
Investigating the Indirect Object Identification circuit in Mamba

Danielle Ensign 1 Adrià Garriga-Alonso 2

Abstract
How well will current interpretability techniques
generalize to future models? A relevant case
study is Mamba, a recent recurrent architecture
with scaling comparable to Transformers. We
adapt pre-Mamba techniques to Mamba and par-
tially reverse-engineer the circuit responsible for
the Indirect Object Identification (IOI) task. Our
techniques provide evidence that 1) Layer 39 is a
key bottleneck, 2) Convolutions in layer 39 shift
names one position forward, and 3) The name
entities are stored linearly in Layer 39’s SSM. Fi-
nally, we adapt an automatic circuit discovery tool,
positional Edge Attribution Patching, to identify
a Mamba IOI circuit. Our contributions provide
initial evidence that circuit-based mechanistic in-
terpretability tools work well for the Mamba ar-
chitecture.

1. Introduction
If we care about using interpretability on new models, we
should know: Will interpretability techniques generalize to
new architectures?

To investigate this question, we apply existing mechanis-
tic interpretability techniques to a new model developed
after most interpretability techniques: Mamba. Mamba is
a State Space Model (SSM), a type of recurrent neural net-
work (Gu & Dao, 2023). Mamba is the result of years of
work on language modeling with state space models (Gu
et al., 2020; 2022; Fu et al., 2023), and is one of many
new RNN-like architectures (Beck et al., 2024; Peng et al.,
2023; Gu & Dao, 2023; Lieber et al., 2024). These RNNs
have scaling competitive with Transformers, unlike LSTMs
(Kaplan et al., 2020). Because it is a recurrent network, it
only needs to store hidden states from the previous token,
resulting in faster inference. The recurrence is also linear
(and thus associative) over token position, which permits
further optimizations. See Appendix for architecture details.

While we are the first to focus on finding circuits in Mamba,

1Independent 2FAR AI.

previous work has shown other interpretability techniques
apply. For example, Sharma et al. (2024) locate and edit
factual information with ROME (Rank One Model Editing)
Meng et al. (2023). Ali et al. (2024) extract hidden atten-
tion matrices, and Torres (2024); Grazzi et al. (2024) use
linear probes to identify capabilities. Additionally, Paulo
et al. (2024) showed that Contrastive Activation Addition
(Rimsky et al., 2024), Tuned Lens (Belrose et al., 2023)
and probes to elicit latent knowledge (Mallen et al., 2024)
transfer to the Mamba architecture.

This work focuses on applying techniques from circuit-
based mechanistic interpretability to Mamba to see how
well these techniques transfer to new architectures. In par-
ticular, we study state-spaces/mamba-370m, a 370-million-
parameter Mamba model pretrained (Gu & Dao, 2023) on
The Pile (Gao et al., 2020). We chose this model as it is
the smallest Mamba model with good performance (∼ 96%
accuracy on our templates) on the Indirect Object Identifica-
tion (IOI) task (Wang et al., 2023).

In particular, for the IOI task, we:

1. Show multiple lines of evidence suggesting layer 39 is
a bottleneck:

(a) Zero and Resample ablation (Section 3.1.4) ex-
periments point to layer 39 and layer 0.

(b) We compute greedy minimal subsets of layers
allowed to transfer information across tokens (“to-
ken cross-talk”). These always include layer 39
(but layer 0 only 18% of the time).

2. Provide evidence that the convolution on layer 39 shifts
name data to the next token position.

3. Modify the representations used by layer 39 using aver-
ages of activations, resulting in overwriting one output
name with another (Rimsky et al., 2024). These re-
sults suggest that in the SSM of layer 39, entity names
are linearly represented, with different representations
for the first and second time (or sentence) the names
appear in IOI.

4. Provide multiple lines of evidence that layer 39 writes
outputs into only the final token position:

(a) Resample ablation on the hidden state and the
values added to the residual stream.

1

https://huggingface.co/state-spaces/mamba-370m

Investigating the Indirect Object Identification circuit in Mamba

Figure 1. Our hypothesis for the role of Layer 39. The representa-
tions of n1–n3 and n4–n5 are interchangeable over positions.

(b) A slight modification of the results of EAP gives
us a subgraph that is capable of doing IOI while
only leaving layer 39’s final token’s outputs un-
patched.

In addition, we show that ACDC and Edge Attribution Patch-
ing (Syed et al., 2023) both result in sparse graphs when
applied to IOI on Mamba, and provide the resulting compu-
tational graphs.

2. The Test Subject: Mamba
Here we provide a brief overview of the Mamba architecture.
We refer the reader to Ensign et al. (2024) for a more detailed

introduction. We use
[A,B]
v to denote that variable v has

shape [A,B].

2.1. State Space Model (SSM)

Mamba’s SSM block can be written as mapping a 1D space
to a N-dimensional state space, then back to a 1D space:

[N]

ht =
[N,N]

A
[N]

ht−1 +
[N,1]

B
[1]
xt (1)

[1]
yt =

[1,N]

C
[N]

ht +
[1,1]

D
[1]
x t (2)

In Mamba A is diagonal, so we will just write it as
[N]

A and
do an element-wise product “⊙”.

Each layer does E of these in parallel. A has a separate
value for each e, and is encoded as an [E,N] matrix. We
can denote Ae as the N -sized entry for stream e, giving us,

[N]

ht,e =
[N]

Ae ⊙
[N]

ht−1,e +
[N,1]

B
[1]
xt,e (3)

[1]
yt,e =

[1,N]

C
[N]

ht,e +
[1,1]

D
[1]
x t,e (4)

Finally, Ae, B, and C depend on the SSM input, and so
gain a subscript t. B also gains a subscript e through the

variable time-step,
[1]

∆t,e. The final SSM expressions are:

[N]

ht,e =
[N]

At,e ⊙
[N]

ht−1,e +
[N,1]

Bt,e
[1]
xt,e (5)

[1]
yt,e =

[1,N]

Ct

[N]

ht,e +
[1,1]

D
[1]
x t,e, (6)

where

[N]

At,e = exp(−
[1]

∆t,e exp(Alog)e), (7)
[N]

Bt,e =
[1]

∆t,e

[N]

Bt, with [N], Bt =
[N,E]

WB
[E]
xt , (8)

[N]

Ct =
[N,E]

WC
[E]
xt , (9)

[1]

∆t,e = softplus(
[E]
xt ·

[E]

W∆
e +

[1]

B∆
e), (10)

with
[E,E]

W∆ ,
[E]

B∆,
[N,E]

WB ,
[N,E]

WC ,
[N,E]

Alog being learned parameters,
and softplus(x) = log(1 + ex). This parameterization guar-
antees that A < 1, and thus the hidden state does not ex-
plode.

