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ABSTRACT

Inference speed and tracking performance are two critical evaluation metrics in
the field of visual tracking. However, high-performance trackers often suffer from
slow processing speeds, making them impractical for deployment on resource-
constrained devices. To alleviate this issue, we propose FARTrack, a Fast Auto-
Regressive Tracking framework. Since autoregression emphasizes the temporal
nature of the trajectory sequence, it can maintain high performance while achieving
efficient execution across various devices. FARTrack introduces Task-Specific
Self-Distillation and Inter-frame Autoregressive Sparsification, designed from
the perspectives of shallow-yet-accurate distillation and redundant-to-essential
token optimization, respectively. Task-Specific Self-Distillation achieves model
compression by distilling task-specific tokens layer by layer, enhancing the model’s
inference speed while avoiding suboptimal manual teacher-student layer pairs
assignments. Meanwhile, Inter-frame Autoregressive Sparsification sequentially
condenses multiple templates, avoiding additional runtime overhead while learn-
ing a temporally-global optimal sparsification strategy. FARTrack demonstrates
outstanding speed and competitive performance. It delivers an AO of 70.6% on
GOT-10k in real-time. Beyond, our fastest model achieves a speed of 343 FPS on
the GPU and 121 FPS on the CPU. The code will be released.

1 INTRODUCTION

Visual object tracking (VOT), aiming to continuously localize arbitrary objects in a video sequence, re-
lies on the continuous positions of the objects and is highly sensitive to temporal information|Asanomi
et al.| (2023); Mayer et al.| (2022); Wu et al.| (2023b); |Zhao et al.[| (2023); |Zhou et al.[(2023a). In
practical applications on edge devices with limited resources, it is often necessary to consider both
speed and performance simultaneously. However, existing methods can only achieve either high
speed |Gopal & Amer|(2024a); |Li et al.|(2023); |Xie et al.|(2023); Yang et al.|(2023b); Zaveri et al.
(2025)) or high performance |Cai et al.| (2024); |(Chen et al.| (2023)); Hong et al.| (2024); Xie et al.| (2024);
Yang et al.[(2023a)).

To address this dilemma, existing efforts to balance the tracking speed and performance can be
broadly categorized into two approaches:

(i) Model distillation methods |Cui et al.| (2023); |Guo et al.| (2021)); Hinton et al.| (2015); |Li et al.
(2017); Romero et al.|(2014)) based on cross-layer train a student model to mimic a teacher’s vision
features. However, as shown in Figure a), these methods rely on hand-crafted layer assignments
to enable knowledge transfer Ahn et al.|(2019)); Passalis et al.|(2020); [Romero et al.| (2014); Tung
& Mori| (2019); |Yue et al.| (2020); Zagoruyko & Komodakis| (2016). Without prior knowledge of
teacher-student layer pair assignment, manually designed ones often disrupt the hierarchical structure
of feature extraction, thereby failing to achieve optimal results. Moreover, the distillation objectives of
these methods focus on current-frame visual features, overlooking temporal information in trajectory
sequences critical for tracking tasks.

(ii) Runtime token sparsification approaches (Chen et al.[(2022b)); |[Liang et al.|(2022); Rao et al.[(2021);
Ye et al.[(2022)) typically involve the gradual removal of a subset of tokens during inference. However,
this process introduces extra computational overhead for identifying tokens to remove, ultimately
reducing tracking efficiency. Moreover, as these methods prioritize the current frame rather than the



Under review as a conference paper at ICLR 2026

Hand-Crafted Layer Assignments Self-Assignments FARTracksiny ' EARTrack,

Teacher : . N nano
(@e000) | 701
[. .] : 6 ITCTrack "~ AsymTrack-B .
©9 ) : i 654 HiT-Base AsymTrack-S \\\\FARTrackpiw
(€ D) 1 © o AsymTrackT 3 % fast \‘
(06666) | 5 LightTrack «@o. . : er

: 6 @ HiT-Smal
Vision Feature 1 Task-Specific Tokens % 601

FPS ——> 20.5%! : FPS ——————————> 52.9%1 © ETTrack

Perf. €———————10.5%| 1 Perf. €—1.0%) g 55 b

Classical Cross-Layer Distillation Task-Specific Self-Distillation HIT-Tiny

(a) Comparison of distillation methods
50 y T T T T T T
Autoregressive 0 50 100 150 200 250 300 350 400
Tracking Speed on GPU (FPS)
Templates O O Templates
2 olzolz|lolzlle ” Figure 2: FARTrack vs. Other Trackers:
A ol ol @54 B Performance-Speed Trade-off. Comparison of
t g @ @ t+1  our FARTrack with the state-of-the-art trackers

on GOT-10k in terms of tracking speed (horizon-
tal axis) on GPU and AO performence (vertical
axis). The diameter of the circle is proportional
to the ratio of the model’s speed to its perfor-
mance. FARTrack,,, significantly surpasses ex-
isting trackers in both tracking performance and
inference speed.

(b) Inter-frame Autoregressive Sparsification

Figure 1: Overview. (a) Comparison of our Task-
Specific Self-Distillation and Classical Cross-
Layer Distillation. (b) Inter-frame Autoregressive
Sparsification for Multi-templates.

entire frame sequence, they fail to achieve a temporally-global optimal solution, which adversely
impacts overall tracking performance.

To address these two issues, we present a fast, high-performance multi-template autoregressive frame-
work for visual tracking, using multi-template design to boost accuracy. Our framework comprises
two key components: (i) Task-Specific Self-Distillation. Unlike classical cross-layer distillation, our
approach conducts layer-by-layer distillation of task-specific tokens, which represent the object’s
trajectory sequences. In this method, each layer acts as both student and teacher for the next, trained
to fit teacher’s trajectory sequence features via KL divergence. Our approach avoids suboptimal
manual layer assignments while maintaining temporal information. (ii) Inter-frame Autoregressive
Sparsification. Compared with the frame-wise runtime sparsification methods, our sparsification is a
sequence-level method for template sequences. We treat attention weights as matrices to retain fore-
ground tokens while discarding background tokens, and propagate sparsification results to subsequent
frames in an autoregressive manner. In this process, we reduce the bandwidth without introducing
extra computational load, while retaining temporal information to learn a temporally-global optimal
sparsification strategy.

