, these
actions often take time to implement (e.g., getting a degree can take years), and
their effects may vary as the world evolves. Thus, it is natural to ask for recourse
that remains valid in a dynamic environment. In this paper, we study the robust-
ness of algorithmic recourse over time by casting the problem through the lens of
causality. We demonstrate theoretically and empirically that (even robust) causal
AR methods can fail over time except in the – unlikely – case that the world is
stationary. Even more critically, unless the world is fully deterministic, counter-
factual AR cannot be solved optimally. To account for this, we propose a simple
yet effective algorithm for temporal AR that explicitly accounts for time under the
assumption of having access to an estimator of the stochastic process. Our sim-
ulations on synthetic and realistic datasets show how considering time produces
more resilient solutions to potential trends in the data distribution.

1 INTRODUCTION

Machine Learning (ML) models play an increasingly prominent role in high-stakes decision-making
tasks like credit lending (Barbaglia et al., 2021), bail approval (Dressel & Farid, 2018) and medical
diagnosis (Yoo et al., 2019). The general consensus is that, to ensure fairness, these systems need
to provide users with tools to challenge their ruling, thus preserving human agency. These require-
ments are also being mandated by recent AI legislation (AI Act, 2021). Algorithmic Recourse (AR)
(Karimi et al., 2022) aims to identify counterfactual explanations that users can follow to overturn
unfavourable machine decisions. For instance, AR methods might suggest a user obtain a master’s
degree as this will net them a higher income and, in turn, higher chances of obtaining a loan.

In order to be of use, suggested recourse must be actionable (Ustun et al., 2019) and sufficiently
inexpensive for the user to implement (De Toni et al., 2023b). We argue that actionability subsumes
the notion of timing. Indeed, in practical applications, (i) recourse takes time to be implemented and
to have an impact, (ii) performing the same action at different times might produce different effects.
For instance, getting a degree takes years and only impacts salary after some time. Moreover, getting
a degree at an older age reduces the expected salary increase. Our key insight is that, since time plays
a key role in the effectiveness of recourse, one has to ensure recourse suggestions should be robust
to time, i.e., they should lead to a positive outcome irrespectively of when the user performs them,
or at least for a user-defined point in the future. See Fig. 1 for an illustration.

Many efforts have been directed at robustifying recourse suggestions in several scenarios (Jiang
et al., 2024). For example, Upadhyay et al. (2021) studies recourse under model shift due to, e.g.,
retraining, Pawelczyk et al. (2022a) addresses recourse in case the user’s implementation of recourse
is imperfect, and Dominguez-Olmedo et al. (2022) considers robustness to misspecification of the
input instance. To the best of our knowledge, little has been done to explicitly formalize recourse
robustness over time. Recently, Beretta & Cinquini (2023) evaluated the effect of time in AR by
incorporating it in the recourse cost, thus not considering its effect on the validity.

Following Dominguez-Olmedo et al. (2022) and Beretta & Cinquini (2023), we study the problem
of time in AR through the lens of causality (Pearl, 2009). In causal recourse, recourse suggestions
are modelled as interventions on the user’s features (Karimi et al., 2021), thus giving a reliable
representation of how the features will change as the user acts on them to achieve recourse, provided
we know the (approximate) causal model (Karimi et al., 2020b). We consider a novel setting in
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which we are asked to provide recourse for a causal (non-stationary) discrete-time stochastic process
subjected to trends. Our results challenge the usefulness of the mainstream variants of causal and
non-causal AR extended in time, showing their recommendations can become invalid over time.

Our contributions. Summarizing, we (i) introduce a sound but intuitive formalization of tempo-
ral causal AR (Definition 1), based on causality (Pearl, 2009) and time-series with independent
noise (Peters et al., 2013), (ii) show theoretically how uncertainty and non-stationarity hinder opti-
mal counterfactual and sub-population recourse (CAR and SAR, (Karimi et al., 2020b)) for simple
discrete-time stochastic processes, (iii) show how robustifying recourse via uncertainty sets is not
enough to counteract time (Proposition 5), and (iv) present numerical simulations showcasing the
detrimental effects of time on robust (non-)causal AR approaches, and showcase how a simple time-
aware algorithm (Algorithm 1) can lessen such effects in synthetic and realistic settings (Section 4).

2 PRELIMINARIES AND RELATED WORK

Figure 1: The validity of executed recourse sug-
gestions can change over time t (black) and AR
methods should be robust to this effect (green).

Throughout, we indicate (random) variables X
in upper case, constants x in lower case, vec-
tors in bold x, and sets X in italics. We also
abbreviate {1, . . . , n} as [n].

Causality. Structural Causal Models (SCMs)
(Pearl, 2009) allow us to formalize and rea-
son about the causal behaviour of a system.
An SCM M = (X,U, P,F) encompasses
endogenous variables X = {Xi}di=1, noise
variables U = {Ui}di=1 distributed according
to P (U), and structural assignments F of the
form Xi := fi(Pai, Ui) that describe all causal
relationships between variables and their direct
causes (or parents) Pai ⊆ X \ Xi. An SCM
induces a pushforward distribution P (X,U) =
P (X | U)P (U), where P (X | U) is determin-
istic. Hard interventions do(XI = θ) allow to
implement external actions on an SCM. They
replace a subset of variables XI ⊆ X with constants θ ∈ R|XI |, detached from their original
parents, yielding a new SCM Mdo(θ) with updated structural assignments Fdo(θ) and an associ-
ated interventional distribution P do(θ)(X). Soft interventions do(XI = xI + θ) change how the
affected variables depend on their parents without detaching them. We shorten both kinds of inter-
vention as do(θ), for simplicity. SCMs also enable us to reason counterfactually about what would
have happened if the world were different due to an intervention do(θ), all else being equal. Given
a realization x, the counterfactual distribution P do(θ),X=x(X) is obtained by first abducing the ex-
ogenous factors U in the original SCM and then inferring the state of X in the intervened SCM, that
is, P do(θ),X=x(X) = P do(θ)(X | U)P (U | X = x) (Pearl, 2009, Theorem 7.1.7). If the structural
equations are invertible, P (U | x) is deterministic, and so is the counterfactual distribution.

Causal Algorithmic Recourse. In AR, the main quantities of interest are the user’s state x ∼ P (X)
and the outcome y ∼ P (Y | X), e.g., the event that the user will repay their loan. The SCM
underlying P (X) is assumed to be known or estimated from data (Karimi et al., 2020b), enabling
us to apply interventions to evaluate the effect of changing the user’s state while considering all
causal dependencies between variables. Given a (potentially black-box) classifier h : x 7→ [0, 1]
approximating P (Y | X) and a realization x yielding an undesirable outcome, i.e., h(x) < 1/2,
AR involves finding an intervention θ∗ that, once implemented by the user, leads in expectation
to a more favourable outcome. There are two mainstream approaches to causal AR (Karimi et al.,
2020b). Sub-population recourse (SAR) provides recourse to users belonging to a specific sub-
group, and it is defined as:1

θ∗ ∈ argminθ∈Rd Ex̂∼Pdo(XI=θ)(X)[C(x̂,x)] s.t. Ex̂∼Pdo(XI=θ)(X)[h(x̂)] ≥ 1/2 (1)

1The choice of θ is often restricted by actionability requirements (e.g., age cannot be changed at will) or
other constraints (e.g., monotonicity: age can only increase). We omit this detail for readability.
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Figure 2: Algorithmic recourse is not robust in time. Empirical average validity and standard
deviation of robust counterfactual (CAR), sub-population (SAR) and non-causal recourse (IMF) at
time t = 50 for synthetic (Section 4.1) and realistic (Section 4.2) time series with a non-linear trend.
We report the validity varying the strength α of the trend. Legend: 0 0.3 0.5 0.7 1.0.

Here, C is a non-negative cost function measuring the user’s effort, e.g., the ℓ2-norm. Select-
ing a specific subgroup amounts to conditioning P do(X=θ) in Eq. (1) on a subset of variables
Xnd(I) = xnd(I) where nd(I) indicates the non-descendants of the intervened upon variables I.
Counterfactual recourse (CAR) allows computing individualized recourse for a specific individual,
identified by x. It is formulated like Eq. (1), except that the interventional distribution P do(θ)(X)
is replaced with the counterfactual distribution P do(θ),X=x(X). Lastly, since providing optimal
recourse (Eq. (1)) is harder for unrestricted SCMs (Karimi et al., 2020b), causal AR typically as-
sumes the SCM of P (X) belongs to an identifiable and invertible class, e.g., Additive Noise Models
(ANMs) (Karimi et al., 2021; Dominguez-Olmedo et al., 2022; Karimi et al., 2020a).

Further related works. Our work is related to works on robust AR, counterfactual explanations for
time series and causality. The literature on the robustness of algorithmic recourse aims at generating
counterfactual explanations which are robust to the type of model h updates and changes (Ferrario
& Loi, 2022; Pawelczyk et al., 2022b; Nguyen et al., 2023; Meyer et al., 2023; Upadhyay et al.,
2021), endogenous dynamics (Altmeyer et al., 2023), model multiplicity (Pawelczyk et al., 2020;
Leofante et al., 2023), noisy execution of the intervention (Pawelczyk et al., 2022a; Virgolin & Frac-
aros, 2023) or uncertainty on the input instance (Dominguez-Olmedo et al., 2022; Slack et al., 2021;
Artelt et al., 2021). See Jiang et al. (2024) for a recent comprehensive survey on the topic. None
of these works explicitly formalize time as a dimension in their computational model. Recently,
Fonseca et al. (2023) studied empirically algorithmic recourse in a multi-agent setting where differ-
ent users compete for resources over time, without a causal notion. The literature on counterfactual
explanations for multivariate time series provides instead techniques to generate explanations for
stochastic processes (Delaney et al., 2021; Ates et al., 2021) by assuming either independent manip-
ulable features (IMF) (i.e., no causal relationships between variables) or a simpler form of causality
e.g., Granger causality (Granger, 1969).

