
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

FARTRACK: FAST AUTOREGRESSIVE VISUAL TRACK-
ING WITH HIGH PERFORMANCE

Anonymous authors
Paper under double-blind review

ABSTRACT

Inference speed and tracking performance are two critical evaluation metrics in
the field of visual tracking. However, high-performance trackers often suffer from
slow processing speeds, making them impractical for deployment on resource-
constrained devices. To alleviate this issue, we propose FARTrack, a Fast Auto-
Regressive Tracking framework. Since autoregression emphasizes the temporal
nature of the trajectory sequence, it can maintain high performance while achieving
efficient execution across various devices. FARTrack introduces Task-Specific
Self-Distillation and Inter-frame Autoregressive Sparsification, designed from
the perspectives of shallow-yet-accurate distillation and redundant-to-essential
token optimization, respectively. Task-Specific Self-Distillation achieves model
compression by distilling task-specific tokens layer by layer, enhancing the model’s
inference speed while avoiding suboptimal manual teacher-student layer pairs
assignments. Meanwhile, Inter-frame Autoregressive Sparsification sequentially
condenses multiple templates, avoiding additional runtime overhead while learn-
ing a temporally-global optimal sparsification strategy. FARTrack demonstrates
outstanding speed and competitive performance. It delivers an AO of 70.6% on
GOT-10k in real-time. Beyond, our fastest model achieves a speed of 343 FPS on
the GPU and 121 FPS on the CPU. The code will be released.

1 INTRODUCTION

Visual object tracking (VOT), aiming to continuously localize arbitrary objects in a video sequence, re-
lies on the continuous positions of the objects and is highly sensitive to temporal information Asanomi
et al. (2023); Mayer et al. (2022); Wu et al. (2023b); Zhao et al. (2023); Zhou et al. (2023a). In
practical applications on edge devices with limited resources, it is often necessary to consider both
speed and performance simultaneously. However, existing methods can only achieve either high
speed Gopal & Amer (2024a); Li et al. (2023); Xie et al. (2023); Yang et al. (2023b); Zaveri et al.
(2025) or high performance Cai et al. (2024); Chen et al. (2023); Hong et al. (2024); Xie et al. (2024);
Yang et al. (2023a).

To address this dilemma, existing efforts to balance the tracking speed and performance can be
broadly categorized into two approaches:

(i) Model distillation methods Cui et al. (2023); Guo et al. (2021); Hinton et al. (2015); Li et al.
(2017); Romero et al. (2014) based on cross-layer train a student model to mimic a teacher’s vision
features. However, as shown in Figure 1(a), these methods rely on hand-crafted layer assignments
to enable knowledge transfer Ahn et al. (2019); Passalis et al. (2020); Romero et al. (2014); Tung
& Mori (2019); Yue et al. (2020); Zagoruyko & Komodakis (2016). Without prior knowledge of
teacher-student layer pair assignment, manually designed ones often disrupt the hierarchical structure
of feature extraction, thereby failing to achieve optimal results. Moreover, the distillation objectives of
these methods focus on current-frame visual features, overlooking temporal information in trajectory
sequences critical for tracking tasks.

(ii) Runtime token sparsification approaches Chen et al. (2022b); Liang et al. (2022); Rao et al. (2021);
Ye et al. (2022) typically involve the gradual removal of a subset of tokens during inference. However,
this process introduces extra computational overhead for identifying tokens to remove, ultimately
reducing tracking efficiency. Moreover, as these methods prioritize the current frame rather than the

1



054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

(a) Comparison of distillation methods

Classical Cross-Layer Distillation

20.5%↑FPS

Perf. 10.5%↓

Vision Feature

Hand-Crafted Layer Assignments

Teacher Student

Task-Specific Self-Distillation

FPS

Perf. 1.0%↓

52.9%↑

Task-Specific Tokens

Self-Assignments

𝑦𝑚𝑖𝑛
𝑡−2 𝑥𝑚𝑎𝑥

𝑡−2 𝑦𝑚𝑎𝑥
𝑡−2𝑥𝑚𝑖𝑛

𝑡−2

𝑦𝑚𝑖𝑛
𝑡−1 𝑥𝑚𝑎𝑥

𝑡−1 𝑦𝑚𝑎𝑥
𝑡−1𝑥𝑚𝑖𝑛

𝑡−1

𝑐𝑚𝑑 𝑐𝑚𝑑cmd 𝑐𝑚𝑑

(b) Inter-frame Autoregressive Sparsification

A
tte

n
tio

n

S
p

a
rs

e

A
tte

n
tio

n

A
tte

n
tio

n

Autoregressive

Templates Templates 

t t + 1

Figure 1: Overview. (a) Comparison of our Task-
Specific Self-Distillation and Classical Cross-
Layer Distillation. (b) Inter-frame Autoregressive
Sparsification for Multi-templates.

0 50 100 150 200 250 300 350 400
Tracking Speed on GPU (FPS)

50

55

60

65

70

Av
er

ag
e 

Ov
er

la
p 

(A
O)

LightTrack

TCTrack

E.T.Track

HiT-Tiny

HiT-Small

HiT-Base
AsymTrack-T

AsymTrack-S
AsymTrack-B

FARTrackpico

FARTracknano
FARTracktiny

2.3 x faster

Figure 2: FARTrack vs. Other Trackers:
Performance-Speed Trade-off. Comparison of
our FARTrack with the state-of-the-art trackers
on GOT-10k in terms of tracking speed (horizon-
tal axis) on GPU and AO performence (vertical
axis). The diameter of the circle is proportional
to the ratio of the model’s speed to its perfor-
mance. FARTracknaco significantly surpasses ex-
isting trackers in both tracking performance and
inference speed.

entire frame sequence, they fail to achieve a temporally-global optimal solution, which adversely
impacts overall tracking performance.

To address these two issues, we present a fast, high-performance multi-template autoregressive frame-
work for visual tracking, using multi-template design to boost accuracy. Our framework comprises
two key components: (i) Task-Specific Self-Distillation. Unlike classical cross-layer distillation, our
approach conducts layer-by-layer distillation of task-specific tokens, which represent the object’s
trajectory sequences. In this method, each layer acts as both student and teacher for the next, trained
to fit teacher’s trajectory sequence features via KL divergence. Our approach avoids suboptimal
manual layer assignments while maintaining temporal information. (ii) Inter-frame Autoregressive
Sparsification. Compared with the frame-wise runtime sparsification methods, our sparsification is a
sequence-level method for template sequences. We treat attention weights as matrices to retain fore-
ground tokens while discarding background tokens, and propagate sparsification results to subsequent
frames in an autoregressive manner. In this process, we reduce the bandwidth without introducing
extra computational load, while retaining temporal information to learn a temporally-global optimal
sparsification strategy.

Overall, we present FARTrack, a fast and high-performance tracking framework. Extensive experi-
ments demonstrate the effectiveness and efficiency of our approach. Our method achieves a better
balance between inference speed and tracking performance than previous trackers. Specifically, as
demonstrated in Figure 2, compared to the high-performance tracker AsymTrack-B, FARTracktiny
attains a 2.9% higher AO score on the GOT-10k benchmark while achieving comparable running
speed on the GPU. Moreover, FARTrackpico delivers 0.5% better performance than AsymTrack-T on
GOT-10k, along with superior GPU (343 FPS) and CPU (121 FPS) speeds.