Overall, we present FARTrack, a fast and high-performance tracking framework. Extensive experi-
ments demonstrate the effectiveness and efficiency of our approach. Our method achieves a better
balance between inference speed and tracking performance than previous trackers. Specifically, as
demonstrated in Figure 2, compared to the high-performance tracker AsymTrack-B, FARTrackqny
attains a 2.9% higher AO score on the GOT-10k benchmark while achieving comparable running
speed on the GPU. Moreover, FARTrack;c, delivers 0.5% better performance than AsymTrack-T on
GOT-10k, along with superior GPU (343 FPS) and CPU (121 FPS) speeds.

2 RELATED WORK

Efficient Tracking Framework. In practical application scenarios, it is imperative to deploy trackers
that achieve both high speed |Cai et al.|(2023)); Kou et al.[(2023)); [Li et al.| (2023); [Wei et al.| (2024);
Zhang et al.| (2023)); |Zhou et al.|(2023b)) and high performance|Gao et al.|(2023); Li et al.| (2023);
Shi et al.[(2024); [Tang et al.| (2024); (Wu et al.| (2023a); [Zheng et al.|(2024) on resource-constrained
edge devices. Over the past decade, researchers have been exploring efficient and effective tracking
framework for real-world applications |Bhat et al.|(2019));|Cao et al.|(2022); |Danelljan et al.| (2019;
2017);|Sun et al.| (2025); Xie et al.| (2022); Xu et al.[|(2020). While Siamese trackers Bertinetto et al.
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(2016); He et al.|(2023); [L1 et al.| (2019} [2018)); Shen et al.| (2022); |Tang & Ling|(2022); | Xing et al.
(2022); |Zaveri et al.[(2025) with lightweight designs Yan et al.|(2021b) or dynamic updates |[Borsuk
et al.| (2022) reduce computation, they often overlook temporal dependencies, limiting performance.
Transformer-based methods Blatter et al.|(2023)); /Chen et al.|(2023);|Gao et al.| (2022; 2023); Kang
et al.[(2023)); Lin et al.| (2022); Song et al.|(2023; 2022); Ye et al.| (2022);|Zhang et al.| (2022) improve
accuracy but add complexity through decoding heads. Recent generative paradigms Bai et al.|(2024);
Chen et al.|(2023)); /Wei et al.| (2023a) eliminate custom heads yet incur high computational costs.
Existing frameworks thus face trade-offs between efficiency and performance. In this paper, we
propose a more efficient generative tracking framework to better balance speed and performance.

Model Distillation. Model distillation |Ahn et al.| (2019); (Cui et al.|(2023); Shen et al.[(2021);|Tung &
Mori (2019); |Wu et al.[(2024)); Ma et al.| (2025);|Cao et al.|(2025) transfers knowledge from a teacher
to a lightweight student. Typical methods like AVTrack |Wu et al.| (2024)) and MixformerV2|Cui et al.
(2023)) use multi-teacher maximization or layer skipping. However, such cross-layer distillation[Wang
et al.[ (2024)); Zhang et al.| (2023) often relies on suboptimal manual layer associations, leading
to notable performance drops. Our approach compresses the model via self-distillation on task-
specific tokens between adjacent layers, avoiding manual pair assignments and preserving temporal
information.

Token Sparsification. Existing methods Chen et al.[(2022b); |Liang et al.[(2022)); Rao et al.| (2021);
Ye et al.[(2022);[Zhao et al.|(2024a:bic) reduce computation by progressively removing less important
tokens during runtime. DynamicViT Rao et al.| (2021)) employs lightweight predictors for stepwise
token pruning, while OSTrack |Ye et al.| (2022) removes background regions early in processing.
However, such runtime approaches often introduce extra steps, increasing latency, and focus only on
the current frame. We propose a sequence-level post-processing sparsification method that avoids
additional runtime overhead, improves speed, and maintains high performance.

3 METHOD

3.1 REVISITING ARTRACK

ARTrack [Wei et al|(2023a)) is an end-to-end sequence generation framework for visual tracking,
which represents object trajectories as discrete token sequences using a shared vocabulary. By
quantizing discrete token items, we obtain the coordinates corresponding to each token, thereby
enabling the model to depict object positions via discrete tokens. The framework then employs a
Transformer Encoder to extract visual information and progressively model the sequential evolution
of the trajectory prompted by the preceding coordinate tokens. ARTrackV2 Bai et al.|(2024) adds a
dynamic appearance reconstruction process on the basis of its predecessor. It models the trajectory
while reconstructing the appearance in an autoregressive manner.

Motivation. Although the ARTrack series models maintain temporal information retention, their
architectures incorporating excessive depth and numerous parameters exhibit bandwidth-unfriendly
characteristics, ultimately reducing tracking efficiency. Conventional optimization methods, such
as cross-layer distillation and runtime token sparsification, have been employed to mitigate these
structural bottlenecks. However, cross-layer distillation relying on hand-crafted layer assignments
disrupts the hierarchical structure of feature extraction and runtime token sparsification introduces
extra computational overhead while neglecting temporal-global optimization within frame sequences.
To address these limitations, we propose FARTrack, which reduces model depth via task-specific
self-distillation for model compression and introduces an inter-frame autoregressive sparsification
method to eliminate background redundancy and noise in the template images.

