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ABSTRACT

Anomaly detection (AD) on hyperspectral images (HSIs) is of great importance
in both space exploration and earth observations. However, the challenges caused
by insufficient datasets, no labels, and noise corruption substantially downgrade
the quality of detection. For solving these problems, this paper proposes a s-
parse coding-inspired generative adversarial network (GAN) for weakly super-
vised HAD, named sparseHAD. It can learn a discriminative latent reconstruction
with small errors for background samples and large errors for anomaly samples.
First, we design a novel background-category searching step to eliminate the d-
ifficulty of data annotation and prepare for weakly supervised learning . Then, a
sparse coding-inspired regularized network is integrated into an end-to-end GAN
to form a weakly supervised spectral mapping model consisting of two encoders, a
decoder, and a discriminator. This model not only makes the network more robust
and interpretable both experimentally and theoretically but also develops a new
sparse coding-inspired path for HAD. Subsequently, the proposed sparseHAD de-
tect anomalies in latent space rather than original space, which also contributes to
the robustness of the network against noise. Quantitative assessments and experi-
ments over real HSIs demonstrate the unique promise of such an approach.

1 INTRODUCTION

Anomaly detection (AD) tackles the problem of exploring unknown space or material species due
to the limitation of prior knowledge and samples, which has been studied in many visual processing
tasks Schlegl et al. (2019), Akcay et al. (2018), Jiang et al. (2020b). Due to the rare and unbounded
nature of anomalies, such a problem stimulates the re-application of representation theory, among
which the anomaly detection based on sparse coding (SC) Olshausen & Field (1996) Olshausen
& Field (1997) is one. SC has successfully implanted its potential in AD Cong et al. (2011) Lu
et al. (2013), including the interpretability of brain neuron activity, the prevention of overfitting,
and enhancement of network robustness Arora et al. (2015). The common technique is to model
the normal samples so that the normal samples can be reconstructed with small errors, while the
anomaly samples have large reconstruction errors Luo et al. (2019).

However, above AD in traditional color images has its inherent limitations. Detectors tend to con-
fuse in some challenging scenarios, e.g., noise interference, background clutter, object camouflage,
similar appearance of different materials Xiong et al. (2018). In these cases, however, the intrinsic
material information of the anomaly and its surrounding background is distinguishable, and the most
common image capable of capturing the intrinsic material information is the hyperspectral images
(HSIs) Goetz et al. (1985). Although HSIs are capable of material recognition, due to the inherent
factors of spectral imaging and rarity of the anomaly, how to use this information effectively for AD
still faces many challenges. Especially, the challenges caused by insufficient datasets, no labels,
and noise corruption substantially downgrade the quality of detection Ghamisi et al. (2017). The
above problems lead us to develop a weakly supervised perspective in the absence of prior knowl-
edge and propose a novel anomaly detection framework termed Sparse Coding-inspired Generative
Adversarial Network for Hyperspectral Anomaly Detection (SparseHAD).

In our work, we first tackle the problem of insufficient datasets in the AD method based on deep
learning. Anomaly usually has the attribute of low occurrence probability. Furthermore, in HSIs,
the attribute with a dramatic difference from the background in terms of the spectral vector is further
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Figure 1: The spectral reconstruction results and their SAD values corresponding to different pixels
obtained by a GAN model. Left: The locations of anomaly pixels and background pixels in the color
composites. Middle and Right: The thick solid line and thin dotted line correspond to the spectral
vector curves at the same location in the original HSI and the reconstructed HSI, respectively. The
smaller the corresponding SAD values indicate that the spectral vectors are more similar, which also
means that the reconstruction errors are smaller.

attached, making it reasonable to extract a spectral vector corresponding to a spatial pixel as a sample
for AD. At this point, a 100× 100× 200 HSI would have 100× 100 samples with 200 dimensions.