2 RELATED WORK

Efficient Tracking Framework. In practical application scenarios, it is imperative to deploy trackers
that achieve both high speed Cai et al. (2023); Kou et al. (2023); Li et al. (2023); Wei et al. (2024);
Zhang et al. (2023); Zhou et al. (2023b) and high performance Gao et al. (2023); Li et al. (2023);
Shi et al. (2024); Tang et al. (2024); Wu et al. (2023a); Zheng et al. (2024) on resource-constrained
edge devices. Over the past decade, researchers have been exploring efficient and effective tracking
framework for real-world applications Bhat et al. (2019); Cao et al. (2022); Danelljan et al. (2019;
2017); Sun et al. (2025); Xie et al. (2022); Xu et al. (2020). While Siamese trackers Bertinetto et al.

2



108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

(2016); He et al. (2023); Li et al. (2019; 2018); Shen et al. (2022); Tang & Ling (2022); Xing et al.
(2022); Zaveri et al. (2025) with lightweight designs Yan et al. (2021b) or dynamic updates Borsuk
et al. (2022) reduce computation, they often overlook temporal dependencies, limiting performance.
Transformer-based methods Blatter et al. (2023); Chen et al. (2023); Gao et al. (2022; 2023); Kang
et al. (2023); Lin et al. (2022); Song et al. (2023; 2022); Ye et al. (2022); Zhang et al. (2022) improve
accuracy but add complexity through decoding heads. Recent generative paradigms Bai et al. (2024);
Chen et al. (2023); Wei et al. (2023a) eliminate custom heads yet incur high computational costs.
Existing frameworks thus face trade-offs between efficiency and performance. In this paper, we
propose a more efficient generative tracking framework to better balance speed and performance.

Model Distillation. Model distillation Ahn et al. (2019); Cui et al. (2023); Shen et al. (2021); Tung &
Mori (2019); Wu et al. (2024); Ma et al. (2025); Cao et al. (2025) transfers knowledge from a teacher
to a lightweight student. Typical methods like AVTrack Wu et al. (2024) and MixformerV2 Cui et al.
(2023) use multi-teacher maximization or layer skipping. However, such cross-layer distillation Wang
et al. (2024); Zhang et al. (2023) often relies on suboptimal manual layer associations, leading
to notable performance drops. Our approach compresses the model via self-distillation on task-
specific tokens between adjacent layers, avoiding manual pair assignments and preserving temporal
information.

Token Sparsification. Existing methods Chen et al. (2022b); Liang et al. (2022); Rao et al. (2021);
Ye et al. (2022); Zhao et al. (2024a;b;c) reduce computation by progressively removing less important
tokens during runtime. DynamicViT Rao et al. (2021) employs lightweight predictors for stepwise
token pruning, while OSTrack Ye et al. (2022) removes background regions early in processing.
However, such runtime approaches often introduce extra steps, increasing latency, and focus only on
the current frame. We propose a sequence-level post-processing sparsification method that avoids
additional runtime overhead, improves speed, and maintains high performance.

3 METHOD

3.1 REVISITING ARTRACK

ARTrack Wei et al. (2023a) is an end-to-end sequence generation framework for visual tracking,
which represents object trajectories as discrete token sequences using a shared vocabulary. By
quantizing discrete token items, we obtain the coordinates corresponding to each token, thereby
enabling the model to depict object positions via discrete tokens. The framework then employs a
Transformer Encoder to extract visual information and progressively model the sequential evolution
of the trajectory prompted by the preceding coordinate tokens. ARTrackV2 Bai et al. (2024) adds a
dynamic appearance reconstruction process on the basis of its predecessor. It models the trajectory
while reconstructing the appearance in an autoregressive manner.

Motivation. Although the ARTrack series models maintain temporal information retention, their
architectures incorporating excessive depth and numerous parameters exhibit bandwidth-unfriendly
characteristics, ultimately reducing tracking efficiency. Conventional optimization methods, such
as cross-layer distillation and runtime token sparsification, have been employed to mitigate these
structural bottlenecks. However, cross-layer distillation relying on hand-crafted layer assignments
disrupts the hierarchical structure of feature extraction and runtime token sparsification introduces
extra computational overhead while neglecting temporal-global optimization within frame sequences.
To address these limitations, we propose FARTrack, which reduces model depth via task-specific
self-distillation for model compression and introduces an inter-frame autoregressive sparsification
method to eliminate background redundancy and noise in the template images.

3.2 NETWORK ARCHITECTURE

As presented in Figure 3, the Transformer Encoder Dosovitskiy et al. (2020); He et al. (2022) encodes
features and predicts the four coordinate tokens of the bounding box in an inter-frame autoregressive
manner. Initially, all templates and the search image are divided into patches, flattened, and projected
into a sequence of token embeddings. Subsequently, FARTrack maps the object positions across
frames to a unified coordinate system with a shared vocabulary Chen et al. (2021; 2022a); Wei et al.
(2023b), forming object trajectory tokens. Then, we concatenate the visual tokens, trajectory tokens,
and four command tokens (representing the target bounding box coordinates), and input them into

3



162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

Task-Specific Self-Distillation

T
ra

n
s
fo

rm
e

r 

E
n
c
o

d
e

r

Vision Feature Task-specific Tokens

ℒ𝐾𝐿 ℒ𝐾𝐿

L
a
y
e
r n

L
a
y
e
r n

-1

L
a
y
e
r n

-2

L
a
y
e
r 0

Search

t − α

t − 1
t

t0 t − 1

Multi-template

Task-specific Tokens

𝑥𝑚𝑖𝑛
𝑡−1 𝑦𝑚𝑖𝑛

𝑡−1 𝑥𝑚𝑎𝑥
𝑡−1 𝑦𝑚𝑎𝑥

𝑡−1

𝑥𝑚𝑖𝑛
𝑡−2 𝑦𝑚𝑖𝑛

𝑡−2 𝑥𝑚𝑎𝑥
𝑡−2 𝑦𝑚𝑎𝑥

𝑡−2

𝑐𝑚𝑑 𝑐𝑚𝑑 𝑐𝑚𝑑 𝑐𝑚𝑑

𝑥𝑚𝑖𝑛
𝑡 𝑦𝑚𝑖𝑛

𝑡 𝑥𝑚𝑎𝑥
𝑡 𝑦𝑚𝑎𝑥

𝑡

Dequantitize

Inter-frame Autoregressive 

Sparsification
Attn

Map

In
p

u
t

Output

Attn

Map

0.5 0.2

0.3 0.1

0.4

0.2

0.3

0.1

Search (𝑆) & Templates (𝑍)

Command (𝐶) & Templates (𝑍)

Invalid

Token Retention Ratio 75%

0.9 0.5 0.5 0.2

Template Token Mask

𝐶

𝐶

𝑍 𝑍

𝑍 𝑍

𝑆

𝑆

Figure 3: FARTrack Framework. FARTrack is a fast, high-performance multi-template autore-
gressive framework, comprising two key components: Task-Specific Self-Distillation for model
compression and Inter-frame Autoregressive Sparsification for template sequences.

the Transformer Encoder. Finally, the Transformer encoder models the trajectory evolution in an
autoregressive manner by leveraging the preceding trajectory tokens.