3 ALGORITHMIC RECOURSE IN TIME

In real-world applications, users do not implement nor complete suggested interventions immedi-
ately. For instance, obtaining a degree can take years. This is problematic because P (X, Y ) might
change over time due to, e.g., inflation rates, seasonality of loan interests and classifier updates,
respectively, meaning that recourse produced by existing approaches could become ineffective or
even counterproductive in the future. Fig. 2 shows the empirical average validity (% of interven-
tions achieving recourse) of state-of-the-art robust (non-)causal recourse methods on different binary
decision problems, where P (X, Y ) is a stochastic process exhibiting a non-linear trend. Unfortu-
nately, current robust (non-)causal recourse methods are increasingly fragile to time proportion-
ally to the trend’s strength. This section is devoted to this issue. We summarize our theoretical
results and the characteristics of the methods for (non-)causal recourse in Table 1 in Appendix A.

3.1 FORMALIZING TEMPORAL CAUSAL AR

Before proceeding, we need to extend causal AR with a time dimension. We do so by considering
a stochastic process P (Xt, Y t) capturing the evolution of the user’s state and its relationship to the
target variable over time t ∈ N. In the following, we assume that P is induced by an SCM over
the same variables in which the parents of each variable lie in the past, and specifically within a
fixed (but otherwise arbitrary) horizon ρ ≥ 1, i.e., PaXt

i
⊆ ⋃ρ

δ=0 X
t−δ , and similarly for Y t. We
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also assume that the outcome Y t only depends on the user’s states X1, . . . ,Xt up to time t. We
investigate the effect of time on recourse by considering stochastic processes where P (Xt) might
not be stationary, while the conditional distribution P (Y t | Xt) is unchanged, similarly to covariate
shift (Shimodaira, 2000). For this reason, we can assume the classifier ht is fixed.2 This allows us
to formulate Temporal Causal AR as follows:

Definition 1 (Temporal Causal AR). Consider a stochastic process P (Xt, Y t), a cost function
C(·, ·) (e.g., the L2 norm), a constant classifier h and a user xt such that h(xt) < 1/2. Assume
the user will perform the intervention at a later time t + τ , for a fixed τ > 0. We want to find the
cheapest intervention do(Xt+τ

I = xt+τ
I + θ) that achieve recourse, in expectation, when applied at

time t+ τ :

θ∗ ∈ min
θ∈Rd

Ex̂t+τ∼Q(Xt+τ ;xt+τ ,θ)

xt+τ∼P (Xt+τ |Xt=xt)

[C(x̂t+τ ,xt+τ )] s.t. Ex̂t+τ∼Q(Xt+τ ;xt+τ ,θ)

xt+τ∼P (Xt+τ |Xt=xt)

[
h(x̂t+τ )

]
≥ 1/2

(2)
where Q(Xt+τ ;xt,θ) can be the interventional distribution P do(Xt+τ

I =xt+τ
I +θ)(Xt+τ | Xnd(I) =

xnd(I)), or the counterfactual distribution P do(Xt+τ
I =xt+τ

I +θ);Xt+τ=xt+τ

(Xt+τ ).

Definition 1 deserves some discussion. First of all, it describes both temporal subpopulation causal
AR (T-SAR) and temporal counterfactual causal AR (T-CAR). We remark that, while practical
solutions for T-SAR can be devised (see Section 3.6), T-CAR is intrinsically more challenging (as
we discuss in Section 3.2). Additionally, this formulation assumes that recourse is implemented, and
its causal effects are observed, at time t+ τ , for a fixed τ , thus our SCM must exhibit instantaneous
effects (Peters et al., 2013).

Causal time series models. In the remainder we assume the stochastic process is a Time series
Model with Independent Noise (TiMINo), adapted from (Peters et al., 2013):

Definition 2 (TiMINo for Algorithmic Recourse). P (Xt, Y t) satisfies TiMINo if it causally factor-
izes as Xt

i = fXi(PaXt
i
)+U t

Xi
and Y t = f t

Y (X
t)+U t

Y , for all i ∈ [d], where U t
Xi

, U t
Y are jointly

independent and identically distributed for all i ∈ [d] and t ∈ N.

Under appropriate conditions, TiMINo SCMs are invertible, allowing us to apply causal reasoning to
infer the counterfactual distribution when computing AR, and can be identified from observational
data. Specifically, under appropriate choices of the family of f t

Xi
, f t

Y – which still allow them to
be non-linear – and P (Ut) we are guaranteed to identify both the summary graph and full-time
graph (Peters et al., 2013). Moreover, Peters et al. (2013) provide a causal discovery procedure for
TiMINo time series that avoids drawing wrong causal conclusions in the presence of confounders.
Throughout the paper, we assume the full-time graph is sufficient (e.g., there are no unobserved
confounders (Peters et al., 2017)). We will show how, even in this optimistic scenario, our negative
results for temporal recourse still hold.

Interventions in time. Intuitively, time can only invalidate recourse as long as those changes oc-
curring after the time t at which recourse is issued can influence the distribution of the future state
Xt+τ . In the unlikely case that recourse is a hard intervention do(Xt+τ = θ) affecting all variables
X, then Xt+τ no longer depends on its past states because such interventions detach all variables
from their parents, overriding possible temporal effects (Dominguez-Olmedo et al., 2022). Hence,
recourse remains valid by construction. In practice, however, recourse i) is often restricted to few
variables, due to, e.g., actionability and cost constraints, or ii) may be defined as a soft intervention,
that is, an intervention of the form do(Xt

I = xt
I +θ), that does not detach Xt (Dominguez-Olmedo

et al., 2022). In the following, we focus on this more realistic setting with soft interventions. For the
rest of the paper, in the context of temporal algorithmic recourse, we will use the do(θ) notation to
represent an intervention always applied at time t+ τ , unless specified otherwise.

On the naı̈ve solution. One obvious “remedy” to counter the impact of time is to simply allow users
to re-compute recourse at time t + τ , using the new user’s state xt+τ . However, implementing this
new suggestion might itself take time τ ′ > τ , meaning this does not prevent invalidation at all.

2If this is not the case, one option is to leverage existing techniques for addressing changes due to retraining,
such as Upadhyay et al. (2021) and Pawelczyk et al. (2022b). These works and ours are complementary and
studying their interplay is a promising avenue for future work.
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3.2 UNCERTAINTY OVER TIME COMPROMISES COUNTERFACTUAL RECOURSE

We begin by studying temporal counterfactual AR (T-CAR). It provides invidividualized sugges-
tions, thus achieving the true optimal intervention for a given user (Karimi et al., 2020b). Ac-
cording to Definition 1, it must be computed considering the future counterfactual distribution
P do(θ);Xt+τ=xt+τ

(Xt+τ ). Unfortunately, this turns out to be problematic. The following propo-
sition shows that this distribution cannot be recovered exactly except under strong assumptions.
Proposition 1. Let P (Xt, Y t) satisfy TiMINo. Given a realization xt and an intervention θ ∈ Rd,
we can recover the counterfactual distribution over the future P do(θ),Xt=xt

(Xt+τ ) if and only if,
for all t > 0, Var(Ut) = 0 and E[Ut] are constant.

All proofs can be found in Appendix B. In words, given xt, one cannot know the true coun-
terfactual distribution at time t + τ unless all exogenous factors have zero variance, that is,
P (Xt+τ , . . . ,Xt+1 | xt) is deterministic. Proposition 1 has profound consequences for recourse
because, recalling the central role of the counterfactual distribution in Eq. (1), it entails that for
non-deterministic processes we cannot solve T-CAR optimally.
Corollary 2 (Informal). Let P (Xt) satisfy TiMINo and consider a constant injective classifier h.
Given a realization xt, a counterfactual recourse θ ∈ Rd applied at time t+ τ , with τ > 0, cannot
be optimal unless exogenous factors have zero variance.

We explore this issue empirically in Section 4. We remark that Proposition 1 also holds for non-
TiMINo stochastic processes as long as they admit performing abduction (e.g., the structural equa-
tions are invertible), and so does Corollary 2.

3.3 SUB-POPULATION AR DETERIORATES IN A NON-STATIONARY WORLD

Given the inherent limitations of temporal counterfactual AR, in the remainder, we focus on temporal
sub-population AR (T-SAR), which is generally regarded as the most plausible form of recourse
(Karimi et al., 2020b). The next proposition shows that, insofar as P (Xt, Y t) is stationary3 and
the classifier h is constant and injective, recourse that is optimal for static sub-population recourse
(Eq. (1)) remains optimal over time (Eq. (2)).
Proposition 3. Consider a stationary stochastic process P (Xt) and a constant injective classifier
h. Any optimum θ∗ of Eq. (1) is also optimal for Eq. (2) for any time lag τ ∈ N.

Despite this positive result, the issue is that stationarity is seldom satisfied in practice: many real-
world processes exhibit trends (e.g., inflation rate, seasonality of loan interests, etc.). The next
example shows how recourse can become invalid if the P (Xt, Y t) is not stationary, even for a
simple one-dimensional trend-stationary4 stochastic process. Full derivations are in Appendix B.
Example 1. Consider a trend-stationary stochastic process defined by these structural equations:

Xt = αXt−1 +m(t) + U t
X , U t

X ∼ N (µX , σX)

Y t = βXt + U t
Y , U t

Y ∼ N (0, 1)
(3)

for all t, where α ∈ (0, 1) and β ∈ R. The function m(t) : R→ R represents a trend independent of
Xt and Y t. We consider a linear trend m(t) = −ct+ U t

m, where U t
m ∼ N (µm, σm) and c ∈ R+.