Then we move on to the second problem, no labeling. Relying on the notion that the initially given
labels of weakly supervised learning (WSL) are not always ground-true Zhou (2018), we introduce
the WSL. Thus, a background-category searching step is designed to eliminate potential anomaly
samples and form a coarse background sample set. The embedding of this step not only breaks the
limitation of the sample label of unsupervised learning but also matches the efficient detection per-
formance of supervised learning Ergen & Kozat (2019). Subsequently, the coarse background sam-
ples can be regarded as normal samples and then fed into the proposed weakly supervised spectral
mapping model based on an end-to-end GAN. This model is expected to reconstruct the background
spectral vectors as far as possible in the case that the anomalous spectral vectors cannot be well
performed, as shown in Figure 1.

Strategy 1 Strategy 2

Figure 2: Taking strip noise in HSIs as an exam-
ple. Left: The spatial map of the 190th band of
the Texas-1 dataset, Middle and Right: detection
maps on Texas-1.

Noise corruption is the driving force for the
proposal of the sparse coding-inspired regular-
ized network (sparseNet), but the role of s-
parse coding in the proposed model has been
far more than making the network more robust
to noise. A deeper investigation shows that s-
parse coding can assist the above end-to-end
GAN with autoencoder (AE) to avoid learning
an approximation of the identity function Zhou
et al. (2020). Furthermore, it has strong in-
terpretability, which makes our network robust
both in theory and practice Luo et al. (2017).
To make optimization of our attached sparseNet
tractable, we recast it into the above GAN, which is a data-driven sparse coding-inspired network
without the need of precomputed sparse codes. Accordingly, we model a weakly supervised spec-
tral mapping function and finally arrived at our sparseHAD by exploring different reconstruction
error calculation strategies: original space reconstruction (Strategy 1) and latent space reconstruc-
tion (Strategy 2). We prefer the latent reconstruction, which can eliminate the influence of image
noise caused by degradation mechanisms, as shown in Figure 2 (Note that the stripe noise can still
be seen in Middle, while no trace of the stripe noise can be seen in Right.) This illustrates that latent
reconstruction makes our model highly robust to noise because the latent space makes the network
pay more attention to the difference of the intrinsic attribute of the spectrum Akcay et al. (2018).

The contributions of sparseHAD are three-fold: 1) We introduce the concept of WSL into HAD
and design a novel background-category searching step to satisfy the need of WSL; 2) A novel
interpretable and more robust sparesNet is developed, which can be efficiently implemented and
seamlessly integrated into an end-to-end GAN. To the best of our knowledge, this is the first time
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Figure 3: High-level overview of the proposed sparseHAD method in HSI.

sparse coding has been introduced into HAD; 3) The proposed framework predicts the anomalies in
latent space rather than the original space. Thus, our solution may eliminate the difficulty in data
annotation, make the network more robust, and avoid the dimension disaster.

2 RELATED WORK

Considering the difficulty of obtaining labels for HAD data, most existing work on deep learning-
based HAD can be roughly categorized into two-folds: semi-supervised and unsupervised. Some
semi-supervised learning works, like Jiang et al. (2020a) Xie et al. (2020b), exposes a common
weakness that they are unable to acquire the expected background labels that are always ground-
truth. As for the unsupervised approach, stacked AE Hinton & Zemel (1994) and adversarial AE
are used to extract in-depth features in the latent layer Zhao & Zhang (2018) Xie et al. (2019).
Hosseiny & Shah-Hosseini (2020) realize nonlinear feature extraction by the convolution stacked
AE network. MC-AEN Lu et al. (2020) combines global and local reconstruction errors of AE to
achieve detection. HADGAN Jiang et al. (2020b) first employ GAN Goodfellow et al. (2014) to
model background in HAD. Li et al. (2017) uses a transferred convolutional neural network (CNN)
to capture the difference between pixel pairs, while NDDLR Song et al. (2019) employs a CNN to
extract the abundance maps. The above methods can produce good detections, yet, the absence of
labels will eventually limit the detection performance.