Multi-templates. To enhance tracking accuracy, we employ a multi-template design, further sup-
ported by a linear update strategy. To prevent the potential loss of temporal information caused by
occlusion or disappearance of the target during the tracking process, we ensure that the updated
multi-templates always include the first frame and the preceding frame.

3.3 TASK-SPECIFIC SELF-DISTILLATION

Knowledge distillation-based model compression reduces the model size, thereby improving tracking
efficiency. However, current cross-layer distillation methods rely on suboptimal manual layer
assignments Ahn et al. (2019); Cui et al. (2023); Shen et al. (2021); Tung & Mori (2019); Wu et al.
(2024), disrupting hierarchical feature extraction and causing accuracy degradation in shallow models,
while also neglecting temporal information in trajectory sequences.

To address this issue, we propose a simple yet effective model compression method known as
task-specific self-distillation, as depicted in Figure 3. In our method, one model layer serves as
the student layer and the corresponding next layer acts as the teacher layer, establishing layer-wise
self-distillation Hou et al. (2024); Zhang et al. (2021; 2019) that inherently circumvents suboptimal
manual layer assignments. Furthermore, our method operates on task-specific tokens which represent
the object’s trajectory sequences. The student layer is trained to fit the trajectory sequence features
of the teacher layer by minimizing the KL divergence. Therefore, the temporal information in the
trajectory sequences propagates backward among the layers, enabling the model to be distilled to a
shallow level while maintaining accuracy. Ultimately, our method improves the tracking speed of the
model while maintaining the tracking performance.

3.4 INTER-FRAME AUTOREGRESSIVE SPARSIFICATION

The template image contains target object features alongside persistent background and noise in-
terference that reduces tracking efficiency. Traditional sparsification methods Chen et al. (2022b);
Liang et al. (2022); Rao et al. (2021); Ye et al. (2022) prioritize runtime token elimination, but
these approaches introduce redundant time overhead and frame-specific optimization rather than
sequence-level processing, resulting in slower speed and lower performance.

To eliminate template redundancy and noise in the tracking process while achieving a temporally-
global optimal sparsification strategy, we propose an inter-frame autoregressive sparsification, as
visualized in Figure 3. After processing through the attention layers, we obtain the attention weights
for template tokens with respect to search tokens and the four command tokens based on the attention
map. This sequential processing method considers the template’s correlation with both the search area
and the predicted coordinates, respectively. We then simply add these two attention weights and retain
the parts with the largest values based on the predefined token retention rate. This process leverages

4



216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

the inter-frame correlations to mask the unnecessary background parts in the templates while retaining
the key foreground parts. Subsequently, the sparsification results of the current frame are saved and
propagated to subsequent frames in an autoregressive manner, thereby learning a temporally-global
optimal sparsification strategy. Overall, our method requires no additional time-consuming processes
and meanwhile preserves the temporal information, achieving faster speed and better performance.

Notably, masked tokens are excluded from processing to avoid distortion of normalization statistics.
LayerNorm is exclusively applied to valid tokens, preventing improper scaling and shifting caused by
statistical deviations that could undermine both inference stability and model performance.

3.5 TRAINING AND INFERENCE

FARTrack is a fast tracker that enhances tracking efficiency by reducing model depth via task-
specific self-distillation and eliminating redundant and noisy information from the templates using an
inter-frame autoregressive sparsification.

Training. Similar to its predecessor, FARTrack undergoes both frame-level and sequence-level
training Bai et al. (2024); Kim et al. (2022); Wei et al. (2023a); Liang et al. (2025). Initially,
task-specific self-distillation is employed to progressively transfer trajectory sequence features from
deeper layers to shallower layers, thereby reducing the model depth and achieving model compression.
To ensure effective knowledge transfer, we minimize the KL divergence between the teacher and
student layers during training. Building upon this model compression, we introduce an inter-frame
autoregressive sparsification that computes a mask matrix based on inter-frame correlations and
removes unimportant template background tokens according to a predefined token retention ratio.

Moreover, we incorporate the SIoU loss Gevorgyan (2022) to better capture the spatial correlation
between the predicted and ground truth bounding boxes. For each video clip, the initial trajectory
prompt is initialized using the object bounding box from the first frame and is propagated into
subsequent frames in an autoregressive manner. The overall loss function is formulated as:

L = LCE + λ1LSIoU + λ2LKL. (1)
where LCE, LSIoU and LKL denote the cross-entropy loss, SIoU loss and KL divergence, respectively.
The λ values are used as weights to balance the contribution of each loss term.

Inference. During inference, the trajectory is initialized using the object bounding box in the first
frame. The inter-frame sparsification method removes redundant and noisy tokens from templates,
retaining and propagating these sparsification results through subsequent tracking processes to reduce
computational complexity. The trajectory tokens are iteratively propagated into subsequent frames in
an autoregressive manner. Unlike the training phase, since sparsification has already been performed
on the templates, LayerNorm is applied to all tokens as usual.

4 EXPERIMENTS

4.1 IMPLEMENTATION DETAILS

The model is trained with 8 NVIDIA RTX A6000 GPUs. The inference speed is evaluated with
NVIDIA TiTan Xp, Intel(R) Xeon(R) Gold 6230R CPU @ 3.00GHz, and Ascend 310B.

Model Variants. We trained five variants of FARTrack with different configurations as Table 2.

The tiny is a 15-layer encoder model. Nano distills the 15-layer encoder into 10 layers, and pico
into 6 layers. Tiny matches AsymTrack-B on GPU while keeping AsymTrack-T CPU speed. Nano
outperforms state-of-the-art trackers in key metrics across datasets. Pico outperforms MixFormerV2-S
by 0.9% in AO on GOT-10k Huang et al. (2019), showing FARTrack’s efficiency.

Training. To conduct a fair comparison with mainstream trackers, we carried out Frame-level
Pretraining on the COCO2017 Lin et al. (2014) dataset. Subsequently, we performed Task-Specific
Self-Distillation Training to compress our model. Finally, we conducted Inter-frame Autoregressive
Sparsification Training to further accelerate our model. The detailed training process can be found in
the supplementary material.

5



270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

Table 1: State-of-the-art comparison on GOT-10k Huang et al. (2019), TrackingNet Muller et al.
(2018), LaSOT Fan et al. (2019) and LaSOText Fan et al. (2020). Best in bold, second best underlined.

