
Under review as a conference paper at ICLR 2023

TRAINING EQUILIBRIA IN REINFORCEMENT LEARN-
ING

Anonymous authors
Paper under double-blind review

ABSTRACT

In partially observable environments, reinforcement learning algorithms such as
policy gradient and Q-learning may have multiple equilibria—policies that are
stable under further training—and can converge to equilibria that are strictly sub-
optimal. Prior work blames insufficient exploration, but suboptimal equilibria
can arise despite full exploration and other favorable circumstances like a flexible
policy parametrization. We show theoretically that the core problem is that in
partially observed environments, an agent’s past actions induce a distribution on
hidden states. Equipping the policy with memory helps it model the hidden state
and leads to convergence to a higher reward equilibrium, even when there exists
a memoryless optimal policy. Experiments show that policies with insufficient
memory tend to learn to use the environment as auxiliary memory, and parameter
noise helps policies escape suboptimal equilibria.

1 INTRODUCTION

In Markov decision processes (MDPs), Q-learning and policy gradient methods are known to always
converge to an optimal policy (Watkins and Dayan 1992; Bhandari and Russo 2019) subject to the
assumptions detailed in Section 3. In non-Markovian environments such as partially observable
MDPs (POMDPs), this guarantee fails when using Markovian policies: the algorithms don’t always
converge to an optimal policy, and there may be multiple (suboptimal) policies surrounded by ‘basins
of attraction’. This is true even in the tabular setting with full exploration, where formal convergence
guarantees are strongest.

For example, consider the double-tap environment described in Figure 1. The optimal policy in
this environment is to always choose action a2. However, a policy that favors a1 is stuck in a local
optimum. Thus this policy will never converge to the optimal policy even with further training,
despite exploring the full state-action space.

We call a policy that is fixed under further training an equilibrium of the training process. For policy
gradient methods, equilibria correspond to stationary points of the expected return; for Q-learning,
equilibria are fixed points of the Bellman equation. Pendrith and McGarity (1998) construct an
environment in which Q-learning may converge to a suboptimal policy. We extend their finding and
show that in POMDPs, policy gradient methods and Q-learning may have multiple training equilibria
and sometimes converge to a suboptimal equilibrium despite full exploration and other favorable
circumstances (described in Section 3).

S1 S2a1, 1

a2, 0

a1, 0

a2, 2

Figure 1: The double-tap environment. Arrows are transitions between states, labeled with a
corresponding action and reward. The agent is rewarded when it chooses the same action twice in a
row. The states s1, s2 are unobserved. The optimal policy is to always choose action a2. However, a
policy that favors a1 is caught in a local optimum, since picking a2 is only profitable once done with
high probability (see Figure 2a).

1

Under review as a conference paper at ICLR 2023

Theoretical results. We show that multiple equilibria can only emerge when the distribution of
unobserved states depends on past actions (Proposition 3.1). Our interpretation is that a memoryless
policy must play a coordination game with its past self, and may get trapped in suboptimal Nash
equilibria. For some contexts, we formalize this interpretation and show that Nash equilibria of
coordination games correspond to the training equilibria of an associated RL environment (Theo-
rem 3.2). A sufficient amount of memory resolves the coordination game and provably implies a
unique optimal training equilibrium (Proposition 4.1). Thus memory can be crucial for convergence
of RL algorithms even when a task does not require memory for optimal performance.

Empirical results. (Reported in Section 5). We confirm empirically that our theoretical results hold
in practice. In addition, we show that even a memoryless policy can often learn to use the external
environment as auxiliary memory, thus improving convergence in the same way that policy memory
does. However, there exist counterexamples in which even a flexible environment that allows for
external memory is not sufficient to learn an optimal policy. We also confirm a hypothesis that in
environments with multiple equilibria, parameter noise (Rückstieß et al. 2008; Plappert et al. 2018)
can lead to convergence to better equilibria, thus providing a novel explanation of why parameter
noise is observed to be beneficial.

2 BACKGROUND ON POMDPS

Reinforcement learning (RL) (Sutton and Barto 2018) is the problem of training an agent that takes
actions in an environment in order to maximize a reward function. The most common formalism for
reinforcement learning environments is the Markov decision process (MDP). An MDP models an
environment which is Markovian in the sense that the environment state st and reward rt at time t
depend only on the previous state st−1 and the previous action at−11. Crucially, in this formalism
a policy has access to the entire state st at each step, and thus no memory is necessary to perform
optimally.

Most realistic environments are not MDPs, since real-world problems are invariably partially observ-
able. For example, a driving agent must anticipate the possibility of other drivers emerging from
side-roads even if they are currently out of sight. To model partial observability, it is common to ex-
tend the MDP formalism to define a partially observable Markov decision process (POMDP) (Åström
1965). The main idea is to model the environment as an unobserved MDP, and allow the policy to
access observations sampled from an observation distribution O(o | s) conditional on the current
state.

Formally, a POMDP is a tuple (S,A,O, T,O,R, γ, η0), where S is the set of states, A the set of
possible actions, O the set of observations, T the transition kernel, O is the conditional distribution
of observations, R is the reward function, γ ∈ [0, 1) is the discount factor, and η0 is the initial state
distribution. Let st denote the state at time t. Then a timestep proceeds as follows: an observation
is drawn according to the distribution O(ot | st) and given as input to the policy, the policy outputs
an action at, the agent receives reward R(st, at), and the next state is generated according to the
transition kernel T (st+1 | st, at).

3 TRAINING EQUILIBRIA IN POMDPS

It is well-known that Q-learning and policy gradient methods converge to a globally optimal policy if
the environment is a (fully observable) MDP (Watkins and Dayan 1992; Bhandari and Russo 2019).
However, in partially observable environments we have no such general guarantees. In particular, in
this section we will study partially observable environments where RL algorithms do converge, but
there exist multiple policies—training equilibria—to which they might converge, some of which are
suboptimal.

It is also possible that a training algorithm may not converge at all. Q-learning with discontinuous
action-selection methods2 may end up oscillating between two suboptimal policies (Gordon 1996).
However, it is known that for Q-learning with continuous action selection, fixed points always exist

1In some formulations, the reward may also depend on the current state st.
2For example ε-greedy action selection (Sutton and Barto 2018).

2

Under review as a conference paper at ICLR 2023

0.0 0.2 0.4 0.6 0.8 1.0
p = probability of taking action a1

15

20

25

30

35

40

Ex
pe

ct
ed

 re
tu

rn
 J(

p)

Expected discounted return
Globally optimal policy
Locally optimal fixed point

(a) Expected return of memoryless policy.
Gradient ascent on expected return J(p) con-
verges to one of the extremes p = 0 or p = 1.
A low probability of a1 is preferable, but an
agent that favors a1 can stay stuck in the local
maximum (orange).

(a1 s1) =
1 0.0

0.20.40.60.81.0

(a1
s2) = 2

0.0
0.2

0.4
0.6

0.8
1.0

Ex
pe

ct
ed

 re
tu

rn
 J(

)

0
5
10
15
20
25
30
35
40

Trajectory of gradient ascent
Policy reached

(b) Expected return of a policy with a one-
step memory m(t) = a(t−1). The return is
a function of policy parameters θ1 and θ2.
This function has an easily reachable global
optimum at θ2 = π(a1 | s2) = 0 and θ1 < 1,
and no suboptimal fixed points.