3 PROPOSED METHOD

Problem Definition: This work proposes a weakly-supervised HAD framework. It learns a discrim-
inative latent reconstruction with small errors for background samples and large errors for anomaly
samples, which means the latent differential image (i.e., latent reconstruction errors) can highlight
the anomaly instances and restrain the background instances. Such a framework could be construct-
ed by recasting sparse coding as a novel regularized AE unit to GAN, termed sparseHAD. As shown
in Figure 3, it consists of three modules: data preparation, adversarial learning, and inference.
Mathematically, we define and formulate our problem as follows:

An 3D cube HSI H =
{
hi ∈ RL|i = (i1, i2) = N · (i1 − 1) + i2

}i1=M,i2=N

i1=1,i2=1
with L dimensions

can be reshaped into a 2D matrixH =
{
hi ∈ RL

}M×N
i=1

, where (i1, i2) represents the position coor-
dinates of the ith spectral vector in the spatial domain, M and N are the height and width in the spa-
tial dimension of HSI, respectively. Besides, a coarse background samples set B =

{
bi ∈ RL

}NB

i=1
can be obtained by discarding the potential anomaly samples in set H , where NB is the number of
coarse background samples. Consider the introduction of sparse coding, we need four symbols, H ,
HZ , Ĥ , and ĤZ , where H and Ĥ belong to the original HSI space, and HZ and ĤZ belong to
the the latent HSI space. Meanwhile, Ĥ is the reconstruction of H , and HZ and ĤZ are laten-
t mappings of H and Ĥ , respectively. Based on these notations, we are to establish a nonlinear
spectral mapping model Ψsparse(·) from the original HSI space to the latent HSI space as follows:

hz
i , ĥi, ĥ

z
i = Ψsparse (hi;B|B ⊂H) (1)
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where hz
i ⊂ HZ ∈ R(M×N)×LZ , ĥi ⊂ Ĥ ∈ R(M×N)×L, ĥz

i ⊂ ĤZ ∈ R(M×N)×LZ , and
LZ(� L) refers to the dimension of the latent space. The learning objective of the model Ψsparse(·)
is to capture the discriminative feature between the anomaly and the background, resulting in laten-
t differential image AZ between HZ and ĤZ more discriminative and robust than the original
differential image A betweenH and Ĥ .

3.1 DATA PREPARATION FOR WEAKLY SUPERVISED LEARNING

This step, also termed background-category searching, is to prepare for weakly supervised learning
and tries to predict coarse labels of the background samples in the given input. According to the
fact that there is no prior knowledge in HAD, we exploit an unsupervised clustering method, named
DBSCAN Ester et al. (1996) (See Appendix A for details), to obtain a category probability map
C = {ci|i = (i1, i2)}i1=M,i2=N

i1=1,i2=1 on given input HSI H . For different HSIs, the ranges of values
of ci (number of categories) are quite different and large, even up to fifty. Focusing on the theory
that the probability of anomaly occurrence is far lower than the background, we design a novel
probability-based background searching step which starts from calculating the sample number of
each category in C. Experimentally, we find that the number of samples of category “1” in C is
much higher than that of other categories, such as 9747 to 253. Naturally, if the probability of
occurrence of background samples is high, the number of background samples will be large. Thus,
we search for samples of category “1” and classify them into the background samples set B with
coarse label “1”, while the remaining categories are discarded as potential anomaly samples as:

B =
{
hi|i← c(i1,i2) = 1

}
(2)

For coarse background samples, they are allowed to have some category-errors, i.e., the predicted
coarse labels of B are not always ground-truth. Consequently, the model Ψsparse(·) is learned on
B in the form of weakly supervised learning.

3.2 SPARSE CODING-INSPIRED ADVERSARIAL LEARNING

SparseHAD Pipeline: A novel sparse coding-inspired GAN network, consisting of two encoders, a
decoder, and a discriminator, is constructed to form three subnetworks, as shown in Figure 3.

To meet the requirements of reconstruction and overcome the imbalance between GAN’s generator
and discriminator, we construct the first subnetwork, namely an end-to-end GAN with AE, as
Perera et al. (2019). The AE, consists of an encoder (GE) and a decoder (GD), behaves as the
generator (G) in GAN, and plays a role of reconstructing. We learn model Ψsparse(·) on B by the

mapping B → BZ = GE(WB + β), and then by the mapping BZ → B̂ = GD

(
ŴBZ + β̂

)
.