Methods
GPU CPU NPU GOT-10k TrackingNet LaSOT LaSOText

FPS FPS FPS AO(%) SR50(%) SR75(%) AUC(%) PNorm(%) P(%) AUC(%) PNorm(%) P(%) AUC(%) PNorm(%) P(%)

DiMP Bhat et al. (2019) 68 22 - - - - 74.0 80.1 70.6 56.9 65.0 56.7 - - -

SiamFC++ Xu et al. (2020) 76 28 - - - - 75.4 80.0 68.7 54.4 62.3 54.7 - - -

LightTrack Yan et al. (2021b) 59 27 - 61.1 71.0 54.3 72.5 77.8 69.5 53.8 60.5 53.7 - - -

TCTrack Cao et al. (2022) 42 29 - 66.2 75.6 61.0 74.8 79.6 73.3 60.5 69.3 62.4 - - -

FEAR Borsuk et al. (2022) 123 28 - 61.9 72.2 52.5 70.2 80.8 71.5 53.5 59.7 54.5 - - -

E.T. Track Blatter et al. (2023) 33 16 - 56.6 64.6 42.5 72.5 77.8 69.5 59.1 66.8 60.1 - - -

HiT-Tiny Kang et al. (2023) 135 42 56 52.6 59.3 42.7 74.6 78.1 68.8 54.8 60.5 52.9 35.8 - -

HiT-Small Kang et al. (2023) 121 35 47 62.6 71.2 54.4 77.7 81.9 73.1 60.5 68.3 61.5 40.4 - -

HiT-Base Kang et al. (2023) 116 30 33 64.0 72.1 58.1 80.0 84.4 77.3 64.6 73.3 68.1 44.1 - -

MixformerV2 Cui et al. (2023) 133 31 35 61.9 71.7 51.3 75.8 81.1 70.4 60.6 69.9 60.4 43.6 - 46.2

AsymTrack-T Zhu et al. (2025) 145 55 - 62.3 71.3 54.7 76.2 80.9 71.6 60.8 68.7 61.2 42.5 - -

AsymTrack-S Zhu et al. (2025) 136 48 - 65.5 74.8 58.9 77.9 82.2 74.0 62.8 71.2 64.8 43.3 - -

AsymTrack-B Zhu et al. (2025) 135 32 - 67.7 76.6 61.4 80.0 84.5 77.4 64.7 73.0 67.8 44.6 - -

FARTrackpico 343 121 101 62.8 72.6 50.9 75.6 81.3 70.5 58.6 67.1 59.6 41.8 50.8 44.4

FARTracknano 210 77 61 69.9 81.2 61.4 79.1 84.5 75.6 61.3 69.7 64.1 43.8 53.3 47.8

FARTracktiny 135 53 42 70.6 81.0 63.8 80.7 85.6 77.5 63.2 71.6 66.7 45.0 54.0 49.2

4.2 MAIN RESULTS

We evaluated the performance of our proposed FARTracktiny, FARTracknano, and FARTrackpico on
several benchmarks, including GOT-10k Huang et al. (2019), TrackingNet Muller et al. (2018),
LaSOT Fan et al. (2019), LaSOText Fan et al. (2020) and VastTrack Peng et al. (2024).

GOT-10k Huang et al. (2019). GOT-10k is a real world general object detection dataset. As shown
in Table 1, FARTracktiny outperforms AsymTrack-B by 2.9% in AO score, achieving a GPU speed
of 135 FPS and a CPU speed of 53 FPS. Furthermore, the most lightweight version, FARTrackpico,
outperforms MixFormerV2-S by 0.9% in AO, while delivering nearly three times the GPU speed and
four times the CPU speed.

TrackingNet Muller et al. (2018). TrackingNet is a large-scale dataset featuring over 30,000 videos
from diverse real world scenes. The evaluation on this extensive dataset highlights the efficiency and
effectiveness of FARTrack. As illustrated in Table 1, FARTracknano achieves performance close to
that of AsymTrack-B, the top-performing tracker on this benchmark, while running nearly twice as
fast as AsymTrack-B on the GPU.

LaSOT Fan et al. (2019). LaSOT is a large-scale benchmark designed to assess the robustness
of long-term tracking. As demonstrated in Table 1, FARTracktiny achieves AUC of 2.6% over
MixFormerV2-S on this dataset. While maintaining a comparable running speed on the GPU, it
nearly doubles the speed on the CPU. FARTracknano matches AUC of MixFormerV2-S but surpasses
it in both GPU and CPU running speed.

LaSOText Fan et al. (2020). LaSOText is an extended subset of LaSOT, encompassing 150 additional
videos from 15 new categories. As shown in Table 1, FARTracktiny outperforms AsymTrack-B, with
a 0.4% AUC improvement, demonstrating its effectiveness in small object tracking.

VastTrack Peng et al. (2024). VastTrack is a dataset aimed at advancing the development of more
general visual tracking technology, covering 2,115 object categories and containing 50,610 video
sequences. As shown in Table 3, on this dataset, FARTracktiny achieves an AUC comparable to that
of MixFormerV2-B, which fully highlights the robustness of FARTrack.

4.3 EXPERIMENTAL ANALYSES

We analyze the main properties of the FARTrack. For the following experimental studies, we follow
the GOT-10k test protocol unless otherwise noted. Default settings are marked in gray .

6



324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

Table 2: Details of our FARTrack model variants

Model FARTracktiny FARTracknano FARTrackpico

Backbone ViT-Tiny ViT-Tiny ViT-Tiny

Encoder Layers 15 10 6

Input Sizes [112,224] [112,224] [112,224]

Templates 5 5 5

MACs (G) 2.65 1.78 1.08

Params (M) 6.82 4.59 2.81

Table 3: Comparison on more benchmarks.

Methods
VastTrack

AUC(%) PNorm(%) P(%)

FARTracktiny 35.2 36.5 32.3

FARTracknano 33.9 35.1 30.3

FARTrackpico 30.3 31.0 25.7

MixformerV2-B 35.2 36.5 33.0

DiMP 29.9 31.7 25.7

Table 4: vs. Deep-to-Shallow Distillation Cui et al.
(2023).

Methods Layer AO SR50 SR75

layer-by-layer
10 69.9 81.2 61.4

6 62.8 72.6 50.9

deep-to-shallow
10 67.8 78.0 60.6

6 61.9 70.9 50.4

Table 5: Sparsification Comparison.

run-time sequence-time MACs Params CPU GPU AO

2.99G 6.82M 49 128 70.0

✓ 3.14G 7.21M 36 114 69.5

✓ 2.65G 6.82M 53 135 70.6

Distillation Strategy. To validate the advantages of our method, we compared layer-by-layer distil-
lation with cross-layer distillation. In cross-layer distillation, student-teacher layer correspondence
exhibits an intermittent pattern rather than one-to-one alignment. While facilitating knowledge
transfer, this approach introduces feature consistency challenges. Additionally, given ViT-Tiny’s
weaker representational capacity than ViT-Base, we further compared ViT-Base-guided FARTrack
distillation to demonstrate layer-by-layer distillation’s superiority.

As shown in Table 4, we manually designed a model layer reduction strategy with reference to the
Deep-to-Shallow distillation method of MixformerV2, where REMOVE_LAYERS for the distillation
of the 10-layer and 6-layer models are set to [0, 3, 6, 9, 12] and [0, 2, 4, 6] respectively. By
removing model layers, the remaining layers can perform inter-layer matching in sequence. However,
hand-crafted layer assignments fail to ensure reasonable inter-layer matching, leading to semantic
mismatch in cross-layer distillation. This mismatch disrupts feature alignment, resulting in more
significant accuracy degradation in deeper layers. In contrast, our method maintains the consistency
of feature representations and effectively mitigates the issue of semantic mismatch.