Figure 2: The expected return of parametrized policies in the double-tap environment from Figure 1.
An optimal solution to this task requires no memory, yet the optimal policy is more easily reached
by a policy with memory. In both cases we use discount factor γ = 0.95, though the results are not
sensitive to the value of the discount factor.

(Perkins and Pendrith 2002). In summary, it is possible for training algorithms to not converge at
all, but this is a relatively rare circumstance that can be mitigated. In the rest of this work, we will
assume we are working in a setting in which convergence is guaranteed, though not necessarily to an
optimal policy.

To avoid ‘spurious’ convergence problems, we will introduce the following assumptions on the
environment and the learning algorithm. In the fully observable setting, theses assumptions are
enough to guarantee convergence of Q-learning and policy gradient methods to an optimal policy. As
we will see, in partially observed environments this is not the case.
Assumption 3.1 (Full exploration). Every state-action pair is seen infinitely often during training.
Assumption 3.2 (Flexible policy parametrization). The policy space is closed under policy improve-
ment.3

Assumption 3.3 (Bounded rewards). There exists some Rmax such that for all state-action pairs
(s, a) ∈ S ×A we have R(s, a) ≤ Rmax.
Assumption 3.4 (Robbins-Monro). For all state-action pairs (s, a), the learning rate (αn)n≥0
satisfies

∑∞
i=0 αn(i,s,a) =∞ and

∑∞
i=0 α

2
n(i,s,a) <∞. Here, n(i, s, a) is the index corresponding

to the ith time that the agent visits state s and takes action a.

3.1 TRAINING EQUILIBRIA

We can view a training algorithm as a stochastic mapping A that maps a policy πk onto an improved
policy πk+1 = A(πk).
Example 3.1 (Idealized policy gradient). Idealized vanilla policy gradient is a training algorithm
on the space of parametrized policies Π = {πθ; θ ∈ Θ} that maps a policy πθk to A(πθk) = πθk+1

,
where

θk+1 = θk + η∇R(θk),

R is the expected return, and η > 0 is a step-size hyperparameter.

Any training algorithm induces a stochastic process in the policy-space Π given by (π0, π1, . . .). It is
natural to ask what the fixed points of this process are. A training equilibrium of a training algorithm

3Tabular policies satisfy this requirement, as do neural networks if they are flexible enough to represent any
tabular policy.

3

Under review as a conference paper at ICLR 2023

A is then a policy π ∈ Π that is in expectation held fixed by the training algorithm: E[A(π)] = π.
For example, the training equilibria of idealized vanilla policy gradient are all the policies πθ such
that their parametrization satisfies∇R(θ) = 0, that is the class of stationary points of the expected
return in parameter space.

In the following we will be study two training algorithms in particular: REINFORCE, also called
‘vanilla policy gradient’ (Williams 1992; Achiam 2018) and Q-learning (Watkins and Dayan 1992).
We consider the setting where all Assumptions 3.1 through 3.4 are satisfied. Under these conditions
it follows from standard convergence results (Bhandari and Russo 2019; Watkins and Dayan 1992)
that in MDPs the set of training equilibria is exactly the set of optimal policies. This is not the case in
POMDPs, as we show via counterexample in Section 3.2.

The core problem is that the conditional distribution ηπ(s | o) of the hidden state given an observation
can vary depending on past actions, thus ηπ depends on the policy. Indeed, when η does not depend
on past actions, then both policy gradient and Q-learning algorithms are guaranteed to converge to an
optimal policy.
Proposition 3.1 (Optimality in POMDPs, informal). Assume that the conditional distribution ηπ(s|o)
of the POMDP state given an observation is independent of the policy in the sense that there exists a
distribution η such that for all state-observation pairs (s, o) and all policies π, η(s | o) = ηπ(s | o).
Then if conditions 3.1-3.4 hold, Q-learning and policy gradient methods converge to an optimal
policy.

A rigorous statement and proof of Proposition 3.1 is given in Appendix C.1. Having identified
dependence on past actions as the source of convergence problems, we now discuss a simple example
of an environment a suboptimal training equilibrium.

3.2 THE ‘DOUBLE-TAP’ ENVIRONMENT

This environment is introduced in Figure 1. The optimal policy is to always choose action a2.
However, a policy that favors a1 is stuck in a local optimum, since picking a2 is only profitable once
done with high enough probability (see Figure 2a).

Indeed, consider applying a policy gradient method (Sutton, McAllester, et al. 2000) to the double-tap
environment. Policy gradient algorithms use stochastic gradient descent to maximize the discounted
return J(θ) = E

[∑∞
t=0 γ

trt
]
, where rt is the reward received in timestep t.4 Since there are no

observations in this environment, we can define a policy π using only a single parameter p, the
probability of taking action a1:

π(a) =

{
p if a = a1
1− p otherwise.

The expected single-step return for this policy is5

Eπ[r] = Pr(s = s1 and a = a1) + 2 Pr(s = s2 and a = a2)

= p2 + 2(1− p)2.

The full discounted reward is then given by J(p) = (p2 + 2(1− p)2)/(1− γ), plotted in Figure 2a.
As is visible in this plot, gradient ascent may get stuck in the local maximum at p∗ = 1 if initialized
poorly at some p0 > 2/3.

In terms of the environment dynamics, this is because actions not only determine the reward in the
current timestep but also affect future state: choosing action a1 always leads to state s1. The policy
does not know which state it is in, and so needs to choose an action that works well on average. If the
environment is in state s1 with high probability then it is best to pick action a1, which reinforces the
suboptimal equilibrium.

4In non-episodic problems the objective function of policy optimization methods is the average rate of
reward limT→∞ 1/T

∑T
t=0 E[rt] rather than the full discounted return (Sutton and Barto 2018, chapter 13.6).

This amounts to the same thing in our case, since the rate of reward is constant after the first timestep.
5This isn’t quite true for the first reward, where the value is simply p or 2(1− p), depending on whether we

start in state s1 or s2. We ignore this for simplicity, since the effect on the training dynamics is negligible.

4

Under review as a conference paper at ICLR 2023

A straightforward solution is then to augment the policy with memory: if the policy can condition
on the action it took in the previous timestep, it will take action a2 conditional on having done the
same in the previous timestep, thus making a2 a better option than a1. We discuss this approach in
Section 4.

3.3 CORRESPONDENCE TO NASH EQUILIBRIA AND SELF-PLAY

A Nash equilibrium (Nash Jr 1950) is a solution to a non-cooperative game, in which no player
can increase their payoff by switching to a different strategy so long as the other player’s strategies
are held fixed.6 A crucial assumption in such games is that decisions are made simultaneously: no
player has knowledge of the other player’s move before they move. If this assumption is broken,
then the player that goes first could trigger a departure from the Nash equilibrium by playing a
non-equilibrium strategy.

This is reminiscent of the POMDP setting, in which a policy has no knowledge of its own past (or
future) history and thus is stuck in an equilibrium determined by its own past actions. Just like in the
game-theoretic setting, when a policy is allowed to condition on its past it no longer gets stuck in
suboptimal equilibria (Section 4).

In the following we make this analogy formal in two ways. First we show that for every two-player
game, there exists a corresponding RL environment with the same dynamics, and that the training
equilibria of the environment correspond to the Nash equilibria of the game. Second, we point
to results from the literature on self-play in reinforcement learning, which shows that RL training
converges to a Nash equilibrium.

