
1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

Following Clues, Approaching the Truth: Explainable
Micro-Video Rumor Detection via Chain-of-Thought Reasoning

Anonymous Author(s)
∗

Abstract
The rapid spread of rumor content on online micro-video platforms

poses significant threats to public health and safety. However, exist-

ing Micro-Video Rumor Detection (MVRD) methods are generally

black-box, which lacks transparency and makes it difficult to un-

derstand the reasoning behind classification decisions. In this work,

we introduce ExMRD, a novel Explainable Micro-video Rumor

Detection framework designed to generate detailed and coherent

explanations for enhancing MVRD. Inspired by the powerful rea-

soning capacity of Chain-of-Thought (CoT), we introduce a novel

inference mechanism called R
3
CoT– consisting of Refining, Retriev-

ing, and Reasoning on MVRD. This mechanism enables Multimodal

Large Language Models (MLLMs) to reorganize the original video

content, retrieve domain knowledge related to rumors, and generate

explainable conclusions regarding whether the micro-video con-

tains rumor information. Instead of directly fine-tuning MLLMs for

MVRD, which is computationally expensive, we propose a Small

Language Reviewer (SLReviewer), which distills the outputs of

R
3
CoT guided MLLMs to ensure efficient and reliable predictions.

Extensive experiments on three real-world benchmarks demon-

strate that ExMRD significantly outperforms competitive baselines

while providing high-quality rationales.

Keywords
Micro-video rumor detection, explainability, chain-of-thought, mul-

timodal large language models

1 Introduction
The exponential growth of online micro-video platforms such as

TikTok, YouTube Shorts, and Snapchat has revolutionized infor-

mation consumption worldwide [2, 21, 33]. With billions of active

users, these platforms enable rapid creation and dissemination of

micro-videos, offering unprecedented speed and reach in informa-

tion sharing. However, this convenience comes with the prolifer-

ation of misinformation and rumors, which often evade scrutiny

and fact-checking [4, 25, 54]. A striking example, as shown in Fig. 1,

occurred during the COVID-19 pandemic when a TikTok video

falsely claimed that injecting disinfectants could “kill” the virus.

This misleading content amassed millions of views and resulted in

a spike in accidental poisonings, highlighting the tangible harm

caused by misinformation on micro-video platforms, and under-

scoring the urgent need for effective methods to detect and address

rumors in micro-videos, a task a.k.a.Micro-Video Rumor Detection

(MVRD).

Existing MVRD approaches primarily focus on utilizing multiple

modalities – such as text, audio, video content, and social context –

to improve detection accuracy [8, 17, 36, 37, 41, 42]. For example,

FakingRec [8] analyzed the process of rumor creation by examining

material selection and editing behaviors on micro-video platforms,

while NEED [37] leveraged relationships between videos related

After Refining:  The video shows a speaker suggesting the possibility of using
disinfectants internally, such as through direct injection, to combat COVID-19
viruses, in the lungs, and may require medical professionals assess the idea.

Original Content: Could  be a secret to
beating virus? You won’t believe

it! #MiracleCure #COVID19 #MustTry
Now And then I see the disinfectant,  ...

And is there a way ... by injection inside or
almost a cleaning? Because you see it gets

in the lungs,  .... So it'd be interesting to
check that. So you're gonna have to use

medical doctors with

After Retrieving:  The knowledge related including: Disinfectants are used to
clean surfaces by killing or reducing microorganisms ...; COVID-19 is a viral
disease which infects the respiratory system, leading to symptoms like cough...

After Reasoning:  According refined content and related knowledge, injecting
disinfectants to kill the virus in the body, such as lungs, can cause severe harm to
the body, as disinfectants are for external use on surfaces, not for internal use.

Fig. 1: In this micro-video rumor, viewers are misled into
believing that injecting disinfectants can kill the COVID-19
virus, leading to a rise in accidental poisoning incidents. Text
in video: Disinfectant Treatment.

to the same event to improve rumor detection. Despite these ad-

vancements, current approaches often perform black-box detection,

oversimplifying or overlooking the critical reasoning needed to

provide explainable justifications for the final prediction. This lack

of transparency makes it difficult for viewers to understand why

a video is classified as a rumor, undermining trust and limiting

the effectiveness of rumor mitigation strategies. In contrast, an

explainable model is essential to enhance the effectiveness and

trustworthiness of MVRD systems. Both users and platforms need

to comprehend the specific factors that lead to a video being iden-

tified as a rumor or genuine content. However, developing such a

model presents several critical challenges:

C1: Inconsistent Video Quality and Misleading Metadata.
Micro-video platforms often contain content with inconsistent

video quality and misleading metadata, which pose significant ob-

stacles for interpretable rumor detection. Poor visuals and audio

due to the varied skills and equipment of content creators make it

difficult for detection models to capture critical cues. Pre-trained

models optimized for high-quality data often perform poorly when

applied to low-quality inputs, resulting in frequent misclassifica-

tion [15, 32, 44]. For instance, the video tags in Fig. 1 (e.g., #Mira-

cleCure, #MustTry) represent low-quality text content. These tags

lack informative value and do not contribute meaningful content

for the model to analyze. This issue arises because many video cre-

ators usually employ misleading titles and tags to attract attention,

which may distort the model’s interpretation of the actual con-

tent. These inconsistencies pose significant challenges to current

1
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methods, further undermining the accuracy and trustworthiness of

rumor detection models.

C2: Lack of Domain Knowledge and Reasoning. Effective ru-
mor detection requires domain knowledge and logical reasoning to

interpret complex content accurately. For example, identifying the

micro-video in Fig. 1 as a rumor requires a basic understanding of

COVID-19 biology and the proper use of disinfectants, which are

intended for surface cleaning rather than for internal use. With this

knowledge, and through logical reasoning, it becomes clear that

suggesting disinfectants as a COVID-19 treatment is not only scien-

tifically inaccurate but also extremely harmful to the human body.

Current detection models often lack specialized domain knowledge

and the capacity for such reasoning, limiting their ability to pro-

vide meaningfully and contextually accurate explanations for their

predictions.

To address these challenges, we draw inspiration from the pro-

cess of writing debunking articles, which involves gradually un-

covering the truth by understanding the content, gathering rele-

vant domain information, and combining these insights to debunk

the rumor effectively. To this end, we present ExMRD, a novel

Explainable Micro-video Rumor Detection framework, which can

provide clear and well-reasoned explanations for MVRD. Specifi-

cally, we introduce R
3
CoT, a novel Chain-of-Thought (CoT) [52]

inference mechanism. R
3
CoT consists of three key steps: Refining,

Retrieving, and Reasoning. Specifically, at the refining step, the Mul-

timodal Large Language Model (MLLM) is prompted to reorganize

low-quality and misleading video content from both textual and

visual perspectives, producing a coherent representation of the

content in the video. At the retrieving step, rumor-related domain

knowledge is generated based on the refined content, enriching

the video’s context for rumor detection. At the final reasoning step,

logical inference is applied by cross-verifying the refined content

with domain knowledge, providing evidence to support or refute

the video’s authenticity. Fig. 1 demonstrates the outputs produced

after each step of the R
3
CoT mechanism, specifically showing the

refined content, the retrieved domain knowledge, and the reasoning

behind the final conclusion.

While fine-tuning MLLMs with R
3
CoT guidance can greatly

enhance their performance in MVRD, this fine-tuning process in-

troduces significant computational overhead, which significantly

limits its practicality in real-world applications. To address this, we

introduce a novel Small Language Reviewer (SLReviewer), which
acts as a reliable “reviewer” within ExMRD. The main idea is to

refine MLLM outputs using distilled knowledge from the proposed

R
3
CoT mechanism, ensuring reliable predictions with low compu-

tational overhead. By fine-tuning SLMs, rather than MLLMs, we

achieve a balance between performance and efficiency, making

ExMRD more practical for deployment.

Our main contributions are summarized as follows:

• An explainable MVRD framework that generates explicit ra-

tionales behind rumor detection. This work is the first to incorpo-

rate explainability into MVRD by designing the reasoning step of

R
3
CoT, which produces clear rationales for determining whether

a video contains rumor content. This enhances transparency and

interpretability, making the decision-making process in MVRD

more accessible to users and moderators.

• A novel R3CoT mechanism that enables MLLMs to perform

refining, retrieving, and reasoning for explainable conclusions.

This mechanism helps address rumor detection errors caused by

inconsistent video quality, and lack of domain knowledge and

reasoning, providing a comprehensive understanding of video

content in MVRD.

• An efficient SLReviewer that improves both efficiency and

prediction reliability while balancing performance with com-

putational resources. SLReviewer is fine-tuned using insightful

distilled knowledge from the MLLM, enabling it to generate

credible and accurate predictions.

Extensive experiments on real-world micro-video datasets

demonstrate that our ExMRD outperforms state-of-the-art base-

lines while providing clear and well-reasoned rationales. Notably,

our ExMRD achieves an average improvement of 5.37% in Macro

F1 across all three datasets, outperforming 13 competitive base-

lines. The code and data to reproduce the results are available at

https://anonymous.4open.science/r/ExMRD and will be made pub-

lic later.

2 Related Work
2.1 Micro-Video Rumor Detection
The task of MVRD focuses on identifying rumor content by analyz-

ing multiple modalities within micro-videos, such as text, vision,

and audio. Early detection methods primarily relied on unimodal

information [24, 35, 41]. For example, Papadopoulou et al. [35] uti-

lized basic video metadata and user engagement features, while

Serrano et al. [41] analyzed user comments, focusing on conspiracy-

related remarks as key indicators. The complexity and richness of

micro-video content – where various modalities often interplay

– make unimodal approaches inadequate for accurate rumor de-

tection. Recently, FakeSV [36] improves content representation by

leveraging cross-modal correlations and integrating social context.

Despite these advancements, current methods in MVRD remain

black-box models, providing only the final detection result without

offering any interpretability for the decision-making process, which

increases a lot of risks and limits user trust. In contrast, our study

aims to provide clearer explanations and enhance transparency

for both moderators and viewers, addressing the critical need for

explainability in micro-video rumor detection. – i.e., understand,

trust, and act upon the detection outcomes.