As illustrated in Figure 4(a), FARTrack with ViT-Base shares an identical hierarchical structure
with FARTracktiny. We distill each layer of ViT-Tiny using trajectory features from corresponding
ViT-Base layers. Although the 15-layer model distilled via base-to-tiny method performs well,
forcing Tiny to mimic Base’s layer outputs causes significant accuracy degradation in deeper layers
(10-14) and progressive decline in shallower ones, due to their representational capability mismatch.
In contrast, our method maintains feature consistency and information density, preserving nearly
identical accuracy in layers 10-15 while limiting shallow layers’ accuracy loss within acceptable
bounds.

Distillation Target. To verify the necessity of distilling the trajectory sequence, we conducted
an exploratory experiment, as shown in Figure 4(b). Experiments reveal that directly distilling the
search/template or jointly distilling visual features disrupts the hierarchical structure, causing accuracy
degradation across all layers. In contrast, distilling the trajectory sequence minimally impacts the
feature extraction hierarchy. Its autoregressive properties enhance knowledge propagation from deep
to shallow layers, maintaining nearly unchanged accuracy in layers 10-15 while preventing significant
performance drops in shallow layers.

Distillation Loss. Experiments (Figure 4(c)) demonstrate that combining trajectory sequence loss
(Ltraj = LCE + LSIoU) and KL divergence loss (LKL) effectively preserves accuracy in deep layers
(e.g., layers 10-15) while controlling performance degradation in shallow layers. Removing trajectory
sequence loss causes significant feature degradation and performance drop, proving its critical role
in preserving temporal information. In contrast, omitting KL divergence loss triggers rapid feature
collapse in shallow layers, leading to catastrophic degradation of tracking performance, highlighting
its indispensability for maintaining object tracking capability.

7



378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

5 7 9 11 13 15
Distilled model depth

30

40

50

60

70

Av
er

ag
e 

Ov
er

la
p 

(A
O)

(a) Distillation Strategy

layer-by-layer
base-to-tiny

5 7 9 11 13 15
Distilled model depth

30

40

50

60

70
(b) Distillation Target

Trajectory
Visual+Traj
Template
Search

5 7 9 11 13 15
Distilled model depth

30

40

50

60

70
(c) Distillation Loss

traj + KL

KL

traj

Figure 4: Layer-by-layer distillation accuracy curve.

Table 6: Token Retention Ratio.

Ratio MACs CPU GPU AO SR50 SR75

100% 2.99G 49 128 70.0 80.0 64.4

75% 2.65G 53 135 70.6 81.0 63.8

50% 2.35G 56 139 68.3 78.2 61.8

25% 2.01G 58 140 67.3 78.3 59.8

10% 1.82G 63 141 62.3 74.1 53.3

Table 7: Attention Map Sampling Method.

S1×1 S3×3 Sall Z C AO SR50 SR75

70.1 80.6 63.3

✓ 69.5 80.4 62.4

✓ 70.0 80.4 62.9

✓ 68.6 79.1 61.7

✓ ✓ 69.4 79.7 62.1

✓ ✓ 70.6 81.0 63.8

Sparsification Comparison. The runtime sparsification introduces extra computational processes
during the inference, while our sequence-level sparsification avoids this situation. To support this, we
conducted experiments on runtime sparsification and sequence-level sparsification respectively based
on the base model, and compared the final results, as shown in Table 5.

Runtime sparsification processes template tokens during each forward propagation in inference,
introducing extra computational overhead that increases MACs from 2.99G to 3.14G and Params
from 6.82M to 7.21M. This redundant computation reduces CPU and GPU speeds by 26.5% and
10.9% respectively. In contrast, our sequence-level sparsification leverages intermediate results
for decision-making without introducing additional computations, while propagating sparsification
outcomes to subsequent frames autoregressively to eliminate redundant processing. Consequently,
MACs are reduced to 2.65G with improved inference speeds on both CPU and GPU.

Token Retention Ratio. Token retention ratio in inter-frame autoregressive sparsification affects
both performance and efficiency. As Table 6 shows, reducing the ratio from 100% to 75% decreased
MACs by 11.4% (2.99G to 2.65G) while achieving peak AO (70.6%). This indicates significant
redundancy in target templates—removing 25% background tokens preserves temporal modeling
and improves accuracy. Further reduction to 25% caused 3.3% AO drop (67.3%), demonstrating
excessive removal harms tracking robustness.

Attention Map Sampling Method. We analyze different sampling strategies for inter-frame au-
toregressive sparsification in Table 7. S1×1 sparsifies the central 1 × 1 feature, S3×3 uses a 3 × 3
central region, Sall covers the entire search area. Z denotes template self-attention, while C refers to
command-template attention.

S3×3 avoids target exclusion from center shift or hollow structures and reduces background overfocus
versus Sall, improving accuracy. Combining S and Z underperforms due to self-overfocus in Z.
Instead, integrating S and C enables effective template sparsification: S separates foreground and
background coarsely, while C refines edge features. This reduces redundancy and improves accuracy
and efficiency.

Layer-wise cross-attention visualization. As shown in Figure 5, cross-attention between trajectory
sequences and search regions evolves across layers: shallow layers (1–5) capture edges and back-

8



432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

search layer 14 layer 13 layer 12 layer 11 layer 10 layer 9 layer 8 layer 7 layer 6 layer 5 layer 4 layer 3layer 2 layer 1 layer 0 

Figure 5: Layer-wise cross-attention visualization. search: Search region and template. layer 0-14:
Trajectory sequences to search cross-attention maps at each layer.

(d) time 𝑡 + 2𝑁(c) time 𝑡 + 𝑁(b) time 𝑡 (e) time 𝑡 + 3𝑁(a) search

V
ar

ia
ti

o
n

M
o

ti
o

n
 B

lu
r

O
cc

lu
si

o
n

D
is

tr
ac

ti
o

n

Figure 6: Template sparsification visualization.
(a): Search region. The red boxes denote the
ground truth. (a)-(e): Templates sampled at a
fixed interval of N and sparsified with a 75%
token retention ratio.

(a) target (b) 75% (c) 50% (d) 25% (e) 10%

O
ve

rs
iz

ed
 T

ar
ge

t
Ta

rg
et

 S
hr

in
ka

ge

Figure 7: Template retention visualization. (a):
The initial template of the video sequence. The
red boxes denote the ground truth. (b)–(e): The
template at time step t, sparsified with different
token retention ratios.

ground, while deeper ones (10–15) transition toward target contours. Hierarchical feature learning
is retained via distillation, maintaining consistent trajectory propagation and boosting accuracy,
especially in intermediate layers (e.g., 6, 10).

Template sparsification visualization. Figure 6 shows that our method retains critical tokens and
removes redundancy under motion blur, appearance change, and occlusion. Unlike frame-wise
sparsification, which often fails due to single-frame errors, our inter-frame autoregressive approach
uses multi-template complementarity and temporal modeling to track dynamic targets and preserve
structure even with inconsistent cues.

Template retention visualization. Figure 7 visualizes retained tokens at different retention ratios.
For oversized targets, low ratios (<50%) lose essential features; for shrinking ones, they harm
deformation representation and cause misclassification. Thus, we set a 75% retention ratio to preserve
sufficient target information while reducing redundancy, balancing accuracy and efficiency.