3.2 NETWORK ARCHITECTURE

As presented in Figure the Transformer Encoder |Dosovitskiy et al. (2020); He et al.[(2022) encodes
features and predicts the four coordinate tokens of the bounding box in an inter-frame autoregressive
manner. Initially, all templates and the search image are divided into patches, flattened, and projected
into a sequence of token embeddings. Subsequently, FARTrack maps the object positions across
frames to a unified coordinate system with a shared vocabulary|Chen et al.| (2021 2022a)); |Wei et al.
(2023b)), forming object trajectory tokens. Then, we concatenate the visual tokens, trajectory tokens,
and four command tokens (representing the target bounding box coordinates), and input them into
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Figure 3: FARTrack Framework. FARTrack is a fast, high-performance multi-template autore-
gressive framework, comprising two key components: Task-Specific Self-Distillation for model
compression and Inter-frame Autoregressive Sparsification for template sequences.

the Transformer Encoder. Finally, the Transformer encoder models the trajectory evolution in an
autoregressive manner by leveraging the preceding trajectory tokens.

Multi-templates. To enhance tracking accuracy, we employ a multi-template design, further sup-
ported by a linear update strategy. To prevent the potential loss of temporal information caused by
occlusion or disappearance of the target during the tracking process, we ensure that the updated
multi-templates always include the first frame and the preceding frame.

3.3 TASK-SPECIFIC SELF-DISTILLATION

Knowledge distillation-based model compression reduces the model size, thereby improving tracking
efficiency. However, current cross-layer distillation methods rely on suboptimal manual layer
assignments |Ahn et al.| (2019); |Cui et al.| (2023)); |Shen et al.|(2021); Tung & Mori|(2019); Wu et al.
(2024)), disrupting hierarchical feature extraction and causing accuracy degradation in shallow models,
while also neglecting temporal information in trajectory sequences.

To address this issue, we propose a simple yet effective model compression method known as
task-specific self-distillation, as depicted in Figure 3] In our method, one model layer serves as
the student layer and the corresponding next layer acts as the teacher layer, establishing layer-wise
self-distillation [Hou et al.| (2024); |Zhang et al.| (2021} [2019)) that inherently circumvents suboptimal
manual layer assignments. Furthermore, our method operates on task-specific tokens which represent
the object’s trajectory sequences. The student layer is trained to fit the trajectory sequence features
of the teacher layer by minimizing the KL divergence. Therefore, the temporal information in the
trajectory sequences propagates backward among the layers, enabling the model to be distilled to a
shallow level while maintaining accuracy. Ultimately, our method improves the tracking speed of the
model while maintaining the tracking performance.

3.4 INTER-FRAME AUTOREGRESSIVE SPARSIFICATION

The template image contains target object features alongside persistent background and noise in-
terference that reduces tracking efficiency. Traditional sparsification methods|Chen et al.|(2022b));
Liang et al.| (2022); [Rao et al.| (2021); |Ye et al.| (2022) prioritize runtime token elimination, but
these approaches introduce redundant time overhead and frame-specific optimization rather than
sequence-level processing, resulting in slower speed and lower performance.

To eliminate template redundancy and noise in the tracking process while achieving a temporally-
global optimal sparsification strategy, we propose an inter-frame autoregressive sparsification, as
visualized in Figure[3] After processing through the attention layers, we obtain the attention weights
for template tokens with respect to search tokens and the four command tokens based on the attention
map. This sequential processing method considers the template’s correlation with both the search area
and the predicted coordinates, respectively. We then simply add these two attention weights and retain
the parts with the largest values based on the predefined token retention rate. This process leverages
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the inter-frame correlations to mask the unnecessary background parts in the templates while retaining
the key foreground parts. Subsequently, the sparsification results of the current frame are saved and
propagated to subsequent frames in an autoregressive manner, thereby learning a temporally-global
optimal sparsification strategy. Overall, our method requires no additional time-consuming processes
and meanwhile preserves the temporal information, achieving faster speed and better performance.

Notably, masked tokens are excluded from processing to avoid distortion of normalization statistics.
LayerNorm is exclusively applied to valid tokens, preventing improper scaling and shifting caused by
statistical deviations that could undermine both inference stability and model performance.

3.5 TRAINING AND INFERENCE

FARTrack is a fast tracker that enhances tracking efficiency by reducing model depth via task-
specific self-distillation and eliminating redundant and noisy information from the templates using an
inter-frame autoregressive sparsification.

Training. Similar to its predecessor, FARTrack undergoes both frame-level and sequence-level
training [Bai et al.| (2024); Kim et al.| (2022); [Wei et al.| (2023a); [Liang et al. (2025). Initially,
task-specific self-distillation is employed to progressively transfer trajectory sequence features from
deeper layers to shallower layers, thereby reducing the model depth and achieving model compression.
To ensure effective knowledge transfer, we minimize the KL divergence between the teacher and
student layers during training. Building upon this model compression, we introduce an inter-frame
autoregressive sparsification that computes a mask matrix based on inter-frame correlations and
removes unimportant template background tokens according to a predefined token retention ratio.

Moreover, we incorporate the SIoU loss|Gevorgyan| (2022) to better capture the spatial correlation
between the predicted and ground truth bounding boxes. For each video clip, the initial trajectory
prompt is initialized using the object bounding box from the first frame and is propagated into
subsequent frames in an autoregressive manner. The overall loss function is formulated as:

L = Lcg + M Lsiou + MLk (D

where Lcg, Lsiou and Lk, denote the cross-entropy loss, SIoU loss and KL divergence, respectively.
The ) values are used as weights to balance the contribution of each loss term.

Inference. During inference, the trajectory is initialized using the object bounding box in the first
frame. The inter-frame sparsification method removes redundant and noisy tokens from templates,
retaining and propagating these sparsification results through subsequent tracking processes to reduce
computational complexity. The trajectory tokens are iteratively propagated into subsequent frames in
an autoregressive manner. Unlike the training phase, since sparsification has already been performed
on the templates, LayerNorm is applied to all tokens as usual.