2.2 Chain-of-Thought Prompting
CoT prompting [52] has been developed to guide Large Language

Models (LLMs), such as GPT-3 [7], LLaMA [46], to better under-

stand tasks and generate better responses by encouraging step-by-

step reasoning. Moreover, the recent OpenAI-o1 [56] has demon-

strated remarkable reasoning capabilities by deeply integrating

CoT into its architecture, enabling the model to seamlessly perform

multi-step reasoning. Specifically, various CoT strategies [30, 51, 57]

have been introduced to enhance the reasoning abilities of LLMs.

With the advancement of MLLM [26, 34], CoT prompting has been

adapted to improve reasoning across both visual and textual modal-

ities [10, 31, 40]. This adaptation enhances MLLM’s ability to syn-

thesize information from multiple modalities and align their repre-

sentations, leading to improved performance on multimodal tasks.

2
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R3CoT SLReviewer

Title & Description
On-screen Text

Audio Transcript

Reasoned Content:
 According video content

and knowledge ...

PredictorVision Input

Text Input

Refined Content: 
This video shows a

speaker ... 

······ ···

Step1: Refining

Step2: Retrieving

Step3: Reasoning
Rumor or
Truth

En
co

de
r L

ay
er

 

En
co

de
r L

ay
er

 
-

+

En
co

de
r L

ay
er

 

-  layers  layers

Retrieved Knowledge:
 Disinfectants are 

used to clean ...

Explanation

Fig. 2: The structure of our proposed ExMRD framework. (1) The R3CoT process prompts MLLMs to refine the video content,
retrieve domain knowledge, and reason to provide explanations. (2) The SLReviewer is to distill the explainable evidence from
R3CoT to facilitate reliable rumor detection.

However, existing works primarily leverage CoT for generating bet-

ter responses in scenarios like visual question answering [29, 43, 53]

and mathematical reasoning [16, 19, 45], overlooking the poten-

tial of CoT to enhance task-specific explainability. In contrast, our

ExMRD incorporates a CoT based inference mechanism, R
3
CoT,

to guide MLLMs to generate accurate, understandable, and inter-

pretable predictions via the designed three key steps: Refining, Re-
trieving, and Reasoning. To our knowledge, this work is among the

first to leverage the reasoning capabilities of CoT to prompt MLLMs

in delivering precise and interpretable predictions for MVRD.

3 Methodology
Problem Definition. Let M represent a micro-video on video

platforms. The videoM is characterized by its multimodal content,

which includes textual, visual, and audio modalities, denoted as

M = {T ,V,A}. The primary objective of MVRD is to determine

whether the videoM contains the rumor content by simultaneously

considering all its modalities T ,V , and A.

Overview. First, we design the R
3
CoT, a three-step CoT inference

mechanism: (1) Refining. Prompt the MLLMs to reorganize chaotic

and misleading video content into a well-structured format, serving

as the foundation for subsequent generation; (2) Retrieving. Instruct
the MLLMs to generate relevant domain knowledge based on the

refined video content to support the final reasoning; (3) Reasoning.
Guide the MLLMs to apply logical inference to cross-verify the

refined content with domain knowledge, providing evidence to

confirm or refute the authenticity of the micro-video. Second, we

introduce the SLReviewer, to distill the reasoning output from the

MLLMs, ensuring reliable final predictions. An overview of our

proposed ExMRD is shown in Fig. 2.

3.1 R3CoT Mechanism
3.1.1 Feature extraction. For the textual modality T , we extract

the video’s metadata (title and description) T𝑚 and the on-screen

text T𝑜 . For visual modalityV , we uniformly sample 𝑘 frames from

each video:V𝑓 = {𝑣1, . . . , 𝑣𝑘 }. For audio modality A, we convert

the audio into transcript denoted as A𝑡 . The detailed process of

feature extraction is summarized in Appendix D.3.

3.1.2 Refining. In the domain of rumor video detection, a diverse

range of micro-video creators exists, spanning from professional

media outlets to ordinary individual users, leading to micro-videos

of varying quality. Micro-videos frequently contain chaotic and

misleading content, making detection challenging, thus requiring

the reorganization of the presented information. To address these

problems, the initial step in the R
3
CoTmechanism involves refining

the video content to generate well-structured representations by

reorganizing both textual and visual elements for clearer analysis.

First, from the textual perspective, we combine the metadata

text T𝑚 , on-screen text T𝑜 , and audio transcript A𝑡 as the textual

content of the video. However, due to elaborate video effects, di-

verse typographic styles, and non-news elements (e.g., watermarks,

creator attributions, and platform identifiers), the on-screen text

often contains numerous recognition errors. To mitigate this issue,

we empower the MLLM F (·) to focus on rumor elements while

enhancing on-screen accuracy through in-context learning. We

restore the original rumor content from a textual perspective, re-

sulting in refined textual content Rtext. This step can be formulated

as follows:

Rtext = F ([T𝑚 ;T𝑜 ;A𝑡 ], Prompt
1
), (1)

where [; ] denotes the concatenation operation, with the template

Prompt
1
described in Step 1 of Fig. 3.

Second, from the visual perspective, we develop a visual-centric

strategy that focuses on the refining of scene content in the micro-

video. This strategy aims to filter out subjective elements, such

as subtitles or auditory narratives, focusing solely on the visual

information presented in the videos. By prioritizing these visual

aspects, we seek to provide a more objective and comprehensive

understanding of the events depicted, offering insights that may

not be explicitly conveyed in the textual content.

Instead of feeding individual frames into the MLLM, we propose

to construct 𝑛 composite frames P𝑣 = {𝑃1, 𝑃2, · · · , 𝑃𝑛}. Each com-

posite frame 𝑃𝑖 consists of an𝑚×𝑚 grid of consecutive frames from

3
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Prompt1 (Textual Perspective): Analyze {Text Input: disinfectant treatment to kill virus...} to reconstruct video
content, correcting errors and enhancing coherence while preserving key details. 

Prompt2 (Visual Perspective): Analyze {Vision Input: composite frames of video} to generate a descriptive caption,
focusing solely on key visual elements and events while ignoring any on-scree-text and subjective elements. 

Prompt3: Analyze the {Refined Content: This video shows ...} from both textual and visual descriptions of the
micro-video. Use your pre-trained knowledge to provide relevant background information, enhancing
comprehension of the video context, without assessing authenticity. Ensure responses are concise, and focused.

Prompt4: Analyze the {Refined Content: This video shows ...}, and {Relevant Knowledge: disinfectants are...}
from a multimodal perspective. Systematically deconstruct the video’s structure and argumentation, identifying any
logical flaws or weak points. Focus on elucidating the logical framework without assessing veracity.  

Answer: This video shows a speaker suggesting ... using disinfectants internally, such as through injection...

Answer: This video content shows a public figure is giving a speech, discussing issues related to disinfectants... 

Step1
Refining

Step2
Retrieving

Step3
Reasoning

Answer: The knowledge related including: disinfectants are used to clean surfaces ...

Answer: According refined content and related knowledge, injecting disinfectants to kill virus ... harm to the body 

Fig. 3: An illustration of three-step prompting of our proposed R3CoT. Step 1, prompt MLLM to organize chaotic and misleading
video input; Step 2, instruct MLLM to generate rumor-relevant knowledge; Step 3, guide MLLM to conduct inference to cross-
verify the refined and retrieved content.

the initial video frames V𝑓 : 𝑃𝑖 = [𝑣𝑖1 , 𝑣𝑖2 , . . . , 𝑣𝑖𝑚×𝑚 ]. This allows
the model to better grasp temporal changes and scene dynamics.

The generation process of refined visual content Rvision is guided

by the template prompt
2
presented in Step 1 of Fig. 3,

Rvision = F (P𝑣, Prompt
2
). (2)

The refined textual and visual content will be used as the input

information for the next step to generate the domain knowledge

for the micro-video.

3.1.3 Retrieving. This step aims to instruct the MLLM to generate

expressive and relevant domain knowledge for the given micro-

video based on the refined content. The retrieved domain knowl-

edge enables the MLLM to better understand the rumors presented

in the micro-video, thus facilitating effective reasoning. Specifically,

let R
refining

= [Rtext;Rvision] represent the refined video content.

We guide the domain knowledge retrieval process using the tem-

plate Prompt
3
in Step 2 of Fig. 3. This step can be formulated as

follows:

Rretrieving = F (R
refining

, Prompt
3
). (3)

The expressive domain knowledge and the refined content will

jointly help the MLLM to make the final reasoning in the next step.

3.1.4 Reasoning. This step utilizes logical inference to cross-verify
the refined content with the domain knowledge from the previous

steps, aiming to uncover evidence that either confirms or refutes

the authenticity of the video. Furthermore, this process enhances

the explainability of the model by providing clear evidence (e.g.,

conflicting or consistent facts) to explain why content is classified as

a rumor, thereby providing transparency into the model’s decisions.

We guide the logical reasoning using the template Prompt
4
in Step

3 of Fig. 3. This step can be formulated as follows:

Rreasoning = F ([R
refining

;Rretrieving], Prompt
4
) . (4)

By leveraging the logically rigorous and coherent R
3
CoT mecha-

nism, our framework addresses the limitations of prior works [8,
9, 36, 42], which typically overlook the chaotic and low-quality

nature of video content and lack the necessary rumor-specific back-

ground knowledge and deep reasoning required for accurate pre-

dictions. In contrast, our R3
CoT mechanism equips ExMRD with

deeper insights through refining the raw video content, retrieving

the domain knowledge, and reasoning the deep rationales, ulti-

mately achieving notable improvements in prediction accuracy.

3.2 Small Language Reviewer
Although the MLLM can make predictions through our carefully

designed three-step CoT process, its inference remains unreliable

due to the inherent limitations of large language models [5, 18], as

the predictions may suffer from hallucinations and not be faithful

to the video content and reasoning process. While fine-tuning the

MLLM for MVRD could help mitigate this issue, it is not practi-

cal due to the vast number of parameters of the MLLM and the

associated huge computational cost.