5 CONCLUSION

We propose FARTrack, a fast and high-performance multi-template autoregressive tracking framework.
It integrates task-specific self-distillation and inter-frame autoregressive sparsification. While slightly
behind top-performing methods Bai et al. (2024); Wei et al. (2023a), it excels in speed-performance
balance, especially in speed. Our distillation preserves temporal information of trajectory sequences
via layer-wise task-specific tokens distillation, avoiding suboptimal manual layer assignments. The
sparsification method propagates multi-template sparsification results autoregressively, achieving
temporally-global optimality without extra cost. FARTrack performs well across GPU, CPU, and
NPU platforms, offering a efficient solution for practical deployment.

9



486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

REFERENCES

Sungsoo Ahn, Shell Xu Hu, Andreas Damianou, Neil D Lawrence, and Zhenwen Dai. Variational
information distillation for knowledge transfer. In CVPR, 2019.

Takanori Asanomi, Kazuya Nishimura, and Ryoma Bise. Multi-frame attention with feature-level
warping for drone crowd tracking. In WACV, 2023.

Yifan Bai, Zeyang Zhao, Yihong Gong, and Xing Wei. Artrackv2: Prompting autoregressive tracker
where to look and how to describe. In CVPR, 2024.

Luca Bertinetto, Jack Valmadre, Joao F Henriques, Andrea Vedaldi, and Philip HS Torr. Fully-
convolutional siamese networks for object tracking. In ECCV, 2016.

Goutam Bhat, Martin Danelljan, Luc Van Gool, and Radu Timofte. Learning discriminative model
prediction for tracking. In ICCV, 2019.

Philippe Blatter, Menelaos Kanakis, Martin Danelljan, and Luc Van Gool. Efficient visual tracking
with exemplar transformers. In WACV, 2023.

Vasyl Borsuk, Roman Vei, Orest Kupyn, Tetiana Martyniuk, Igor Krashenyi, and Jiři Matas. Fear:
Fast, efficient, accurate and robust visual tracker. In ECCV, 2022.

Wenrui Cai, Qingjie Liu, and Yunhong Wang. Hiptrack: Visual tracking with historical prompts. In
CVPR, 2024.

Yidong Cai, Jie Liu, Jie Tang, and Gangshan Wu. Robust object modeling for visual tracking. In
ICCV, 2023.

Anjia Cao, Xing Wei, and Zhiheng Ma. Flame: Frozen large language models enable data-efficient
language-image pre-training. In CVPR, 2025.

Ziang Cao, Ziyuan Huang, Liang Pan, Shiwei Zhang, Ziwei Liu, and Changhong Fu. Tctrack:
Temporal contexts for aerial tracking. In CVPR, 2022.

Ting Chen, Saurabh Saxena, Lala Li, David J Fleet, and Geoffrey Hinton. Pix2seq: A language
modeling framework for object detection. arXiv, 2021.

Ting Chen, Saurabh Saxena, Lala Li, Tsung-Yi Lin, David J Fleet, and Geoffrey E Hinton. A unified
sequence interface for vision tasks. In NeurIPS, 2022a.

Xin Chen, Ben Kang, Dong Wang, Dongdong Li, and Huchuan Lu. Efficient visual tracking via
hierarchical cross-attention transformer. In ECCV, 2022b.

Xin Chen, Houwen Peng, Dong Wang, Huchuan Lu, and Han Hu. Seqtrack: Sequence to sequence
learning for visual object tracking. In CVPR, 2023.

Yutao Cui, Tianhui Song, Gangshan Wu, and Limin Wang. Mixformerv2: Efficient fully transformer
tracking. In NeurIPS, 2023.

Martin Danelljan, Goutam Bhat, Fahad Shahbaz Khan, and Michael Felsberg. Eco: Efficient
convolution operators for tracking. In CVPR, 2017.

Martin Danelljan, Goutam Bhat, Fahad Shahbaz Khan, and Michael Felsberg. Atom: Accurate
tracking by overlap maximization. In CVPR, 2019.

Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas
Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, et al. An image
is worth 16x16 words: Transformers for image recognition at scale. arXiv, 2020.

Heng Fan, Liting Lin, Fan Yang, Peng Chu, Ge Deng, Sijia Yu, Hexin Bai, Yong Xu, Chunyuan Liao,
and Haibin Ling. Lasot: A high-quality benchmark for large-scale single object tracking. In CVPR,
2019.

10



540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Heng Fan, Hexin Bai, Liting Lin, Fan Yang, Peng Chu, Ge Deng, Sijia Yu, Harshit, Mingzhen
Huang, Juehuan Liu, Yong Xu, Chunyuan Liao, Lin Yuan, and Haibin Ling. Lasot: A high-quality
large-scale single object tracking benchmark. IJCV, 2020.

Shenyuan Gao, Chunluan Zhou, Chao Ma, Xinggang Wang, and Junsong Yuan. Aiatrack: Attention
in attention for transformer visual tracking. In ECCV, 2022.

Shenyuan Gao, Chunluan Zhou, and Jun Zhang. Generalized relation modeling for transformer
tracking. In CVPR, 2023.

Zhora Gevorgyan. Siou loss: More powerful learning for bounding box regression. arXiv, 2022.

Goutam Yelluru Gopal and Maria A. Amer. Separable self and mixed attention transformers for
efficient object tracking. In WACV, 2024a.

Goutam Yelluru Gopal and Maria A Amer. Separable self and mixed attention transformers for
efficient object tracking. In WACV, 2024b.

Jianyuan Guo, Kai Han, Yunhe Wang, Han Wu, Xinghao Chen, Chunjing Xu, and Chang Xu.
Distilling object detectors via decoupled features. In CVPR, 2021.

Kaijie He, Canlong Zhang, Sheng Xie, Zhixin Li, and Zhiwen Wang. Target-aware tracking with
long-term context attention. In AAAI, 2023.

Kaiming He, Xinlei Chen, Saining Xie, Yanghao Li, Piotr Dollár, and Ross Girshick. Masked
autoencoders are scalable vision learners. In CVPR, 2022.

Geoffrey Hinton, Oriol Vinyals, and Jeff Dean. Distilling the knowledge in a neural network. arXiv,
2015.

Lingyi Hong, Shilin Yan, Renrui Zhang, Wanyun Li, Xinyu Zhou, Pinxue Guo, Kaixun Jiang, Yiting
Chen, Jinglun Li, Zhaoyu Chen, and Wenqiang Zhang. Onetracker: Unifying visual object tracking
with foundation models and efficient tuning. In CVPR, 2024.

Lingyi Hong, Jinglun Li, Xinyu Zhou, Shilin Yan, Pinxue Guo, Kaixun Jiang, Zhaoyu Chen, Shuyong
Gao, Runze Li, Xingdong Sheng, et al. General compression framework for efficient transformer
object tracking. In ICCV, 2025.

Xiaojun Hou, Jiazheng Xing, Yijie Qian, Yaowei Guo, Shuo Xin, Junhao Chen, Kai Tang, Mengmeng
Wang, Zhengkai Jiang, Liang Liu, and Yong Liu. Sdstrack: Self-distillation symmetric adapter
learning for multi-modal visual object tracking. In CVPR, 2024.

Lianghua Huang, Xin Zhao, and Kaiqi Huang. Got-10k: A large high-diversity benchmark for generic
object tracking in the wild. PAMI, 2019.

Ben Kang, Xin Chen, Dong Wang, Houwen Peng, and Huchuan Lu. Exploring lightweight hierarchi-
cal vision transformers for efficient visual tracking. In ICCV, 2023.