Two-player games. Any two-player game can be turned into a ‘single-player’ RL environment
by having the RL agent play against a fixed policy. In particular we can choose a ‘best-response’
opponent policy that is able to see the history (in contrast to the trained policy, which is memoryless),
and always chooses the action that would have performed best against previous actions within an
episode. An example of this kind of environment is the Battle of the Sexes environment introduced
in Section 5. A trained policy will converge to a Nash equilibrium, and there is a one-to-one
correspondence between Nash equilibria and training equilibria.

Theorem 3.2 (Informal). Let E be a POMDP constructed from a two-player game G by letting the
policy play against a best-response strategy. Then the following are equivalent:

(i) The policy π is a policy-gradient fixed point in E.

(ii) The policy π is part of a Nash equilibrium in G.

A formal statement and proof of Theorem 3.2 is available in Appendix B.

Self-play. In general, equilibria can arise when an agent interacts with other agents that are also
learning, or copies of itself (i.e. agents that share the same policy). Indeed it is well known that
multi-agent RL and self-play converge to a Nash equilibrium that is not necessarily Pareto-optimal
(Conitzer and Sandholm 2003).

We have shown two formal results that highlight the correspondence between game-theoretic Nash
equilibria and RL training equilibria. In practice, the analogy seems to extend to contexts outside of
self-play or those covered in Theorem 3.2. Nash-equilibrium-like dynamics can arise whenever an
agent’s past actions affect the environment in a way that the agent cannot condition its future actions
on. When this happens, the agent effectively interacts with its past self and typically ends up in a
Nash equilibrium of a cooperative game. For example, the double-tap environment is equivalent to a
coordination game ?? in which two copies (agents that share the same policy) each take an action at
every timestep: both get reward 1 if they both take action a1 and reward 2 if they both take action a2,
and reward 0 otherwise. (We invite the reader to check that this indeed leads to the same dynamics).

6We provide a complete definition in Appendix B.

5

Under review as a conference paper at ICLR 2023

6 4 2 0 2 4 6
 (mean of parameter noise, logit scale)

0.75
1.00
1.25
1.50
1.75
2.00

Ex
pe

ct
ed

 re
tu

rn
 J(

) stddev = 0
stddev = 1
stddev = 2
stddev = 4

0.002 0.018 0.119 0.5 0.881 0.982 0.998
Action probabilities sigmoid() for reference

Figure 3: The effect of parameter noise on the curve of expected return in the ‘double-tap’ environment.
The blue curve (no parameter noise) is identical to the curve in Figure 2a transformed to logit scale.
With increasing noise scale the bad local maximum is ‘smoothed out’ and gradient ascent can more
easily converge, even when initialized very unfavorably.

4 MITIGATING FACTORS: MEMORY AND PARAMETER NOISE

4.1 MEMORY CAN ELIMINATE SUBOPTIMAL LOCAL OPTIMA

In MDPs, it is standard to work with policies that are memoryless: the action at depends only on
the current observation ot, not on any previous observations or actions. Many partially observable
environments however require memory for optimal play. A policy with memory samples an action
from a conditional distribution π(at | ot,mt), where mt is the memory state at time t. In the limit,
the memory might contain the entire history: mt = (o0, a0, o1, . . . , at−1). In this case we say that
the policy has unbounded memory. In deep RL practice, it is common to use recurrent policies that
keep track of a hidden state which encodes relevant past observations, or to concatenate several
observations into a single input to the policy.

We find that memory is useful even when an optimal policy does not require memory to solve a task.
This is because policies with (unbounded) memory confer the same convergence guarantees to RL
algorithms in POMDPs that hold in the MDP setting.

Proposition 4.1 (Policy memory implies convergence to an optimal equilibrium (informal)). Assume
the conditions 3.1-3.4 hold. If a policy has unbounded memory, then Q-learning and policy gradient
methods are guaranteed to converge to an optimal policy.

Remark 4.1. If only the past k timesteps are relevant to the environment dynamics and the reward,
then a policy memory of maximum length k is enough to obtain the same guarantee.

Formal statements and proofs of Proposition 4.1 and Remark 4.1 are available in Appendix C.2.

In the double-tap environment, switching to a policy with memory (one timestep is enough) removes
suboptimal local maxima from the graph of the expected return. This is shown in Figure 2b, where
we use a two-parameter policy with a one-step memory. Details on the parametrization and the
calculation of the expected return are available in Appendix A.1.2.

Why not use memory? A practical reason not to use memory is that memoryless policies are
simpler to implement, and less expensive to train and perform inference on. Moreover, the principle
of least privilege (Saltzer and Schroeder 1975) recommends that systems should only be given the
minimal capabilities needed. So, if a memoryless policy can achieve the task at hand, it should be
favored over a policy with memory. For example, memoryless policies cannot leak information from
a previous interaction with another user. Memoryless policies are also easier to test and validate, as
they depend only on the current state, rather than the entire history of states – an exponentially larger
space.

6

Under review as a conference paper at ICLR 2023

0 1 2 3
Parameter noise scale

0.0

0.2

0.4

0.6

0.8

1.0
Su

cc
es

s f
re

qu
en

cy

Double-Tap

Policy-gradient + m
Q-learning + m
Q-learning
PG + param noise

0 2 4 6
Parameter noise scale

0.0

0.2

0.4

0.6

0.8

1.0

Su
cc

es
s f

re
qu

en
cy

Battle of the Sexes

Figure 4: We confirm that parameter noise is beneficial in the Double-Tap (left) and the Battle of the
Sexes environment (right). Blue: parameter noise is beneficial for tabular policy gradient converge.
Green: Q-learning with external memory does well. Red: a memoryless policy does badly.

4.2 PARAMETER NOISE CAN ELIMINATE SUBOPTIMAL LOCAL OPTIMA

Since it may not always be feasible or desirable to equip policies with sufficient memory for
convergence, we investigate Unfortunately, it is not feasible to equip policies with unbounded memory,
we investigate parameter noise for policy gradient methods, which can alleviate the convergence
failures outlined in Section 3. Since training equilibria correspond to stationary points of the expected
return, it is plausible that more exploration in parameter space is helpful. This is in contrast to
exploring in the action space, which Q-learning and VPG already do via stochastic policies. In
other words, parameter noise explores at the level of strategies (‘always take action a2’) rather than
individual actions (‘take action a2 in timestep t’).

Parameter noise (Rückstieß et al. 2008; Plappert et al. 2018; Fortunato et al. 2018) samples a
parameter setting θ ∼ N (µ,Σ) at the beginning of an episode, then hold that parameter fixed for the
duration of the episode. At the end of an episode, we update the mean µ via gradient descent:

∇µ Eθ
[
J(θ)

]
= Eε

[
∇µJ(µ+ εTΣ1/2)

]
= Eε

[
(∇J)(µ+ εTΣ1/2)

]
, (1)

where ε ∼ N(0, I) and we use the reparametrization trick (Kingma and Welling 2014) in the first
equality. The covariance Σ is held fixed.

As is visible in Figure 3, adding parameter noise effectively ‘smoothes out’ the curve of the expected
return, making an optimal policy easily reachable even for a memoryless policy. We confirm this
empirically in Section 5.

5 EXPERIMENTS

5.1 DOUBLE-TAP

Our first experiment is a sanity check: we confirm experimentally that the properties we show
analytically for the double-tap environment in Section 3 also hold in practice. Our results in Figure 4
confirm that memoryless policies (Q-learning, in red, and policy gradients, in blue at x = 0) often
fail to converge to the optimal policy. Parameter noise is helpful for policy gradients, with success
frequency increasing with the standard deviation of the noise. In addition, we study augmenting the
environment with external memory: we augment the action, state, and observation space by allowing
the agent to flip a bit in addition to its other actions. Every timestep, it observes the value of the bit.
The policy itself is still memoryless, but it can learn to use this external memory to perform better on
both the environments we study. Results are shown in Figure 4.