4 EXPERIMENTS

4.1 IMPLEMENTATION DETAILS

The model is trained with 8 NVIDIA RTX A6000 GPUs. The inference speed is evaluated with
NVIDIA TiTan Xp, Intel(R) Xeon(R) Gold 6230R CPU @ 3.00GHz, and Ascend 310B.

Model Variants. We trained five variants of FARTrack with different configurations as Table

The tiny is a 15-layer encoder model. Nano distills the 15-layer encoder into 10 layers, and pico
into 6 layers. Tiny matches AsymTrack-B on GPU while keeping AsymTrack-T CPU speed. Nano
outperforms state-of-the-art trackers in key metrics across datasets. Pico outperforms MixFormerV2-S
by 0.9% in AO on GOT-10k |Huang et al.|(2019), showing FARTrack’s efficiency.

Training. To conduct a fair comparison with mainstream trackers, we carried out Frame-level
Pretraining on the COCO2017 |Lin et al.|(2014) dataset. Subsequently, we performed Task-Specific
Self-Distillation Training to compress our model. Finally, we conducted Inter-frame Autoregressive
Sparsification Training to further accelerate our model. The detailed training process can be found in
the supplementary material.
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Table 1: State-of-the-art comparison on GOT-10k [Huang et al.| (2019), TrackingNet Muller et al.
(2018)), LaSOT [Fan et al.|(2019) and LaSOText|Fan et al.|(2020)). Best in bold, second best underlined.

GPU|CPU|NPU GOT-10k TrackingNet LaSOT LaSOText
FPS | FPS | FPS |AO(%) SR50(%) SR75(%)|AUC(%) P Norm(%) P(%)| AUC(%) P norm(%) P(%)|AUC(%) P norm(%) P(%)
DiMP|Bhat et al.|(2019)| 68 | 22 - - - 74.0 80.1  70.6| 56.9 65.0  56.7 - - -
SiamFC++Xu et al.|(2020)| 76 | 28 - - - 75.4 80.0 68.7| 54.4 623 547
LightTrack|Yan et al.|(2021b)| 59 | 27 | - 61.1 71.0 54.3 72.5 77.8 69.5| 53.8 60.5 53.7

Methods

TCTrack|Cao et al.|(2022)| 42 | 29 | - | 66.2  75.6 61.0 74.8 796 73.3| 60.5 693 624
FEAR [Borsuk et al.|(2022)| 123 | 28 | - | 619 722 52.5 70.2 80.8 71.5| 535 59.7 545
E.T. Track Blatter et al.|(2023)| 33 | 16 | - | 56.6  64.6 42.5 725 77.8  695| 59.1 66.8  60.1

HiT-Tiny|Kang et al.|(2023)| 135 | 42 | 56 | 52.6  59.3 427 74.6 78.1 68.8| 54.8 60.5 529 358
HiT-Small|Kang et al.|(2023)| 121 | 35 | 47 | 62.6 ~ 71.2 54.4 71.7 819 73.1| 60.5 68.3 615| 404
HiT-Base|Kang et al.|(2023)| 116 | 30 | 33 | 640  72.1 58.1 80.0 844 773| 64.6 733 68.1| 44.1 -
MixformerV2|Cui et al.|(2023)| 133 | 31 | 35 | 61.9  71.7 51.3 75.8 81.1 70.4| 60.6 699 604 | 43.6 - 46.2

AsymTrack-TZhu et al.|(2025)| 145 | 55 | - | 623  71.3 54.7 76.2 809 71.6| 60.8 68.7 612 425
AsymTrack-S|Zhu et al.|(2025)| 136 | 48 | - | 655 74.8 58.9 71.9 822 740| 628 712 648| 433
AsymTrack-B|Zhu et al.|(2025)| 135 | 32 | - | 67.7  76.6 61.4 80.0 845 774\ 64.7 73.0 67.8| 44.6

FARTr‘;xckpim 343 121|101 | 628 726 50.9 75.6 81.3  70.5| 58.6 67.1 59.6| 418 508 444
FARTracKkyan| 210 | 77 | 61 | 699  81.2 61.4 79.1 845 75.6| 613 69.7 641 438 533 418
FARTrackg,y| 135 | 53 | 42 | 70.6  81.0 63.8 80.7 856 775 632 71.6  66.7| 45.0 540 492

4.2 MAIN RESULTS

We evaluated the performance of our proposed FARTrackgny, FARTrackpano, and FARTrackpc, on
several benchmarks, including GOT-10k [Huang et al.| (2019), TrackingNet Muller et al.| (2018]),
LaSOT Fan et al.| (2019), LaSOText |Fan et al.| (2020) and VastTrack [Peng et al.[(2024).

GOT-10k Huang et al.| (2019). GOT-10k is a real world general object detection dataset. As shown
in TableE], FARTracKgy,y outperforms AsymTrack-B by 2.9% in AO score, achieving a GPU speed
of 135 FPS and a CPU speed of 53 FPS. Furthermore, the most lightweight version, FARTrack;co,
outperforms MixFormerV2-S by 0.9% in AO, while delivering nearly three times the GPU speed and
four times the CPU speed.

TrackingNet Muller et al.|(2018). TrackingNet is a large-scale dataset featuring over 30,000 videos
from diverse real world scenes. The evaluation on this extensive dataset highlights the efficiency and
effectiveness of FARTrack. As illustrated in Table FARTracky,n, achieves performance close to
that of AsymTrack-B, the top-performing tracker on this benchmark, while running nearly twice as
fast as AsymTrack-B on the GPU.

LaSOT Fan et al. (2019). LaSOT is a large-scale benchmark designed to assess the robustness
of long-term tracking. As demonstrated in Table E], FARTrackg,y achieves AUC of 2.6% over
MixFormerV2-S on this dataset. While maintaining a comparable running speed on the GPU, it
nearly doubles the speed on the CPU. FARTrack,,, matches AUC of MixFormerV2-S but surpasses
it in both GPU and CPU running speed.