Consider the fixed classifier h(Xt) = σ(Y t | Xt) where σ(x) = 1/(1 + e−x). We have that the
optimal intervention θt+τ ∈ R for which we have E[h(Xt+τ + θ)] ≥ 1/2 can be expressed as:

θt+τ = −ατ+1xt−1 −∑τ
i=0 α

τ−i(−c(t+ i) + µm + µX) (4)

Since m(t) is monotonically decreasing for c > 0, we have the optimal interventions satisfy
θt ≤ θt+τ , implying that a recourse issued at time t becomes invalid as time passes. Following
Proposition 3, we can state the following general corollary regarding our ability to provide optimal
subpopulation recourse for general stochastic processes:

3A discrete stochastic process {Xt}t∈N is (weak-sense) stationary when it satisfies the following prop-
erties: E[Xt+τ − Xt] = 0 and K(t + τ, t) = K(τ, 0) for all t, τ ∈ N where K(p, q) =
E [(Xp − E[Xp])(Xq − E[Xq])] is the autocovariance and E[|Xt|2] < ∞ for all t ∈ N.

4A stochastic process {Xt}t∈N is trend-stationary when it can be expressed as Xt = f(t)+et, where f(t)
is (non-)linear trend function and et is a stationary stochastic process.
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Corollary 4 (Informal). Consider a discrete-time process P (Xt) and a constant injective classifier
h. Unless P (Xt) is stationary, the optimal intervention θ∗ achieving recourse can vary depending
on t, τ ∈ N.

3.4 ROBUST ALGORITHMIC RECOURSE IS NOT ENOUGH TO COUNTERACT TIME

Given the previous results, we could imagine to robustify the recourse procedure to account for
non-stationarity of P (Xt, Y t). For example, a common solution to robustify CAR and SAR is to
provide an intervention θ achieving recourse within a causal “uncertainty set” B(X; ∆), defined
below (Dominguez-Olmedo et al., 2022). In this section, we show how set-based robust causal
recourse method falls short when dealing with time. We first start by defining robust causal AR:
Definition 3 (Adapted from Dominguez-Olmedo et al. (2022)). Consider a realization x ∈ Rd,
a norm || · ||, and a tolerance ϵ > 0. We define a causal uncertainty set B(x;∆) = {x′ ∼
P do(∆),X=x(X) : ||∆|| ≤ ϵ} as the collection of the causal counterfactuals under small additive
perturbations ∆ ∈ Rd. We want to find the cost-minimizing intervention θ achieving recourse in all
the region defined by B(x;∆). Thus, the optimization objective for robust recourse becomes:

θ∗ ∈ argmin
θ∈Rd

E[C(x, x̂)] s.t. E[h(x̂)] ≥ 1/2 ∀ x̂ ∼ B(x;∆) (5)

where x̂ is distributed according to either the counterfactual or interventional distribution.

A robust intervention might still obtain recourse for later time steps depending on the tolerance
ϵ. Intuitively, by asking the user to perform a more difficult action (e.g., increase your income by
$1000, instead of $100), we can provide interventions that are less susceptible to potential dynamics.
However, if the intervention is applied too late, we will not achieve recourse:
Proposition 5. Consider a fixed ϵ > 0, a trend-stationary process P (Xt), a constant injective
classifier h and realization xt where h(xt) < 1/2. Let us assume we have an optimal ϵ-robust
intervention θ for timestep t. There always exists a trend m : N → R and a positive τ , such that
Ext+τ∼Pdo(θ)(Xt+τ |Xt+τ

nd(I)
=xt+τ

nd(I)
,Xt=xt)[h(x

t+τ )] < 1/2.

3.5 ON THE STABILITY OF RECOURSE OVER TIME

In Sections 3.2 to 3.4, we showed how recourse validity can be compromised by the uncertainty and
non-stationarity of the stochastic process P (Xt, Y t), and we also showed how set-based robustness
techniques fail over time. However, users might be willing to accept recourses that slowly become
less effective rather than performing more challenging interventions. Thus, we now characterize
instead the rate at which our recourse suggestion validity decreases. Additionally, we assume a
non-stationary P (Y t | Xt) approximated by a sequence of classifiers ht, one for each t ∈ N.
Definition 4 (Temporal recourse invalidation rate). Consider a discrete-time stochastic process
P (Xt, Y t), and any classifier ht approximating P (Y t | Xt) for each t ∈ N. Given a realization xt

and an intervention θ such that E[h(x̂t)] ≥ 1/2, where x̂t ∼ P do(θ)(Xt | Xt
nd(I) = xt

nd(I)), we
define the temporal invalidation rate after a time-lag τ > 0 as:

∆h(θ; τ) = E
[∣∣ht+τ (x̂t+τ )− ht(x̂t)

∣∣] (6)

where x̂t+τ ∼ P do(θ)(Xt+τ | Xt+τ
nd(I) = xt+τ

nd(I)).

Let us now consider the setting in which we have a bounded stochastic process P (Xt, Y t), where
−k ≤ Xt

i ≤ k for some k ∈ R+ for all t ∈ N. If we have access to a dataset Dt ∼ P (Xt, Y t) sam-
pled from the stochastic process, we can use it to train a classifier ht via empirical risk minimization.
Let us consider a linear classifier ht(x) = ⟨βt,xt⟩with bounded weights−k ≤ βt

i ≤ k e.g., trained
via Bounded Least-Squares (BLS) (Stark & Parker, 1995). Then, given an intervention θ, we can
derive the following upper bound on the recourse instability within a time interval (t, t+ τ).
Theorem 6 (Upper-bound invalidation rate). Consider a discrete-time stochastic process P (Xt, Y t)
and a sequence of linear classifiers ht(xt) = ⟨βt,xt⟩ approximating P (Y t | Xt). We assume
−k ≤ βi, Xi ≤ k for k ∈ R+. The temporal invalidation rate is upper bounded as follows:

∆h(θ; τ) ≤ k
√
d · E

[
∥βt+τ − βt∥

]
+ E

[
∥x̂t+τ − x̂t∥

]
(7)

where ∥·∥ is the ℓ2-norm and the expectation is over Dt ∼ P (Xt, Y t) and the training process.
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Algorithm 1 Generate robust recourse solutions for T-SAR given a future time-lag τ , a differen-
tiable classifier h, an estimator P̃ (Xt) and a subset of intervened nodes I ⊆ [d].

Require: xt, individual; N > 0; λ > 0; η > 0;
1: B(xt; τ)← {x′ ∼ P̃ (Xt+τ | Xt = xt)}
2: for epochs = 1 to N do
3: while ∃ x′ ∈ B(xt; τ) such that ER(x′, τ ;θ) < 1/2 do
4: x∗ ← argminx′∈B(xt;τ) ER(x

′, τ ;θ)

5: L ← ∥θ∥ − λ(ER(x∗, τ ;θ)− 1/2)
6: θ ← θ − η∇L
7: return θ

Theorem 6 shows how the recourse instability is upper bounded by how much the world varies
between t and t+ τ in terms of the data distribution P (Xt), and the classifier. Moreover, the size of
the problem d concurs by increasing the worst-case error at a sublinear rate. The upper bound can be
useful for non-linear classifiers h if we consider a linear function approximating locally (Simonyan
et al., 2013) their decision function close to a realization xt, such as LIME (Ribeiro et al., 2016). If
our stochastic process is trend-stationary as in Example 1, we can derive the following upper bound:
Corollary 7. Consider a discrete-time trend-stationary stochastic process P (Xt), where mi :
N → R represents the trend for Xi and the classifiers ht(xt) = ⟨βt,xt⟩. Let us define
m∗(t) = maxi∈[d] mi(t) as the largest trend for t ∈ N. Then, we have the upper bound:

∆h(θ; τ) ≤ k
(√

d · E
[
∥βt+τ − βt∥

]
+ d · (m∗(t+ τ)−m∗(t))

)
(8)

These results assume that the cost function remains constant over time. In Appendix H, we show an
analogous result when this is not the case, as in personalized cost functions (De Toni et al., 2023b).

3.6 ACCOUNTING FOR TIME IN PRACTICE

In Sections 3.2 to 3.5, we showed how recourse validity is hindered by the uncertainty and non-
stationarity of the stochastic process. Given a factual instance x and a recourse θ, Theorem 6 also
implies the upper bound can grow quickly depending on the difference of the induced interventional
distributions and classifier h between t and t + τ . Unfortunately, for any model h and tolerance ϵ,
there can exist multiple (robust) recourses θ to choose from (Pawelczyk et al., 2020). Since (robust)
CAR and SAR have no means to differentiate between recourses, they might end up suggesting
interventions which rapidly become invalid. An alternative is to settle for classical robust AR, which
can provide some amount of safety w.r.t. time depending on the chosen epsilon ϵ (cf. Section 4).
The issue with this is that, as shown by Proposition 5, choosing ϵ without considering how the world
changes can be dramatically suboptimal, i.e., robust AR might recommend expensive actions that
risk becoming invalid.

Luckily, for SAR, we can mitigate these issues, as long as we have access to an estimator of the
stochastic process. We present a simple algorithm (Algorithm 1) for temporal sub-population al-
gorithmic recourse (Eq. (2)) drawing inspiration from adversarially robust recourse (Dominguez-
Olmedo et al., 2022). Following the results of Section 3.4, we argue that, instead of providing robust
recourse for an arbitrary uncertainty set with a fixed ϵ, we need to provide a robust θ for a fore-
casted region of the feature space. We do so by extending the notion of uncertainty set B(xt; τ)
to consider the distribution entailed by the TiMINo SCM conditioned on the observed realization,
P (Xt+τ | Xt = xt), after a time lag τ > 0:

B(xt; τ) = {x′ ∼ P (Xt+τ | Xt = xt)} (9)

Such a region does not depend on a fixed ϵ, thus sidestepping the issue shown by Proposition 5.
Algorithm 1 assumes to have access to a constant and differentiable classifier h, and to an estimator
P̃ (Xt) of the stochastic process. We define ER(x, τ ;θ) = E[h(x̂)] where x̂ is sampled from the
interventional distribution conditioned on the non-descendant nd(I) of the intervened upon nodes
I. Similarly to Dominguez-Olmedo et al. (2022), in practice, we approximate B(xt; τ) by sampling
a finite number of instances from P (Xt+τ | Xt = xt). As usual, users can control the trade-off
between cost and robustness by varying λ within the Lagrangian (line 5, Algorithm 1).
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Computational complexity. The running time of Algorithm 1 depends on (i) the number of epochs
N , and (ii) an upper bound on the number of iterations K of the inner loop (lines 3-6). Considering
all potential variable subsets I ⊂ [d], the complexity is O(NK2d). Luckily, not all features are
actionable, and the general wisdom is to provide sparse solutions (e.g., by considering only |I| ≤ m

sets) so we have O(NK
(
d
m

)
) if m≪ d. Lastly, the time-lag τ has no impact on the running time of

the algorithm, but in practice, we would need to run Algorithm 1 for each τ specified by the user.