2.2. Architecture

Mamba has multiple layers which each add to a residual
stream. Each layer does:

2

Investigating the Indirect Object Identification circuit in Mamba

• Project input
[B,L,D]

resid to
[B,L,E]

x

• Project input
[B,L,D]

resid to
[B,L,E]

skip

• Conv over the time dimension, with a different filter
for each e ∈ [E] (x = conv(x))

• Apply non-linearity (silu) (x = silu(x))

• y = SSM(x)

• Gating: y = y ∗ silu(skip)

• Project
[B,L,E]

y to
[B,L,D]
output

Where B is batch size, L is context length, D is embedding
dimension, and silu(x) = x ∗ sigmoid(x). See Figure 2.

3. Circuit-based Mechanistic Interpretability
To understand how large language models (LLMs) imple-
ment their emergent capabilities (Wei et al., 2022), we focus
on finding human-interpretable algorithms (Olah, 2022).
This involves representing models as computational graphs
and identifying circuits that are subsets of that computa-
tional graph. Ideally, each subgraph would also be anno-
tated to describe the role of each component (Geiger et al.,
2021).

Finding circuits that capture the behavior on all inputs is
intractable for large language models. Therefore, we study
behavior on specific tasks.

3.1. Problem Description

Following (Geiger et al., 2021; Conmy et al., 2023): we
have a behavior (task) that we would like to study, a metric
for evaluating performance, and a coarse-grained compu-
tational graph of the neural network on which we express
explanations. We would like to find the minimal subgraph
that attains a high enough metric score (where target metric
score is a hyperparameter), with an explanation of what
variations in the data each graph component captures.

3.1.1. IOI TASK

We are studying the IOI task, initially examined by (Wang
et al., 2023). Consider an example data point:

Friends Isaac, Lucas and Lauren went to
the office. Lauren and Isaac gave a
necklace to

The model is asked to predict the next token, and the correct
answer is “ Lucas”. “ Lucas” is the Indirect Object
we are trying to identify. See the Appendix for detailed
data-generation templates and corruption information.

3.1.2. METRIC

There are many choices of metrics: KL-Divergence, Logit
Diff, Accuracy, Probability of the correct answer, etc. The
best metric to use in general is an open question and may
be task specific. For IOI, Zhang & Nanda (2024) suggest
the Normalized Logit Diff metric, as that helps propagate
information missed by accuracy. See the Appendix for
further details.

3.1.3. COMPUTATIONAL GRAPH

We use the MambaLens library (see also Nanda & Bloom
(2022)) to intervene at different locations per experiment.

• Section 4.1.1 “Resample Ablation” uses
blocks.{layer}.hook layer input.

• Section 4.1.2 “Layer Removal” uses
blocks.{layer}.hook out proj.

• Section 4.1.3 “Removing Cross Talk” uses
blocks.{layer}.hook in proj.

• Section 4.2 “Layer 39 Uses Conv to Shift Names One
Position Forward” uses
blocks.{layer}.hook in proj and
blocks.{layer}.hook conv.

• Section 4.3 “Controlling model output by modifying
representations on layer 39” uses
blocks.{layer}.hook ssm input. For the
cosine sim plots, it uses further hooks inside the ssm,
described in Appendix.

• Section 4.4 “Layer 39 moves information into only
the last token position” uses
blocks.{layer}.hook h.{token pos},
blocks.{layer}.hook out proj, and the
hooks used in Section D

• Both Section D “EAP” runs use
blocks.{layer}.hook layer input and
blocks.{layer}.hook layer output. They
also use hook embed (described the next section) as
the input node, and
blocks.47.hook resid post as the output
node.

• The “ACDC” (Section D.2) run following the (non
positional) EAP run uses all the hooks from the EAP
runs. It also uses blocks.{layer}.hook skip,
blocks.{layer}.hook conv, and
blocks.{layer}.hook ssm input.

Note that blocks.{layer}.hook layer input is
the residual stream before normalization. If we patched
directly on these, it would modify downstream values as

3

Investigating the Indirect Object Identification circuit in Mamba

Figure 2. A single layer in the Mamba architecture, with hook
points listed in all the locations we intervene. Note that the SSM
contains further hook points, described in Section 4.3, “Controlling
model output”. The “SSM” and “conv” components are affected
by previous time steps.

Figure 3. Fully connected causal graph, using the additivity of
the residual stream. This is an example network with 4 layers,
so the output node is blocks.3.hook resid post. The
full network we study has 48 layers, so the output node is
blocks.47.hook resid post

well. Thus, to patch only a single layer’s input, we clone
this value first.

3.1.4. ABLATIONS

To identify which nodes and edges are important, we take
inspiration from causal inference (Pearl, 2009): ablate nodes
of our computational graph and observe changes in the
output.

Replacing activations with zero (Olsson et al., 2022; Cam-
marata et al., 2021) or the mean over many data points
(Wang et al., 2023) was initially used. However, these can
result in activations that are out of distribution (Chan et al.,
2022). Resample ablation (Geiger et al., 2021), also known
as interchange interventions and causal tracing, is a com-
monly used alternative (Hanna et al., 2023; Heimersheim
& Janiak, 2023; Wang et al., 2023; Conmy et al., 2023).
Resample ablation begins by running a forward pass with a
corrupted prompt, then substitutes those corrupted activa-
tions into a forward pass run on the uncorrupted prompt.

In addition to resample ablation, in Mamba (and Transform-
ers), the residual stream is a sum of outputs from every layer.
This allows us to create an edge between every layer (Elhage
et al., 2021), see Figure 3.

To patch an edge this causal graph (Elhage et al., 2021)
going from layer i to layer j, we can do:

4

Investigating the Indirect Object Identification circuit in Mamba

[B,L,D]

patched inputj =
[B,L,D]

inputj −
[B,L,D]
outputi +

[B,L,D]

corrupted outputi
(11)

We give the dimensions of our tensors in square brackets
[] above the term. Here, B is batch size, L is context
length, and D is embedding dimension. The outputi is
blocks.i.hook out proj, computed during the
same forward pass as the inputj and patched inputj
(which both use blocks.j.hook layer input).
corrupted outputi are stored values from a sepa-
rate forward pass using the corrupted prompt and
blocks.i.hook out proj.