LaSOText Fan et al.[(2020). LaSOText is an extended subset of LaSOT, encompassing 150 additional
videos from 15 new categories. As shown in Table FARTrackgj,y outperforms AsymTrack-B, with
a 0.4% AUC improvement, demonstrating its effectiveness in small object tracking.

VastTrack Peng et al.|(2024). VastTrack is a dataset aimed at advancing the development of more
general visual tracking technology, covering 2,115 object categories and containing 50,610 video
sequences. As shown in Table 3} on this dataset, FARTracky,y achieves an AUC comparable to that
of MixFormerV2-B, which fully highlights the robustness of FARTrack.

4.3 EXPERIMENTAL ANALYSES

We analyze the main properties of the FARTrack. For the following experimental studies, we follow
the GOT-10k test protocol unless otherwise noted. Default settings are marked in gray .



Under review as a conference paper at ICLR 2026

Table 2: Details of our FARTrack model variants ~ Table 3: Comparison on more benchmarks.

Model FARTrackiny FARTracknane FARTrackpico Methods VastTrack
Backbone ViT-Tiny ViT-Tiny ViT-Tiny AUC(%) PNorm(%) P(%)
Encoder Layers 15 10 6 FARTrackiny 35.2 36.5 323
Input Sizes [112,224] [112,224] [112,224] FARTracKpano 339 35.1 30.3
Templates 5 5 5 FARTrackpico 30.3 31.0 25.7
MAC:s (G) 2.65 1.78 1.08 MixformerV2-B 35.2 36.5 33.0
Params (M) 6.82 4.59 2.81 DiMP 29.9 31.7 25.7
Table 4: vs. Deep-to-Shallow Distillation|Cui et al. Table 5: Sparsification Comparison.
(2023) run-time sequence-time | MACs Params CPU GPU | AO
Methods Layer | AO SRs0 SRzs 2.99G 6.82M 49 128 | 70.0
10 699 812 614 v 314G 72IM 36 114 [ 69.5

layer-by-layer

6 628 72.6 509 v 2.65G 6.82M 53 135 | 70.6
10 |67.8 78.0 60.6
6 619 709 504

deep-to-shallow

Distillation Strategy. To validate the advantages of our method, we compared layer-by-layer distil-
lation with cross-layer distillation. In cross-layer distillation, student-teacher layer correspondence
exhibits an intermittent pattern rather than one-to-one alignment. While facilitating knowledge
transfer, this approach introduces feature consistency challenges. Additionally, given ViT-Tiny’s
weaker representational capacity than ViT-Base, we further compared ViT-Base-guided FARTrack
distillation to demonstrate layer-by-layer distillation’s superiority.

As shown in Table ] we manually designed a model layer reduction strategy with reference to the
Deep-to-Shallow distillation method of MixformerV2, where REMOVE_LAYERS for the distillation
of the 10-layer and 6-layer models are set to [0, 3, 6, 9, 12] and [0, 2, 4, 6] respectively. By
removing model layers, the remaining layers can perform inter-layer matching in sequence. However,
hand-crafted layer assignments fail to ensure reasonable inter-layer matching, leading to semantic
mismatch in cross-layer distillation. This mismatch disrupts feature alignment, resulting in more
significant accuracy degradation in deeper layers. In contrast, our method maintains the consistency
of feature representations and effectively mitigates the issue of semantic mismatch.

As illustrated in Figure @fa), FARTrack with ViT-Base shares an identical hierarchical structure
with FARTrackg,y. We distill each layer of ViT-Tiny using trajectory features from corresponding
ViT-Base layers. Although the 15-layer model distilled via base-to-tiny method performs well,
forcing Tiny to mimic Base’s layer outputs causes significant accuracy degradation in deeper layers
(10-14) and progressive decline in shallower ones, due to their representational capability mismatch.
In contrast, our method maintains feature consistency and information density, preserving nearly
identical accuracy in layers 10-15 while limiting shallow layers’ accuracy loss within acceptable
bounds.

Distillation Target. To verify the necessity of distilling the trajectory sequence, we conducted
an exploratory experiment, as shown in Figure f{(b). Experiments reveal that directly distilling the
search/template or jointly distilling visual features disrupts the hierarchical structure, causing accuracy
degradation across all layers. In contrast, distilling the trajectory sequence minimally impacts the
feature extraction hierarchy. Its autoregressive properties enhance knowledge propagation from deep
to shallow layers, maintaining nearly unchanged accuracy in layers 10-15 while preventing significant
performance drops in shallow layers.

Distillation Loss. Experiments (Figure[dfc)) demonstrate that combining trajectory sequence loss
(Liraj = Lok + Lsiou) and KL divergence loss (Li1,) effectively preserves accuracy in deep layers
(e.g., layers 10-15) while controlling performance degradation in shallow layers. Removing trajectory
sequence loss causes significant feature degradation and performance drop, proving its critical role
in preserving temporal information. In contrast, omitting KL divergence loss triggers rapid feature
collapse in shallow layers, leading to catastrophic degradation of tracking performance, highlighting
its indispensability for maintaining object tracking capability.
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Figure 4: Layer-by-layer distillation accuracy curve.

Table 6: Token Retention Ratio. Table 7: Attention Map Sampling Method.
Ratio | MACs CPU GPU | AO SRs0 SRr7s Six1 Ssxz Sau Z C| AO SRso SRrs
100% | 299G 49 128 | 700 80.0 644 70.1  80.6 633
75% |2.65G 53 135 [70.6 810 638 v 69.5 804 624
50% | 235G 56 139 | 683 782 618 v 700 804 629
25% | 201G 58 140 | 673 783 59.8 v 68.6 79.1 617
10% | 1.82G 63 141 | 623 741 533 v v 694 797 621

v v |706 810 638

Sparsification Comparison. The runtime sparsification introduces extra computational processes
during the inference, while our sequence-level sparsification avoids this situation. To support this, we
conducted experiments on runtime sparsification and sequence-level sparsification respectively based
on the base model, and compared the final results, as shown in Table E}

Runtime sparsification processes template tokens during each forward propagation in inference,
introducing extra computational overhead that increases MACs from 2.99G to 3.14G and Params
from 6.82M to 7.21M. This redundant computation reduces CPU and GPU speeds by 26.5% and
10.9% respectively. In contrast, our sequence-level sparsification leverages intermediate results
for decision-making without introducing additional computations, while propagating sparsification
outcomes to subsequent frames autoregressively to eliminate redundant processing. Consequently,
MAC:s are reduced to 2.65G with improved inference speeds on both CPU and GPU.