To this end, we further propose the Small Language Reviewer

(SLReviewer), which distills the outputs from the MLLM into a

smaller language model. By fine-tuning the smaller language model,

a more reliable and practical solution is achieved, as it requires

significantly fewer parameters and is computationally efficient.

The fine-tuning process of SLM can be represented as:

S(x) = L𝐿 ◦ L𝐿−1 ◦ · · · ◦ L𝐿−𝑓 +1
◦ Lfixed

𝐿−𝑓 ◦ · · · ◦ Lfixed

1
(x), (5)

where L𝑖 represents the 𝑖-th transformer encoder layer. The pa-

rameters of the last 𝑓 layers, denoted as L𝐿−𝑓 +1
to L𝐿 , are fine-

tuned during training. Meanwhile, the remaining layers are frozen,

enabling the SLReviewer to retain its ability to review the out-

put produced by the MLLM. The refined content R
refining

, domain

4
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knowledge Rretrieving, and reasoning Rreasoning are concatenated

and fed into the SLReviewer to generate the textual feature repre-

sentation H𝑡 ∈ R𝑙×𝑑𝑡 for the final prediction. This process can be

written as:

H𝑡 = S[R
refining

;Rretrieving;Rreasoning] . (6)

We employ the pre-trained Vision Transformer (ViT) [14] to extract

visual features H𝑣 ∈ R𝑘×𝑑𝑣
from the video framesV𝑓 . To align the

sequence lengths of the textual features H𝑡 and the visual features

H𝑣 , we apply an average pooling strategy, resulting in H̄𝑡 ∈ R𝑑𝑡 and
H̄𝑣 ∈ R𝑑𝑣 . Subsequently, a two-layerMultilayer Perceptron (MLP) is

used as a predictor to fuse the pooled textual and visual features, pro-

ducing the final prediction: 𝑦 = Predictor[Ψ𝑡 (H̄𝑡 );Ψ𝑣 (H̄𝑣)], where
Ψ𝑡 (·) and Ψ𝑣 (·) denote the linear mapping functions.

For model training, we only need to optimize the parameters of

SLReviewer. Specifically, we adopt Binary Cross-Entropy loss to

optimize the model. In addition, the efficiency analysis, training

algorithm, and mathematical proof of ExMRD, are provided in

Appendix A-C.

Table 1: Statistics of three datasets.

Dataset Time Range # Rumor # Truth # Total Duration (s)

FakeSV 2017/10-2022/02 1,810 1,814 3,624 39.88

FakeTT 2019/05-2024/03 1,172 819 1,991 47.69

FVC 2016/01-2018/01 1,633 1,131 2,764 87.83

4 Experiments
An overview of the experimental setup is outlined below, with

detailed descriptions of the datasets, baseline models, and imple-

mentation available in Appendix D.

- Datasets. To analyze the effectiveness of our ExMRD, we conduct

experiments on three real-world micro-video datasets: FakeSV [36],

FakeTT [8], and FVC [35]. Table 1 summarizes the detailed statistics

of three datasets. Following existing works [8, 36], we employ a tem-

poral split strategy to simulate real-world scenarios on micro-video

platforms. In this strategy, we divide each dataset chronologically

into training, validation, and test sets, with respective ratios of 70%,

15%, and 15%.

- Baselines. To verify the superiority of ExMRD, we compare it

against 13 competitive baselines, which can be categorized into

three groups: (1) Unimodal detection methods which utilize sin-

gle modality (e.g., textual modality) of micro-videos to conduct

detection: BERT [13], ViT [14], MFCC [12] and TSformer [6]; (2)

Multimodal detection methods which incorporate all modalities to

improve the precision in detecting rumors in micro-videos: Tik-

Tec [42], FANVM [11], CAFE [9], HMCAN [38], SV-FEND [36] and

FakingRec [8]; (3)MLLM based methods which employ the latest re-

leased advanced MLLMs to detect the video rumor: GPT-4o-m [34],

LLaVA-OV [22], Qwen2-VL [50].

-Model Implementation. We employ GPT-4o-m [34] as theMLLM

backbone because it is scalable and easy to deploy. Additionally,

BERT [13] is adopted as the SLM backbone due to its robust con-

textual understanding and performance in many natural language

processing tasks.

-Metrics. Following prior works [8, 36], we employ four metrics to

evaluate the performance: Accuracy (ACC), Macro F1 score (M-F1),
Macro Precision (M-P), and Macro Recall (M-R).

4.1 Overall Performance
To assess the effectiveness of our ExMRD, we compare ExMRDwith

13 competitive baselines. The results are summarized in Table 2.

From the results, we have the following observations.

First, ExMRD consistently outperforms all baselines across vari-

ous metrics on three datasets, showing an average improvement of

4.99% in Accuracy and 5.37% in Macro F1. To further verify its effec-

tiveness, ExMRD and the strongest baseline are retrained five times,

with the resulting 𝑝-values, all below 0.05, confirming the statistical

significance of ExMRD’s improvement. These gains are attributed

to ExMRD’s innovative R
3
CoT mechanism, which refines content,

retrieves domain knowledge, and applies reasoning. Furthermore,

SLReviewer efficiently utilizes the distilled knowledge fromMLLMs,

yielding precise predictions with minimal computational overhead.

Second, the unimodal methods show significantly lower perfor-

mance, highlighting the importance of multimodal information in

MVRD. Among them, BERT, which leverages the textual informa-

tion for prediction, outperforms other methods in this group. This

indicates that textual modality contains more semantic information

and is more conducive to rumor detection. Our ExMRD framework

leverages extensive textual data from multiple sources (title, de-

scription, on-screen text, and audio transcript), with the R
3
CoT

refining step enhancing the text quality for improved predictions.

Third, multimodal methods generally outperform unimodal ap-

proaches, demonstrating the benefit of combining text and visuals

in MVRD. FakingRec, for example, achieves strong results by focus-

ing on the content creation process, leading to a robust multimodal

understanding. However, ExMRD surpasses all multimodal base-

lines by refining video content to tackle the low-quality inputs.

Additionally, accurately classifying a video as rumor or truth re-

quires domain knowledge and logical reasoning, aspects that other

models overlook.

Fourth, MLLM-based methods excel in zero-shot multimodal

tasks but their lack of task-specific adaptation often leads to incon-

sistent performance in MVRD, making them insufficient for the

detection. Direct fine-tuning MLLMs is computationally expensive,

limiting practicality. In our ExMRD, we propose SLReviewer to

refine MLLM outputs, providing more reliable predictions. Conse-

quently, ExMRD achieves superior performance inMVRD compared

to conventional MLLM-based methods.

4.2 Ablation Study
We conduct experiments to explore the impact of each main com-

ponent in ExMRD, with the results summarized in Table 3.

4.2.1 Effect of R3CoT Mechanism. To assess the impact of the

R
3
CoT mechanism, each step of R

3
CoT is removed individually

to evaluate its effect. Specifically, the following ablation studies are

conducted: (1) w/o Refine, where the refined output is replaced

with the original video content; (2) w/o Retrieve, where the do-
main knowledge is excluded; (3) w/o Reason, where the reasoning
output is removed; and (4) w/o R3CoT, where the distilled knowl-

edge from MLLM is replaced as the original video content. The

results indicate that each steps play pivotal roles in detecting rumor

in micro-videos and provide insightful rationales with the predic-

tion result. Moreover, a substantial performance drop is observed

when the entire R
3
CoT mechanism is removed, further validating
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Table 2: Performance comparison on three real-world datasets. The best results are in highlighted red bold, while the second
results are in black bold. Higher values of Accuracy, Macro F1, Macro Precision, and Macro Recall signify better performance.

Dataset FakeSV FakeTT FVC

Model ACC M-F1 M-P M-R ACC M-F1 M-P M-R ACC M-F1 M-P M-R
BERT 80.63 80.14 80.56 79.90 71.24 69.31 68.98 70.85 69.29 68.13 68.72 67.95

ViT 71.22 71.04 71.04 71.33 65.55 64.39 65.17 67.11 81.54 80.74 82.03 80.25

MFCC 61.07 61.05 61.64 61.74 52.51 52.23 64.26 62.21 65.05 60.79 65.75 61.68

TSformer 72.14 71.95 71.91 72.20 64.88 64.69 68.79 70.43 90.92 90.67 91.06 90.40

TikTec 73.43 73.26 73.23 73.54 66.22 65.08 65.84 67.87 74.60 74.54 74.63 74.52

FANVM 79.52 78.81 79.81 78.46 71.57 70.21 70.22 72.63 79.27 77.41 82.47 76.77

CAFE 71.03 71.00 71.41 71.67 69.57 67.91 67.83 69.85 83.59 83.12 83.76 82.79

HMCAN 79.52 78.81 79.81 78.46 68.56 68.41 72.78 74.72 85.62 84.99 86.48 84.40

SV-FEND 80.88 80.54 80.18 80.62 77.14 75.63 75.12 77.56 87.59 87.36 87.34 87.40

FakingRec 84.69 84.30 84.80 84.01 79.60 77.76 77.12 78.88 90.92 90.78 90.65 90.95
GPT-4o-m 66.42 65.88 65.90 65.87 57.85 57.78 62.91 63.65 66.11 65.51 65.49 65.54

LLaVA-OV 57.54 50.71 61.57 55.94 46.82 46.81 53.44 53.36 60.21 56.55 58.91 57.30

Qwen2-VL 53.85 53.72 54.29 54.20 53.18 52.95 56.77 57.35 59.15 58.05 58.15 58.02

ExMRD 86.90 86.52 87.31 86.13 84.28 83.13 82.27 85.19 96.82 96.75 97.02 96.75
Improv. 2.61%↑ 2.63%↑ 2.96%↑ 2.52%↑ 5.88%↑ 6.91%↑ 6.68%↑ 8.00%↑ 6.49%↑ 6.58%↑ 7.03%↑ 6.38%↑
𝑝-val. 2.26𝑒−3

2.33𝑒−3
3.17𝑒−3

2.42𝑒−3
1.64𝑒−2

9.36𝑒−3
5.57𝑒−3

2.82𝑒−3
4.94𝑒−4

5.62𝑒−4
3.18𝑒−4

1.07𝑒−3

Table 3: Ablation study on key components of ExMRD.