7

Under review as a conference paper at ICLR 2023

0.0 0.2 0.4 0.6 0.8 1.0
Timesteps 1e7

1

2

3

4

5

6

7

8

M
ea

n
Ep

iso
de

 R
et

ur
n

Size of ext. memory (bits)
0
1
2
3
4

0.0 0.2 0.4 0.6 0.8 1.0
Timesteps 1e7

1

2

3

4

5

6

7

8

Size of ext. memory (bits)
5
6
7
8

Figure 5: In the sequential bandit environment, PPO benefits from external memory. Left: more
external memory brings additional benefit. Right: after a certain point, the complexity cost of
additional external memory outweighs the marginal benefit.

5.2 BATTLE OF THE SEXES

Battle of the Sexes is a game in which two players must coordinate—without communication—on
which concert to go to: Bach or Stravinsky. The two players have opposed preferences, but both
prefer being together to being alone. This results in a payoff matrix described in Table 1. Note that
this game has two Nash equilibria: (Bach, Bach) and (Stravinsky, Stravinsky).

We turn this game into an RL environment by letting the agent choose the actions of Player 1
and have Player 2 be controlled by the environment. Concretely, the policy action space is A =
{Bach,Stravinsky}, and the reward is equal to Player 1’s payoff in Table 1. The actions of Player 2
are chosen by the environment to achieve maximal return for Player 2 on average given the agent’s
past actions in the episode: at timestep t > 0, Player 2 chooses action

aPlayer 2
t = argmaxa∈A

∑
t′<t

rPlayer 2(at′ , a),

where rPlayer 2(a′, a) is the payoff for Player 2 given that Player 1 takes action a′ and Player 2 takes
action a. Player 2’s first action is chosen uniformly at random.

The two Nash equilibria of the original game correspond to training equilibria of Q-learning or policy
gradient. As discussed in Section 3.3, it is possible to generalize this notion to show that for every
two-player game, Nash equilibria correspond to stationary points of the expected return.

Player 2
Bach Stravinsky

Player 1 Bach 1, 2 0, 0
Stravinsky 0, 0 2, 1

Table 1: Payoff matrix for Battle of the Sexes. Entries are tuples r1, r2, where r1 and r2 are payoffs
for player 1 and player 2 respectively.

5.3 SEQUENTIAL BANDIT PROBLEM

We now study how well external memory works in practice. In all our prior environments there exists
an optimal policy that is memoryless. We now introduce a new environment in which this is not the
case: the sequential bandit environment. In this environment there are ten actionsA = {a1, . . . , a10},
and an episode is ten steps long. The environment returns reward 1 for every new action taken in

8

Under review as a conference paper at ICLR 2023

order starting from a1, that is for all k ∈ {1, . . . , 10},

R(s, ak) =

{
1 if actions a1, . . . , ak−1 have already been taken in this episode
0 otherwise.

To reliably execute the optimal policy (in timestep t, take action a(t) = at), the agent needs to
remember which actions it has already taken.

We study how a memoryless policy fares in an augmented version of this environment. As in
Section 5.1, we augment the environment with external memory by allowing the agent to individually
flip n bits in addition to its other actions. Every timestep, it observes the values of these bits. For
values of n = 4 or larger, an optimal policy ought to be in principle capable of tracking all ten actions
and achieving perfect performance.

Results from training a PPO (Schulman et al. 2017) agent with a feedforward policy are shown in
Figure 5. The policy reliably learns to make use of the external memory. However, it does not use it
optimally: even an agent given a 4-bit external memory does not achieve the optimal reward of 10.
For low values of n, a larger external memory is reliably better, while for large values of n a larger
external memory may degrade performance. We hypothesize that this is due to the added complexity
as the size of the state and action space grows exponentially in n.

6 RELATED WORK

Non-convergence in POMDPs. It is well-known that finding optimal policies in POMDPs is
usually harder than in MDPs. In particular, Singh et al. (1994) emphasize the necessity of stochastic
policies in POMDPs, and Littman (1994) show that in general, finding an optimal policy in a POMDP
is NP-complete. Pendrith and McGarity (1998) discuss the existence of suboptimal training equilibria
in Q-learning. Their analysis does not cover policy gradient methods, nor the benefits of parameter
noise or external memory. Similarly, Chades et al. (2002) discuss training equilibria that can arise in
multi-agent systems, which are necessarily partially observable. In the context of constrained policy
classes, Bhandari and Russo (2019) discuss the failure of policy gradient methods to converge in
MDPs and use an environment similar to our double-tap environment as example.

Memory. Peshkin et al. (1999), Littman (1993), and Jaakkola et al. (1994) propose augmenting
an environment with external memory in the context of POMDPs, though none of them discuss
suboptimal local optima. More recently, Icarte et al. (2020) propose to make learning external
memory more efficient by providing an action that pushes the current observation onto a “memory”
stack. They also show by counterexample that policies do not always learn to effectively use external
memory.

Parameter noise. Most exploration methods in RL explore the state-action space. Parameter
noise (Rückstieß et al. 2008) allows for additionally exploring the parameter space. Plappert et al.
(2018) and Fortunato et al. (2018) show that parameter noise can be beneficial in high-dimensional
continuous-control environments. We provide a novel potential explanation for these observations: in
partially observed environments, parameter noise can help escape suboptimal training equilibria.

7 CONCLUSION

It is well-known that RL convergence guarantees require adequate exploration. In this work, we
have studied a distinct but common failure mode: multiple training equilibria for Q-learning and
policy gradient in POMDPs. We show that this problem is solved by unbounded memory, and may
be alleviated by bounded memory (whether internal to the policy, or external in the environment).
We also show the problem may be resolved by parameter noise, providing a novel explanation of the
success of parameter noise in improving convergence of RL training.

9

Under review as a conference paper at ICLR 2023

REFERENCES

Achiam, Josh (2018). Vanilla Policy Gradient. URL: https://spinningup.openai.com/
en/latest/algorithms/vpg.html (cit. on p. 4).

Åström, Karl Johan (1965). “Optimal Control of Markov Processes with Incomplete State Information
I”. eng. In: Journal of Mathematical Analysis and Applications 10, pp. 174–205. ISSN: 0022-247X.
DOI: 10.1016/0022- 247X(65)90154- X. URL: https://lup.lub.lu.se/
search/ws/files/5323668/8867085.pdf (cit. on p. 2).

Bhandari, Jalaj and Daniel Russo (2019). “Global Optimality Guarantees For Policy Gradient Meth-
ods”. In: CoRR abs/1906.01786. arXiv: 1906.01786. URL: http://arxiv.org/abs/
1906.01786 (cit. on pp. 1, 2, 4, 9, 17–19).

Chades, Iadine, Bruno Scherrer, and François Charpillet (2002). “A Heuristic Approach for Solving
Decentralized-POMDP: Assessment on the Pursuit Problem”. In: Proceedings of the 2002 ACM
Symposium on Applied Computing, pp. 57–62 (cit. on p. 9).

Conitzer, Vincent and Tuomas Sandholm (2003). “AWESOME: A General Multiagent Learning
Algorithm that Converges in Self-Play and Learns a Best Response Against Stationary Opponents”.
In: CoRR cs.GT/0307002. URL: http://arxiv.org/abs/cs/0307002 (cit. on p. 5).