3.2. Semi-automatic Circuit Discovery

Initially, finding circuits had to be done by hand: patch-
ing subsets of nodes and edges (known as path patching
(Goldowsky-Dill et al., 2023)) until a circuit emerges. Sev-
eral methods have since been developed to automate this
process. Subnetwork probing learns a mask over the graph
using gradient descent (Cao et al., 2021). Automated Circuit
DisCovery (ACDC) starts from sink nodes and works back-
wards to reconstruct the causal graph (Conmy et al., 2023).
ACDC requires a separate forward pass for every edge, and
this can be very time-consuming. Head Importance Score
for Pruning (Michel et al., 2019), and more recently EAP
(Edge Attribution Patching) (Syed et al., 2023), use the
gradient to approximate the contribution of all edges simul-
taneously. In particular, EAP approximates the attribution
scores of an edge between layer i and layer j via:

[B,L,D]
attri 7→j = (

[B,L,D]
−outputi +

[B,L,D]

corrupted outputi)∇
[B,L,D]

inputj
(12)

Where ∇inputj is the gradient given from the backward
hook made in these steps:

1. For every layer, create a backward hook on
blocks.j.hook layer input

2. Run a forward pass that patches every edge

3. Compute the metric on the resulting logits, and call
backward on the metric’s value.

To get an attribution for each edge, we sum attri 7→j over the
L and D axes, then mean over the B axis.

This approximation can be improved by using integrated
gradients (Marks et al., 2024; Sundararajan et al., 2017):

compute a separate
[B,L,D]
attri 7→j(

[1]
αk) for an

[1]
αk = k/(ITERS−1)

where k ∈ [0, . . . , ITERS − 1], then compute the average
of all these scores (ITERS is an int hyperparameter that
determines how fine grained our approximation is, usually
5-10 is large enough). The attribution is computed in using
Equation 12 like before, however, the forward pass for a
given αk only “partially” applies every patch as follows:

[B,L,D]

patched inputj =
[B,L,D]

inputj −
[1]
αk(

[B,L,D]
outputi +

[B,L,D]

corrupted outputi)
(13)

Once we have these attribution scores, we can sort all edges
by their attribution and perform a binary search to find the
minimal set of edges that achieves our desired metric.

The major downside of these automated methods is that
(aside from token-level attributions) they do not yet assign
interpretations to nodes.

4. Findings
4.1. Layer 39 is Important

We have three lines of evidence suggesting layer 39 is im-
portant. While two of these lines of evidence also suggest
layer 0 is important, we also provide evidence that token
cross-talk in layer 0 is not usually needed.

4.1.1. RESAMPLE ABLATION

To determine which layers are important, we will resample
ablate blocks.{layer}.hook layer input. To de-
termine which tokens matter, we do this patch separately
for each (layer, token position) pair. This forces us to limit
to the three templates that share name token positions (one
could use more templates and use semantic labels instead
of token positions, but that is left to future work).

Because each corruption affects different positions, averag-
ing over them does not make sense. Thus, we show results
separately for each corruption. We focus on 3-name tem-
plates. While 2-name templates are simpler, we find results
from 2-name templates to be misleading as the task is too
simple.

Figure 4 shows that normalized logit diff changes most when
patching layer 0 and 39.

4.1.2. LAYER REMOVAL

Each layer adds to the residual stream. This al-
lows us to “remove” a layer by setting this added
value to zero, i.e., zero-ablating layer outputs
(blocks.{layer}.hook proj out). We plot
probability of the correct answer, as there is no corrupted
answer to compare to.

5

Investigating the Indirect Object Identification circuit in Mamba

Figure 4. Displayed is 1 - (Normalized logit diff) for each (layer, position) patch, averaged over 80 data points. 0 corresponds to acting
like the uncorrupted forward pass, and 1 corresponds to acting like the corrupted forward pass. The y-axis is Layer, and the x-axis is
token position. The corruptions can be observed by inspecting the token position labels. Each of the five plots correspond to different IOI
patches.

Figure 5. Relative probability of the correct token when zero-
ablating each layer’s outputs. Relative probability is the softmax
over the 4 logits from prompt and corruption names. The clean
model gets 83%.

In Figure 5, we again see that, layers 0 and 39 are crucial
parts of the circuit that cannot be removed.

We also find that by repeatedly removing the layer that de-
creases accuracy the least, about half of the layers can be
removed with minimal impact on accuracy. We replicated
this layer removal robustness on GPT-2-Small (Radford
et al., 2019). This might be seen as evidence for the residual
stream having a privileged basis that is consistent between
layers. However, it is also consistent with there being multi-
ple distinct spaces (for example, embed-0, 0-39, 39-out), or
layers being simultaneously compatible with multiple dif-
ferent spaces. See Belrose et al. (2023) for more discussion
on this “privileged basis” perspective.

4.1.3. REMOVING TOKEN CROSS-TALK

It would be useful to know where information travels be-
tween tokens, as opposed to just modifying the representa-
tions in place. We conduct an experiment to find a small set
of layers that do this “token cross-talk”.

There are two ways in which a layer at a specific token
position can affect future positions (“token cross-talk”): the

convolutional (conv) layer, and the SSM block. (For clarity,
in transformers, attention is where “token cross-talk” occurs,
as that is where information can flow between different
token positions)

Putting corrupted data into the conv will also put corrupted
data into the SSM, as it is downstream of the conv. Thus,
to remove a specific layer’s ability to have token cross-
talk, we can apply resample ablation to that layer’s conv
inputs (blocks.{layer}.hook in proj) at all posi-
tions. Because we also patched convs in previous positions,
the SSM will only have information about the corrupted
input.

If we patch every layer before L in the manner above, this
removes any information about previous tokens at layer
L. However, if we only patch some previous layers, the
previous tokens can have influence: a previous layer could
move two tokens into the same position, and then a later
layer could process those token interactions in place.

Also, note that this does not completely remove “cross talk”,
it only removes cross talk that is specific to the uncorrupted
prompt (i.e., cross talk that is needed for outputting the
correct answer). Cross talk that occurs in both uncorrupted
and corrupted prompts will still occur. This is somewhat
acceptable because we only care about task-relevant cross
talk.

Given these two disclaimers, we still feel this is a useful
proxy for “removing cross talk”.

Now, start with patching all layers’ cross talk, then “unpatch”
the layer that improves accuracy the most. This is repeated
until accuracy is about 0.9, resulting in a “minimal cross
talk circuit” that can perform the task. We do this separately

6

Investigating the Indirect Object Identification circuit in Mamba

Figure 6. Out of all (corruption, template) pairs, the proportion of
times a given layer was in the minimal cross talk circuit.

for each (corruption, template) pair.

In Figure 6, we see that Layers 39 and 15 appear in every
minimal circuit found. Layer 15 seems worthy of investi-
gation in future work, as these two also stand out in EAP.
Inspecting the logs, Layer 39 is always the first layer added
and has a large effect.

In 82% of these minimal circuits, Layer 0 did not appear.
This is strong evidence that for the majority of (corruption,
template) pairs, computation Layer 0 does is in-place and
not cross talk.

In Transformers, it is suspected that layer 0 is responsible
for multi-token embeddings (Nanda et al., 2023). These
results suggest something else happens in Mamba. However,
because all of our prompts use single token names, it is
possible that these capabilities are simply not needed for
this task (but still exist).