Dataset FakeSV FakeTT FVC

Variant ACC M-F1 ACC M-F1 ACC M-F1

w/o Refine 82.10 81,81 83.28 82.22 94.25 94.90

w/o Retrieve 85.05 84.60 81.61 80.47 93.34 93.11

w/o Reason 85.05 84.42 79.60 78.62 95.31 95.20

w/o R
3
CoT 80.07 79.72 80.60 79.58 93.65 93.47

w/o Fine-tune 84.87 84.27 81.61 80.47 92.59 92.33

MLP-based 85.42 84.86 78.93 77.63 95.31 95.20

ExMRD 86.90 86.52 84.28 83.13 96.82 96.75

the critical role of the distilled knowledge obtained from R
3
CoT

guided MLLM in MVRD.

4.2.2 Effect of SLReviewer. To assess the effectiveness of the SLRe-

viewer, two ablation variants are developed: (1) w/o Fine-tune,
where no fine-tuning is applied to the SLM; (2) MLP-based Re-
viewer, where a one-layer MLP is attached to the last layer of the

frozen SLM. The results indicate the necessity of fine-tuning SLRe-

viewer to adapt to the distilled outputs produced by the MLLM, as

freezing all the layers leads to significantly degraded performance.

Moreover, theMLP-based reviewer struggles to capture the intricate

reasoning patterns required for this task, leading to a substantial

drop in performance. This is likely because the shallow architecture

of the MLP lacks the representational capacity needed to model the

nuanced interactions between the layers of the pre-trained SLM.

4.3 Hyper-Parameter Sensitivity Analysis
In this section, sensitivity analysis of hyper-parameters within

ExMRD is conducted on the FakeSV and FakeTT datasets, with the

results presented in Fig. 4. The results show that as the number

of fine-tuning decoder layers in SLReviewer increases, the per-

formance of ExMRD improves initially, demonstrating that SLRe-

viewer can effectively self-update its parameters to adapt to the

0 2 4 6 8 10 12
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86

88
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)

Accuracy
Macro F1

(a) Layer 𝑓 on FakeSV.

0 2 4 6 8 10 12

80

82

84

86 Accuracy
Macro F1

(b) Layer 𝑓 on FakeTT.

Fig. 4: Sensitivity analysis of the number of fine-tuning de-
coder layers 𝑓 on the FakeSV and FakeTT datasets.

reasoning patterns derived from R
3
CoT and generate more accurate

outputs. However, fine-tuning too many layers can disrupt the rich

knowledge learned during SLM pre-training, leading to a decline

in performance. To balance the preservation of pre-trained knowl-

edge with adaptation to newly distilled knowledge, the number of

fine-tuning decoder layers 𝑓 is set to 8 for both datasets. Additional

parameter analysis is provided in Appendix E.3.

4.4 Model Generalizability Analysis
In this section, we explore the generalizability of ExMRD from

two distinct perspectives. First, we evaluate the generalizability

of the main components within ExMRD– specifically the R
3
CoT

and SLReviewer– to determine their effectiveness across different

MLLMs. Subsequently, we investigate the model’s generalizability

from a dataset perspective, focusing on its ability to train on one

dataset and consistently perform well on other distinct datasets.

4.4.1 Generalizability of Main Components. We evaluate the gener-

alizability of our main components, R
3
CoT and SLReviewer, across

various MLLMs for MVRD. Results for the FakeSV and FakeTT

datasets are shown in Fig. 5, while the results for FVC, due to

page limitations, are presented in Fig. 10. As observed, integrating

R
3
CoT significantly enhances the accuracy of various MLLMs in

distinguishing rumors from truths in micro-videos, underscoring
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Fig. 5: Generalizability analysis on adding our R3CoT and
SLReviewer to base MLLM.
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(a) FakeTT to FVC.
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(b) FVC to FakeTT.
Fig. 6: Generalizability analysis through cross-dataset exper-
iments on the FakeTT and FVC datasets.

R
3
CoT’s adaptability across diverse MLLM architectures. Moreover,

SLReviewer builds upon these advantages to achieve significant

improvements in prediction accuracy. It demonstrates strong gen-

eralization by utilizing knowledge from various MLLMs and con-

sistently maintaining high performance across different datasets.

4.4.2 Generalizability on Different Datasets. We conduct the exper-

iments to evaluate the generalizability of our proposed ExMRD and

the most competitive baseline model FakingRec, and the results are

reported in Fig. 6. In this experiment, we select the FakeTT and

FVC datasets, which are sourced from different platforms and vary-

ing significantly in content style and target audience, to conduct

cross-dataset evaluations. Specifically, we train and validate the

models on one dataset and test them on the other. The results show

that our ExMRD strongly outperforms FakingRec across all metrics

in both cross-dataset evaluations. The baseline model struggles to

handle dataset biases, such as superficial multimodal features and

platform-specific characteristics. In contrast, our model effectively

bridges the gap between inconsistencies in micro-video quality

through the MLLM by the guidance of the refining step in R
3
CoT.

Moreover, the MLLM is instructed by the retrieving and reason-

ing steps from R
3
CoT to generate the domain knowledge and the

rationale for detecting rumors for the micro-videos in the target

dataset. This distilled knowledge demonstrates significant general-

izability and is fed to SLReviewer to make the precise prediction.

These observations further confirm the superiority of ExMRD in

handling diverse videos with varying quality and its robustness

in cross-platform scenarios, making it well-suited for real-world

deployment.

(a) ExMRD. (b) FakingRec.
Fig. 7: t-SNE visualization of ExMRD and FakingRec on the
FVC dataset. Red points represent rumors; blue points, truth.
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Fig. 8: Comparison of explanation quality with and without
proposed R3CoT on the FakeTT dataset. I: Informativeness,
S: Soundness, P: Persuasiveness, R: Readability, F: Fluency.

4.5 Model Prediction Visualization
Fig. 7 visualizes the embedding distribution of the two categories

(i.e., Rumor and Truth) on the test set of the FVC dataset, using

t-SNE [47]. In this study, we select the output from the last layer

of the classifier in our model as the embedding. We observe that

our ExMRD produces more discriminative representations, with

clearer boundaries between instances of different labels. This result

underscores ExMRD’s ability to generate the evidence of whether

the video is rumor or truth through the R
3
CoT and distill this

evidence to the SLReviewer to perform accurate predictions.

4.6 Model Explainability
To assess the explainability of ExMRD, we first compare the quality

of explanations generated by various MLLMs, with and without

R
3
CoT. A case study on selected micro-videos then demonstrates

how effectively ExMRD explains its classifications.

4.6.1 Quality of Explainability. In this section, we assess the con-

tribution of the proposed R
3
CoT to the quality of explanation (i.e.,

reasoning output). We employ G-Eval [27], an LLM-based reference-

free evaluation approach, to evaluate the text quality of the expla-

nations generated by our framework by comparing the base MLLM

with or without R
3
CoT. To be specific, we utilize the following

criteria [48, 49]: (1) Informativeness: the explanation provides new

information, such as explaining the background and additional

context; (2) Soundness: the explanation seems valid and logical;

(3) Persuasiveness: the explanation is convincing; (4) Readability:

the explanation follows proper grammar and structural rules; (5)

Fluency: the explanation flows smoothly with coherent and well-

connected ideas. For each criterion, a 5-point Likert scale [20] is

employed, where 1 meant the poorest quality and 5 the best.

Fig. 8 illustrates the average improvement in explanation quality,

as evaluated by G-Eval, for base MLLM with and without R
3
CoT,

across five criteria. The results show that: (1) in informativeness and
7
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Table 4: Case study of correctly detected micro-video rumors on the FakeTT dataset.

Case 1 Case 2

Micro-video

Viewpoint Three Simple Ways to Check Food Quality Martin Luther King was not a Republican

Original Content REAL FOOD VS FAKE FOOD CHECK HOW NATURAL PROD-

UCTS AREI ARTIFICIAL REAL HONEY HONEY NATURAL ...

Replying to marywesling Dr. King did not associate himself as a

member of any party. #mlk #mlkday

Refining This video presents a comparison between real and artificial

food products. It ... identify natural products versus artificial

alternatives, with examples like real honey versus ...

The micro-video shows Dr. Martin Luther King Jr. expressed

concern about the Republican Party potentially becoming ..." ...

He acknowledged that this trend poses a significant danger ...

Retrieving Food Authenticity Checks: Common methods include testing for

natural chemical markers (e.g., pure honey vs. adulterated), and

observing physical characteristics during cooking...

Dr. Martin Luther King Jr. was a renowned civil rights leader... he

did not publicly declare himself a member of any political party...

His main focus ...not partisan politics ...

Reasoning The argument seems visually driven ... Cooking appearance alone

may not conclusively differentiate between natural and artificial,

as processed foods can mimic the appearance of natural ones.

From the video, Dr. Jin did express concerns during an interview

about the Republican Party potentially becoming a "white party."

This is consistent with historical records ...

Ground Truth Rumor Truth

ExMRD Rumor ✓ Truth ✓

soundness, MLLM equipped with R
3
CoT exhibit significant improve-

ment over the original MLLM, underscoring the necessity of R
3
CoT

for providing expressive domain knowledge during the retrieving

step; (2) in readability and fluency, MLLM equipped with R
3
CoT

outperform the original versions, demonstrating the effectiveness

of refining step in reorganizing video content and enhancing clarity;

(3) in persuasiveness, the MLLM with R
3
CoT displays a significant

improvement, suggesting that it contributes to more convincing

rationales through its reasoning step.

4.6.2 Qualitative Analysis on Explainability. To further investigate

the explainability of our proposed ExMRD, we randomly selected

two micro-video cases from FakeTT to explore how ExMRD classi-

fies each video as either a rumor or truth, as shown in Table 4.