Fortunato, Meire et al. (2018). “Noisy Networks For Exploration”. In: 6th International Conference on
Learning Representations, ICLR 2018, Vancouver, BC, Canada, April 30 - May 3, 2018, Conference
Track Proceedings. URL: https://openreview.net/forum?id=rywHCPkAW (cit. on
pp. 7, 9).

Gordon, Geoffrey J. (1996). Chattering in SARSA(λ). CMU Learning Lab Internal Report. Available
at http://www.cs.cmu.edu/~ggordon/ (cit. on p. 2).

Icarte, Rodrigo Toro et al. (Oct. 4, 2020). The act of remembering: a study in partially observable
reinforcement learning. DOI: 10.48550/arXiv.2010.01753. arXiv: 2010.01753[cs].
URL: http://arxiv.org/abs/2010.01753 (visited on 09/18/2022) (cit. on p. 9).

Jaakkola, Tommi, Satinder Singh, and Michael Jordan (1994). “Reinforcement Learning Algorithm for
Partially Observable Markov Decision Problems”. In: Advances in Neural Information Processing
Systems. Vol. 7. MIT Press. URL: https://papers.nips.cc/paper/1994/hash/
1c1d4df596d01da60385f0bb17a4a9e0-Abstract.html (visited on 09/18/2022) (cit.
on p. 9).

Kingma, Diederik P. and Max Welling (2014). “Auto-Encoding Variational Bayes”. In: 2nd Inter-
national Conference on Learning Representations, ICLR 2014, Banff, AB, Canada, April 14-16,
2014, Conference Track Proceedings. Ed. by Yoshua Bengio and Yann LeCun. URL: http:
//arxiv.org/abs/1312.6114 (cit. on p. 7).

Littman, Michael L. (1993). “An Optimization-Based Categorization of Reinforcement Learning
Environments”. In: Proceedings of the Second International Conference on From Animals to
Animats 2: Simulation of Adaptive Behavior: Simulation of Adaptive Behavior. Honolulu, Hawai,
USA: MIT Press, pp. 262–270. ISBN: 0262631490 (cit. on p. 9).

– (1994). “Memoryless Policies: Theoretical Limitations and Practical Results”. In: From animals to
animats 3, pp. 238–245 (cit. on p. 9).

Nash Jr, John F (1950). “Equilibrium points in n-person games”. In: Proceedings of the national
academy of sciences 36.1, pp. 48–49 (cit. on p. 5).

Pendrith, Mark D. and Michael McGarity (1998). “An Analysis of Direct Reinforcement Learning in
Non-Markovian Domains.” In: ICML. Citeseer, pp. 421–429 (cit. on pp. 1, 9).

Perkins, Theodore J. and Mark D. Pendrith (2002). “On the Existence of Fixed Points for Q-Learning
and Sarsa in Partially Observable Domains”. In: ICML, pp. 490–497 (cit. on p. 3).

Peshkin, Leonid, Nicolas Meuleau, and Leslie Pack Kaelbling (June 27, 1999). “Learning Policies
with External Memory”. In: Proceedings of the Sixteenth International Conference on Machine
Learning. ICML ’99. San Francisco, CA, USA: Morgan Kaufmann Publishers Inc., pp. 307–314.
ISBN: 978-1-55860-612-8. (Visited on 09/18/2022) (cit. on p. 9).

Plappert, Matthias et al. (2018). “Parameter Space Noise for Exploration”. In: International Confer-
ence on Learning Representations (ICLR) (cit. on pp. 2, 7, 9).

Rückstieß, Thomas, Martin Felder, and Jürgen Schmidhuber (2008). “State-dependent exploration for
policy gradient methods”. In: Joint European Conference on Machine Learning and Knowledge
Discovery in Databases. Springer, pp. 234–249 (cit. on pp. 2, 7, 9).

Saltzer, Jerome H and Michael D Schroeder (1975). “The protection of information in computer
systems”. In: Proceedings of the IEEE 63.9, pp. 1278–1308 (cit. on p. 6).

10

https://spinningup.openai.com/en/latest/algorithms/vpg.html
https://spinningup.openai.com/en/latest/algorithms/vpg.html
https://doi.org/10.1016/0022-247X(65)90154-X
https://lup.lub.lu.se/search/ws/files/5323668/8867085.pdf
https://lup.lub.lu.se/search/ws/files/5323668/8867085.pdf
https://arxiv.org/abs/1906.01786
http://arxiv.org/abs/1906.01786
http://arxiv.org/abs/1906.01786
http://arxiv.org/abs/cs/0307002
https://openreview.net/forum?id=rywHCPkAW
http://www.cs.cmu.edu/~ggordon/
https://doi.org/10.48550/arXiv.2010.01753
https://arxiv.org/abs/2010.01753 [cs]
http://arxiv.org/abs/2010.01753
https://papers.nips.cc/paper/1994/hash/1c1d4df596d01da60385f0bb17a4a9e0-Abstract.html
https://papers.nips.cc/paper/1994/hash/1c1d4df596d01da60385f0bb17a4a9e0-Abstract.html
http://arxiv.org/abs/1312.6114
http://arxiv.org/abs/1312.6114

Under review as a conference paper at ICLR 2023

Schulman, John et al. (2017). “Proximal policy optimization algorithms”. In: arXiv preprint
arXiv:1707.06347 (cit. on p. 9).

Singh, Satinder P., Tommi Jaakkola, and Michael I. Jordan (1994). “Learning without state-estimation
in partially observable Markovian decision processes”. In: Machine Learning Proceedings 1994.
Elsevier, pp. 284–292 (cit. on p. 9).

Sutton, Richard S and Andrew G Barto (2018). Reinforcement learning: An introduction. MIT press
(cit. on pp. 2, 4).

Sutton, Richard S, David A McAllester, et al. (2000). “Policy gradient methods for reinforcement
learning with function approximation”. In: Advances in neural information processing systems,
pp. 1057–1063 (cit. on p. 4).

Watkins, Christopher and Peter Dayan (May 1992). “Technical Note: Q-Learning”. In: Machine
Learning 8, pp. 279–292. DOI: 10.1007/BF00992698 (cit. on pp. 1, 2, 4, 17–19).

Williams, Ronald J (1992). “Simple statistical gradient-following algorithms for connectionist rein-
forcement learning”. In: Machine learning 8.3, pp. 229–256 (cit. on p. 4).

11

https://doi.org/10.1007/BF00992698

Under review as a conference paper at ICLR 2023

A ENVIRONMENT DESCRIPTIONS

A.1 DOUBLE-TAP

Q-LEARNING ALSO HAS MULTIPLE FIXED POINTS

This section shows that just like policy gradient methods, Q-learning also may get stuck in the same
suboptimal local optimum.

In contrast to policy optimization, Q-learning methods learn to approximate the action value function
Qπ and act ε-greedily based on this estimate. In particular we will cover temporal difference Q-
learning.This algorithm samples a transition (o, a, r, o′) based on the current policy and then updates
the action-value q(o, a) via

q(o, a) = q(o, a) + η(r + γmax
a′

q(o′, a′)− q(o, a)) (2)

We call q∗ a fixed point if the update in Equation 2 is equal to zero in expectation. Formally this
means that for all observations and actions o, a,

q∗(o, a) = E
s,o′∼πq∗

[r(s, a) + γmax
a′

q∗(o′, a′)], (3)

where the expectation is taken with respect to s and o′ sampled from the distribution induced (in the
limit of t→∞) by the policy πq∗ that acts ε-greedily with respect to the parameters q∗. Such a fixed
point might not be stable: since the update (2) is stochastic, a random change in parameters could
induce a switch to a different policy. This sort of switch becomes less likely the as the difference
between the value maxa′ q(o, a

′) of the optimal action and the value of the next-best action grows.