4.2. Layer 39 Uses Conv to Shift Names One Position
Forward

When examining the hidden state, we can display the cosine
similarity of a token’s contribution to the current state with
future (and previous) hidden states. This allows us to see
how much the value was “kept around” (see Appendix for
more information on the hooks used here).

As this is not causal, it should not be relied on too heavily.
The structure seems to be name-dependent; we show three
representative examples in Figure 7.

What stands out is that the horizontal lines are one token
after each name. This could either mean that 1) A previous
layer shifted the tokens over, or 2) Layer 39 shifted the
tokens over using the conv.

To distinguish between these, we can do resample ablation
on the individual conv “slices”: The conv can be seen as
four E-sized “slice” vectors for each (-3,-2,-1,0) relative
token position, that are multiplied (element-wise) by the
corresponding E-sized token representations.

• If hypothesis 1 were true, we should see the 0 conv
slice at token position + 1 have a large value.

Figure 7. Cosine Similarity between the current token’s contribu-

tion to h (which is
[B,E,N]

B̄i
[B,E,1]
xi , each i is on the x axis), and the

hidden state (
[B,E,N]

hj each j is on the y axis)

• If hypothesis 2 were true, we should see the -1 conv
slice at token position + 1 have a large value.

Figure 8 supports hypothesis 2, that Layer 39 uses conv to
shift names one position forward.

We did some tests to investigate multi-token names and
found the cosine similarity plots always have lines at the
position after the first token of the name (possibly other
layers handle multi-token names). It is also worth nothing
that we see the horizontal lines for entities, not just names.

We do not yet know why this shifting behavior occurs, and
leave that question for future work.

4.3. Controlling Model Output by Modifying
Representations on Layer 39

We hypothesize that the representations in the SSM are
linear because, on a single layer, the mechanism it has to
add or remove information from tokens is linear in h.

We tried to visualize
[1]

∆t,e adding or removing information
to various parts but did not find it very insightful. Instead,
to investigate whether the internal representation of Layer
39 SSM is linear, we do the following:

1. Create a large IOI dataset. For each data
point, store the activations of each name’s

7

Investigating the Indirect Object Identification circuit in Mamba

Figure 8. This is 1 - Normalized Logit Diff when patching on
the given conv slice. 0 corresponds to acting like uncorrupted, 1
corresponds to acting like corrupted. The x-axis is conv slices (-2,
-1, then 0) for layer 39. The y-axis is token position; observe the
labels to see which corruption was used.

blocks.39.hook ssm input. We use the
activation at the token position one after the name,
because of the shifting behavior we observed earlier.

2. For each name, average the representations. Store a
separate average for, say, “John” in the first position,
“John” in the second position, etc. We use enough
data points that each (name, position) pair gets 50-100
values to average over.

3. Replace Method: To write a different name, simply
substitute the SSM input at that position with the aver-
aged value from a different name.

4. Subtract and Add Method Instead of substituting, sub-
tract the current name’s average and add the substituted
name’s average.

We find that the Replace Method works adequately, while
the Subtract and Add Method works surprisingly well,
changing the logits to the desired output more than 95%
of the time.

One thing to note: It was possible that the SSM was using
the representations from the name’s token position, as well
as the name’s token position + 1. Patching on conv slices
was initial evidence this did not occur, and the efficacy of
this replacement procedure provides further evidence that
this is not the case.

Figure 9. Proportion of data where logit of the corrupted name
is higher than the logit of original name, using the two methods
described in Section 4.3. The x-axis is the position the average
was computed from, the y-axis is the position being substituted.
To substitute into the fourth and fifth positions, we substitute the
correct answer (instead of a patched name).

Having a separate average for each position also lets us test
if token position is an important part of the representation.
If it is, we should expect that “John” at name position 2
should not be easily substituted for “Mary” at name position
0.

Instead, in Figure 9 we find that the first three name positions
are compatible, while the fourth and fifth positions are much
less compatible.

4.3.1. COMPATIBILITY OF FIRST THREE NAME
POSITIONS

The compatibility of the first three name’s representations
could either suggest:

• The IOI circuit does not store positional information in
the first three names, or

• There are circuits to handle incorrectly encoded posi-
tional information, which got activated and handled
our patching well despite having incorrect positional
data

Distinguishing between these is left for future work.

4.3.2. INCOMPATIBILITY OF FOURTH AND FIFTH NAME
POSITIONS

Consider one of our data points: “Friends Isaac, Lucas and
Lauren went to the office. Isaac and Lucas gave a necklace
to” (answer is “ Lauren”)

We see that when names occur in the fourth or fifth position,
it is the second time they occur in the prompt.

One hypothesis is that the conv sees a period and encodes
that in the name representation. However, while the model
we study (mamba-370m) has four conv slices, we find that

8

Investigating the Indirect Object Identification circuit in Mamba

the conv slice attending to the -3 position is always zero,
likely due to a bug in the Mamba training code. Thus, it
can only attend to the previous 2 positions in practice (the
third conv slice is for attending to the current position). This
means that the name in the fifth position’s representation is
not distinguishable from the name in the third position by
the conv.

Thus, some token cross-talk must be happening in a layer
before 39. As mentioned above, for 82% of (corruption,
template) pairs, cross-talk in layer 0 is not needed. So while
these experiments provide strong evidence that layer 39 is a
bottleneck, more circuit analysis is needed.

4.4. Layer 39 moves information into only the last token
position

We can do resample ablation on the ssm hidden state via
blocks.{layer}.hook h.{token pos}.

Figure 10 shows that it only uses the hidden states one after
the ablated token, in line with 4.2. We also see that hidden
state values are used all the way to the last token position.

This tells us that the answer-relevant information is moved
into the last token position. However, it is possible that
information is also sent to other, earlier positions as well.

To test for this, we can do resample ablation on
blocks.{layer}.hook proj out, which is the value
added to the residual stream at the end of each layer.

In Figure 11 we see that only the last index is used.

In addition, positional EAP (Section D.3.5) suggests that
other (non-last token) connections are important, as they
are preserved in the set of edges that get 85%. However
their attribution scores are very low. Manually removing
all the non-last token connections going out from layer 39
only reduces accuracy from 85.2% to 83.8%, and reduces
normalized logit diff from to 0.877 to 0.873. This suggests
that either there is backup behaviour activated when those
positions are patched, or that these connections are mostly
spurious and not essential parts of the circuit.

These three lines of evidence together strongly suggest that
the task-relevant information provided by layer 39 is stored
only in the last token position.

5. Positional Edge Attribution Patching
(Positional EAP)

Here we describe a simple modification to EAP that allows
us to have token-level edge attributions.

Typically, in EAP, after we compute
[B,L,D]
attri 7→j we sum over

the L and D dimensions, then take the mean over the B
dimension to get an attribution for each edge.