Relationship between Algorithm 1 and other causal methods. Algorithm 1 subsumes existing
causal recourse methods. If we replace B(xt; τ) with the uncertainty set in Definition 3, we obtain
the robust counterfactual (CAR) or sub-population (SAR) recourse method (Dominguez-Olmedo
et al., 2022), depending on how we define the distribution over the expectation in ER(x, τ ;θ).
Moreover, if we do not consider τ such as ER(x;θ) = h(x + θ) and B(xt;∆) = {xt + ∆ :
||∆|| ≤ ϵ}, we obtain (robust) non-causal recourse (IMF, Wachter et al. (2017)).

4 EXPERIMENTS AND RESULTS

In this section, we empirically study the effect of time on recourse validity in synthetic and realistic
settings taken from the literature, by comparing Algorithm 1 against several robust (non-)causal AR
methods. See Appendix C for a detailed explanation of the experimental setting and techniques.

4.1 EXPERIMENTS WITH SYNTHETIC TIME-SERIES

Experimental setup. First, we consider the linear and non-linear 3-variable synthetic ANMs from
Karimi et al. (2021) representing a binary decision problem (e.g., loan granted/denied). We adapt
them to describe a trend-stationary stochastic process by adding an additive trend function m(t) =
α · (βl · l(t) + βs · s(t)) to the structural equations, where l(t) and s(t) are the linear and seasonal
components. The parameter α ∈ (0, 1) governs the strength of the trend. We consider three types of
trends: linear (βl > 0, βs = 0), seasonal (βl = 0, βs > 0) and linear+seasonal (βl > 0, βs > 0).
Then, we sample a time series for each ANM with 10000 individuals for t ∈ [0, 100] timesteps.
We split the time series into training (8000) and testing (2000) and train a fixed 3-layer MLP to
approximate P (Y t | Xt) using only the training data at time t = 0. We pick 250 individuals
negatively classified (h(x) < 1/2) by the MLP from the test set at time t = 0, and we compute
recourse suggestions, by considering the ℓ1-norm as a cost function, with robust counterfactual and
sub-population recourse (CAR and SAR, (Dominguez-Olmedo et al., 2022)), robust non-causal re-
course (IMF, (Wachter et al., 2017)) and time-aware sub-population recourse (T-SAR, Algorithm 1).

Linear ANM Non-Linear ANM

0.6

0.8

1.0

%
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d
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u
rs

e

Figure 3: Effect of uncertainty on coun-
terfactual AR. Empirical average validity
and standard deviation over 10 runs of robust
counterfactual algorithmic recourse (CAR) at
t = 50. We vary the variance σU of the
exogenous factors of the stochastic process.
Legend (σU ): 0 0.3 0.5 0.7 1.0.

We empirically choose a smaller and larger ϵ ∈
{3, 5} maximizing the robust methods’ validity at
t = 0. To simulate the user implementing the sug-
gested intervention at a later time, we vary the time
lag τ and compute the empirical average validity (%
of interventions achieving recourse) for each method
at time τ . We repeat the procedure 10 times. In these
experiments, we assume to know the true causal
graph and structural equations.

Uncertainty invalidates counterfactual recourse
(CAR) over time. First, we consider a station-
ary version of the synthetic ANMs with exoge-
nous noise Ui ∼ N (0, σU ) for all i ∈ [3] and
vary the variance of the exogenous factors σU ∈
{0, 0.3, 0.5, 0.7, 1.0}, where σU = 0 means that the
ANM is deterministic. For each value of σU , we
compute the recourse suggestions using robust coun-
terfactual recourse (CAR). Fig. 3 displays how valid-
ity decreases as variance increases showing that the validity over time of (robust) CAR recommen-
dations is strongly impacted by the exogenous noise, as per Proposition 1, even in an ideal case in
which the SCM is stationary and known. Appendix D shows extended results for t ∈ {0, 100}.
Incorporating time is beneficial in causal algorithmic recourse. Fig. 4 shows how T-SAR (Al-
gorithm 1) achieves superior validity over time than robust (non-)causal methods on the synthetic
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Figure 4: Causal algorithmic recourse on diverse time series. Empirical average validity and
standard error (10 runs) for the robust (ϵ ∈ {3, 5}) and time-aware causal recourse methods for the
synthetic ANMs under different trends (α = 1.0). Legend: T-SAR CAR (ϵ = 3) SAR
(ϵ = 3) IMF (ϵ = 3) and CAR (ϵ = 5) SAR (ϵ = 5) IMF (ϵ = 5).

settings considering the diverse type of trends m(t) ∈ {Linear,Seasonal,Linear+Seasonal}. Inter-
estingly, robust causal recourse methods depend highly on the chosen hyperparameters (ϵ, η and λ)
while T-SAR requires less tuning. For example, both CAR and IMF show worse validity on the
non-linear ANM when increasing ϵ. Lastly, in Appendices E and F we provide further experiments
on the tradeoff between validity over time and cost, and on the sparsity of recourses, respectively.

4.2 EXPERIMENT WITH REALISTIC TIME-SERIES

In Section 4.1, we assume perfect knowledge of the causal graph and structural equations governing
the stochastic process. We now relax these assumptions by learning the structural equations in a
data-driven manner, using a simple generative model, on three datasets.

Experiments setup. We consider three real-world datasets concerning high-risk decision tasks:
recidivism prediction (COMPAS (Angwin et al., 2016)), and loan approval (Adult (Dua & Graff,
2017) and Loan (Karimi et al., 2021)). They involve categorical and continuous features, some
of which are not actionable (e.g., age, ethnicity, etc.). We use the causal graphs defined by Nabi
& Shpitser (2018) for COMPAS and Adult, and Karimi et al. (2021) for Loan. We extend these
datasets by adding linear+seasonal trends reflecting real-world phenomena (e.g., income can fluctu-
ate depending on the job market or individual expenses). Full details are available in Appendix C.
Given the ground truth SCMs, we sample an additional separate time series with 2000 individuals
for t ∈ [0, 100], and we use all the samples up to t = 50 to learn an approximate SCM for each
real-world dataset. We approximate the structural equations using a CVAE-like generative model
(Sohn et al., 2015). In the experiment, all methods use the same approximate SCMs to compute
recourse. Lastly, we perform the same evaluation procedure used for the synthetic experiments.

Incorporating time is beneficial also with approximate SCMs. Fig. 5 (top) shows how T-SAR
provides better recourse recommendations than the robust counterparts by exploiting an estimator
P̃ (Xt). In both Adult and Loan, T-SAR shows equal or better validity than the non-temporal
methods. For example, in Loan, T-SAR achieve almost twice the average validity (∼ 72%) of
the best non-temporal approach SAR (∼ 39%) for t = 50. Understandably, T-SAR’s performance
hinges on the quality of the underlying estimator. In COMPAS, while T-SAR has good performance
for t ∈ [0, 20], it gracefully degrades afterwards. This occurs because the trend estimator it relies
on underestimates the trend impact on the features. In fact, Appendix G shows that, if we employ a
perfect estimator P (Xt), T-SAR outperforms all non-temporal methods (Fig. 12). As in Section 4.1,
the non-temporal methods are sensitive to the hyperparameters, e.g., for COMPAS, CAR provides
higher validity for ϵ = 0.05 rather than ϵ = 0.5, while T-SAR needs less tuning.

Accounting for time ensures more targeted interventions. Lastly, Fig. 5 (bottom) shows how
T-SAR suggests interventions counteracting the effect of the trend more effectively than non-
temporal methods. We excluded COMPAS from the analysis since it has a single actionable fea-
ture. In Loan, we have two actionable features {income, savings}, with income subject to a trend.
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Figure 5: Effect of time on realistic datasets. (Top) Empirical average validity and standard error
(10 runs) for the robust (ϵ ∈ {0.05, 0.5}) and time-aware causal recourse methods for the realistic
datasets under a non-linear trend. (Bottom) Distribution of the intervention sets I over the actionable
features achieving recourse on Loan for different t. Legend: T-SAR CAR (ϵ = 0.05)
SAR (ϵ = 0.05) IMF (ϵ = 0.05) and CAR (ϵ = 0.5) SAR (ϵ = 0.5) IMF (ϵ = 0.5).

T-SAR provide recourse including the trend variable, while the other methods exclude it from the
recommendation, thus yielding a lower validity. In Adult, we again have two actionable features
{education,work-hours-per-week}, where work-hours-per-week is subject to a trend. In this case,
T-SAR suggests acting on {work-hours-per-week} only. Robust sub-population methods (SAR) will
instead ask the user to act on both {education,work-hours-per-week} because they have to robustify
on both variables since they cannot forecast how they will change. Non-causal methods (IMF) act
on all actionable features but achieve a lower validity since they cannot account for trend effects.

5 LIMITATIONS

We now discuss some limitations of our work which open up interesting avenues for future work.