We will now show that for the environment described by Figure (TODO ref figure) there are multiple
mappings q(o, a) that satisfy the fixed point Equation 2 Since in this example there is only a single,
fixed, observation, we omit it from our notation and write q(a) for the action-value. We assume
that we are using ε-greedy exploration, so there are only two possible policies (assuming that
q(a1) = q(a2) rarely enough that we can safely ignore it):

• the policy π1 which chooses a1 with probability 1− ε/2 and a2 otherwise.
• the policy π2 which chooses a2 with probability 1− ε/2 and a1 otherwise.

It will be useful to write s ∼ πi for the distribution of states that arises when acting according to
policy πi. We then write ri = Es∼πi [r(s, ai)] for the expected single-step reward for choosing action
ai if the agent has been acting according to the policy πi in the past. The rewards specificed in Figure
are r(s1, a1) = 1 and r(s2, a2) = 2 (all other rewards are zero), so this amounts to

r1 = (1− ε/2) · 1, and
r2 = (1− ε/2) · 2.

Proposition A.1. Assume that the exploration parameter satisfies ε < 2/3. Then the action-values

q1(a) =

{
r1/(1− γ) if a = a1
ε+ γr1/(1− γ) otherwise,

and

q2(a) =

{
ε/2 + γr2/(1− γ) if a = a1
r2/(1− γ) otherwise,

both satisfy the fixed-point equation (3). Furthermore, q1 induces policy π1 while q2 induces π2.

Proof. We will begin by showing that q1(a1) > q1(a2) (and the converse for q2). First, note that

q1(a2) = ε+ γq1(a1).

Thus q1(a2) < q1(a1) if and only if

(1− γ)q(a1) > ε.

12

Under review as a conference paper at ICLR 2023

Now, (1− γ)q(a1) = 1− ε/2, so this is equivalent to the condition

1− ε/2 > ε

⇐⇒ 2/3 > ε,

which is satisfied by assumption. A similar computation shows that q2(a2) > q2(a1).

We now show that q1 is indeed a fixed point, meaning that for all actions a,

q1(a) = E
s∼π1

[r(s, a) + γmax
a′

q1(a′)].

A simple computation is enough: for a1 we have

E
s∼π1

[r(s, a1) + γmax
a′

q1(a′)] = r1 + γq(a1)

= r1 + γr1/(1− γ)

= r1/(1− γ)

= q1(a1).

Under π1, the probability of being in state s2 is ε/2. Since r(s2, a2) = 2, the expected single-step
reward Es∼π1

[r(s, a2)] of taking action a2 is exactly ε. Thus

E
s∼π1

[r(s, a2) + γmax
a′

q1(a′)] = ε+ γq1(a1) = q1(a2)

as desired. By an an analogous argument, q2 is a fixed point as well.

Remark A.1. If the exploration parameter ε is close to 2/3, then the action-values q(a1) and q(a2)
are also close. In this case the suboptimal fixed-point may be unstable in the sense that the noise in
the updates can ’dislodge’ the policy.

A.1.1 EXPECTED RETURN OF A MEMORYLESS POLICY IN THE DOUBLE-TAP ENVIRONMENT

If the agent follows the memoryless policy, its expected single-step return is7

Eπ[r] = Pr(s = s1 and a = a1) + 2 Pr(s = s2 and a = a2)

= p2 + 2(1− p)2.

The full discounted reward is then given by

J(p) = E

 ∞∑
t=0

γtrt

=

∞∑
t=0

γt E [rt]

=
(
p2 + 2(1− p)2

) ∞∑
t=0

γt

=
p2 + 2(1− p)2

1− γ
.

As is visible from the plot in Figure 2a, this function is convex and not concave, so gradient ascent
may get stuck in local maxima. When the initialization p0 is less than the minimum point p = 2/3,
then gradient ascent converges to the global maxima p = 0. But if p0 > 2/3, then it converges to the
local maxima p = 1. So if p0 is initialized uniformly at random on [0, 1], gradient ascent converges
to the suboptimal policy π(a1) = 1 one third of the time.

7This isn’t quite true for the first reward, where the value is simply p or 2(1− p), depending on whether we
start in state s1 or s2. We ignore this for simplicity, since the effect on the training dynamics is negligible.

13

Under review as a conference paper at ICLR 2023

A.1.2 EXPECTED RETURN OF A MOLICY WITH MEMORY IN THE DOUBLE-TAP ENVIRONMENT

We will now compute the expected return for a policy with one-step memory in the double-tap
environment from Figure 1. This is the return plotted in Figure 2b.

First, note that the state s(t) at time t is fully determined by the action a(t−1): if a(t−1) = a1, then
s(t) = s1, and similary for a2 and s2. Thus a policy with memory mt = a(t−1) is equivalent to a
policy that can observe the state s(t).

We parametrize the agent via the ‘state switch’ probabilities θ ∈ R2, such that

πθ(a1 | s2) = θ1

πθ(a2 | s1) = θ2.

Our goal is to compute the expected return

J(θ) = E
[∞∑
t=0

γtrt

]
=

∞∑
t=0

γt E[rt]

=
1

1− γ
E[rt],

where rt is the reward received in timestep t. Recall that rt = 1 if the agent takes action a1 from
state s1, rt = 2 if the agent takes action a2 from state s2, and rt = 0 otherwise. Thus

E[rt] = P (s(t) = s1)(1− θ2) + 2P (s(t) = s2)(1− θ1), (4)

where P (s(t) = s) is the probability of being in state s at time t. This distribution depends on the
policy.

Proposition A.2. As t→∞, the state distribution converges to

P∞(si) = lim
t→∞

P (s(t) = si) =
θi

θ1 + θ2
,

for i ∈ {1, 2}.

We substitute the stable state distribution given in Proposition A.2 into Equation 4:

E[rt] =
θ1(1− θ2) + 2θ2(1− θ1)

θ1 + θ2
.

Thus the expected return (after acting in the environment for long enough that the state distribution
has stabilized) is

J(θ) =
θ1(1− θ2) + 2θ2(1− θ1)

(θ1 + θ2)(1− γ)
. (5)

This expression is plotted in Figure 2b.

Proof of Proposition A.2. A simple computation suffices to check that P∞ is the unique distribution
that satisfies the fixed-point equation

P∞(s1) = P∞(s1)πθ(a1 | s1) + P∞(s2)πθ(a1 | s2).

It remains to show that this fixed point iteration converges. To do this, consider the sequence (pt)t∈N,
where pt = P (st = s1). Then the above fixed point iteration can be written as

pt+1 = ptπ(a1 | s1) + (1− pt)π(a1 | s2).

The corresponding transformation that maps pt to pt+1 is

F : p 7→ pπ(a1 | s1) + (1− p)π(a1 | s2).

14

Under review as a conference paper at ICLR 2023

It remains to show that F is a contraction. Let p, q ∈ [0, 1], then

|Fp− Fq| =
∣∣(p− q)π(a1 | s1) + (q − p)π(a1 | s2)

∣∣
=
∣∣∣(p− q) (π(a1 | s1)− π(a1 | s2)

)∣∣∣
≤|p− q| ·

∣∣π(a1 | s1)− π(a1 | s2)
∣∣

≤|p− q| .
Thus F is a contraction, and so pt must converge to the fixed point p∞ = θ2/(θ1 + θ2).