Hamed Kiani Galoogahi, Ashton Fagg, Chen Huang, Deva Ramanan, and Simon Lucey. Need for
speed: A benchmark for higher frame rate object tracking. In ICCV, 2017.

Minji Kim, Seungkwan Lee, Jungseul Ok, Bohyung Han, and Minsu Cho. Towards sequence-level
training for visual tracking. In ECCV, 2022.

Yutong Kou, Jin Gao, Bing Li, Gang Wang, Weiming Hu, Yizheng Wang, and Liang Li. Zoomtrack:
Target-aware non-uniform resizing for efficient visual tracking. In NeurIPS, 2023.

Bo Li, Junjie Yan, Wei Wu, Zheng Zhu, and Xiaolin Hu. High performance visual tracking with
siamese region proposal network. In CVPR, 2018.

Bo Li, Wei Wu, Qiang Wang, Fangyi Zhang, Junliang Xing, and Junjie Yan. Siamrpn++: Evolution
of siamese visual tracking with very deep networks. In CVPR, 2019.

Quanquan Li, Shengying Jin, and Junjie Yan. Mimicking very efficient network for object detection.
In CVPR, 2017.

11



594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Xin Li, Yuqing Huang, Zhenyu He, Yaowei Wang, Huchuan Lu, and Ming-Hsuan Yang. Citetracker:
Correlating image and text for visual tracking. In ICCV, 2023.

Shiyi Liang, Yifan Bai, Yihong Gong, and Xing Wei. Autoregressive sequential pretraining for visual
tracking. In CVPR, 2025.

Youwei Liang, Chongjian Ge, Zhan Tong, Yibing Song, Jue Wang, and Pengtao Xie. Not all patches
are what you need: Expediting vision transformers via token reorganizations. arXiv, 2022.

Liting Lin, Heng Fan, Zhipeng Zhang, Yong Xu, and Haibin Ling. Swintrack: A simple and strong
baseline for transformer tracking. In NeurIPS, 2022.

Tsung-Yi Lin, Michael Maire, Serge Belongie, James Hays, Pietro Perona, Deva Ramanan, Piotr
Dollár, and C Lawrence Zitnick. Microsoft coco: Common objects in context. In ECCV, 2014.

Zhiheng Ma, Anjia Cao, Funing Yang, Yihong Gong, and Xing Wei. Curriculum dataset distillation.
IEEE Transactions on Image Processing, 2025.

Christoph Mayer, Martin Danelljan, Goutam Bhat, Matthieu Paul, Danda Pani Paudel, Fisher Yu, and
Luc Van Gool. Transforming model prediction for tracking. In CVPR, 2022.

Matthias Muller, Adel Bibi, Silvio Giancola, Salman Alsubaihi, and Bernard Ghanem. Trackingnet:
A large-scale dataset and benchmark for object tracking in the wild. In ECCV, 2018.

Nikolaos Passalis, Maria Tzelepi, and Anastasios Tefas. Heterogeneous knowledge distillation using
information flow modeling. In CVPR, 2020.

Liang Peng, Junyuan Gao, Xinran Liu, Weihong Li, Shaohua Dong, Zhipeng Zhang, Heng Fan, and
Libo Zhang. Vasttrack: Vast category visual object tracking. NeurIPS, 2024.

Yongming Rao, Wenliang Zhao, Benlin Liu, Jiwen Lu, Jie Zhou, and Cho-Jui Hsieh. Dynamicvit:
Efficient vision transformers with dynamic token sparsification. In NeurIPS, 2021.

Adriana Romero, Nicolas Ballas, Samira Ebrahimi Kahou, Antoine Chassang, Carlo Gatta, and
Yoshua Bengio. Fitnets: Hints for thin deep nets. arXiv, 2014.

Jianbing Shen, Yuanpei Liu, Xingping Dong, Xiankai Lu, Fahad Shahbaz Khan, and Steven Hoi.
Distilled siamese networks for visual tracking. PAMI, 2021.

Qiuhong Shen, Lei Qiao, Jinyang Guo, Peixia Li, Xin Li, Bo Li, Weitao Feng, Weihao Gan, Wei Wu,
and Wanli Ouyang. Unsupervised learning of accurate siamese tracking. In CVPR, 2022.

Liangtao Shi, Bineng Zhong, Qihua Liang, Ning Li, Shengping Zhang, and Xianxian Li. Explicit
visual prompts for visual object tracking. In AAAI, 2024.

Zikai Song, Junqing Yu, Yi-Ping Phoebe Chen, and Wei Yang. Transformer tracking with cyclic
shifting window attention. In CVPR, 2022.

Zikai Song, Run Luo, Junqing Yu, Yi-Ping Phoebe Chen, and Wei Yang. Compact transformer tracker
with correlative masked modeling. In AAAI, 2023.

Yiming Sun, Fan Yu, Shaoxiang Chen, Yu Zhang, Junwei Huang, Yang Li, Chenhui Li, and Changbo
Wang. Chattracker: Enhancing visual tracking performance via chatting with multimodal large
language model. In NeurIPS, 2025.

Chuanming Tang, Kai Wang, Joost van de Weijer, Jianlin Zhang, and Yongmei Huang. Avitmp: A
tracking-specific transformer for single-branch visual tracking. IEEE Transactions on Intelligent
Vehicles, 2024.

Feng Tang and Qiang Ling. Ranking-based siamese visual tracking. In CVPR, 2022.

Frederick Tung and Greg Mori. Similarity-preserving knowledge distillation. In ICCV, 2019.

Xiao Wang, Shiao Wang, Chuanming Tang, Lin Zhu, Bo Jiang, Yonghong Tian, and Jin Tang. Event
stream-based visual object tracking: A high-resolution benchmark dataset and a novel baseline. In
CVPR, 2024.

12



648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Qingmao Wei, Bi Zeng, Jianqi Liu, Li He, and Guotian Zeng. Litetrack: Layer pruning with
asynchronous feature extraction for lightweight and efficient visual tracking. In ICRA, 2024.

Xing Wei, Yifan Bai, Yongchao Zheng, Dahu Shi, and Yihong Gong. Autoregressive visual tracking.
In CVPR, 2023a.

Xing Wei, Anjia Cao, Funing Yang, and Zhiheng Ma. Sparse parameterization for epitomic dataset
distillation. In NeurIPS, 2023b.

Qiangqiang Wu, Tianyu Yang, Ziquan Liu, Baoyuan Wu, Ying Shan, and Antoni B. Chan. Dropmae:
Masked autoencoders with spatial-attention dropout for tracking tasks. In CVPR, 2023a.

Qiao Wu, Jiaqi Yang, Kun Sun, Chu’ai Zhang, Yanning Zhang, and Mathieu Salzmann. Mixcycle:
Mixup assisted semi-supervised 3d single object tracking with cycle consistency. In ICCV, 2023b.

You Wu, Yongxin Li, Mengyuan Liu, Xucheng Wang, Xiangyang Yang, Hengzhou Ye, Dan Zeng,
Qijun Zhao, and Shuiwang Li. Learning adaptive and view-invariant vision transformer with
multi-teacher knowledge distillation for real-time uav tracking. arXiv, 2024.