Token Retention Ratio. Token retention ratio in inter-frame autoregressive sparsification affects
both performance and efficiency. As Table[6]shows, reducing the ratio from 100% to 75% decreased
MAC:s by 11.4% (2.99G to 2.65G) while achieving peak AO (70.6%). This indicates significant
redundancy in target templates—removing 25% background tokens preserves temporal modeling
and improves accuracy. Further reduction to 25% caused 3.3% AO drop (67.3%), demonstrating
excessive removal harms tracking robustness.

Attention Map Sampling Method. We analyze different sampling strategies for inter-frame au-
toregressive sparsification in Table S1x1 sparsifies the central 1 x 1 feature, S3.3 usesa 3 x 3
central region, S, covers the entire search area. Z denotes template self-attention, while C' refers to
command-template attention.

S5 3 avoids target exclusion from center shift or hollow structures and reduces background overfocus
versus S,1, improving accuracy. Combining S and Z underperforms due to self-overfocus in Z.
Instead, integrating S and C enables effective template sparsification: S separates foreground and
background coarsely, while C' refines edge features. This reduces redundancy and improves accuracy
and efficiency.

Layer-wise cross-attention visualization. As shown in Figure[3] cross-attention between trajectory
sequences and search regions evolves across layers: shallow layers (1-5) capture edges and back-
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Figure 5: Layer-wise cross-attention visualization. search: Search region and template. layer 0-14:
Trajectory sequences to search cross-attention maps at each layer.
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token retention ratio. token retention ratios.

ground, while deeper ones (10-15) transition toward target contours. Hierarchical feature learning
is retained via distillation, maintaining consistent trajectory propagation and boosting accuracy,
especially in intermediate layers (e.g., 6, 10).

Template sparsification visualization. Figure[6]shows that our method retains critical tokens and
removes redundancy under motion blur, appearance change, and occlusion. Unlike frame-wise
sparsification, which often fails due to single-frame errors, our inter-frame autoregressive approach
uses multi-template complementarity and temporal modeling to track dynamic targets and preserve
structure even with inconsistent cues.

Template retention visualization. Figure[7]visualizes retained tokens at different retention ratios.
For oversized targets, low ratios (<50%) lose essential features; for shrinking ones, they harm
deformation representation and cause misclassification. Thus, we set a 75% retention ratio to preserve
sufficient target information while reducing redundancy, balancing accuracy and efficiency.

5 CONCLUSION

We propose FARTrack, a fast and high-performance multi-template autoregressive tracking framework.
It integrates task-specific self-distillation and inter-frame autoregressive sparsification. While slightly
behind top-performing methods [Bai et al.|(2024); |Wei et al.|(2023a), it excels in speed-performance
balance, especially in speed. Our distillation preserves temporal information of trajectory sequences
via layer-wise task-specific tokens distillation, avoiding suboptimal manual layer assignments. The
sparsification method propagates multi-template sparsification results autoregressively, achieving
temporally-global optimality without extra cost. FARTrack performs well across GPU, CPU, and
NPU platforms, offering a efficient solution for practical deployment.
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APPENDIX

A TRAINING DETAILS

In the supplementary material, we have supplemented the experiments section. We have sequentially
presented the detailed training processes of Frame-level Pretraining, Task-Specific Self-Distillation
Training, and Inter-frame Autoregressive Sparsification Training.

Frame-level Pretraining. To fairly compare with mainstream trackers, we introduce the
COCO02017 [Lin et al| (2014) dataset, which is commonly used in template matching training
paradigms, and apply frame-level pretraining to the AR(0) model. Similar to DiMP [Bhat et al.
(2019) and STARK |Yan et al.[(2021a), the AR(0) model uses the same data augmentations as OS-
Track, including horizontal flip and brightness jittering. The model is optimized using AdamW with
a weight decay of 1 x 10~%. The learning rate for the backbone is set to 4 x 10~%, and 4 x 1073 for
other parameters. The AR(0) model is trained for 500 epochs, with 76,800 template-search frame
pairs sampled per epoch. The learning rate is reduced by 10% at the 400th epoch.

Task-Specific Self-Distillation Training. This phase uses the same datasets and data augmentations
as the AR(0) phase but introduces additional KL divergence loss (Lk1,) and trajectory sequence loss
(Ltraj = Lok + Lsiou) for each layer. The model is optimized using AdamW with a weight decay of
1 x 10~%. The learning rate for the backbone is set to 4 x 107>, and 4 x 10~ for other parameters.
The distillation model is trained for 300 epochs, with 76,800 template-search frame pairs randomly
sampled per epoch. This process generates multiple versions of the distilled model, producing models
at different layers from a single distillation.

Inter-frame Autoregressive Sparsification Training. Unlike traditional per-frame template match-
ing, this method trains FARTrack directly on continuous video sequences without applying data
augmentations. The model is optimized using AdamW with a weight decay of 5 x 102, The learning
rate for the backbone is set to 4 x 107 and 4 x 10~ for other parameters. The training process
consists of 20 epochs, with 1,000 video slices randomly sampled from continuous video per epoch.
Due to GPU memory limitations, each slice contains 32 frames.