In case 1, a rumor micro-video claims that Three Simple Ways
to Check Food Quality. The original content involves cooking two
types of food in a frying pan to test whether they are natural

products. ExMRD first refines this content to highlight the core

claim. Subsequently, it retrieves domain knowledge on common

methods for verifying food authenticity, such as testing for natural

chemicals, and applies logical reasoning to reveal that the content

primarily relies on visual appeal to attract viewers, without offering

valid techniques for determining whether the food is genuinely

natural. As a result, our ExMRD correctly classifies the content in

this video as a Rumor. This case demonstrates how ExMRD not

only detects misinformation but also offers a well-founded rationale

supported by factual knowledge and logical analysis.

In Case 2, a real micro-video refutes the statement that Martin
Luther King was a Republican. The original content includes a de-
scription of Dr. King’s concerns that the Republican Party might

become a white party. Our framework refines the text to emphasize

that Dr. King expressed concerns about the party’s direction but

did not publicly align himself with any political party. It retrieves

relevant domain knowledge confirming that Dr. King was a non-

partisan civil rights leader, and uses logical reasoning to align this

information with historical records. Consequently, the framework

accurately classifies the video as Truth. This case highlights how
ExMRD integrates historical context and logical reasoning to verify

the authenticity of the claim. Additional qualitative analyses and

error analysis are provided in Appendix E.5-F.

5 Conclusion
This work introduces ExMRD, an Explainable framework for in-

terpretable Micro-video Rumor Detection. The proposed R
3
CoT

mechanism in ExMRD is a novel three-step CoT process – Refining,

Retrieving, and Reasoning – that reorganizes the raw video content,

retrieves rumor-related domain knowledge, and generates explain-

able conclusions on whether the micro-video contains misleading

information. Instead of directly fine-tuning MLLMs, which is com-

putationally expensive, we propose SLReviewer within the ExMRD

framework, distilling CoT-guided MLLM outputs to ensure accu-

rate predictions with minimal computational overhead, making it

more adaptable to real-world demands. Extensive experiments con-

ducted on three real-world datasets demonstrate the effectiveness

of ExMRD in both rumor detection and explainability. We believe

that ExMRD is a valuable tool for detecting rumors on various

micro-video platforms (e.g., TikTok and YouTube Shorts) while also

promoting AI transparency and fostering a more trustworthy and

safer online experience.
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A Efficiency Analysis
In this section, we provide a comparison of performance on macro

F1 with regard to the number of trainable parameters for ExMRD

and the other competitive baseline models in Fig. 9. From the figure,

we observe that BERT and ViT have the fewest trainable parameters,

as their internal parameters are frozen, with only the classification

layer being trained. In contrast, HMCAN demonstrates the highest

number of trainable parameters due to its complex multi-layered

transformer architecture, including dual contextual transformers

and an extremely intricate classifier. Notably, only 3 layers are fine-

tuned in our proposed SLReviewer in this study. Although ExMRD

is not the most parameter-efficient model, its significant perfor-

mance improvement across all three datasets in MVRD justifies the

parameter scale, demonstrating that the complexity is warranted by

its largely enhanced capabilities. Moreover, we provide the training

algorithm of our proposed ExMRD in Algorithm 1.

Algorithm 1 Training of ExMRD for Micro-Video Rumor Detection

Input: Micro-video dataset S = {M1,M2, . . . ,M𝑁 }.
Output: Predicted labels {𝑦1, 𝑦2, . . . , 𝑦𝑁 } for each videoM𝑖 (Ru-

mor or Truth).
1: for each micro-videoM𝑖 in S do
2: /∗ Feature Extraction ∗/
3: Extract metadata T𝑚 , on-screen text T𝑜 , and audio transcript

A𝑡 fromM𝑖 .

4: Sample key framesV𝑓 = {𝑣1, 𝑣2, . . . , 𝑣𝑘 } fromM𝑖 .

5: /∗ R3CoT Mechanism ∗/
6: /∗ Step 1: Refining ∗/
7: Generate refined text content. Rtext using Eq. (1).

8: Create composite frames P𝑣 fromV𝑓 .

9: Generate refined visual content. Rvision using Eq. (2).

10: /∗ Step 2: Retrieving ∗/
11: Concatenate refined contents: R

refining
= [Rtext;Rvision].

12: Generate domain knowledge Rretrieving using Eq. (3).

13: /∗ Step 3: Reasoning ∗/
14: Concatenate inputs: [R

refining
;Rretrieving].

15: Generate reasoning output Rreasoning using Eq. (4).

16: /∗ Small Language Reviewer ∗/
17: Concatenate all textual information: 𝑅𝑖 =

[R
refining

;Rretrieving;Rreasoning].
18: Obtain textual feature representation H𝑡 using Eq. (6).

19: Compute visual feature representation H𝑣 ∈ R𝑘×𝑑𝑣
.

20: Apply average pooling to H𝑡 and H𝑣 to get H̄𝑡 and H̄𝑣 .

21: Fuse features using a two-layer MLP to obtain prediction:

𝑦𝑖 = Predictor[Ψ𝑡 (H̄𝑡 );Ψ𝑣 (H̄𝑣)].
22: end for
23: /∗ Training ∗/
24: Freeze parameters of pre-trained encoders.

25: Optimize the model using BCE loss.

B Proof of Effectiveness of Distilled Knowledge
from R3CoT

The previous sections demonstrated how MLLM generate infor-

mative refined content R
refining

, retrieve relevant domain knowl-

edge Rretrieving, and apply reasoning patterns Rreasoning driven

by R
3
CoT. Here, we provide theoretical proof that knowledge-

augmented distillation using these outputs from MLLMs reduces

the capacity of memory requirements of SLMs while potentially

achieving results comparable to large models.

B.1 Proposition of R3CoT
Proposition B.1. Let S be an SLM trained using knowledge-

augmented reasoning distillation from anMLLM, utilizing the outputs
Rrefining, Rretrieving, and Rreasoning. For a knowledge-intensive task,
the mutual information between the training data 𝑋 and the SLM
satisfies:

𝐼 (𝑋 ;S(𝑋 )) = 𝑂 (log(𝑁 + 𝑅)) , (7)

where 𝑁 is the number of useful documents in the knowledge base
and 𝑅 is the number of irrelevant documents. Furthermore, the perfor-
mance gap between S and the original MLLMAMLLM has significant
potential to be minimized to a sufficiently small margin.

B.2 Theoretical Proof
We start by assuming that the MLLM generates outputs R

refining
,

Rretrieving, and Rreasoning that are relevant and beneficial for

the task. These outputs are distilled into the SLM through the

knowledge-augmented reasoning distillation process.

In a knowledge-intensive task, the SLM leverages a knowledge

base containing𝑁 useful documents and𝑅 irrelevant documents. By

utilizing the retrieved knowledge Rretrieving and reasoning patterns

Rreasoning distilled from the MLLM, the SLM effectively retrieves

and applies the relevant documents from the knowledge base. With-

out knowledge augmentation, the mutual information between the

training data 𝑋 and the model S(𝑋 ) is proportional to the amount

of data that needs to be memorized, which is 𝑂 (𝑁𝑑) for 𝑑-bit ref-
erence strings in the documents. However, by incorporating the

knowledge base and the distilled reasoning abilities Rreasoning,
the SLM only needs to memorize how to retrieve and utilize the

relevant information, rather than memorizing all the content. The

mutual information thus becomes:

𝐼 (𝑋 ;S(𝑋 )) = 𝑂 (𝑁 log(𝑁 + 𝑅)) , (8)

since the SLM needs to store retrieval cues for 𝑁 useful documents

among a total of 𝑁 + 𝑅 documents. However, because the retrieval

process can generalize across documents using the distilled reason-

ing patterns Rreasoning and refined content R
refining

, the depen-

dence on 𝑁 can be significantly reduced. By employing efficient

retrieval techniques informed by Rretrieving and generalizable

reasoning patterns from Rreasoning, the SLM learns a retrieval

function with complexity:

𝐼 (𝑋 ;S(𝑋 )) = 𝑂 (log(𝑁 + 𝑅)) . (9)

This reduction indicates that the SLM requires significantly less

capacity to store information from the training data. Since the

distilled knowledge effectively captures the MLLM’s capabilities,

the performance gap between S and F can be made arbitrarily

small.

Therefore, by utilizing the knowledge-augmented reasoning dis-

tillation of the MLLM’s outputs R
refining

, Rretrieving, and Rreasoning,

we validate that the SLM can achieve a significant enhancement in

performance and has the potential to match the performance of the

MLLM.
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Fig. 9: The performance of our ExMRD and competitive baselines with respect to the number of trainable parameters.

C Proof of Effectiveness of SLReviewer
The previous sections demonstrated the motivation and the process

of fine-tuning SLReviewer to adapt to the output of the MLLM. In

this section, we present a theoretical evaluation of the fine-tuning

process within SLReviewer, establishing a connection between

the number of fine-tuned layers and the resulting performance

effectiveness.

C.1 Proposition of SLReviewer
Proposition C.1. LetS be a classifier parameterized by 𝜃𝐷 ∈ R𝐷 ,

where 𝐷 is the total number of parameters in SLReviewer. Suppose
that only the last 𝑓 layers, denoted L𝐿−𝑓 +1

to L𝐿 , are fine-tuned.
For a dataset 𝑆 with 𝑚 samples, the generalization loss L0 (S) of
SLReviewer satisfies:

L0 (S) ≤ ˆL0 (S) + O
(√︂

𝑓 · 𝑝
𝑚

)
(10)

where ˆL0 (S) presents the fine-tuning loss of SLReviewer, 𝑝 is the
number of parameters per fine-tuned layer and the symbol O describes
an upper bound on the growth rate of the generalization error term.

C.2 Theoretical Proof
We outline the proof by connecting model capacity and general-

ization bounds, showing that reducing the number of trainable

parameters improves generalization.