Especially, BZ =
{
bzi ∈ RLZ

}NB

i=1
and B̂ =

{
b̂i ∈ RL

}NB

i=1
correspond to the latent space and the

original space, respectively. The spectral discriminator DS not only see through the G’s tricks but
also avoid blurring of the reconstructed image B̂ caused by AE Pidhorskyi et al. (2018).

The reconstructed encoder network E is the second subnetwork and attempts to compress B̂ in-

to B̂Z by B̂Z = E
(
B̂
)

, where B̂Z =
{
b̂zi ∈ RLZ

}NB

i=1
. Compared to the previous methods, in

which latent vectors are obtained by minimizing the distance between encoder and decoder, this
subnetwork acquires latent vectors via minimizing latent distance with its parametrization. One of
the reasons this subnet works this way is to mitigate the effects of noise (e.g. stripe noise in HSIs)
Akcay et al. (2018), and another has to do with the third subnetwork.

The third subnetwork is a sparse coding-inspired regularized network (SparseNet) whose ob-
jective is to build networks from a neuroscience perspective to make them more robust Arora et al.
(2015) and conducive to anomaly detection Luo et al. (2017). Meanwhile, out of concern that the
end-to-end generator G might learn an approximation to the identity function without additional
network constraints, which would make it impossible for the generator to identify the anomaly from
the background Zhou et al. (2020), we strongly recommend attaching a novel SparseNet.

Mathematically, we model SC as a generative model as neuroscientists Olshausen & Field (1997)
do. Given a set of features corresponding to the normal samples as Y = {yi ∈ Rp}mi=1, our goal
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is to linearly reconstruct Y by an unknown coding dictionary matrix A ∈ Rp×q with small error
ε, i.e., Y = Aα + ε, where α ∈ Rq×m is the unknown sparse coefficients. The final nonconvex
sparse coding objective function is as follows:

i=m∑
i=1

‖yi −A ·αi‖22 +

i=m∑
i=1

S (αi) (3)

where S(·) is a nonlinear sparsity penalty function. In the past practice, heuristics based on alternat-
ing minimization is usually used to solve the above problem.

The most important problem is how to apply SC to the GAN model built above. Based on the un-
derstanding of SC theory and the deconstruction of Formula 3, we employ the following principles
to build a sparse regularized network: 1) Eliminating the impact of pre-computing and reducing
computational overhead. Most SC methods are computationally expensive because of the need to
pre-compute α, which largely affects the performance of those methods Joey et al. (2018). To solve
this problem, we decided to adopt a neural network optimization structure (GAN) instead of the
original heuristics based on the alternating minimization method. 2) Learning overcomplete repre-
sentations. The advantages of overcomplete representation are as follows: stronger robustness in
the case of unavoidable noise, more sparsity, greater flexibility in data matching structure, and com-
pliance with some response characteristics of primary visual cortex neurons Lewicki & Sejnowski
(2000). An overcomplete representation can be constructed when the number of basis vectors on
an overcomplete basis is greater than the dimension of the input and the input representation is not
unique Lewicki & Sejnowski (2000), that is, dimension q must be greater than dimension p inA for
Formula 3. Considering the above two points and the GAN constructed above, the most appropriate
means of applying SC to our model is to regard the latent layer output (i.e., BZ) of the end-to-end
GAN model as the input of the sparseNet. Then combined with encoder network E, the forward
feedback of sparse network can be expressed as: B̂ = GD

(
BZ
)

and B̂Z = E
(
B̂
)

.

Learning Objective: Our purpose is to fully mine the representative background information from
the coarse background samples set B during the learning process. Therefore, when the anomaly
samples pass through the well-learned network, there are large errors between the reconstructed
anomaly samples and the input anomaly samples because the network parameters are not suitable
for the anomaly samples. Moreover, if the above original reconstructed output does not retain the
anomaly information well, then the latent reconstructed output obtained from the original recon-
struction encoded by the subnetwork E will correspondingly fail to retain the valid information of
anomalies Akcay et al. (2018). Such a situation would result in a large error between the latent
layer and the latent reconstructed layer. To verify the efficacy of our idea, we incorporate two loss-
es (adversarial, sparsity) into our learning objectives, each of which optimizes the corresponding
subnetworks and accounts for its contribution.