Feasibility of temporal recourse and its evaluation. T-SAR depends on the quality of the es-
timator P̃ (Xt) and, if the estimator is flawed, T-SAR could provide sub-optimal recourse. It is
well-known how reliable time series forecasting is hard in various settings (Makridakis et al., 2020),
because of issues like concept drift (Gama et al., 2014). Thus, it represents an additional hurdle to
achieving practical temporal recourse for realistic applications. Our experiments on synthetic and
semi-synthetic datasets are sufficient to confirm that time presents a non-trivial challenge for AR and
to show how an estimator approximating P (Xt) can still be useful in some settings. However, we
could not fully evaluate the effectiveness of T-SAR in real-world situations as this requires temporal
datasets for recourse, which are currently not available. The scarcity of suitable data is a well-known
issue affecting the evaluation of AR approaches at large (Karimi et al., 2021; Esfahani et al., 2024).

Causal models, trends and interventions. Our formalization assumes the stochastic process con-
forms to TiMiNo (Peters et al., 2013), leaving space to consider more complex SCMs. We do not
explore trend models for the classifier h or the cost function C(·), which could be present alongside
those for P (Xt). Lastly, we assume the total causal effect of recourse can be observed within t+ τ ,
and future works could consider modelling interventions with causal effects extending beyond t+τ .

6 CONCLUSION

We have investigated the impact of time on algorithmic recourse. Our formalization of temporal
causal recourse extends both counterfactual and sub-population causal AR by modelling the world
as a (possibly non-stationary) causal stochastic process P (Xt, Y t). It allows us to theoretically
demonstrate how standard and robust AR approaches are fragile, as their solutions become invalid
in the presence of trends and future uncertainty. We also show that a simple algorithm, leveraging an
estimator of the stochastic process fitted on historical data, can deliver more robust solutions. Our
experiments with causal and non-causal approaches support our findings. With this work, we aim
to highlight the negative impact of time on existing AR approaches while demonstrating how these
challenges can be at least partially mitigated by leveraging historical data.
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Our work aims at achieving algorithmic contestability (Lyons et al., 2021) via actionable counterfac-
tual explanations, enabling users to overturn decisions taken by machine learning models. However,
recourses present diverse challenges from both technical and ethical standpoints (Venkatasubrama-
nian & Alfano, 2020). For example, fairness considerations (von Kügelgen et al., 2022) may arise
from the applications of recourse methods, and they should be taken into consideration before con-
sidering real applications.

REPRODUCIBILITY STATEMENT

We report all the assumptions and proofs of the theorems, corollaries and propositions in Appen-
dices B and H, making appropriate references to the relevant sections of the main paper (e.g., Sec-
tions 3.2 to 3.5). In Appendix C we describe in-depth details regarding the experimental settings,
the synthetic and realistic stochastic processes, the recourse methods, the generative model to learn
approximate SCMs and the training pipeline adopted. We will release the source code and the raw
results under a permissive license on GitHub. Currently, the code is available as an anonymized
.zip in the supplementary material.

REFERENCES

EU AI Act. Laying down harmonised rules on artificial intelligence (artificial intelligence act) and
amending certain union legislative acts. Proposal for a regulation of the European parliament
and of the council, 2021.

Patrick Altmeyer, Giovan Angela, Aleksander Buszydlik, Karol Dobiczek, Arie van Deursen, and
Cynthia CS Liem. Endogenous macrodynamics in algorithmic recourse. In 2023 IEEE Confer-
ence on Secure and Trustworthy Machine Learning (SaTML), pp. 418–431. IEEE, 2023.

Julia Angwin, Jeff Larson, Surya Mattu, and Lauren Kirchner. Machine bias: There’s software used
across the country to predict future criminals. And it’s biased against blacks. ProPublica, 23:
77–91, 2016.
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A SUMMARY OF THE THEORETICAL RESULTS ON TEMPORAL ALGORITHMIC
RECOURSE

Table 1: Overview of the theoretical results and (non-)causal recourse methods. We summarize
the characteristics of the (non)-causal algorithmic recourse methods we considered in this work
and the related theoretical results (Section 3). T-SAR is the only approach robust to time (upon
possessing an estimator of the stochastic process). IMF is a non-causal method, so its recourse
considers the independently manipulable features assumption e.g., P do(XI=xI+θ)(X) = xI + θ.

Method Causality Recourse Robust to time

IMF (Wachter et al., 2017) - Individualized (by Corollary 4 and Proposition 5)
CAR (Karimi et al., 2020b) Counterfactual Individualized (by Corollary 4 and Proposition 5)
SAR (Karimi et al., 2020b) Interventional Sub-population (by Corollary 4 and Proposition 5)
T-CAR (Definition 1) Counterfactual Individualized (by Proposition 1 and Corollary 2)
T-SAR (Definition 1) Interventional Sub-population (upon having an estimator P̃ (Xt))

B PROOFS

B.1 PROOF OF PROPOSITION 1

Proof. Consider a TiMINo stochastic process {Xt}t∈N with structural equations:

Xt
i = f(Pat−p

i , . . . ,Pati) + U t
i , U t

i ∼ N (µX , σX), µX , σX > 0 (10)

where U t
i have positive mean and variance. We prove the proposition by contradiction by looking

at the value of the time lag τ . For the sake of clarity, we state the proof for p = 1 (the proof
for p > 1 is similar). Assume that we observed a sequence of realizations xt−p:t and we can
compute the counterfactual distribution P do(Xt+τ=xt+τ+θ),Xt−p:t=xt−p:t

(Xt+τ ) for any τ ≥ 0 and
θ ∈ Rd. If τ = 0, we can immediately recover the value of all exogenous factors via ut

i =

xt
i − f(Pat−p

i , . . . ,Pati), as we know xt−p:t. Let us assume we can also recover the exogenous
factors for a time lag τ > 0 even if we did not observe future realizations {xt, . . . ,xt+τ}. Since
we did not observe such realizations, the classical abduction step to recover the exogenous factors
within the [t, t+τ ] interval is impossible. Recently, Bynum et al. (2023) introduced forward-looking
counterfactuals to overcome this challenge. They postulate we can still compute counterfactuals
over unseen realizations by propagating the latest exogenous factors we were able to abduce (Bynum
et al., 2023, Section 3). Similary, we assume we can propagate the latest exogenous factors we can
recover (ut) into the future, e.g., U t+τ

i = ut
i for any τ > 0 and i ∈ [d]. Since we assume we can

compute the exact counterfactual distribution, the only setting where U t+τ
i = ut

i holds is if σX = 0
and µX = 0. However, we initially stated that µX , σX > 0, so we have a contradiction.

B.2 PROOF OF PROPOSITION 3

Proof. Consider a discrete-time stationary time series {(x, y)t}t∈N and wlog consider a fixed linear
classifier h(x) = β⊤x that is injective, that is, x ̸= x′ ⇒ h(x) ̸= h(x′). Given a realization
xt, let us assume θ∗ is the optimal intervention for Eq. (2) at time t, but not at time t + τ , with
τ ∈ N. Thus, either our recourse becomes invalid or exceedingly expensive. We focus on the former
since we assume a fixed cost function such as the ℓ1-norm of the intervention C(θ) = ∥θ∥. As a
consequence, we have E[h(x̂t+τ ) − h(x̂t)] ̸= 0 where x̂t+τ ∼ P do(θ∗)(Xt+τ | Xt+τ

nd(I) = xt+τ
nd(I))

and x̂t ∼ P do(θ∗)(Xt | Xt
nd(I) = xt

nd(I)). We denote with I ⊆ [d] the intervention set of
the successful intervention θ∗, and with do(θ∗) = do(Xt

I = xt
I + θ∗) the corresponding soft

intervention. Consider the case in which our intervention does not achieve recourse after τ time
steps. We can decompose the previous expectation as follows:

E[h(x̂t+τ )− h(x̂t)] = E[β⊤x̂t+τ − β⊤x̂t] (11)

= β⊤E[x̂t+τ − x̂t] (12)
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Thus, since θ∗ is not optimal for t + τ , we must have E[x̂t+τ − x̂t] ̸= 0. This, however, is a
contradiction since we assume the time series is stationary. It follows that, since τ is arbitrary, for
any t, the corresponding optimal solution θ∗ is also optimal for all τ > 0. Now, this also means that
θ∗ is also an optimal solution for the classical recourse optimization problem Eq. (1) as long as we
optimize Eq. (1) by considering P (X, Y ) = P (Xt, Y t) for any time steps t ∈ N.

B.3 FULL DERIVATIONS FOR EXAMPLE 1

Proof. Consider a trend-stationary stochastic process defined by these structural equations:

Xt = αXt−1 +m(t) + U t
X , U t

X ∼ N (µX , σX)

Y t = βXt + U t
Y , U t

Y ∼ N (0, 1)
(13)

for all t, α ∈ (0, 1) and β ∈ R. The function m(t) : R → R represents a trend independent of Xt

and Y t. We consider a linear trend m(t) = −ct + U t
m, where U t

m ∼ N (µm, σm) and c ∈ R+.
Given a realization xt−1, the state of Xt+τ admits the closed-form expression:

Xt = αxt−1 +m(t) + U t
X (14)

Xt+1 = α2xt−1 + αm(t) + αU t
X +m(t+ 1) + U t+1

X (15)

Xt+2 = α3xt−1 + α2m(t) + α2U t
X + αm(t+ 1) + αU t+1

X +m(t+ 2) + U t+2
X (16)

... (17)

Xt+τ = ατ+1xt−1 +

τ∑
i=0

ατ−i
(
m(t+ i) + U t+i

X

)
(18)

Hence, the expectation of Y t+τ with respect to the interventional distribution P do(θ)(Xt, Y t) is:

E[Y t+τ ] = E[βXt+τ + U t+τ
Y ]

= βE[Xt+τ ] + E[U t+τ
Y ]

(i)
= βE[ατ+1xt−1 +

∑τ
i=0 α

τ−i
(
m(t+ i) + U t+i

X

)
]

(i)
= βατ+1xt−1 +

∑τ
i=0 α

τ−i
(
E[m(t+ i)] + E[U t+i

X ]
)

= β
(
ατ+1xt−1 +

∑τ
i=0 α

τ−i(−c(t+ i) + µm + µX)
)

Here, (i) follows by construction since E[U t+τ
Y ] = 0 for all t, τ and i ∈ [d]. We now consider the

following fixed classifier σ(Y t | Xt) where σ(x) = 1/(1 + e−x). Thus, the expectation over the
classifier output becomes:

E[h(Xt+τ )] = σ
(
β
(
ατ+1xt−1 +

∑τ
i=0 α

τ−i(−c(t+ i) + µm + µX)
))

(19)

Given that we are considering soft interventions, we consider the cost function C(x̂t+τ , xt+τ ) =
x̂t+τ − xt+τ = θ since x̂t+τ = xt+τ + θ. Given that σ(x) ≥ 1/2 if and only if x ≥ 0, we have that
the optimal intervention θt+τ ∈ R for which we have E[h(Xt+τ + θ)] ≥ 1/2 can be expressed as:

θt+τ = −ατ+1xt−1 −∑τ
i=0 α

τ−i(−c(t+ i) + µm + µX) (20)

B.4 PROOF OF PROPOSITION 5

We can prove Proposition 5 by showing how we can always find a simple trend invalidating any
(robust) intervention.