Step 1: Fine-Tuning Reduces Capacity. Fine-tuning the last
𝑓 layers reduces the number of trainable parameters from 𝐷 to

𝐹 = 𝑓 · 𝑝 . This reduced capacity constrains the model, limiting its

flexibility and improving generalization, particularly in small data

settings [1].

Step 2: Rademacher Complexity Bounds. The Rademacher

complexity R(F ) measures the model’s capacity. For a model with

𝐹 trainable parameters, we have:

R(F ) ≤ O
(√︂

𝐹

𝑚

)
(11)

Substituting 𝐹 = 𝑓 · 𝑝 gives:

R(F ) ≤ O
(√︂

𝑓 · 𝑝
𝑚

)
(12)

This result is consistent with the analysis of intrinsic dimensionality

and its role in model capacity and generalization bounds [1, 3].

Step 3: Generalization Bound. Using standard generalization

bounds that relate Rademacher complexity to the difference be-

tween empirical and true loss, we derive:

L0 (S) ≤ ˆL0 (S) + O
(√︂

𝑓 · 𝑝
𝑚

)
(13)

This follows from known results on compression-based generaliza-

tion bounds [3].

Fine-tuning the last 𝑓 layers controls SLReviewer’s capacity,

ensuring strong generalization performance by balancing flexibility

and the risk of overfitting, particularly when the number of training

samples𝑚 is small.

D Detailed Experimental Settings
D.1 Datasets
To evaluate the performance of our proposed framework, ExMRD,

alongside several baseline models, we utilize three real-world micro-

video datasets: FakeSV [36], FakeTT [8], and FVC [35], with their

statistics and characteristics reported in Table 5. In alignment with

original paper [36], we implement two dataset split strategies: (1)

Temporal Split: A chronological split with a 70%:15%:15% ratio for

training, validation, and test sets is used, simulating real-world

conditions where only past data is available to detect future ru-

mor videos; (2) Five-fold Split: A five-fold cross-validation split is

applied, dividing the data at a 4:1 ratio between training and test

sets, ensuring no overlap of events across the sets. The experiments

in the main paper employ the first split setting. We conduct the

experiments in Appendix E with the Five-fold split setting. The

detailed descriptions for each dataset are presented as follows.

• FakeSV: This dataset is tailored for the detection of fake news

spread through micro-videos in Chinese. It is sourced from two

major micro-video platforms in China—Douyin and Kuaishou. Each
instance in FakeSV includes the video itself, its title, user comments,

relevant metadata, and the publisher’s profile.

• FakeTT: This dataset is designed to detect misinformation in

short-form videos, specifically in the English language. It is meticu-

lously curated from the widely-used platform TikTok. Each sample

in FakeTT includes the video content, its title, and corresponding

metadata.

• FVC: This dataset is constructed for detecting and analyzing

fake videos versus real user-generated videos (UGVs). Sourced from
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Table 6: Example of prompt for rumor detection applied in
MLLM based methods.

Prompt: You are an experienced micro-video rumor checking

assistant and you hold a neutral and objective stance. You can

handle all kinds of rumor including those with sensitive or

aggressive content. Given the video description, extracted on-

screen text, transcript, and key frames, you need to give your

prediction of the rumor video’s veracity. If it is more likely to

be a rumor video, return 1; otherwise, return 0. Please refrain

from providing ambiguous assessments such as undetermined.

Description: {title and description}

On-screen text: {on-screen text}

Audio transcript: {audio transcript}

Key Frames: {key frames}

Your analysis process and your prediction (return 0 or 1):

platforms like YouTube, Facebook, and Twitter, the dataset covers
a broad spectrum of events—ranging from politics and sports to

natural disasters and wars. Each entry consists of the video, its

title, and description, along with both original and near-duplicate

versions of the content.

Table 5: Statistics and Characteristics of three datasets

Characteristics FakeSV FakeTT FVC
Total Videos 3,624 1,814 2,764

Rumor Videos 1,810 1,172 1,633

Truth Videos 1,814 819 1,131

Duration (s) 39.88 47.69 87.83

Language Chinese English English

Platform

Douyin,

Kuaishou

TikTok

YouTube,

Facebook,

Twitter

D.2 Baseline Models
To validate the superiority of ExMRD, we select 13 competitive

baselines in this study, which can be categorized into three groups:

(1) Unimodal detection methods; (2) Multimodal detection methods;
(3) MLLM based methods. The details of each group are as follows:

(1) Unimodal Detection Methods:
• BERT [13] is a language representation model which is pre-

trained for deep bidirectional representations from unlabeled

text. It is used to extract features, specifically the [CLS] token,

from textual inputs including the video title, description, and

on-screen text. These extracted features form a 768-dimensional

vector space, which is subsequently fed into a two-layer MLP to

generate the final prediction.

• ViT [14] leverages the Transformer architecture for direct fea-

ture extraction from image patches. ViT is used to extract 768-

dimensional feature vectors from 16 key frames of each video.

These vectors are then passed through a two-layer MLP to gen-

erate the final prediction.

• MFCC [12] is a widely used feature in audio classification tasks,

particularly effective in capturing timbral and phonetic char-

acteristics that can help identify anomalies or patterns related

to misinformation in audio content. For each video, we extract

128-dimensional MFCC features from the audio stream. These

features are then passed through a two-layer MLP to yield the

final prediction.

• TSformer [6] employs separate spatial and temporal attention

mechanisms on frame-level patches to address video understand-

ing tasks. We utilize TSformer to extract 768-dimensional fea-

tures from each video. These features are then input through a

two-layer MLP to output the final prediction.

(2) Multimodal Detection Methods:
• TikTec [42] is a multimodal framework designed for detecting

misinformation videos by analyzing visual, audio, and textual

content on platforms like TikTok.

• FANVM [11] is a multimodal detection model for rumors in

micro-videos. It leverages cross-modal correlations and social

context information to identify informative features for detec-

tion.

• CAFE [9] is an ambiguity-aware multimodal fake news detec-

tion method. It aligns unimodal features, estimates cross-modal

ambiguity, and adaptively fuses information based on ambiguity

strength.

• HMCAN [38] combines multi-modal context information and

hierarchical text semantics for rumor detection. It uses BERT

and ResNet for text and image representations, respectively.

• SV-FEND [36] is a multimodal detection model for fake news

in micro-videos. It leverages cross-modal correlations and social

context information to identify informative features for detec-

tion.

• FakingRec [8] is a creative process-aware model for detect-

ing rumors in micro-videos. It analyzes material selection and

editing patterns, considering sentimental, semantic, spatial, and

temporal aspects.

(3) MLLM Based Methods:
• GPT-4o-m [34] is the latest multimodal large model released by

OpenAI, capable of processing both text and images. It performs

tasks like rumor detection in micro-videos by interpreting mul-

timodal inputs, combining language understanding with visual

data analysis, and can handle zero-shot tasks without requiring

task-specific training.

• LLaVA-OV [26] is a recently introduced multimodal large model,

combining a vision encoder with a large language model. Trained

on GPT-4-generated visual instruction data, it enables general-

purpose visual-language understanding, making it applicable to

rumor video detection tasks.

• Qwen2-VL [50] is a newly launchedmultimodal largemodel that

employs dynamic resolution processing for images and videos to

improve efficiency and accuracy. By incorporating Multimodal

Rotary Position Embedding, it integrates text and image data,

positioning it well for rumor video detection tasks.

For MLLM based baselines, we provide the title and descrip-

tion from the video metadata and transcript extracted from audio

and raw video with a specifically designed prompt to guide the

prediction generation, the prompt is presented in Table 6.
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D.3 Implementation Details
In this section, we present detailed implementation specifications

for our proposed ExMRD as well as a comprehensive overview of

the experimental setup.

• MLLM Implementation in R3CoT. We utilize GPT-4o-m,

specifically the gpt-4o-mini-2024-07-18 , an efficient model de-

signed for relatively low resource consumption, in our main

experiments. In addition, to explore the generalizability of our

framework, we also employ two state-of-the-art MLLMs with

fewer than 10 billion parameters: LLaVA-Onevision-7b-ov and

Qwen2-VL-7B-Instruct . Both models are optimized for efficiency

and are well-suited for resource-constrained applications due to

their relatively small parameter sizes, under 10 billion.

• SLM Implementation in SLReviewer. Our SLM is based on a

masked self-attention Transformer architecture, i.e., BERT, pre-

trained through language-visual contrastive learning [39]. For

the visual feature encoding, we leverage the pre-trained Vision

Transformer (ViT), keeping its parameters frozen. Specifically,

for English datasets such as FakeTT and FVC, we adopt the

pre-trained BERT and ViT from openai/clip-vit-large-patch14
model. For Chinese datasets, including FakeSV, we employ OFA-
Sys/chinese-clip-vit-large-patch14 [55].

• Data Preprocessing. Given a micro-videoM, we begin by ex-

tracting its multimodal information. For the visual content, we

perform uniform frame sampling to obtain a set of frames, de-

noted as V𝑓 = {𝑣1, . . . , 𝑣𝑘 }, where 𝑘 is the number of sampled

frames. To extract robust visual representations, we employ a

pre-trained Vision Transformer (ViT) [14] as the feature encoder.

Specifically, for each frame 𝑣𝑖 , we compute its feature representa-

tion by extracting the output corresponding to the [CLS] token

of the ViT model, resulting in the extracted visual feature repre-

sentation H𝑣 ∈ R𝑘×𝑑𝑣
, where 𝑘 is the number of frames and 𝑑𝑣

denotes the dimension of the visual feature space.

The textual content of the video is derived from three primary

sources: (1) the video’s metadata, (2) the on-screen text extracted

from each frame, and (3) the transcript extracted from the au-

dio. First, we obtain the metadata, which includes the video’s

title and description, denoted as T𝑚 ∈ R𝑛𝑚
, where 𝑛𝑚 is the

number of words in the metadata. To capture on-screen text,

we employ PaddleOCR [23] to perform text extraction at a rate

of one frame per second for each video. The concatenated se-

quence of text extracted from all frames is denoted as T𝑜 ∈ R𝑛𝑜
,

where 𝑛𝑜 refers to the number of words in the on-screen text.