The Adversarial Loss of the end-to-end GAN is to reconstruct the background samples set B =

{bi}NB

i=1. Meanwhile, to capture the distribution of background samples more effectively, L1 nor-
malization is applied to calculate the reconstruction error Akcay et al. (2018). The adversarial loss
with the reconstruction loss is reformulated as:

LA = min
G

(αdmax
DS

(Ld) + αrLr) (4)

Ld = Ebi∼p(bi)‖DS(bi)− Ebi∼p(bi)DS(b̂i)‖2 (5)

Lr = Ebi∼p(bi)‖bi − b̂i‖1, bi = G(bi) (6)
The Sparsity Loss is obtained by integrating subnetworks SparseNet and E. To avoid learning the
parameters of another new encoder and to reduce the computational overhead, the decoder GD

parameters Ŵ are reused in E as Ŵ T , just like tied weighted autoencoder. Particularly, we regard
Ŵ as the dictionary A in the sparseNet. Meanwhile, the L1 normalization is chosen as the sparse
penalty term. We specify s = b̂i for sparse coding and recast the sparse loss formula as follows:

LS = Ebi∼p(bi)

(
‖bzi − Ŵ Ts‖

2

F + ‖s‖1
)
, bzi = GE(bi) (7)

The Final Objective of the model Ψsparse(·) gives:

LF = LA + LS (8)
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Table 1: Details of the datasets used in the experiment.

Datasets Scene Resolution Sensor Spatial size Bands Anomaly material Anomaly proportion
G1 Airport 3.4m AVIRIS 100× 100 191 Three planes 0.6%
G2 Urban 3.5m AVIRIS 100× 100 191 unknown 0.52%
S1 Urban 3.5m AVIRIS 100× 100 189 Three planes 0.57%
S2 Airport unknown AVIRIS 100× 100 189 Three planes 1.34%

*Note that AVIRIS means the Airborne Visible Infrared Imaging Spectrometer

Model Ψsparse(·) is optimized by minimizing the loss function. When the multi-networks are jointly
learned to a certain epoch, the parameters δ = (W ,β, Ŵ , β̂) of model Ψsparse(·) are frozen and
used to inference for anomaly detection.

3.3 INFERENCE FOR ANOMALY DETECTION

During the Inference process, the givenH = {hi}M×Ni=1 is fed into the well-learned model as:

hz
i , ĥi, ĥ

z
i = Ψsparse (hi; δ) (9)

By the above inference, the model Ψsparse(·) learns three outputs. Due to only focusing on the learn-
ing backgrounds characteristics, this model can reconstruct the background samples well but cannot
reconstruct the anomalies well. This results in small errors between the reconstructed background
samples and the input background samples, and large errors between the reconstructed anomaly
samples and the input anomaly samples. Aiming to finding the anomalies in the HSI, we acquire
two differential images from Formula 9, which are the original differential image A and the latent
differential image AZ , respectively, as follows:

Strategy1 : A = ‖ĥi − hi‖1, Strategy2 : AZ = ‖ĥz
i − hz

i ‖1 (10)

where A =
{
ai ∈ RL

}M×N
i=1

and AZ =
{
âi ∈ RLZ

}M×N
i=1

. Formula 10 describes two strategies
for calculating the reconstruction error corresponding to Section 1.

During the Detection process, the Mahalanobis distance is adopted on AZ /A to detect anomalies.
Although bothA andAZ can highlight the anomaly instances and restrain the background instances,
AZ has better robustness than A. Consistent with this, the Mahalanobis distances in AZ will get
clearer anomalies and less background interference. In subsequent experiments, we will assess the
effectiveness of the above statement.

4 EXPERIMENTS

4.1 EXPERIMENTAL SETUP

The Datasets that we employed in evaluating the sparseHAD method include Gulfport Kang et al.
(2017), Gainesville Kang et al. (2017), San Diego-1 Zhang et al. (2015), and San Diego-2 Xu et al.
(2016), the details of which are listed in Table 1. It is worth noting that the datasets we used contain
both point and structural anomalies, and are in the form of different scales.