Instead, we will just sum over the D dimension and mean
over the B dimension, giving us an attribution for every
(edge, position). See Appendix D.

The results of EAP further emphasize the importance of
Layer 39. However, there is also significant activity else-
where that merit further analysis.

6. Future Work
There are still many open questions we have about the IOI
circuit in mamba-370m. Future work can focus on:

• Analysis of what cross talk is done before layer 39

• Analysis of what the later layers are doing to decode
the answer encoded in the final token position

• Training Sparse Autoencoders (SAEs) and using EAP
to make a feature circuit capable of doing the task, to
get a more fine grained analysis (similar to work in
Marks et al. (2024))

• Conducting similar analysis on other tasks (such as
docstring (Heimersheim & Janiak, 2023) or greater
than (Hanna et al., 2023))

7. Reproducibility
All code for experiments can be found at
https://github.com/Phylliida/investigating-mamba-ioi.
All experiments were conducted on a RTX A6000.

8. Credits
The authors would like to thank the ML Alignment & The-
ory Scholars (MATS) program for providing a workspace to
conduct this research, FAR AI Labs for compute, and LTFF
for funding. We would also like to thank Niels uit de Bos,
Iván Arcuschin Moreno, Rohan Gupta, Thomas Kwa, Scott
Neville, Gonçalo Paulo and Joseph Bloom for the helpful
conversations.

References
Ali, A., Zimerman, I., and Wolf, L. The hidden attention of

mamba models, 2024.

Beck, M., Pöppel, K., Spanring, M., Auer, A., Prudnikova,
O., Kopp, M., Klambauer, G., Brandstetter, J., and
Hochreiter, S. xlstm: Extended long short-term mem-
ory, 2024. URL https://arxiv.org/abs/2405.
04517.

Belrose, N., Furman, Z., Smith, L., Halawi, D., Ostrovsky,
I., McKinney, L., Biderman, S., and Steinhardt, J. Elicit-

9

https://github.com/Phylliida/investigating-mamba-ioi
https://arxiv.org/abs/2405.04517
https://arxiv.org/abs/2405.04517

Investigating the Indirect Object Identification circuit in Mamba

ing latent predictions from transformers with the tuned
lens, 2023.

Cammarata, N., Goh, G., Carter, S., Voss, C., Schubert, L.,
and Olah, C. Curve circuits. Distill, 2021. doi: 10.23915/
distill.00024.006. https://distill.pub/2020/circuits/curve-
circuits.

Cao, S., Sanh, V., and Rush, A. Low-complexity prob-
ing via finding subnetworks. In Proceedings of the
2021 Conference of the North American Chapter of
the Association for Computational Linguistics: Hu-
man Language Technologies, pp. 960–966, Online,
2021. Association for Computational Linguistics.
doi: 10.18653/v1/2021.naacl-main.74. URL https:
//aclanthology.org/2021.naacl-main.74.

Chan, L., Garriga-Alonso, A., Goldowsky-Dill, N.,
Greenblatt, R., Nitishinskaya, J., Radhakrishnan,
A., Shlegeris, B., and Thomas, N. Causal scrub-
bing: A method for rigorously testing interpretabil-
ity hypotheses. Alignment Forum, 2022. URL
https://www.alignmentforum.org/posts/
JvZhhzycHu2Yd57RN/causal-scrubbing-a-
method-for-rigorously-testing.

Conmy, A., Mavor-Parker, A. N., Lynch, A., Heimer-
sheim, S., and Garriga-Alonso, A. Towards automated
circuit discovery for mechanistic interpretability, 2023.

Elhage, N., Nanda, N., Olsson, C., Henighan, T., Joseph,
N., Mann, B., Askell, A., Bai, Y., Chen, A., Conerly, T.,
DasSarma, N., Drain, D., Ganguli, D., Hatfield-Dodds,
Z., Hernandez, D., Jones, A., Kernion, J., Lovitt, L.,
Ndousse, K., Amodei, D., Brown, T., Clark, J., Kaplan,
J., McCandlish, S., and Olah, C. A mathematical frame-
work for transformer circuits. Transformer Circuits
Thread, 2021. URL https://transformer-
circuits.pub/2021/framework/index.
html.

Ensign, D., Paulo, G., and Garriga-alonso, A. Ophiol-
ogy (or, how the mamba architecture works), 2024.
URL https://www.lesswrong.com/posts/
TYLQ8gAMAmpeFcwXN/ophiology-or-how-
the-mamba-architecture-works. Accessed:
2024-04-09.

Fu, D. Y., Dao, T., Saab, K. K., Thomas, A. W., Rudra, A.,
and Ré, C. Hungry hungry hippos: Towards language
modeling with state space models, 2023.

Gao, L., Biderman, S., Black, S., Golding, L., Hoppe, T.,
Foster, C., Phang, J., He, H., Thite, A., Nabeshima, N.,
Presser, S., and Leahy, C. The Pile: An 800gb dataset
of diverse text for language modeling. arXiv preprint
arXiv:2101.00027, 2020.

Geiger, A., Lu, H., Icard, T., and Potts, C. Causal ab-
stractions of neural networks, 2021. URL https:
//arxiv.org/abs/2106.02997.

Goldowsky-Dill, N., MacLeod, C., Sato, L., and Arora, A.
Localizing model behavior with path patching, 2023.

Grazzi, R., Siems, J., Schrodi, S., Brox, T., and Hutter, F. Is
mamba capable of in-context learning?, 2024.

Gu, A. and Dao, T. Mamba: Linear-time sequence model-
ing with selective state spaces, 2023.

Gu, A., Dao, T., Ermon, S., Rudra, A., and Re, C. Hippo:
Recurrent memory with optimal polynomial projections,
2020.

Gu, A., Goel, K., and Ré, C. Efficiently modeling long
sequences with structured state spaces, 2022.

Hanna, M., Liu, O., and Variengien, A. How does gpt-
2 compute greater-than?: Interpreting mathematical
abilities in a pre-trained language model, 2023.

Heimersheim, S. and Janiak, J. A circuit for Python doc-
strings in a 4-layer attention-only transformer, 2023.
URL https://www.alignmentforum.org/
posts/u6KXXmKFbXfWzoAXn/a-circuit-
for-python-docstrings-in-a-4-layer-
attention-only.

Kaplan, J., McCandlish, S., Henighan, T., Brown, T. B.,
Chess, B., Child, R., Gray, S., Radford, A., Wu, J., and
Amodei, D. Scaling laws for neural language models,
2020.

Lieber, O., Lenz, B., Bata, H., Cohen, G., Osin, J.,
Dalmedigos, I., Safahi, E., Meirom, S., Belinkov, Y.,
Shalev-Shwartz, S., Abend, O., Alon, R., Asida, T.,
Bergman, A., Glozman, R., Gokhman, M., Manevich,
A., Ratner, N., Rozen, N., Shwartz, E., Zusman, M.,
and Shoham, Y. Jamba: A hybrid transformer-mamba
language model, 2024.