For audio transcription, we leverage two pre-trained automatic

speech recognition (ASR) models: one fine-tuned for Chinese

(BELLE-2/Belle-whisper-large-v3-zh-punct) and the other for Eng-

lish (openai/whisper-large-v3). These models are specifically opti-

mized for their respective languages, ensuring high transcription

accuracy. The resulting transcript is represented as T𝑡 ∈ R𝑛𝑡
,

where 𝑛𝑡 is the number of words in the transcribed text.

• Training Configuration. For text, we set the maximum se-

quence length to 512 for all datasets. For key frames, we resize

the images into 224 × 224. For composite frame, we configure

an𝑚 ×𝑚 grid into a 2 × 2 grid of consecutive frames. We utilize

the AdamW [28] optimizer with a learning rate of 2 × 10
−4

and

a weight decay of 5 × 10
−5

for model parameters optimization.

We set the random seed to 2024. For statistical analysis, where

each model is run five times and report the mean values as ex-

perimental results. For baseline models, we strictly adhere to the

settings specified in their original papers.

• Implementation Environment.All experiments are conducted

on a system comprising an Intel(R) Core(TM) i9-14900KF proces-

sor, equipped with one NVIDIA GeForce RTX 4090 GPU with 24

GB of VRAM, and accompanied by 128 GB of DRAM.

E Additional Experiments
E.1 Experimental Results on Five-Fold Split
In this section, we provide more comprehensive experiments on

five-fold cross validation, and the results are reported in Table 7.

Following the prior work [36], each dataset is split as training and

test sets at the event level with a ratio of 4:1 for each fold, ensuring

that there is no event overlap among different sets.

From the results, we can draw a similar conclusion present in the

main paper: Multimodal detection methods generally outperform

unimodal approaches, underscoring the significance of integrating

all modalities for rumor detection in MVRD. Notably, MLLM based

methods exhibit weaker performance due to the lack of fine-tuning

to adapt to MVRD. In contrast, our proposed ExMRD demonstrates

superior performance, reflecting the thoughtful design of the model.

ExMRD employs a carefully designed three-step R
3
CoT to guide

the MLLM to generate powerful knowledge, which is then distilled

into SLReviewer for more reliable predictions, ultimately yielding

the best results.

E.2 Additional Generalizability Analysis
We also evaluate the generalizability of our main components,

R
3
CoT and SLReviewer on the FVC dataset, to determine their

effectiveness across different MLLMs. From Fig. 10, we can obtain

the same conclusion presented in the main paper: R
3
CoT boosts the

accuracy of various MLLMs in distinguishing rumors from truths in

micro-videos, proving its versatility across different architectures.

Building on this, SLReviewer further improves predictive perfor-

mance and demonstrates strong generalization, effectively distilling

knowledge from different MLLMs to achieve high performance.

E.3 Additional Hyperparameter Analysis
We also perform the parameter analysis of the number of frozen

decoder layers 𝑓 on the FVC dataset and the results are present in

Fig. 11. We reached a conclusion similar to that in the main paper: as

the number of fine-tuned decoder layers increases, the performance

of ExMRD improves. This indicates that the SLM starts adapting to

reasoning patterns derived from R
3
CoT, generating more precise

outputs. However, fine-tuning too many layers can compromise

the rich knowledge acquired during SLM pre-training, leading to a

drop in performance. To balance preserving pre-trained knowledge

with adapting to reasoning tasks, we set the number of fine-tuning

decoder layers to 𝑓 = 8 for the FVC dataset.

E.4 Model Prediction Visualization
Fig. 12 visualizes the embedding distribution of the two categories

(i.e., Rumor and Truth) on the test set of datasets FakeSV and

FakeTT, using t-SNE [47]. In this study, we select the output from
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Table 7: Performance comparison using five-fold cross validation on three real-world datasets. The best results are highlighted
in red bold, while the second results are in black bold. Higher values of Accuracy, Macro F1, Macro Precision, and Macro Recall
signify better performance.

Dataset FakeSV FakeTT FVC

Model ACC M-F1 M-P M-R ACC M-F1 M-P M-R ACC M-F1 M-P M-R
BERT 76.81 76.75 77.07 76.82 73.34 70.30 74.52 70.61 68.48 62.01 66.53 62.99

ViT 66.70 66.70 66.75 66.69 66.01 62.36 64.97 62.73 59.64 55.31 58.59 57.63

CAFE 66.22 65.73 67.32 66.29 65.47 62.96 64.52 63.44 59.80 51.74 54.35 54.56

HMCAN 72.83 72.54 73.88 72.92 68.07 62.14 70.89 63.86 69.60 61.65 71.45 62.95

SV-FEND 79.44 79.42 79.49 79.43 73.75 71.70 72.51 71.38 67.08 63.04 65.10 65.00

FakingRec 79.60 79.59 79.67 79.60 75.30 72.58 75.18 72.10 73.16 70.91 72.56 71.35
GPT-4o-m 67.10 67.08 67.15 67.21 63.71 63.60 66.04 65.40 67.08 64.55 66.34 64.45

LLaVA-OV 58.14 54.67 60.44 57.51 49.83 45.08 58.61 54.31 58.06 44.20 55.71 51.68

ExMRD 80.48 80.46 80.67 80.51 78.32 75.82 78.48 75.16 76.85 74.01 78.25 74.91
Improv. 1.11%↑ 1.09%↑ 1.26%↑ 1.14%↑ 4.01%↑ 4.46%↑ 4.39%↑ 4.24%↑ 5.04%↑ 4.37%↑ 7.84%↑ 4.99%↑

LLaVA-OV Qwen2-VL
40

50

60

70

80

90

M
ac

ro
-F

1
(%

)

MLLM only
w/ R3CoT
w/ ExMRD

Fig. 10: Generalizability analysis of adding R3CoT and SLRe-
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Fig. 11: Sensitivity analysis of number of fine-tuning decoder
layers 𝑓 on the FVC dataset.

the last layer of the classifier in our model as the embedding. We

observe that our ExMRD produces more discriminative representa-

tions, with clearer boundaries between instances of different labels.

This result underscores ExMRD’s ability to generate the evidence of

whether the video is rumor or truth through the R
3
CoT and distill

this evidence to the SLReviewer to perform accurate predictions.

In contrast, although the baseline model FakingRec also manages

to separate the two categories to some extent, it fails to achieve the

same level of clarity and separation as ExMRD, underscoring the

superiority of our framework.

E.5 Additional Qualitative Analysis
In this section, we randomly select 4 micro-videos from FakeTT

and FakeSV datasets to validate the explainability of our proposed

ExMRD, and the results are present in Table 9-10.

(a) ExMRD on FakeSV (b) FakingRec on FakeSV

(c) ExMRD on FakeTT (d) FakingRec on FakeTT

Fig. 12: t-SNE visualization of ExMRD and the most competi-
tive baseline model FakingRec on both FakeSV and FakeTT
datasets. Red points represent rumors; blue points, truth.

F Error Analysis
In this section, we conduct an error analysis on the wrongly detec-

tion of rumor micro-videos to better understand the behavior of

our proposed ExMRD framework.

As presented in Table 8, the micro-video depicts multiple water-

spouts forming over an ocean, while the on-screen text shares an

“Insane Weather Fact,” claiming that in 2003, the Great Lakes wit-

nessed the largest waterspout outbreak in recorded history. The core

issue with this micro-video is the discrepancy between the visual

content and the text: they reference different events, with the visual

footage showing a generic waterspout formation, whereas the text

refers to a specific historical event. Although our framework suc-

cessfully retrieved the factual information that the largest recorded
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waterspout outbreak over the Great Lakes occurred from August 27

to September 3, 2003, and generated additional background knowl-

edge on waterspout formation and geographic factors, it incorrectly

inferred that the video and the text are consistent representations

of the same event. To improve accuracy, our ExMRD needs to inte-

grate MLLMs with Web Search APIs to retrieve footage from this

specific event, enabling a more comprehensive verification of the

video’s authenticity.

G Limitations of Our Work
Although our work, ExMRD, demonstrates strong performance on

MVRD, there are still some limitations:

• This work emphasizes providing rationales for the model’s pre-

dictions when detecting rumors in micro-videos. However, the

internal workings of the neural network, specifically how it ar-

rives at these decisions, have not been thoroughly explored. In

future work, we intend to improve our approach by investigating

the interpretability of the model architecture, particularly how

its layers and learned representations contribute to the decision-

making process.

• Determining whether a micro-video contains a rumor or presents

truthful information increasingly depends on up-to-date domain

knowledge, especially as new social events unfold. For example,

a MLLM with outdated information might incorrectly classify

the announcement that John J. Hopfield and Geoffrey E. Hinton
are receiving the 2024 Nobel Prize in Physics as a rumor due to

its lack of awareness of this recent event. In this case, the model

may struggle to accurately assess the legitimacy of the claim,

especially considering the significant impact of the development

of the deep learning field on the decision to award the Nobel

Prize. While our ExMRD framework itself does not integrate

live domain updates, its strong generalization abilities make it

easily adaptable for integration with MLLMs that can access

Web Search APIs. This potential extension would allow for up-to-

date domain knowledge, enhancing the accuracy of micro-video

rumor detection in rapidly evolving social contexts.

• The upper bound of our framework’s performance is inherently

dependent on the pre-training knowledge and reasoning capa-

bilities provided by MLLMs. We have evaluated its efficiency

using three widely adopted and practically applicable MLLMs.

However, the generality of our framework allows for the seam-

less integration of more advanced state-of-the-art MLLMs as

they emerge. For instance, incorporating OpenAI o1 may prove

advantageous in scenarios requiring high accuracy and ample

computational resources.