The Evaluation Metrics we used to report experimental results are the receiver operating character-
istic (ROC) curve Bradley (1997) and the area under the ROC curve (AUC) Bradley (1997), where
ROC can be plotted by the true positive rate (Pd) and the false positive rate (Pf ) at various thresholds
(τ ). Furthermore, the closer the AUC of (Pd, Pf ) value is to 1, the better the detection performance.
Conversely, the closer the AUC of (Pf , τ ) value is to 0, the lower the probability of false detection.
In anomaly detection, the main goal is to find and locate anomalies. Therefore, the AUC of (Pd, Pf )
value is taken as our primary consideration standard, followed by the AUC of (Pf , τ ) value.

The Baseline Methods we picked are five frequently cited as well as state-of-the-art HAD methods,
including a deep learning-based method SAFL Xie et al. (2020a), four traditional-based methods
CRD Li & Du (2014), LSMAD Zhang et al. (2015), FrFE Tao et al. (2019), and LSDM MoG Li
et al. (2020). For fine comparison, we reproduced the SAFL network as recommended in the paper
Xie et al. (2020a) and replaced the detector with the RX detector, termed SAFL RX.

Implementation Details and Parameter Analysis see Appendix B.
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Table 2: Evaluation AUC scores of the model’s effectiveness on different datasets.

Datasets
The AUC scores of (Pd, Pf ) The AUC scores of (Pf , τ)

sparseHAD L O EL EO sparseHAD L O EL EO
G1 0.9886 0.9690 0.9842 0.9700 0.0185 0.0203 0.0088 0.0204
G2 0.9792 0.9475 0.9678 0.9474 0.0052 0.0322 0.0074 0.0323
S1 0.9846 0.7598 0.9797 0.7598 0.0101 0.0273 0.0103 0.0273
S2 0.9914 0.9467 0.9895 0.9468 0.0140 0.0322 0.0117 0.0322

Average 0.9860 0.9060 0.9803 0.9060 0.0120 0.0280 0.0096 0.0280

Table 3: Evaluation AUC scores of the ablation study on different datasets.

Datasets
The AUC scores of (Pd, Pf ) The AUC scores of (Pf , τ)

#1 #2 #3 #4 #1 #2 #3 #4
G1 0.9886 0.9811 0.9715 0.9520 0.0185 0.0387 0.0243 0.0257
G2 0.9792 0.9658 0.9583 0.9511 0.0052 0.0305 0.0298 0.0360
S1 0.9846 0.9632 0.9578 0.9054 0.0101 0.0265 0.0301 0.0390
S2 0.9914 0.9865 0.9800 0.9515 0.0140 0.0323 0.0464 0.0713

Average 0.9860 0.9742 0.9669 0.9400 0.0120 0.0320 0.0327 0.0430

4.2 EXPERIMENTAL SETUP

Effectiveness Assessment: According to Section 3.3 ,there are two strategies to calculate the recon-
struction error. As shown in Figure 2, we have visually observed that Strategy 2 is more robust to
noise than Strategy 1. Furthermore, Strategy 2 is more resource-efficient, because AZ ’s dimension
is much smaller than A. In this section, we will prove the superiority of Strategy 2 quantitatively.
First, we take sparseHAD O to denote the detection method corresponding to Strategy 1, and use
sparseHAD L to represent the detection method on Strategy 2. Then, to strengthen the argument,
we add a new set of comparison experiments, in which E with the updatable parameters is used
instead of E with the tied weighted GD’ s parameters, which form two new comparison meth-
ods, sparseHAD EO, and sparseHAD EL. The performance comparisons are reported in Table 2.
One could find that sparseHAD L/sparseHAD EL outperforms sparseHAD O/sparseHAD EO con-
sistently on all evaluation metrics, which provides another piece of evidence for the superiority of
Strategy 1. We also find that the AUC scores of (Pd, Pf ) for sparseHAD L are always better than
sparseHAD EL, which explains the advantages and rationality of using weighted AE in our network.
Considering the above analysis, we decide to adopt sparseHAD L as our sparseHAD.