Proof. Let us consider a trend-stationary stochastic process P (Xt, Y t) and fixed injective classifier
h approximating P (Xt | Y t). We denote with m(t) : Nd → Rd the d-variate trend function where
mi(t) is the trend component for a single random variable Xt

i for any i ∈ [d] and t ∈ N. Given a
negatively classified instance xt, assume θ is the optimal robust intervention for a fixed ϵ > 0 and
for the timestep t.
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Consider the following trend function m(t) = 1{t ≥ τ}(−θ) which is adding the inverse of the
optimal intervention if an only if t ≥ τ . Specifically, we define each trend component as mi(t) =
1{t ≥ τ}(−θi). If our stochastic process exhibits such a trend, then, for any fixed τ > 0, the robust
intervention is invalid e.g., E[h(x̂t+τ ])] < 1/2. Moreover, we can always build such a trend for any
θ and any trend-stationary stochastic process.

B.5 PROOF OF THEOREM 6

Proof. We first apply the following substitutions (a) β′ = βt+τ and x′ = x̂t+τ (b) β = βt and
x = x̂t, to improve the clarity of the proof. Then, the proof is the following:

E[|ht+τ (x̂t+τ )− ht(x̂t)|] = E[
∣∣⟨β′,x′⟩ − ⟨β,x⟩

∣∣]
= E[

∣∣⟨β′,x′⟩+ ⟨β,x′⟩ − ⟨β,x′⟩ − ⟨β,x⟩+ ⟨β,x′⟩ − ⟨β,x′⟩
∣∣]

= E[
∣∣⟨β′ − β,x′⟩+����⟨β,x′⟩ + ⟨β,x′ − x⟩ −����⟨β,x′⟩

∣∣]
≤ E[

∣∣⟨β′ − β,x′⟩
∣∣] + E[|⟨β,x′ − x⟩|]

(i)

≤ E[∥β′ − β∥ · ∥x′∥] + E[∥β∥ · ∥x′ − x∥]
(ii)

≤ k
√
d · E[∥β′ − β∥] + k

√
d · E[∥x′ − x∥]

= k
√
d ·
(
E
[
∥βt+τ − βt∥

]
+ E

[
∥x̂t+τ − x̂t∥

])
where (i) follows from the Cauchy-Schwarz inequality and (ii) from the bounds we placed on X and
β (e.g., since −k ≤ β ≤ k and since |β| = d we have maxβ∥β∥ = k

√
d). Moreover, since ht is

trained over a fixed dataset Dt, we have that βt⊥ Xt | Dt for all t ∈ N. We stress that the bounds
placed on X and β enable us to constrain the ∆h(θ; τ) variation. In the unbounded case, where
k →∞, clearly no upper bound is possible.

B.6 PROOF OF COROLLARY 7

We begin the proof of Corollary 7 by starting from the previous proof for Theorem 6 (given in
Appendix B.5). Please recall that a stochastic process P (Xt) is trend-stationary when it can be
expressed as Xt = m(t) + et, where m(t) is a (non-)linear trend function and et is a stationary
stochastic process. In the following, we denote with x̃ the stationary part of the stochastic process,
and we consider deterministic trend functions.

Proof. Let us assume that each random variable Xt
i can be described as a trend-stationary univariate

stochastic process. Thus, let us define with m(t) = {mi(t)}di=1 the trend function, where mi(t) the
trend component for the i-th variable. Then, we define as m∗(t) = maxi∈[d] mi(t) the largest trend
for t ∈ N. The derivation for the upper bound is the following:

E[|ht+τ (x̂t+τ )− ht(x̂t)|] ≤ k
√
d ·
(
E
[
∥βt+τ − βt∥

]
+ E

[
∥x̂t+τ − x̂t∥

])
(Theorem 6)

(i)
= k
√
d ·
(
E
[
∥βt+τ − βt∥

]
+ E

[
∥x̃t+τ +m(t+ τ)− x̃t −m(t)∥

])
= k
√
d ·
(
E
[
∥βt+τ − βt∥

]
+ E

[
∥x̃t+τ − x̃t∥

]
+ E [∥m(t+ τ)−m(t)∥]

)
(ii)
= k
√
d ·
(
E
[
∥βt+τ − βt∥

]
+ E [∥m(t+ τ)−m(t)∥]

)
(iii)

≤ k
√
d ·
(
E
[
∥βt+τ − βt∥

]
+
√
d(m∗(t+ τ)−m∗(t))

)
= k
√
d · E

[
∥βt+τ − βt∥

]
+ kd (m∗(t+ τ)−m∗(t))

(21)
where (i) and (ii) follows from the definition of a trend-stationary stochastic process. Then, (iii)
follows since we can substitute each univariate trend mi(t) with the maximum m∗(t) for the time
step t within the ℓ2-norm.
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C IMPLEMENTATION DETAILS FOR THE EXPERIMENTS WITH SYNTHETIC
AND REAL DATA

In this section, we describe the synthetic and realistic stochastic processes we used in our experi-
ments (cf. Section 4). We also describe the training steps and generative model used to approximate
the SCMs. Lastly, we report several technical implementation details.

C.1 SYNTHETIC ADDITIVE TREND FUNCTION.

We want our causal stochastic process to describe an environment where the changes to obtain a
positive classification fluctuate over time. For example, as an individual ages, it will become less
likely for her to repay her loan in the case of a loan application (based on the survival rate of the
population). We define an additive trend function m(t) : N → R+, which is a linear combination
between a linear and seasonal trend. We control the mixture of each component with two param-
eters, βl ∈ R+ and βs ∈ R+, respectively. We also consider an additional parameter α ∈ [0, 1]
controlling the trend’s strength over the stationary causal process.

m(t) = α · (βl ·min(0.05 · t, 10) + βs · | sin(0.5 · t)|) (22)

In our experiments, we set βl ∈ {0, 1} and βs ∈ {0, 1.5} for the linear ANM, and βl ∈ {0, 2}
and βs ∈ {0, 5} for the non-linear ANM. For the realistic experiments, we set βl, βs ∈ {0, 1} for
Adult, βl ∈ {0, 0.3} and βs ∈ {0, 1} for COMPAS, and βl ∈ {0, 0.5} and βs ∈ {0, 5} for Loan.

C.2 CAUSAL GRAPHS FOR THE EXPERIMENTS

For the synthetic experiments, we considered the synthetic 3-variables additive noise models
(ANMs) from Karimi et al. (2020b). We extended them by transforming them into trend-stationary
stochastic processes, by adding an autoregressive component and the trend m(t) on the 3rd feature.
If α = 0, both ANMs give rise to stationary time series.

Linear Additive Noise Model.
Xt

1 = 0.5 ·Xt−1
1 + U t

1 U t
1 ∼ MoG(N (−1, 1.5),N (1, 1))

Xt
2 = 0.5 ·Xt−1

2 − 0.25 ·Xt
1 + U t

2 U t
2 ∼ N (0, 0.1)

Xt
3 = 0.5 ·Xt−1

3 + 0.05 ·Xt
1 + 0.25 ·Xt

1 −m(t) + U t
3 U t

3 ∼ N (0, 1)
(23)

Non-linear Additive Noise Model.
Xt

1 = 0.5 ·Xt−1
1 + U t

1 U t
1 ∼ MoG(N (−2, 1.5),N (1, 1))

Xt
2 = 0.5 ·Xt−1

2 − 1
3

1 + e−2Xt
1

+ U t
2 U t

2 ∼ N (0, 0.1)

Xt
3 = 0.5 ·Xt−1

3 + 0.05 ·Xt
1 + 0.25 · (Xt

1)
2 −m(t) + U t

3 U t
3 ∼ N (0, 1)

(24)

Label function. We also consider the following conditional distribution P (Y t | Xt), again taken
from Karimi et al. (2020b), which produces roughly balanced groups:

Y t ∼ Binomial
(
1/
(
1 + exp(−2.5 · (Xt

1 +Xt
2 +Xt

3)/ρ)
))

(25)

where ρ is the empirical mean of Xt
1 +Xt

2 +Xt
3 for t = 0. We use the label function only to train

the classifier h at time t = 0, then it is discarded and we rely only on h for our experiments.

C.3 CAUSAL GRAPHS FOR THE REALISTIC EXPERIMENTS

We now describe the design choices for the realistic datasets. We tried to find a balance between
realism and simplicity, to provide scenarios close to potential real-world situations, that, however,
we can easily control for our experiments. Therefore, some of the design choices might not represent
faithfully how the system can evolve in real life.

Adult (Dua & Graff, 2017). We use the features and causal graph defined by Nabi & Shpitser
(2018). Eq. (26) shows the full causal graph. We have the following features: S (sex), A (age),
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US (resident of the United States of America), M (married), E (education level) and H (working
hours per week). The features S, US, and M are categorical variables, the others are represented
as continuous random variables. We assume S, A, US and M remain fixed over time. The only
actionable features are the education level E, and working hours per week H . We apply a decreasing
trend to H . We employ non-linear structural equations fM , fE and fH by using pre-trained 3-
layer MLPs, trained on the original dataset, from Dominguez-Olmedo et al. (2022). Moreover, as a
label function, we also employ a classifier h taken by Dominguez-Olmedo et al. (2022) to label the
examples at t = 0.