B TEMPLATE QUANTITY

In this section, an ablation experiment is conducted on the number of templates. The number of
templates not only affects the operation efficiency of the model but also impacts the tracking accuracy.
Therefore, it is essential to explore this aspect.

Table 8: Impact of Templates on Efficiency and Performance.

Template Count | MACs Params CPU GPU | AO SRso SR7s

1 1.70G 6.82M 64 141 | 664 770 58.0
217G 6.82M 55 139 | 68.1 78.6 609
2.65G 6.82M 53 135 [70.6 81.0 63.8
3.13G 6.82M 48 124 | 69.6 803 625
361G 682M 45 115|700 80.7 623

O N W

As shown in Table[8] when the number of templates gradually increases from 1 to 5, the AO gradually
rises from 66.4% to 70.6%, and the MACs increases synchronously by 35.8% (from 1.70G to 2.65G).
During this stage, adding every two templates can increase the AO by approximately 2.1%, which
verifies that the multi-template mechanism can effectively aggregate the appearance changes of the
target and achieve an accurate representation of the target’s dynamic appearance. However, when the
number of templates exceeds 5 (e.g., 7-9), the AO instead drops to the range of 69.6%-70.0%. This
indicates that redundant templates lead to the dispersion of attention weights and interfere with the
extraction of key features.
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Figure 8: Layer-wise cross-attention visualization Comparison. search: Search region and
template. layer 0-14: Trajectory sequences to search cross-attention maps at each layer.

Finally, we choose to use 5 templates because it achieves the optimal efficiency at the critical point of
the accuracy peak.

C TEMPLATE UPDATE STRATEGY

In this section, an ablation experiment is conducted on the template update strategy. Different test
benchmarks have an obvious correlation with different template update strategies. Therefore, it is
necessary to experiment with different update strategies.

Table 9: Template Update Strategy Comparison.

GOT - 10k LaSOT
Update Strategy
AO SRs0 SR7s |AUC Prorm P
Linear 709 81.6 634 | 625 702 653

Exponential Decay |70.6 81.0 63.8 | 63.2 71.6  66.7
Logarithmic Increasing | 69.6  80.1  62.8 | 61.6 68.7 65.4
Equal-interval 69.5 794 63.1 | 62.1 69.3 655

As shown in Table [9} linear sampling achieves relatively mediocre values among all the update
strategies. However, since it always samples all templates linearly, it is not sensitive to the length
of the target sequence, and thus it has good performance on different datasets. Exponential decay
sampling samples more frames closer to the current frame. This is more friendly to long sequences
such as the LaSOT benchmark and also performs well in short video sequences like GOT-10k.
Logarithmic increasing sampling samples more frames that are farther from the current frame, which
makes it perform poorly in long video sequences such as LaSOT. Equal-interval sampling performs
poorly both in GOT-10k and LaSOT. This is because equal-interval sampling may fail to sample the
initial static template. And if there is a long period of tracking failure, such as the target disappearing
or being occluded, it is very likely that all templates will become invalid, resulting in a decrease in
accuracy.

D INTER-LAYER ATTENTION VISUALIZATION COMPARISON

In this section, we conduct ablation experiments on the inter-layer attention of different distillation
methods. Given the evident correlation between the distribution patterns of inter-layer attention and
various distillation approaches, experimental validation is therefore deemed necessary.
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For the layer-wise cross-attention visualized in Figure the inter-layer attention distributions under
the distillation-free setting exhibit diversity with distinct differences across various layers. Compared
with self-distillation, the inter-layer attention distributions in the base2tiny distillation setting are
more scattered. In contrast, the deep-layer attention distributions after trajectory self-distillation
demonstrate consistency — a characteristic that confirms the effectiveness of the self-distillation
mechanism in transferring deep-layer knowledge to middle layers (e.g., layers 5-14). Thus, compared
with other configurations, self-distillation enables more coherent inter-layer feature alignment.

E ADDITIONAL TRACKER COMPARISONS

We have supplemented the performance and complexity comparisons with the latest state-of-the-art
(SOTA) methods published in 2024 and 2025. (*) denotes results on GOT-10k obtained following
the official one-shot protocol. The speeds of both GPU and CPU were tested on the same hardware
device.

Table 10: State-of-the-art comparison on GOT-10k |[Huang et al.| (2019), TrackingNet|Muller et al.
(2018), LaSOT [Fan et al.| (2019) and NFS |[Kiani Galoogahi et al.|(2017). Best in bold, second best
underlined. (*) denotes results on GOT-10k obtained following the official one-shot protocol.

GPU|CPU|MACs|Params GOT-10k TrackingNet LaSOT NFS
FPS|FPS| G M |AO(%) SR50(%) SR75(%)| AUC(%) P noym(%) P(%)|AUC(%) P norm(%) P(%)|AUC(%)
LiteTrack-B4(*)|Wei et al. ©024)[ 195 29 [ 678 | 26.18 | 652 747 57.7 79.9 849  76.6| 625 72.1 657 63.4
PromptVT|Zhang et al.|(2024)| 104 | 30 | 2.90 | 3.00 | 68.2  79.3 61.8 78 835 744| 637 73.8  66.8 -
SMAT |Gopal & Amer|(2024b)| 135 | 40 - 378 | 645 747 57.8 78.6 842 75.6| 617 71.1 646 62.0
ECTTrack|Xu et al.|(2025)] 104 | 46 - - 65.6 75 60.7 78.8 846 765| 624 71.5 663 61.1
CompressTracker-OSTrack-2{Hong et al.|(2025)| 207 | 48 | 6.38 | 21.24 - - - 78.2 833  748| 604 68.5 61.5
SSTrack(*)|Zheng et al.|(2025)| 62 | 18 |32.55|92.12 | 67.1  76.6 59.1 80.1 86.7 789| 64.8 752 69.7