Ablation Study: To justify the benefits of the proposed sparseHAD method, we conduct the fol-
lowing ablation studies: #1 denotes the proposed method, #2 means the end-to-end GAN without
sparse coding is adopted as the core network, #3 represents that we only use AE to obtain re-
construction error, and #4 means that HSIs are directly fed into the RX detector to calculate the
Mahalanobis distances without prior access to any network. The AUC scores are tabulated in Table
3. We note that the average AUC scores of (Pd, Pf ) obtained for #1 is already high at 0.94003.
Therefore, from this point on, even the slightest improvement is important. When the deep neural
network is introduced, the performance of the system improved by an average of 2.69%. That is to
say, the deep neural network is beneficial. By replacing AE with an end-to-end GAN, the perfor-
mance was further improved by an average of 0.725%, which indicates that the adversarial learning
has a positive influence on HAD. Finally, by adding a sparse regularized network, the performance
improves further by 1.18%, indicating that the sparse regularized network is effective. By observing
the AUC scores of (Pf , τ ), we can also get a conclusion consistent with the AUC scores of (Pd, Pf ),
which once again strengthens the effectiveness and superiority of the network we designed.

Performance Comparison:

The AUC results of the competing methods and the sparseHAD method are shown in Table 4, where
sparseHAD by itself delivers the best performance in terms of AUC scores of (Pd, Pf ). Specifi-
cally, relative to the AUC score of (Pd, Pf ), it exceeds the second-best LSDM MoG by an average
of 0.975%. Although its AUC scores of (Pf , τ ) are lower than SAFL RX, it still shows a great
competitive advantage over other comparison algorithms. The corresponding visual detection maps
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(a)

(b)

(c)

(d)

Color composites Reference map SparseHAD SAFL_RX CRD LSMAD FrFE LSDM_MoG

Figure 4: Pseudo-color image, binary reference maps and detection maps of the compared methods
for (a) Gulfport, (b) Gainesville, (c) San Diego-1, and (d) San Diego-2.

Table 4: Evaluation AUC scores of the different network-based methods on different datasets.

Datasets
The AUC scores of (Pd, Pf )/(Pf , τ)

sparseHAD SFAL RX CRD LSMAD FrFE LSDM RMoG
G1 0.9886/0.0185 0.8983/0.0323 0.9239/0.0324 0.9762/0.0213 0.9828/0.1135 0.9521/0.0037
G2 0.9792/0.0052 0.9533/0.0216 0.9493/0.0254 0.9649/0.0356 0.9728/0.0272 0.9577/0.0039
S1 0.9846/0.0101 0.9655/0.1526 0.9816/0.0089 0.9534/0.0369 0.9750/0.0231 0.9789/0.0026
S2 0.9914/0.0140 0.9444/0.0742 0.9792/0.0124 0.9832/0.0461 0.9742/0.0177 0.9893/0.0016

Average 0.9860/0.0120 0.9403/0.0701 0.9585/0.0198 0.9694/0.0349 0.9762/0.0453 0.9695/0.0029

(as shown in Figure 4), supporting by the quantitative results of Table 4, reveal that the detection
maps obtained by the proposed sparseHAD are closest to the ground truths. The corresponding ROC
curve of (Pd, Pf ) is shown in Appendix C.

Overall results verify that our method yields superior results than leading state-of-the-art methods.

5 CONCLUSION

In this paper, we study the AD task on HSIs from a novel weakly supervised perspective where a
spectral mapping model is constructed to reconstruct background samples with small errors. The
proposed sparseHAD examines the role of three subnetworks, especially the sparseNet, and refor-
mulate sparse coding into the objective function of the other two GAN-based subnetworks. Further-
more, we dive deep into the mechanics of reconstruction error calculation in different spaces. The
empirical findings in the assessment experiment provide an insight into the robustness of the pro-
posed method. Further ablation study ensures the reliability and effectiveness of the proposed ideas
and methods. Experiments of performance comparison show the sparseHAD method outperforms
many state-of-the-art detection methods. The superior performance of our method exhibits the value
of weakly supervised learning and sparse coding in hyperspectral tasks.
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Table 5: Parameters of all methods over the four datasets