Mallen, A., Brumley, M., Kharchenko, J., and Belrose,
N. Eliciting latent knowledge from quirky language
models, 2024.

Marks, S., Rager, C., Michaud, E. J., Belinkov, Y., Bau,
D., and Mueller, A. Sparse feature circuits: Discovering
and editing interpretable causal graphs in language
models, 2024.

Meng, K., Bau, D., Andonian, A., and Belinkov, Y. Lo-
cating and editing factual associations in gpt, 2023.
URL https://arxiv.org/abs/2202.05262.
Accessed: 2024-7-8.

10

https://aclanthology.org/2021.naacl-main.74
https://aclanthology.org/2021.naacl-main.74
https://www.alignmentforum.org/posts/JvZhhzycHu2Yd57RN/causal-scrubbing-a-method-for-rigorously-testing
https://www.alignmentforum.org/posts/JvZhhzycHu2Yd57RN/causal-scrubbing-a-method-for-rigorously-testing
https://www.alignmentforum.org/posts/JvZhhzycHu2Yd57RN/causal-scrubbing-a-method-for-rigorously-testing
https://transformer-circuits.pub/2021/framework/index.html
https://transformer-circuits.pub/2021/framework/index.html
https://transformer-circuits.pub/2021/framework/index.html
https://www.lesswrong.com/posts/TYLQ8gAMAmpeFcwXN/ophiology-or-how-the-mamba-architecture-works
https://www.lesswrong.com/posts/TYLQ8gAMAmpeFcwXN/ophiology-or-how-the-mamba-architecture-works
https://www.lesswrong.com/posts/TYLQ8gAMAmpeFcwXN/ophiology-or-how-the-mamba-architecture-works
https://arxiv.org/abs/2106.02997
https://arxiv.org/abs/2106.02997
https://www.alignmentforum.org/posts/u6KXXmKFbXfWzoAXn/a-circuit-for-python-docstrings-in-a-4-layer-attention-only
https://www.alignmentforum.org/posts/u6KXXmKFbXfWzoAXn/a-circuit-for-python-docstrings-in-a-4-layer-attention-only
https://www.alignmentforum.org/posts/u6KXXmKFbXfWzoAXn/a-circuit-for-python-docstrings-in-a-4-layer-attention-only
https://www.alignmentforum.org/posts/u6KXXmKFbXfWzoAXn/a-circuit-for-python-docstrings-in-a-4-layer-attention-only
https://arxiv.org/abs/2202.05262

Investigating the Indirect Object Identification circuit in Mamba

Michel, P., Levy, O., and Neubig, G. Are sixteen heads
really better than one? In Wallach, H. M., Larochelle,
H., Beygelzimer, A., d’Alché-Buc, F., Fox, E. B., and
Garnett, R. (eds.), Advances in Neural Information
Processing Systems 32: Annual Conference on Neural
Information Processing Systems 2019, NeurIPS 2019,
December 8-14, 2019, Vancouver, BC, Canada, pp.
14014–14024, 2019. URL https://proceedings.
neurips.cc/paper/2019/hash/
2c601ad9d2ff9bc8b282670cdd54f69f-
Abstract.html.

Nanda, N. and Bloom, J. Transformerlens. https:
//github.com/TransformerLensOrg/
TransformerLens, 2022.

Nanda, N., Rajamanoharan, S., Kramár, J., and
Shah, R. Fact finding: Do early layers spe-
cialise in local processing? (post 5), 2023. URL
https://www.lesswrong.com/posts/
xE3Y9hhriMmL4cpsR/fact-finding-do-
early-layers-specialise-in-local-
processing. Accessed: 2023-12-22.

Olah, C. Mechanistic interpretability, variables, and the
importance of interpretable bases. https://www.
transformer-circuits.pub/2022/mech-
interp-essay, 2022.

Olsson, C., Elhage, N., Nanda, N., Joseph, N., DasSarma,
N., Henighan, T., Mann, B., Askell, A., Bai, Y., Chen,
A., et al. In-context learning and induction heads,
2022. URL https://transformer-circuits.
pub/2022/in-context-learning-and-
induction-heads/index.html.

Paulo, G., Marshall, T., and Belrose, N. Does transformer
interpretability transfer to rnns?, 2024.

Pearl, J. Causality. Cambridge University Press,
2 edition, 2009. ISBN 978-0-521-89560-6. doi:
10.1017/CBO9780511803161.

Peng, B., Alcaide, E., Anthony, Q., Albalak, A., Arcad-
inho, S., Biderman, S., Cao, H., Cheng, X., Chung,
M., Grella, M., GV, K. K., He, X., Hou, H., Lin, J.,
Kazienko, P., Kocon, J., Kong, J., Koptyra, B., Lau, H.,
Mantri, K. S. I., Mom, F., Saito, A., Song, G., Tang, X.,
Wang, B., Wind, J. S., Wozniak, S., Zhang, R., Zhang,
Z., Zhao, Q., Zhou, P., Zhou, Q., Zhu, J., and Zhu, R.-J.
Rwkv: Reinventing rnns for the transformer era, 2023.
URL https://arxiv.org/abs/2305.13048.

Radford, A., Wu, J., Child, R., Luan, D., Amodei, D.,
and Sutskever, I. Language models are unsupervised
multitask learners. 2019.

Rimsky, N., Gabrieli, N., Schulz, J., Tong, M., Hubinger,
E., and Turner, A. M. Steering llama 2 via contrastive
activation addition, 2024.

Sharma, A. S., Atkinson, D., and Bau, D. Locating and
editing factual associations in mamba, 2024.

Sundararajan, M., Taly, A., and Yan, Q. Axiomatic attribu-
tion for deep networks, 2017.

Syed, A., Rager, C., and Conmy, A. Attribution patching
outperforms automated circuit discovery, 2023.

Torres, A. Othello Mamba: Evaluating the mamba architec-
ture on the othellogpt experiment, 2024. URL https:
//github.com/alxndrTL/othello_mamba.

Wang, K. R., Variengien, A., Conmy, A., Shlegeris, B.,
and Steinhardt, J. Interpretability in the wild: a circuit
for indirect object identification in GPT-2 small. In
The Eleventh International Conference on Learning
Representations, 2023. URL https://openreview.
net/forum?id=NpsVSN6o4ul.

Wei, J., Tay, Y., Bommasani, R., Raffel, C., Zoph, B.,
Borgeaud, S., Yogatama, D., Bosma, M., Zhou, D.,
Metzler, D., Chi, E. H., Hashimoto, T., Vinyals, O.,
Liang, P., Dean, J., and Fedus, W. Emergent abilities of
large language models, 2022.