A.2 BIT GUESSING

This environment has one hidden state h ∈ {0, 1}, observation space O = {0, 1} and action space
A = {0, 1}2. The goal of the agent is to ‘guess’ the value of the hidden state, given an observation
that is either equal to the hidden state (o = h) or bit-flipped (o = 1− h).

In each step, the hidden state is sampled uniformly and independently of any past actions. The agent
takes an action a = (aguess, aflip) ∈ {0, 1}2. Reward is determined by

r(a, h) =

{
1 if aguess = h

0 else.

The value of aflip determines the observation at the next timestep: if aflip = 1, then the next observation
is flipped; otherwise it is equal to the hidden state.

An RL algorithm training in this environment has two equilibria: one where the policy never takes
action aflip and sets its guess equal to the observation, and one where the policy consistently takes
aflip and always guesses a(t)guess = 1− o(t).

A.3 BATTLE OF THE SEXES

Any two-player game can be turned into a ‘single-player’ RL environment by having the RL agent
play against a fixed policy. We choose an opponent policy that is able to see the history (in contrast to
the agent), and always chooses the action that would have done best against previous actions within
an episode. More details in Appendix B.

EXPECTED RETURN IN BATTLE OF THE SEXES

Let A be the (finite) action space, and for a ∈ A let ra and ropp
a be the rewards for agent and

“opponent” respectively, given that both play action a.

The expected return of a memoryless policy π in timestep t is equal to

Rt(π) =
∑
a∈A

π(a)ra Pr(aopp
t = a), (6)

where Pr(aopp
t = a) is the probability that the opponent will play a in timestep t. The opponent play

depends on past actions: the opponent always plays the action

aopp
t = argmaxa∈A

∑
t′≤t

ropp
a · I(at′ = a)

that plays best against the agent’s past actions within an episode. Setting the ‘count’ variables
c(a) =

∑
t′≤t ·I(at′ = a), we can write this as

aopp
t = argmaxa∈A c(a) · ropp(a).

The opponent (i.e. environment) play aopp
t is random, since it depends on the (random) episode

history and in particular on c(a).

We will work out the expected return for the special case A = {a1, a2}, the standard ‘battle of the
sexes’ game with two options. In this case, writing c = c(a1) and noting that c(a2) = t− c(a1), and
that c is a binomial random variable,

15

Under review as a conference paper at ICLR 2023

Pr(aopp
t = a1) = Pr(c(a1) · ropp

1 > c(a2) · ropp
2)

= Pr(cropp
1 − (t− c)ropp

2 > 0)

= Pr(c > l)

=

t∑
k=l+1

(
t

k

)
π(a1)k(1− π(a1))t−k

where l = btropp
2 /(ropp

1 + ropp
2)c.

B CONNECTIONS BETWEEN NASH EQUILIBRIA AND RL TRAINING EQULIBRIA

Any two-player game can be turned into a ‘single-player’ RL environment by having the RL agent
play against a fixed ‘opponent’ policy. The opponent policy is able to see the agent’s past actions and
always chooses the action that would have done best against the agent’s previous actions within an
episode.

In this section we formalize this idea and show that Nash equilibria correspond to stationary points of
the expected return (and thus are equilibria of the policy gradient algorithm). In particular, any game
with multiple Nash equilibria (e.g. ‘Battle of the Sexes’) will also have multiple training equilibria
when turned into an RL environment in this way.

Definition B.1. A two-player game is a tuple (S,u), where S = (S1, S2) is a tuple of pure strategy
sets Si = {1, . . . , ki} and u = (u1, u2) is a tuple of payoff functions ui : S1 × S2 → R.

Thus the payoff of player i is given by ui(s1, s2), where si ∈ Si are the strategies of players 1 and 2
respectively. We now construct a POMDP by putting an RL agent in the role of player 1 and letting
the environment control player 2.

Definition B.2. Let G = (S,u) be a two-player game. Fix the episode length T > 0. We construct
a POMDP from the game G by defining E = (S,A,O, T,O,R, γ, η0) in the following way; set
A = S1, and let the state space S be the set of all possible action histories of maximum length T ,
that is

S =

T⋃
t=1

At,

where
At = A× · · · × A︸ ︷︷ ︸

t copies ofA

.

We choose the observation space O = ∅ to be empty, thus the distribution of observations O is trivial.
The transition function T amounts to appending the current action to the history: for any history
h = (a1, . . . , at−1) and action at the transition kernel is deterministic and given by

T (h′ | h, a) =

{
1 if h′ = h ∪ (a)

0 otherwise.
(7)

To define the reward function R, we need to set the strategy of the opponent, which we choose to be
the average best-response over the episode history: for any timestep t > 1 after the first,

aopp
t = argmaxa∈S2

∑
t′<t

u2(at, a).

In the first timestep, aopp
1 is sampled uniformly from S2. For any history h ∈ S and action a ∈ A the

reward is equal to the payoff of player 1 in the current timestep, that is R(h, a) = u1(a, aopp), where
aopp is the opponent action chosen as in Equation 7 according to the history h.

For convenience, we repeat the definition of a Nash equilibrium:

16

Under review as a conference paper at ICLR 2023

Definition B.3 (Nash Equilibrium). Let G = (S,u) be a two-player game. A Nash equilibrium is a
pair of strategies (s1, s2) ∈ S1 × S2 such that for all s′1, s

′
2 in S1 resp. S2,

u1(s′1, s2) ≤ u1(s1, s2)

u2(s1, s
′
2) ≤ u2(s1, s2).

In the Battle of the Sexes environment, every Nash equilibrium in the original two-player game
corresponds to an RL training equilibrium in the corresponding POMDP. We now prove that this is
true for all two-player games.

Theorem B.1. Let G = (S,u) be a two-player game and E its associated POMDP. Then the
following are equivalent:

(i) The policy π is a policy-gradient equilibrium in E.

(ii) The strategy set (sπ, sπ,opp) is a Nash equilibrium in G.

Proof. For any s ∈ S2, define the environment Es by taking a copy of E and replacing the best-
response opponent strategy with the strategy s. Since s is chosen independently of past actions, Es is
an MDP and standard convergence guarantees hold: policy gradient always learns an optimal policy.
Conversely, any optimal strategy is also a policy-gradient equilibrium point.

(i) =⇒ (ii): First, consider the environment Esopp
π

. Since π is in equilibrium, it must be an optimal
policy for Esopp

π
. Thus for all s′ ∈ S1,

u1(s′, sopp
π) ≤ u1(sπ, sopp

π).

Second, by definiton of the best-response strategy sopp
π there is no strategy that can do better; thus for

all s′ ∈ S2

u2(sπ, s′) ≤ u2(sπ, sopp
π).

We conclude that (sπ, sopp
π) is a Nash equilibrium.

(ii) =⇒ (i): Assume (sπ, sπ,opp) is a Nash equilibrium. This implies π is an optimal policy for
Esopp

π
; in particular it is also an equilibrium point. Since sopp is the optimal response strategy, π is

also a policy-gradient equilibrium point in E.

C WHEN DO Q-LEARNING AND POLICY GRADIENT METHODS CONVERGE IN
POMDPS?

For convenience we repeat the usual conditions for convergence (apart from full observability). In
the following we will always assume they are met.