St = 1{t > 0} · St−1 + 1{t = 0} · US US ∼ Binomial(0.9)

At = 1{t > 0} · U t−1 + 1{t = 0} · U t
A U t

A ∼ N (0, 1)

USt = 1{t > 0} · USt−1 + 1{t = 0} · UUS UUS ∼ Binomial(0.9)

M t = 1{σ(fM (St, At, USt)) > 1/2}
Et = 0.5 · Et−1 + fE(S

t, At, USt,M t) + UE UE ∼ N (0, 1)

Ht = 0.5 ·Ht−1 + fH(St, At, USt,M t)−m(t) + UH UH ∼ N (0, 1)

(26)

COMPAS (Angwin et al., 2016). We use the features and causal graph defined by Nabi & Shpitser
(2018). Eq. (27) shows the full causal graph. We have the following features: S (sex), A (age), C
(ethnicity, if caucasian or not), and P (prior counts). The feature S is categorical, and the others are
represented as continuous random variables. We assume S, A, and C remain fixed over time, and
that the only actionable feature is the prior count P . We apply an increasing trend to P . As we did
for Adult, we obtain the pre-trained non-linear structural equations fC and fP and label function
from Dominguez-Olmedo et al. (2022).

St = 1{t > 0} · St−1 + 1{t = 0} · US US ∼ Binomial(0.8)

At = 1{t > 0} · U t−1 + 1{t = 0} · U t
A U t

A ∼ Poisson(1)

Ct = 1{t > 0} · Ct−1 + 1{t = 0} ·
(
σ(fC(S

t, At)) + U t
C

)
U t
C ∼ N (0, 1)

P t = 0.5 · P t−1 + fP (S
t, At, Ct) +m(t) + U t

P U t
P ∼ N (0, 1)

(27)

Loan (Karimi et al., 2020b). We use the causal graph defined by Karimi et al. (2020b) presenting
a semi-synthetic loan approval scenario inspired by the German Credit dataset (Hofmann, 1994).
For the structural equations, we use the one adapted by Dominguez-Olmedo et al. (2022) in their
paper. Eq. (28) shows the full causal graph. We have the following features: G (gender), A (age), E
(education level), L (loan amount), D (loan duration), I (income) and S (savings). G is a categorical
variable, while the rest are considered continuous. Moreover, G remains fixed over time. We assume
the only actionable features are S and I . We apply a trend to the income I .

Gt = 1{t > 0} ·Gt−1 + 1{t = 0} · U t
G U t

G ∼ Binomial(0.5)

At = 0.5 ·At−1 − 35 + U t
A U t

A ∼ Gamma(10, 3.5)

Et = 0.5 · Et−1 − 0.5 +

(
1 + e

−
(
−1+0.5Gt+

(
1+e−0.1At

)−1
+UE

))−1

UE ∼ N (0,
√
0.25)

Lt = 0.5 · Lt−1 + 1 + 0.01(At − 5)(5−At) +Gt + UL, UL ∼ N (0, 2)

Dt = 0.5 ·Dt−1 − 1 + 0.1At + 2Gt + Lt + UD UD ∼ N (0, 3)

It = 0.5 · It−1 − 4 + 0.1(At + 35) + 2Gt +GtEt + UI −m(t) UI ∼ N (0, 2)

St = 0.5 · St−1 − 4 + 1.5 · 1{It > 0} · It + US US ∼ N (0, 5)
(28)

We sample the labels from the function defined by Karimi et al. (2020b):

Y t ∼ Bernoulli
((

1 + e−0.3(−Lt−Dt+It+St+ISt)
)−1

)
. (29)
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C.4 ON LEARNING AN APPROXIMATE SCM

We now describe the simple generative model we used in the experiment in Section 4.2. Similarly to
Karimi et al. (2020b) and Dominguez-Olmedo et al. (2022), we approximate the structural equations
in a data-driven manner. We assume we can represent the actionable features Xi as Gaussian random
variables N (µt

i, 1) with constant variance and time-dependent µt. For each random variable, we
define the mean as the output of a regressor fi taking as input: the autoregressive component Xt−1

i ,
the parents Pati and the time t. Thus, we obtain the following structural equations:

Xt
i = µt

i + U t
i U t

i ∼ N (0, 1) µt
i = fi(X

t−1
i ,Pati, t) (30)

Similarly to a conditional VAE (Sohn et al., 2015), we can both sample new instances from the
approximate SCMs, but we can also compute the interventional or counterfactual distributions.

C.5 TECHNICAL DETAILS AND CODE

We based our implementation of CAR, SAR, IMF and T-SAR following adversarial robust algorith-
mic recourse (Dominguez-Olmedo et al., 2022). Namely, we leveraged their implementation5 and
we adapted their code to work with time-based uncertainty sets (cf. Section 3.6). Moreover, we also
used their causal graph implementations, pre-trained models, and preprocessing steps as a starting
point for building our stochastic processes. In the case of the synthetic datasets, we instead looked at
Karimi et al. (2020b) original implementation6. Our code and experimental results will be released
on Github with a permissive license7. Lastly, we run our experiments on a Linux machine (Ubuntu
22.04, 4 LTS) with 32 CPU cores and 125 GB of RAM. Our implementation is written in Python
3.10, using standard scientific and deep learning libraries such as numpy (Harris et al., 2020) and
PyTorch (Paszke et al., 2019). The various hyperparameters are duly specified in the source code,
but we report the most important here for clarity.

Algorithm 1 hyperparameters. We approximate B(xt; τ) by sampling only 20 instances for all
datasets and we set the number of epochs to N = 30. As a penalty, we set λ = 1 for the Lagrangian
(line 5, Algorithm 1). Please notice that Dominguez-Olmedo et al. (2022) uses a decaying rate to
reduce the impact of the cost function on the loss L after each epoch (we kept the original hardcoded
value of 0.02). As learning rate, we set η = 0.5 for the synthetic experiments, and η = 3 for the
realistic datasets. The learning rate is the same for all the methods. We did not perform a full
grid search over the parameter space, since we found empirically our chosen hyperparameters were
giving satisfactory performances.

Classifiers h. For each setting, we trained a 3-layered MLP approximating P (Y t | xt), via empir-
ical risk minimization by sampling a given dataset for t = 0. We use stochastic gradient descent
(SGD) to minimize the binary cross entropy loss L = − 1

N

∑
x0,y0∈ batch(y

0 log h(x0) + (1 −
y0) log (1− h(x0)) (e.g., torch.nn.BCELoss8) where y0 is the ground truth label. In our ex-
periments, we set the batch size to 100, the number of epochs to 15 and the learning rate to 0.001,
for all datasets. The accuracy of the models for a single seed are: 0.847 (Linear ANM), 0.963
(Non-Linear ANM), 0.817 (Adult), 0.645 (COMPAS) and 0.842 (Loan).

Approximate structural equations. In our experiments, we consider only linear fi. We train each
fi via empirical risk minimization following the procedure outlined in Section 4.2. For each feature
i ∈ [d], and for each epoch, we consider a batch {(xt

i, x
t−1
i ,Pati, t)j}bj=1 and we minimize the mean

squared error between the ground truth xt
i and the model output fi(Xt−1

i ,Pati, t) with stochastic
gradient descent. We fix the batch size to 100, the learning rate to 0.001 and the number of epochs
to 15 for all settings. We report here the mean squared error over 50 timesteps (2000 individuals)
for the approximate SCMs we used in Section 4.2. We compute the MSE for each feature for each
timestep, and then we average. The empirical average MSE and standard deviation over 10 runs is:
1.162± 0.005 (Adult), 258.226± 7.328 (COMPAS) and 10.447± 0.037 (Loan).

5https://github.com/RicardoDominguez/AdversariallyRobustRecourse
6https://github.com/charmlab/recourse
7https://github.com./xxxx/xxxxx. The code and experimental results are provided as a .zip

file in the Supplementary Material as instructed by the ICLR guidelines.
8https://pytorch.org/docs/stable/generated/torch.nn.BCELoss.html
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D ADDITIONAL EMPIRICAL RESULTS ON THE EFFECT OF UNCERTAINTY ON
COUNTERFACTUAL RECOURSE OVER TIME

We present the extended results of the experiment measuring empirically the impact of the uncer-
tainty in CAR (Section 3.2). The experimental setting and evaluation procedure are the same as
Section 4.1. Fig. 6 shows the empirical average validity of CAR’s recourse over time t ∈ {0, 100}.
The plot shows how uncertainty heavily impacts the recourse validity from the initial time steps as
σU grows, even when P (Xt) is stationary.
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Non-Linear ANM

Figure 6: Effect of uncertainty on counterfactual AR over time. Empirical average validity
and standard deviation over 10 runs of robust counterfactual algorithmic recourse (CAR) for t ∈
{0, 100}. We vary the variance σU of the exogenous factors of the stochastic process. Legend (σU ):

0 0.3 0.5 0.7 1.0.
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E ANALYSIS OF THE TRADE-OFF BETWEEN VALIDITY AND COST

We report an analysis of the trade-off between validity and cost of the recourses found by Al-
gorithm 1. We replicate the same experimental setting and evaluation procedure as Sections 4.1
and 4.2, and we measure the effect of varying the λ parameter controlling the strength of the re-
course constraint (line 5, Algorithm 1). We consider the time series exhibiting the more complex
linear+seasonal trend.