Zhang, F. and Nanda, N. Towards best practices of activa-
tion patching in language models: Metrics and methods,
2024.

Appendices
A. IOI Task Details
We use the 4 prompt templates from (Conmy et al., 2023):

Then, [NAME], [NAME] and [NAME] went to
the [PLACE]. [NAME] and [NAME] gave a
[OBJECT] to

Afterwards [NAME], [NAME] and [NAME]
went to the [PLACE]. [NAME] and [NAME]
gave a [OBJECT] to

When [NAME], [NAME] and [NAME] arrived
at the [PLACE], [NAME] and [NAME] gave
a [OBJECT] to

Friends [NAME], [NAME] and [NAME] went
to the [PLACE]. [NAME] and [NAME] gave
a [OBJECT] to

11

https://proceedings.neurips.cc/paper/2019/hash/2c601ad9d2ff9bc8b282670cdd54f69f-Abstract.html
https://proceedings.neurips.cc/paper/2019/hash/2c601ad9d2ff9bc8b282670cdd54f69f-Abstract.html
https://proceedings.neurips.cc/paper/2019/hash/2c601ad9d2ff9bc8b282670cdd54f69f-Abstract.html
https://proceedings.neurips.cc/paper/2019/hash/2c601ad9d2ff9bc8b282670cdd54f69f-Abstract.html
https://github.com/TransformerLensOrg/TransformerLens
https://github.com/TransformerLensOrg/TransformerLens
https://github.com/TransformerLensOrg/TransformerLens
https://www.lesswrong.com/posts/xE3Y9hhriMmL4cpsR/fact-finding-do-early-layers-specialise-in-local-processing
https://www.lesswrong.com/posts/xE3Y9hhriMmL4cpsR/fact-finding-do-early-layers-specialise-in-local-processing
https://www.lesswrong.com/posts/xE3Y9hhriMmL4cpsR/fact-finding-do-early-layers-specialise-in-local-processing
https://www.lesswrong.com/posts/xE3Y9hhriMmL4cpsR/fact-finding-do-early-layers-specialise-in-local-processing
https://www.transformer-circuits.pub/2022/mech-interp-essay
https://www.transformer-circuits.pub/2022/mech-interp-essay
https://www.transformer-circuits.pub/2022/mech-interp-essay
https://transformer-circuits.pub/2022/in-context-learning-and-induction-heads/index.html
https://transformer-circuits.pub/2022/in-context-learning-and-induction-heads/index.html
https://transformer-circuits.pub/2022/in-context-learning-and-induction-heads/index.html
https://arxiv.org/abs/2305.13048
https://github.com/alxndrTL/othello_mamba
https://github.com/alxndrTL/othello_mamba
https://openreview.net/forum?id=NpsVSN6o4ul
https://openreview.net/forum?id=NpsVSN6o4ul

Investigating the Indirect Object Identification circuit in Mamba

Figure 10. Displayed is 1 - (Normalized logit diff) for each (layer, position) patch, averaged over 80 data points. 0 corresponds to acting
like the uncorrupted forward pass, and 1 corresponds to acting like the corrupted forward pass. The y-axis is Layer, and the x-axis is
token position. The corruptions can be observed by inspecting the token position labels. Each of the five plots correspond to different IOI
patches.

Figure 11. Same as Figure 10, but for blocks.{layer}.hook proj out

12

Investigating the Indirect Object Identification circuit in Mamba

In resample ablation, there are many ways to corrupt a
prompt. We create a dataset choosing randomly from all
possible corruptions and locations of names that:

1. Replace all instances of a single name with another
name, and

2. Change the output

While we could patch two names at the same time, 1 simpli-
fies the number of things being changed at the same time. 2
is necessary to determine if the patch had any effect.

This results in the following 5 corruptions:

CAB AB C
DAB AB D

ACB AB C
ADB AB D

ABC AB C
ABD AB D

ABC AB C
ABC AC B

ABC AC B
ABC BC A

In each of these, the top line represents the uncorrupted
prompt, and the bottom line represents the corrupted prompt.
Letters correspond to names: the first three are the first three
names, the second two are the fourth and fifth names, and
the last is the output. If two letters are the same, that means
that those places share the same name. Otherwise, the names
are different.

B. Normalized Logit Diff
Normalized Logit Diff is defined as:

min_diff =
A_logit_corrupted - B_logit_corrupted

max_diff =
A_logit_unpatched - B_logit_unpatched

possible_range = abs(max_diff - min_diff)
prevent divide by zero
possible_range[possible_range == 0] = 1
logit_diff =

A_logits_patched - B_logits_patched
normalized_logit_diff =

(logit_diff-min_diff)/possible_range

where

• unpatched is a forward pass without our intervention
(the baseline forward pass)

• corrupted is a forward pass without our intervention,
where the prompt is modified to make B the correct
answer

• patched is a forward pass that patches edges (as de-
scribed above)

This results in a 1 when the model acts like the unpatched
forward pass, and 0 when the model acts like the corrupted
forward pass. Note that it is possible to obtain scores outside
the [0,1] range.

The abs is a novel addition by us. For data points where
the model is incorrect, maximizing normalized logit diff
would result in the model becoming more incorrect. This
abs modification fixes that issue.

C. SSM Hooks used
For the cosine similarity plots, we
used blocks.39.hook B bar,
blocks.39.hook ssm input, and
blocks.39.hook h.{pos}

See figure C for a detailed overview of the SSM nternals.

D. Automated Circuit Discovery Results
We use the following edges:

• embed 7→ layer input (hook embed 7→
blocks.i.hook layer input)

• layer output 7→ later layer input (blocks.i.hook proj out
7→ blocks.j.hook layer input)

• layer output 7→ output (blocks.i.hook proj out 7→
blocks.47.hook resid post)

• embed 7→ output hook embed 7→
blocks.47.hook resid post)

Where output is the residual stream after the final layer has
added its layer output.

We do a few separate experiments.

D.1. EAP

At the most high level, we can run (integrated gradient) EAP
without positions. Using binary search to find the minimum
number of edges to give us at least 85% accuracy results in
the following adjacency matrix:

13

Investigating the Indirect Object Identification circuit in Mamba

Figure 12. Internals of the SSM block, we restrict this diagram to only the parts we are interested in

Figure 13. Integrated gradients EAP, minimum set of edges. A
blue dot means the edge is present. The y-axis is the input node,
the x-axis is the output node

We also present the edge attributions here, and the corre-
sponding actual effects on normalized logit diff (determined
during the ACDC run below)

This is not very insightful, so we clamp values to let us see
more (the thresholds chosen by hand)

D.2. ACDC for layer information

We run EAP without positions using the edges listed above,
and use binary search to find the least edges needed to get
85% accuracy. We take the resulting graph and run ACDC
on it with a thresh of 0.0001, with (non-positional) edges
for individual conv slices, the ssm, the skip connection, and
all the edges above.