H Broader Impacts of Our Work
Looking ahead, ExMRD will be a useful tool for detecting and

reducing rumors on platforms like TikTok, YouTube Shorts, and

Snapchat. It can help users understand how rumors are created

and spread while also improving how recommendation algorithms

work by deprioritizing potentially harmful content. Beyond content

moderation, ExMRD can also improve digital literacy by educat-

ing users on why certain videos are flagged as rumors. This can

help users, especially younger audiences, become better at spotting

misinformation, creating a more informed online community. In

addition, ExMRD has the potential to support public safety by iden-

tifying misleading content during critical times, like health crises

or natural disasters. This can prevent the spread of panic-inducing

misinformation and ensure that reliable information reaches people

quickly. ExMRD also promotes trust and transparency in AI. By

explaining why certain content is flagged, it can help build trust in

automated systems and make users feel more confident about how

AI is used on these platforms. For platform developers, ExMRD can

reduce the need for manual moderation, saving time and costs. This

makes content management more efficient, especially for platforms

with limited resources, by allowing human moderators to focus on

more complex cases. Finally, ExMRD supports ongoing research in

AI and misinformation detection. Its flexible design makes it easy to

incorporate new AI advancements (e.g., new MLLMs), allowing the

system to stay up-to-date as AI technology evolves. This adaptabil-

ity makes ExMRD a solid foundation for future research on fighting

misinformation in digital spaces.

Table 8: Error analysis of wrongly detected micro-video ru-
mors on the FakeTT dataset.

Error case 1

Micro-
video

Viewpoint The largest waterspout outbreak in Great Lakes history

occurred in 2003,

Original
Content

Nature’s Fury Unleashed: Jaw-Dropping Waterspout Fact

Follow for more! mullaneyllc Video Credit: tuglife #boat

#weather #mothernature #extremeweather #scary #water-

spout #greatlakes #facts

Refining This video presents a fact about the largest waterspout

outbreak in the Great Lakes, which reportedly occurred in

2003. According to the video’s text and transcript, the

event lasted seven days and produced over 65 water-

spouts....

Retrieving Waterspouts are tornado-like phenomena that occur over

bodies of water.... In fact, the largest recorded waterspout

outbreak in the Great Lakes occurred between August 27

and September 3, 2003.

Reasoning The video correctly describes a known event: the 2003

Great Lakes waterspout outbreak. Both the visual and

textual elements support this claim... about the largest wa-

terspout outbreak in recorded history is backed by verified

historical data, and the visuals match the description of

severe weather conditions typical during such an event.

Ground
Truth

Rumor

ExMRD Truth ×
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Table 9: Case study of correctly detected micro-video rumors on the FakeTT dataset.

Case 1 Case 2

Micro-video

Viewpoint Elon Musk bought General Motors The governor of Montana has officially banned TikTok

Original Content #elon #elonmusk #fyp #gm #generalmotors #buyout

#takeover#news on-screen-text: Elon musk Is buying general

MotorsIil Trillicor... audio transcript: No one can comment on

it, but several sources have revealed that it is planning to shut

down its factories. There is no denying that Tesla has always

aimed to make this world a better and more sustainable place

for humans.

#montana #tiktokban #politics #congress Montana governor

bans TikTok By Samantha Delouya CNN Updated 653 PM EDT

Wed May 17 2023 Montana BANS TikTok Why theres SO n

408 New YorkCNN Mc iforte signed a bill Wednesday ban tate

Gianforte tweeter TikTok in Montana to protect data from ...

Textual Refining The video suggests a major business development where Tesla,

led by Elon Musk, is taking over GM to advance electric vehi-

cles and sustainable energy. GM is shifting its focus to electric

and autonomous vehicles while making substantial organiza-

tional changes.

This video discusses Montana becoming the first state to fully

ban TikTok, with the law taking effect in January 2024. The

ban targets both users and companies that distribute the app,

with fines of up to $10,000 for violations. The speaker notes

potential legal challenges that could arise before the ban is

fully enforced.

Visual Refining The visual content of video showcases a well-organized, mod-

ern car manufacturing facility, emphasizing the efficiency and

precision of production. The video likely aims to highlight the

technological advancements in EV manufacturing, aligning

with GM’s and Tesla’s push toward a future dominated by

sustainable automotive technologies.

The visual content shows a man discussing the TikTok ban,

explaining the implications for users and companies like Apple.

The speaker emphasizes the legal challenges that may arise,

presenting the argument in a calm and factual manner. The

structure of the video is simple, with a conversational tone.

There are no obvious contradictions in the reasoning, as the

claims made align with known facts about the Montana TikTok

ban.

Retrieving Tesla has been a leader in the electric vehicle market, focusing

on reducing CO2 emissions and accelerating the adoption of

sustainable energy solutions. GM, too, has shifted its strategy

in recent years to focus on electric and autonomous vehicles

as part of the broader industry trend toward sustainable trans-

portation. However, there have been no credible reports of a

Tesla acquisition of GM, making this claim highly unusual.

Montana’s TikTok ban was signed into law by Governor Greg

Gianforte in May 2023, citing concerns over data security and

potential risks of Chinese government interference, given Tik-

Tok’s ownership by the Chinese company ByteDance. How-

ever, the ban’s implementation in January 2024 is expected

to face numerous legal challenges, especially regarding First

Amendment rights and technological enforcement. There is a

broader national debate over whether TikTok should be banned

due to security concerns.

Reasoning The content emphasizes the automotive industry’s shift to-

ward electric vehicles, with both General Motors (GM) and

Tesla focusing on sustainability and next-generation technolo-

gies. GM is restructuring to prioritize electric vehicles, aligning

with Tesla’s mission to accelerate the transition to sustainable

energy. Given the scale of both companies, any potential ac-

quisition would be highly publicized and subject to regulatory

scrutiny. The visual elements, while highlighting advanced

manufacturing processes, reflect broader industry trends rather

than indicating any direct connection to a Tesla-GM buyout.

The argument presented is straightforward: Montana has

passed a ban on TikTok, effective January 2024, and the ban

could face legal challenges. The claims align with public re-

ports on the issue, and there are no apparent logical flaws

in the video’s structure. The speaker presents the key points

about the ban, its consequences, and the possibility of legal

disputes.

Ground Truth Rumor Truth

ExMRD Rumor ✓ Truth ✓
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Table 10: Case study of correctly detected micro-video rumors on the FakeSV dataset.

Case 1 Case 2

Micro-video

Viewpoint A handful of coarse salt and a mouthful of saliva break the car

window glass

Jiuzhaigou Scenic Area is temporarily closed due to a mudslide.

Original Content Too Scary! Are Car Windows This Fragile Now? Everyone, Be

Careful Not to Leave Valuable Items Inside Your Car! “Beware

of New Window-Smashing Theft Just a handful of coarse salt

and some spit can break the window Criminals demonstrated

this on the spot Advice for friends and family driving: Do not

leave valuable or expensive items inside your car.”

Jiuzhaigou Scenic Area in Sichuan Temporarily Closed Start-

ing Today, Reopening Date to Be Announced Separately. #Ji-

uzhaigou Home - Explore Jiuzhaigou - Latest News - Tourism

Products - Smart Services - Global Tourism Section Tempo-

rary Closure Announcement of Jiuzhaigou Scenic Area Author:

Jiuzhaigou Management Bureau Category: Tourism Announce-

ment ...

Textual Refining The video appears to be warning viewers about a new method

of breaking car windows. According to the text captured from

the video, it describes a supposed technique where criminals

can easily shatter car windows using common items like salt

and saliva. The video’s title suggests concern over the fragility

of modern car windows, advising people not to leave valuables

inside their cars. The transcript provides minimal audio infor-

mation, with casual dialogue that does not contribute much to

the overall context.

This video reports the temporary closure of Jiuzhaigou scenic

area due to continuous heavy rainfall and severe flooding.

The park is closed from August 18, 2020, to protect visitors’

safety, and the reopening date will be announced later. Roads

leading to the park have been affected by the rising water

levels, causing blockages.

Visual Refining The video shows a group of people gathered around a car,

seemingly in a tense situation. The scene is outdoors, likely in

a public area or parking lot, and there is noticeable interaction

with the car. The focus is on the car and the people surrounding

it, possibly discussing or reacting to the damage caused to the

vehicle.

The visual description of the video suggests that it features

a serene natural environment, likely a lush green forest with

water bodies like rivers or lakes. The focus seems to be on

capturing the beauty and calmness of nature, without showing

any human activity or obvious text, creating a peaceful atmo-

sphere.

Retrieving There are known cases of theft involving breaking car windows

to steal items inside, but the specific method of using salt

and saliva to break a window is not scientifically supported.

Generally, car windows are designed to withstand significant

pressure and require specific tools or force to break. There

have been other unfounded rumors in the past about easy

ways to break windows using minimal effort, which have been

debunked by experts.

Jiuzhaigou is a well-known scenic area in China, famous for

its waterfalls, lakes, and lush vegetation. It has faced several

temporary closures in the past due to natural disasters, such

as earthquakes and floods, to ensure visitor safety. Continuous

rainfall can lead to dangerous conditions, including flooding,

road blockages, and landslides, which are common in moun-

tainous areas like Jiuzhaigou.

Reasoning The video claims that car windows can be easily broken using

salt and saliva, but this lacks scientific credibility. Car windows

are generally designed to resist significant force, and breaking

them usually requires specific tools or a substantial amount

of pressure. The method described in the video does not align

with established knowledge about how car windows function,

making the claim seem exaggerated or unfounded. There is

also a mismatch between the urgency portrayed in the video

and the plausibility of the method it suggests. Overall, the

video plays on fear and encourages caution but presents a

flawed and unsupported argument.

The video reports the temporary closure of the Jiuzhaigou

scenic area due to continuous heavy rainfall and severe flood-

ing, a situation that aligns with known incidents in the region.

The OCR text clearly states the date (August 18, 2020) and

reason for the closure, citing rising river levels and road block-

ages. While the video focuses on capturing the natural beauty

of the area, without showing direct evidence of flooding or

blockages, this does not diminish the credibility of the textual

report. Scenic videos often highlight the environment rather

than specific disruptions, and the closure announcement is

consistent with past practices in the area.

Ground Truth Rumor Truth

ExMRD Rumor ✓ Truth ✓
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