Methods

AsymTrack-B|Zhu et al |(2025) 135 | 32 | 1.81 | 3.36 | 677 766 614 | 800 845 774| 647 730 67.8| 644
FARTrackyeo wlo VastT| - | - | 1.08 | 281 | 615 718 502 | 76.1 80.9 705| 584 666 589
FARTrackyyo w/o VastT| - | - | 1.78| 459 | 689 795 609 | 800 850 76.1| 6l.1 635 634
FARTrackyn wio VastT| - | - | 265 | 682 | 69.6 804 628 | 80.6 854 772| 635 716 665 -

FARTracky,| 343|121 1.08 | 281 | 628 726 509 | 756 813 70.5| 586  67.1 59.6| 620
FARTrack,,,,| 210 | 77 | 178 | 459 | 699 812 614 | 79.1 845 756| 613 697 641 65.1

FARTrackgyy| 135| 53 | 2.65 | 6.82 | 70.6  81.0 63.8 80.7 856 77.5| 632 71.6  66.7| 66.9

As can be seen from the Tablelm our FARTrack achieves state-of-the-art (SOTA) performance on the
NFS/GOT-10k/TrackingNet benchmark and competitive accuracy on the LaSOT benchmarks. On the
LaSOT benchmark, the AUC of SSTrack is 1.6% higher than that of our tiny model (64.8% > 63.2%).
This is attributed to the fact that its parameter count is is much larger than that of ours (92.12M >
6.82M), thus endowing SSTrack with stronger robustness in long-term temporal tracking. However,
under the condition of comparable parameter counts, our model should deliver higher accuracy.

F ANALYSIS OF INDEPENDENT PERFORMANCE GAINS OF EACH MODULE

To disentangle the gains of each Module, we supplement comparative experiments with ARTrack
and ARTrackV2 (ARTrack, ARTrackV2, and FARTrack all adopt the ViT-Tiny architecture with 6
Encoder layers.), and the results are shown in Table@

Table 11: Performance Comparison with ARTrack and ARTrackV2.

o 5 A MACs Params | GPU CPU GOT-10k
Methods Self-distillation Sparsification
G) (M) | (FPS) (FPS) | AO(%) SRs0(%) SRrzs(%)

ARTrack_tiny(6) 2.39 13.56 68 34 59.9 69.6 50.4
ARTrackV2_tiny(6) 2.10 8.31 110 49 60.6 70.9 45.7
FARTrack_pico(6) v 1.08 2.81 343 121 60.6 69.5 46.3
FARTrack_pico(6) v 1.25 2.81 266 101 61.8 71.5 50.0
FARTrack_pico(6) v v 1.08 2.81 343 121 62.8 72.6 50.9

The training settings and datasets of ARTrack and ARTrackV?2 are consistent with those of FARTrack.
The table demonstrates the effectiveness of the self-distillation and sparsification modules: self-
distillation (enabling middle layers to learn from deep-layer knowledge) improves AO by 1.2%
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compared to ARTrackV2_tiny(6); sparsification (retaining useful foreground tokens while removing
redundant background tokens) boosts AO by 1.0% (from 61.8 to 62.8).

G COMPARATIVE ANALYSIS OF DISTILLATION VS. SCRATCH-TRAINED
MODELS WITH DIFFERENT DEPTHS

We have supplemented comparative experiments between 10-layer or 6-layer models trained from
scratch and our distilled versions to clarify whether distillation provides benefits beyond simply using
fewer layers (see Table [T2).

Table 12: Performance Comparison of Different FARTrack Variants and Their Corresponding Scratch-
Trained Models.

Methods GOT-10k TrackingNet LaSOT
AO(%) SRs0(%) SRr75(%) | AUC(%) PNorm(%) P(%) | AUC(%) PNorm(%) P(%)
FARTrack_tiny 70.6 81.0 63.8 80.7 85.6 71.5 63.2 71.6 66.7
FARTrack_nano(10) | 69.9 81.2 61.4 79.1 84.5 75.6 61.3 69.7 64.1
FARTrack_scratch(10) | 67.1 77.4 59.9 71.9 83.1 73.6 60.8 69.1 63.3
FARTrack_pico(6) 62.8 72.6 50.9 75.6 81.3 70.5 58.6 67.1 59.6
FARTrack_scratch(6) | 60.6 69.5 46.3 73.3 78.4 67.1 56.8 64.1 55.7

The results confirm that distillation offers advantages far beyond simply using fewer layers:

(i) 10-layer or 6-layer models trained from scratch: Suffer severe performance degradation (e.g.,
FARTrack_scratch(10) exhibits a 3.5% drop in AO compared to FARTrack_tiny). This is because
such models lack the learning capacity of deep networks and fail to capture complex visual/temporal
features required for tracking.

(ii) Our distilled versions: Transfer deep-layer knowledge to middle layers via self-distillation,
retaining higher performance (FARTrack_nano(10) only sees a 0.7% AO drop compared to FAR-
Track_tiny) while achieving lower training costs than 10-layer or 6-layer models trained from scratch.

H TRAINING COST COMPARISON: CROSS-LAYER VS. TASK-SPECIFIC
SELF-DISTILLATION

We have supplemented the training cost comparison between cross-layer distillation (Deep-to-
Shallow) |Cui et al.| (2023)) and our task-specific self-distillation, with details as follows.
Both methods were trained on 8 NVIDIA RTX A6000 GPUs:

(i) Deep-to-Shallow distillation: Stage 1 (15-to-10 layers) takes about 40 hours; Stage 2 (10-to-6
layers) takes about 38 hours (two-stage sequential training required).

(ii) Task-specific self-distillation: Takes about 36 hours total, with one-time training enabling direct
utilization of multiple model versions.

This comparison fully demonstrates the training efficiency advantage of our proposed method.

I THE USE OF LARGE LANGUAGE MODELS (LLMS)

We only used LLMs minimally to aid or polish writing. For instance, when describing a concept, we
might leverage LLMs to ensure terminological precision, enhance logical coherence, or optimize the
academic tone of the exposition.
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