Fig. 7 show the results for the synthetic and realistic time series. The cost-validity trade-off is
apparent in all the experimental settings, where cheaper interventions yield lower validity over
time. This result complements previous findings in the literature considering non-temporal settings
(Pawelczyk et al., 2022b). For example, in Adult, we observe a reduction in the validity over time
(∼ 0.05), but a decreased cost as shown by the lighter dots. In COMPAS, the trade-off presents a
smoother behaviour since we have only one actionable feature. Lastly, we observe how the reduction
in validity is not consistent across time series: we suspect this might depend on the quality of the
estimator P̃ (Xt) and on the decision boundary of the classifier h.
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Figure 7: Trade-off between cost and validity for realistic and synthetic datasets. We report the
empirical average validity for Algorithm 1 under the linear+seasonal trend (α = 1.0) when varying
the λ for (Top) synthetic and (Bottom) realistic time series. We consider a non-linear classifier h
(3-layer neural network) for each setting. Each dot represents the empirical average cost of the
interventions achieving recourse. A darker dot implies a larger cost. We represent the validity for
each λ as a grey line and the standard deviation over 10 runs as a shaded area. Legend (λ): 1.00

0.33 0.20 (Synthetic time series), 100 20 10 2 (Realistic time series).
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F FURTHER ANALYSIS ON THE EMPIRICAL COST AND SPARSITY

In this section, we report further analysis and results when considering the empirical average cost
and sparsity (# of I achieving recourse) of the valid interventions. They are both common metrics
in the algorithmic recourse literature (Karimi et al., 2022; Verma et al., 2020).

Sparsity. Figs. 8 and 9 shows the empirical average sparsity of the causal recourse methods for
both synthetic and realistic stochastic processes. We do not report values for IMF since it always
acts on all the actionable features (|I| = 3). In Fig. 8, T-SAR presents a similar or lower sparsity
than other methods. However, as Section 4.1 shows, T-SAR is the only method achieving good
validity over time. Thus, these results suggest that incorporating time might not increase the sparsity
of the solutions. In the case of approximate SCMs, Fig. 9 shows how T-SAR provides sparse
interventions for Adult, but increasingly larger interventions for Loan. COMPAS has only one
actionable feature, thus the sparsity is equal for all approaches. As highlighted in Section 4.2,
T-SAR performance is also dependent on the quality of the estimator P̃ (Xt).

Cost. Figs. 10 and 11 shows the empirical average cost for the users for which all (non-)causal
recourse methods found a valid intervention. We consider only the top-3 methods achieving re-
course for each time step t. In realistic and synthetic settings, T-SAR can provide cost-adaptive
interventions which follow the underlying trend. For example, we can observe this phenomenon in
both COMPAS and Loan (Fig. 11). It is also visible for m(t) ∈ {Linear,Linear+Seasonal} in the
Non-linear and Linear ANMs, respectively. We also notice how T-SAR seems to provide costlier
recourses than the standard robust methods. However, in Adult, T-SAR produces cheaper inter-
ventions than the other approaches. We can explain this behaviour for Adult by looking at the
analysis of the successful intervention sets I in Section 4.2.

In conclusion, by incorporating an estimator of the stochastic process, we can provide sparse in-
terventions more resilient to time. These interventions tend to be costlier and the cost varies with
the time lag τ when they will be applied. However, robust (non-)causal methods achieve dissimilar
validity, thus making them not fully comparable to each other by measuring their cost. Nevertheless,
we believe the analysis has merit since it hints at a tradeoff between sparsity, cost and validity.

0 20 40 60 80 100
0

2

|I
|

Linear

0 20 40 60 80 100
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0 20 40 60 80 100

Linear+Seasonal

0 20 40 60 80 100
0

1

2

|I
|

0 20 40 60 80 100 0 20 40 60 80 100

Figure 8: Empirical average sparsity and standard deviation of interventions achieving recourse for
all causal recourse methods in the Linear (top) and Non-Linear (bottom) ANMs. We report the
results for all the available trends m(t) ∈ {Linear,Seasonal,Linear+Seasonal} and for some time
steps t. Legend: T-SAR CAR (ϵ = 3) SAR (ϵ = 3) and CAR (ϵ = 5) SAR (ϵ = 5).
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Figure 9: Empirical average sparsity and standard deviation of interventions achieving recourse
for all causal recourse methods in the realistic datasets. We report the results for m(t) =
Linear+Seasonal and for some time steps t. Legend: T-SAR CAR (ϵ = 3) SAR (ϵ = 3)
and CAR (ϵ = 5) SAR (ϵ = 5).
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Figure 10: Empirical average cost and standard deviation for the top-3 methods achieving recourse
in the Linear (top) and Non-Linear (bottom) ANMs. We report the results for all the available trends
m(t) ∈ {Linear,Seasonal,Linear+Seasonal}. Legend: T-SAR CAR (ϵ = 3) SAR (ϵ = 3)

IMF (ϵ = 3) and CAR (ϵ = 5) SAR (ϵ = 5). IMF (ϵ = 5).
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Figure 11: Empirical average cost and standard deviation for the top-3 methods achieving recourse
in the realistic datasets under a non-linear trend. Legend: T-SAR SAR (ϵ = 0.05) and
CAR (ϵ = 0.5) SAR (ϵ = 0.5) IMF (ϵ = 0.5).

G FURTHER EXPERIMENTS WITH A PERFECT ESTIMATOR P (Xt)

We replicated the experiments in Section 4.2 by using instead the perfect estimator P̃ (Xt) = P (Xt)
of the stochastic process for each dataset. Fig. 12 shows how T-SAR offers superior performances
in terms of validity than robust (non-)causal algorithmic recourse methods. In COMPAS and Loan,
T-SAR achieves now perfect validity over all time steps. These results highlight the importance of
relying on a good estimator of the stochastic process and, as outlined in Section 6, we argue it is also
a mandatory requirement for realistic applications of the proposed method.
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Figure 12: Effect of time on realistic datasets. Empirical average validity and standard error
(10 runs) for the robust (ϵ ∈ {0.05, 0.5}) and time-aware causal recourse methods for the realistic
datasets under a non-linear trend. Legend: T-SAR CAR (ϵ = 0.05) SAR (ϵ = 0.05)
IMF (ϵ = 0.05) and CAR (ϵ = 0.5) SAR (ϵ = 0.5) IMF (ϵ = 0.5).
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H ADDITIONAL THEORETICAL RESULTS ON COST STABILITY

In this section, we provide an upper bound on the cost stability of recourse suggestions when
P (X, Y ) is a discrete-time stochastic process.

Previous research has shown how providing recourse without considering the user’s preferences can
lead to sub-optimal interventions (De Toni et al., 2023b). This is why personalized AR, in line
with multi-attribute decision making (Keeney & Raiffa, 1993; Pigozzi et al., 2016), models the cost
function as an additive independence model C(x̂,x) = w⊤|x̂ − x|, where the weights w ∈ Rd

encapsulate the user’s preferences (De Toni et al., 2023a;b). We assume we can learn these weights,
either from historical data, e.g., surveys and interviews (Rawal & Lakkaraju, 2020), or by interacting
with the end-user (De Toni et al., 2023b). In the following, we explicitly consider the evolution of
the user’s preferences W, as it also impacts the effectiveness of recourse, although doing so can be
avoided for non-personalized AR approaches.

We assume the user preferences can be represented as a stochastic process P (Wt). We do not put
any prior assumption on how P (Wt) factorizes, since it is not relevant for our results. In line with
previous work (De Toni et al., 2023b), we could imagine P (Wt) follows a causal model. Then, we
can provide the following upper bound:
Theorem 8. Consider the discrete-time stochastic processes P (Xt, Y t), P (Wt) and a
parametrized cost function C(x̂,x;w) = ⟨|x̂−x|,w⟩ with bounded−k ≤ wt

i , X
t
i ≤ k for k ∈ R+.

Given a realization xt and user’s preferences wt, the variation of the cost of an intervention θ is
upper bounded by:

E
[∣∣C(x̂t+τ ,xt+τ ;wt+τ )− C(x̂t,xt;wt)

∣∣]
≤ k
√
d · E

[
∥wt+τ −wt∥+ ∥|x̂t+τ − xt+τ | − |x̂t − xt|∥

] (31)

where x̂t ∼ P do(θ)(Xt | Xt
nd(I) = xt

nd(I)) and x̂t+τ ∼ P do(θ)(Xt+τ | Xt+τ
nd(I) = xt+τ

nd(I)).

Theorem 8 shows how the recourse cost changes based on how the users’ preferences evolve, and
also over the relative difference of the proposed changes given the starting value.

Proof. We first apply the following substitutions (a) w′ = wt+τ and x̂′ = x̂t+τ (b) x′ = xt+τ

x̂′′ = x̂t (c) w = wt and x′′ = xt, to improve the clarity of the proof. Then, the proof is the
following:

E [|C(x,x;w′)− C(x,x;w)|] = E [|⟨|x′ − x| ,w′⟩ − ⟨|x− x| ,w⟩|]
= E

[∣∣⟨∣∣x̂′ − x′∣∣− ∣∣x̂′′ − x′′∣∣ ,w′⟩+ ⟨|w′ −w| ,
∣∣x̂′′ − x′′∣∣⟩∣∣]

(i)

≤ E
[
∥
∣∣x̂′ − x′∣∣− ∣∣x̂′′ − x′′∣∣∥ · ∥w′∥

]
+ E

[
∥|w′ −w|∥ · ∥

∣∣x̂′′ − x′′∣∣∥]
(ii)

≤ k
√
d · E

[
∥
∣∣x̂′ − x′∣∣− ∣∣x̂′′ − x′′∣∣∥]+ k

√
d · E [∥|w′ −w|∥]

= k
√
d · E

[
∥
∣∣x̂′ − x′∣∣− ∣∣x̂′′ − x′′∣∣∥+ ∥|w′ −w|∥

]
= k
√
d · E

[
∥wt+τ −wt∥+ ∥|x̂t+τ − xt+τ | − |x̂t − xt|∥

]
(32)

where (i) follows from the Cauchy-Schwarz inequality, and (ii) from the bounds we placed on X
and W. On the last step, we reorder the terms and we substitute the temporary variables with the
original values.
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