This allows us to get a hint at what parts each layer is using.

This resulting circuit has an average normalized logit diff
of 0.84 and achieves 88% accuracy on a held-out test set,
so there is little loss in performance from doing this further
prune (because the thresh is so low, most edges pruned
are those that decrease ability to do the task, which is why
accuracy has gone up).

Of note, this reproduces the “Convs of layer 39 shift names
to the next position” result from above.

Ideally we could do this with EAP and no longer need
ACDC, but but leave that for future work.

D.3. EAP With Positions

In the following:

• n1 means the first name in the prompt, n2 means the
second name in the prompt, etc.

14

Investigating the Indirect Object Identification circuit in Mamba

Figure 14. Edge Attributions Figure 15. Effects on normalized logit diff

15

Investigating the Indirect Object Identification circuit in Mamba

Figure 16. ACDC results from inside layers. Each node is 1 if the edge is present, 0 if it is not. 0,-1, and -2 are the corresponding conv
slices

16

Investigating the Indirect Object Identification circuit in Mamba

Figure 17. Same as the above figure, however, each cell shows the decrease in normalized logit diff if that edge is patched

17

Investigating the Indirect Object Identification circuit in Mamba

Figure 18. Same as above, however, values are clamped to 0.1

18

Investigating the Indirect Object Identification circuit in Mamba

Figure 19. Same above, however, values are clamped to 0.05

19

Investigating the Indirect Object Identification circuit in Mamba

• pos0 means the first token, pos1 means the second
token, etc. (these are used for non-name tokens)

• out means the final token, where the answer is gener-
ated

For reference, here is a prompt:

pos0 <|endoftext|>
pos1 Then
pos2 ,
n1 Sally
pos4 ,
n2 Martha
pos6 and
n3 Edwin
pos8 went
pos9 to
pos10 the
pos11 restaurant
pos12 .
n4 Edwin
pos14 and
n5 Sally
pos16 gave
pos17 a
pos18 drink
out to

D.3.1. CONNECTIONS FROM EMBED

Every layer receives n1-n5, except:

Missing n1: layers 1, 5, 8, 25, 28, 29,
30, 32, 34, 36

Missing n2: 30, 31, 36
Missing n3: layers 25, 27, 29, 30, 31,

34, 36, 38
Missing n4: layers 3, 9, 25, 32, 34, 40
Missing n5: layer 9, 25, 27, 31, 34, 37,

38, 40
Missing n1-n5: 33, 41-47
TODO: Output?

D.3.2. CONNECTIONS OF LAYER 0

Layer 0 takes as input n1-n5, and sends n1-n5 to every layer,
except:

Missing n1: 1, 2, 3, 28, 31, 32, 33, 34
Missing n2: 6, 7, 31, 33
Missing n3: 2, 31, 33
Missing n4: 1, 2, 3, 9, 18, 21, 32, 34, 40
Missing n5: 3, 9, 18, 31, 32, 34, 40
Missing n1-n5: 4, 5, 41-47

D.3.3. LAYERS THAT ARE MISSING NAMES

If we consinder a layer as “having” a name if it received it
from embed or layer 0, the following layers have n1-n5:

And these are ones that are missing names:

Missing n1: 1, 5, 28, 32, 33, 34
Missing n2: 31, 33
Missing n3: 31, 33
Missing n4: 32, 34, 3, 40, 9
Missing n5: 9, 31, 34, 40
Missing n1-n5: 41-47

Of those, 1, 3, 5, 9 are only connected to 0/embed and
39. In particular, we have:

1: missing n1
n1,n2,n3,n5 -> 39

3: missing n4
n1-n5 -> 39

5: missing n1
n1-n5 -> 39

9: missing n4,n5
n1-n5 -> 39

Otherwise, we have

Missing n1: 28, 32, 33, 34
Missing n2: 31, 33
Missing n3: 31, 33
Missing n4: 32, 34, 40
Missing n5: 31, 34, 40
Missing n1-n5: 41-47

28, 31, 32, 33, 34, 40 all seem to be involved in
a complex circuit, and have inputs from other layers.

Just examining the missing terms:

28 is missing n1

28 does not receive n1 from anyone
outputs n1 to 39

20

Investigating the Indirect Object Identification circuit in Mamba

31 is missing n2, n3, n5

31 does not receive n2 or n3 from anyone
output n2-n3 to 39

31 receives n5 from 29
outputs n5 to 34

32 is missing n1, n4

32 does not receive n1
outputs n1 to 39

32 receives n4 from 28, 30
outputs n4 to 34

33 is missing n1-n3

33 does not receive n1-n3
outputs n2-n3 to 39
outputs n1 to 35

34 is missing n1, n4, n5

34 does not receive n1 from anyone
outputs n1 to 39

34 receives n4 from 32
does not output it

34 receives n5 from 28, 31
does not output it

40 is missing n4, n5

40 does not receive n4-n5
does not output n4-n5

D.3.4. CONNECTIONS TO 39

As expected, layer 39 stands out as noteworthy. Every layer
before 39 has a connection to 39 for every name, with these
exceptions:

Missing n1: layer 2
Missing n2: layer 34
Missing n3: layer 34
Missing n4: layers 1, 31, 32, 34
Missing n5: layers 2, 31, 32, 34

In addition, there are these extra connections to layer 39

pos6: layer 34
pos14: layers 31, 32, 34
out: layers 28, 29, 30, 33, 35, 37, 38

Where

• pos6 is the “ and” between n2 and n3

• pos14 is the “ and” between n4 and n5

D.3.5. CONNECTIONS FROM 39

n1,n2,n3: layer 40
pos12: layer 43
pos14: layer 40
pos16: layers 40,41,43,44,45,46,47
pos18: layer 40
out: layers 43,45,46,47, and output

• pos12 is the “.”

• pos14 is the “ and” between n4 and n5

• pos16 is the “ gave” after n5

• pos18 is the object (for example, “ drink”)

21

Investigating the Indirect Object Identification circuit in Mamba

D.3.6. GRAPH AFTER HIDING 39, EMBED, AND 0

Keeping the above in mind, once we hide those three nodes
the graph is quite readable. If we hide 35, it is even more
readable. We also plot layer 35, for reference.

22

Investigating the Indirect Object Identification circuit in Mamba

Figure 20. Positional EAP After hiding Embed, Layer 0, and Layer 39. Numbers correspond to names, pos14 means token in position 14,
out means the final token

23

Investigating the Indirect Object Identification circuit in Mamba

Figure 21. Same as above, but also hide 35
24

Investigating the Indirect Object Identification circuit in Mamba

Figure 22. Layer 35 Positional EAP results

25