Datasets
SparseHAD SAFL RX FrFE LSDM MoG CRD LSMAD

Fixed parameters
All MinPts=1 As Xie et al. (2020a) – k=4 λ=10−6 r=3,k=0.003
– Settable parameters

G1 ε=0.13 – – r=6 wout=17,win=13 –
G2 ε=0.08 – – r=2 wout=9,win=7 –
S1 ε=0.19 – – r=4 wout=13,win=7 –
S2 ε=0.22 – – r=4 wout=17,win=13 –

Kang Zhou, Shenghua Gao, Jun Cheng, Zaiwang Gu, Huazhu Fu, Zhi Tu, Jianlong Yang, Yitian
Zhao, and Jiang Liu. Sparse-gan: Sparsity-constrained generative adversarial network for anoma-
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Zhihua Zhou. A brief introduction to weakly supervised learning. Natl. Sci. Rev., 5(1):44–53, 2018.

A APPENDIX: PRELIMINARIES

DBSCAN Ester et al. (1996) is an unsupervised clustering method with two parameters (ε: the min-
imum distance between adjacent points, MinPts: the minimum number of points), named density-
based spatial clustering of applications with noise. Given input HSI H , the DBSCAN scan every
pixels neighbors within ε distance. Once the number of neighbors of the core pixel exceeds MinPts,
a cluster is formed. Subsequently, the neighbors within ε distance of the core pixel are assembled
iteratively to obtain the category probability map C = {ci|i = (i1, i2)}i1=M,i2=N

i1=1,i2=1 .

B APPENDIX: IMPLEMENTATION DETAILS AND PARAMETER ANALYSIS

Implementation Details contain learning details and parametric analysis. First, we implement our
model in TensorFlow (v1.10.0, Python 3.6.0, and CUDA 10.0) by optimizing the networks using
Adam Kingma & Ba (2014) with an initial learning rate 0.0001, the number of hidden nodes 20. The
batch size is the same as the number of input spatial pixels, and the epoch is 3000. The weighting
parameters in Formula 4 is chosen as αd = 0.5 and αr = 50 empirically. Both GE and GD dopt
two fully connected network layers, which are then activated by leaky ReLU function. Empirically,
we set the number of latent layer units to 20. The DS has the same structure as the GD. E and GE

share the same structural details but different parameters

Parameter Analysis: In the data preparation stage, there are two parameters: ε and MinPts. Con-
sidering the pixel-level processing characteristics of the proposed method and its insensitivity to
parameter ε, we fixed MinPts as 1. Therefore, here we focus on the parameter ε, which mainly con-
trols the outputs of the category probability map. With Eps varying from 0.01 to 0.25, the optimal ε
values for different datasets are shown in Figure 5. The AUC scores achieve the bests when ε is 0.13
for Gulfport, 0.08 for Gainesville, 0.19 for San Diego-1, and 0.22 for San Diego-2, respectively. For
the baseline methods, we find the optimal parameters for them to achieve comparable performance.
Their exact configurations are listed in Table 5.

C APPENDIX: ROC CURVES OF (Pd, Pf ) FOR THE METHODS

This visualization reveals that the proposed sparseHAD usually demonstrates higher Pd as Pf vary-
ing from 10e-4 to 1 as shown in Figure 6. The conclusions are consistent with Table 3.
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Figure 5: Effects of the parameter Eps (ε) over the AUC scores of (Pd, Pf ) on each dataset.
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Figure 6: ROC curves of (Pd, Pf ) for the methods on (a) Gulfport, (b) Gainesville, (c) San Diego-1,
and (d) San Diego-2.

12


	Introduction
	Related Work
	Proposed Method
	Data Preparation for Weakly Supervised Learning
	Sparse Coding-inspired Adversarial Learning
	Inference for Anomaly Detection

	Experiments
	Experimental Setup
	Experimental Setup

	Conclusion
	Appendix: Preliminaries
	Appendix: Implementation Details and Parameter Analysis
	Appendix: ROC Curves of (Pd,Pf) for the Methods