1. Full exploration (every state-action pair is visited infinitely often).

2. The rewards are bounded: there exists some Rmax such that for all state-action pairs (s, a) ∈
S ×A we have R(s, a) ≤ Rmax.

3. Flexible enough representation.

• For policy gradient: the policy space is closed under policy improvement (Bhandari
and Russo 2019).

• For Q-learning: the representation of the Q-function is tabular (Watkins and Dayan
1992).

4. The learning rates satisfy the standard Robbins-Monro conditions: for all state-action pairs
(s, a), the learning rate (αn)n≥0 satisfies

∑∞
i=0 αn(i,s,a) = ∞ and

∑∞
i=0 α

2
n(i,s,a) < ∞.

Here, n(i, s, a) is the index corresponding to the ith time that the agent visits state s and
takes action a.

17

Under review as a conference paper at ICLR 2023

C.1 THE CONDITIONAL STATE DISTRIBUTION IS UNAFFECTED BY THE POLICY

Proposition C.1. Let E = (S,A,O, T,O,R, γ, η0) be a finite POMDP. For any policy π, let ηπ be
the distribution on states induced by the policy, and let

ηπ(s | o) =
O(o | s)ηπ(s)∑

s′∈S O(o | s′)ηπ(s′)

be the conditional distribution of state s ∈ S given an observation o ∈ O.

Assume that the conditional distribution is independent of the policy in the sense that there exists
some η such that for all state-observation pairs η(s | o) = ηπ(s | o). Further assume that all the
conditions listed in the beginning of Appendix C hold. Then Q-learning and policy gradient are
guaranteed to converge to an optimal policy.

Proof. The main idea is that we can construct an MDP E′ that is equivalent to the POMDP E in the
sense that it generates the same trajectories. Then the standard convergence guarantees apply.

Indeed, consider the MDP E′ = (S ′,A, T ′, R′, γ, η0), where S ′ = O. The transition function T ′ is
defined such that for o′, o ∈ O and a ∈ A,

T ′(o′ | o, a) =
∑
s′,s∈S

O(o′ | s′)T (s′ | s, a)η(s | o)

and the stochastic reward is given by

R′(o, a) = R(s, a)

where s ∼ η(s | o). By construction, the dynamics of E and E′ are equivalent: indeed, all we’ve
done is replace the transition function T with a new kernel that marginalizes over states, and made
the reward function stochastic.

Standard results for convergence in MDPs (Bhandari and Russo 2019; Watkins and Dayan 1992) now
suffice to show that Q-learning and policy gradient learn an optimal policy in E′ and thus in E.

C.2 SUFFICIENT POLICY MEMORY

The core problem in POMDPs is that the distribution ηπ(s | o) of the unobserved state given an
observation depends on the policy π. We should be able to fix this by conditioning on past observations
and actions as well: that is, we equip the policy with memory.

In this section we will show that if a policy has unlimited memory (that is, it can condition on the
entire history) then RL algorithms always learn an optimal policy (Proposition C.2) in all POMDPs.
In addition, if the observed environment is k-Markov then the memory only needs to be able to store
the past k timesteps.
Proposition C.2. Let (S,A,O, T,O,R, γ, η0) be a POMDP. Consider a parametrized policy πθ
that has memory, that is it can condition on all past states and observations: the action at at time t is
sampled from πθ(· | o0, a0, . . . , ot−1, at−1, ot). If this policy is trained using tabular Q-learning or
VPG it benefits from the standard convergence guarantees (Bhandari and Russo 2019; Watkins and
Dayan 1992) as in MDPs.

The main idea here is to show that we can construct an MDP whose states consist of the entire
POMDP history, and then show that this is equivalent to an agent with sufficient memory. Let
E = (S,A,O, T,O,R, γ, η0) be a POMDP as in Proposition C.2

We will now construct an MDP E′ = (S ′,A′, T ′, R′) such that training a memoryless policy in E′ is
equivalent to the training setup in Proposition C.2.

Set S ′ to be the set of all states of the form s′ = (o0, a0, . . . , ot−1, at, ot) for t ≤ T where T is the
maximum number of timesteps within an episode. Let A′ = A. Let T (s′, a′) be the distribution over
states s′′ such that s′′ = s′ ∪ (a′, o), where ∪ is the ‘extend’ operation and o is the observation from
E distributed conditional on the history s′ ∪ (a′). Finally, set the reward R′(s′, a′) to be a random
variable R′(s′, a′) = R(s, a′), where the POMDP state s is distributed conditional on the history
s′ ∪ (a′).

18

Under review as a conference paper at ICLR 2023

Now E′ is a well-defined MDP with stochastic rewards. Well-known results (Watkins and Dayan
1992; Bhandari and Russo 2019) now imply the convergence guarantees we wanted.
Proposition C.3. Let E = (S,A,O, T,O,R, γ, η0) be a POMDP. Assume that the environment
state is k-Markov in the following sense: at timestep t, conditional on the length-k history htt−k =

(ot−k, at−k, . . . , at−1, ot), the state st is independent of the full history: (st ⊥ ht0) | htt−k.

Consider a parametrized policy πθ that has memory of length k: action at at time t is sampled from
πθ(· | htt−k). If this policy is trained using tabular Q-learning or VPG it benefits from the standard
convergence guarantees (Bhandari and Russo 2019; Watkins and Dayan 1992) as in MDPs.

Proof.

Just as previously, we construct an MDP E′ = (S ′,A′, T ′, R′) such that training a memoryless
policy in E′ is equivalent to the training setup in Proposition C.3.

Set S ′ = {htt−k | t ≤ T} to be the set of all k-histories. Here T is the maximum number of timesteps
within an episode.

Let A′ = A. For all t ≤ T , let T (htt−k, a) be the distribution over k-histories ht+1
t−k+1 that results

from taking action a at step t.

Let h, a be a k-history and an action, and o a random observation drawn from the distribution

p(o | h, a) =
∑

s′,s′′∈S
O(o | s′′)T (s′′ | s′, a)p(s′ | h).

(Because the enviornment is k-Markov, the conditional distribution η(s | h) does not depend on
actions or observations more than k timesteps in the past.)

Then we can set the new transition dynamics T ′(h, a) to be the distribution over k-histories h′ such
that h′ is the result of appending a and o to the end of the history h and removing the first timestep
recorded in h.

Finally, set the reward R′(h, a) to be a random variable R′(h, a) = R(s, a), where the POMDP state
s is distributed conditional on the history h.

Standard results for convergence in MDPs (Bhandari and Russo 2019; Watkins and Dayan 1992) now
suffice to show that Q-learning and policy gradient learn an optimal policy in E′ and thus in E.

19

	Introduction
	Background on POMDPs
	Training Equilibria in POMDPs
	Training equilibria
	The `Double-tap' environment
	Correspondence to Nash equilibria and self-play

	Mitigating Factors: Memory and Parameter Noise
	Memory can eliminate suboptimal local optima
	Parameter noise can eliminate suboptimal local optima

	Experiments
	Double-Tap
	Battle of the Sexes
	Sequential Bandit Problem

	Related work
	Conclusion
	Environment Descriptions
	Double-Tap
	Expected return of a memoryless policy in the double-tap environment
	Expected return of a molicy with memory in the double-tap environment

	Bit Guessing
	Battle of the Sexes

	Connections between Nash equilibria and RL training equlibria
	When do Q-learning and policy gradient methods converge in POMDPs?
	The conditional state distribution is unaffected by the policy
	Sufficient policy memory