Fei Xie, Chunyu Wang, Guangting Wang, Yue Cao, Wankou Yang, and Wenjun Zeng. Correlation-
aware deep tracking. In CVPR, 2022.

Fei Xie, Lei Chu, Jiahao Li, Yan Lu, and Chao Ma. Videotrack: Learning to track objects via video
transformer. In CVPR, 2023.

Jinxia Xie, Bineng Zhong, Zhiyi Mo, Shengping Zhang, Liangtao Shi, Shuxiang Song, and Rongrong
Ji. Autoregressive queries for adaptive tracking with spatio-temporal transformers. In CVPR, 2024.

Daitao Xing, Nikolaos Evangeliou, Athanasios Tsoukalas, and Anthony Tzes. Siamese transformer
pyramid networks for real-time uav tracking. In WACV, 2022.

Liang Xu, Zhiqing Guo, and Liejun Wang. Efficient hybrid linear self-attention based visual object
tracking with lora. Neurocomputing, 2025.

Yinda Xu, Zeyu Wang, Zuoxin Li, Ye Yuan, and Gang Yu. Siamfc++: Towards robust and accurate
visual tracking with target estimation guidelines. In AAAI, 2020.

Bin Yan, Houwen Peng, Jianlong Fu, Dong Wang, and Huchuan Lu. Learning spatio-temporal
transformer for visual tracking. In ICCV, 2021a.

Bin Yan, Houwen Peng, Kan Wu, Dong Wang, Jianlong Fu, and Huchuan Lu. Lighttrack: Finding
lightweight neural networks for object tracking via one-shot architecture search. In CVPR, 2021b.

Dawei Yang, Jianfeng He, Yinchao Ma, Qianjin Yu, and Tianzhu Zhang. Foreground-background
distribution modeling transformer for visual object tracking. In ICCV, 2023a.

Jinyu Yang, Shang Gao, Zhe Li, Feng Zheng, and Aleš Leonardis. Resource-efficient rgbd aerial
tracking. In CVPR, 2023b.

Botao Ye, Hong Chang, Bingpeng Ma, Shiguang Shan, and Xilin Chen. Joint feature learning and
relation modeling for tracking: A one-stream framework. In ECCV, 2022.

Kaiyu Yue, Jiangfan Deng, and Feng Zhou. Matching guided distillation. In ECCV, 2020.

Sergey Zagoruyko and Nikos Komodakis. Paying more attention to attention: Improving the
performance of convolutional neural networks via attention transfer. arXiv, 2016.

Ram Zaveri, Shivang Patel, Yu Gu, and Gianfranco Doretto. Improving accuracy and generalization
for efficient visual tracking. In WACV, 2025.

Jiqing Zhang, Bo Dong, Haiwei Zhang, Jianchuan Ding, Felix Heide, Baocai Yin, and Xin Yang.
Spiking transformers for event-based single object tracking. In CVPR, 2022.

Linfeng Zhang, Jiebo Song, Anni Gao, Jingwei Chen, Chenglong Bao, and Kaisheng Ma. Be your
own teacher: Improve the performance of convolutional neural networks via self distillation. In
ICCV, 2019.

13



702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

Linfeng Zhang, Chenglong Bao, and Kaisheng Ma. Self-distillation: Towards efficient and compact
neural networks. PAMI, 2021.

Minghua Zhang, Qiuyang Zhang, Wei Song, Dongmei Huang, and Qi He. Promptvt: Prompting for
efficient and accurate visual tracking. IEEE TCSVT, 2024.

Tianlu Zhang, Hongyuan Guo, Qiang Jiao, Qiang Zhang, and Jungong Han. Efficient rgb-t tracking
via cross-modality distillation. In CVPR, 2023.

Haojie Zhao, Dong Wang, and Huchuan Lu. Representation learning for visual object tracking by
masked appearance transfer. In CVPR, 2023.

Wangbo Zhao, Yizeng Han, Jiasheng Tang, Zhikai Li, Yibing Song, Kai Wang, Zhangyang Wang,
and Yang You. A stitch in time saves nine: Small vlm is a precise guidance for accelerating large
vlms. arXiv, 2024a.

Wangbo Zhao, Yizeng Han, Jiasheng Tang, Kai Wang, Yibing Song, Gao Huang, Fan Wang, and
Yang You. Dynamic diffusion transformer. 2024b.

Wangbo Zhao, Jiasheng Tang, Yizeng Han, Yibing Song, Kai Wang, Gao Huang, Fan Wang, and
Yang You. Dynamic tuning towards parameter and inference efficiency for vit adaptation. 2024c.

Yaozong Zheng, Bineng Zhong, Qihua Liang, Zhiyi Mo, Shengping Zhang, and Xianxian Li. Odtrack:
Online dense temporal token learning for visual tracking. In AAAI, 2024.

Yaozong Zheng, Bineng Zhong, Qihua Liang, Ning Li, and Shuxiang Song. Decoupled spatio-
temporal consistency learning for self-supervised tracking. In AAAI, 2025.

Li Zhou, Zikun Zhou, Kaige Mao, and Zhenyu He. Joint visual grounding and tracking with natural
language specification. In CVPR, 2023a.

Xinyu Zhou, Pinxue Guo, Lingyi Hong, Jinglun Li, Wei Zhang, Weifeng Ge, and Wenqiang Zhang.
Reading relevant feature from global representation memory for visual object tracking. In NeurIPS,
2023b.

Jiawen Zhu, Huayi Tang, Xin Chen, Xinying Wang, Dong Wang, and Huchuan Lu. Two-stream beats
one-stream: Asymmetric siamese network for efficient visual tracking. In AAAI, 2025.

14



756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

APPENDIX

A TRAINING DETAILS

In the supplementary material, we have supplemented the experiments section. We have sequentially
presented the detailed training processes of Frame-level Pretraining, Task-Specific Self-Distillation
Training, and Inter-frame Autoregressive Sparsification Training.

Frame-level Pretraining. To fairly compare with mainstream trackers, we introduce the
COCO2017 Lin et al. (2014) dataset, which is commonly used in template matching training
paradigms, and apply frame-level pretraining to the AR(0) model. Similar to DiMP Bhat et al.
(2019) and STARK Yan et al. (2021a), the AR(0) model uses the same data augmentations as OS-
Track, including horizontal flip and brightness jittering. The model is optimized using AdamW with
a weight decay of 1× 10−4. The learning rate for the backbone is set to 4× 10−4, and 4× 10−3 for
other parameters. The AR(0) model is trained for 500 epochs, with 76,800 template-search frame
pairs sampled per epoch. The learning rate is reduced by 10% at the 400th epoch.

Task-Specific Self-Distillation Training. This phase uses the same datasets and data augmentations
as the AR(0) phase but introduces additional KL divergence loss (LKL) and trajectory sequence loss
(Ltraj = LCE+LSIoU) for each layer. The model is optimized using AdamW with a weight decay of
1× 10−4. The learning rate for the backbone is set to 4× 10−5, and 4× 10−4 for other parameters.
The distillation model is trained for 300 epochs, with 76,800 template-search frame pairs randomly
sampled per epoch. This process generates multiple versions of the distilled model, producing models
at different layers from a single distillation.

Inter-frame Autoregressive Sparsification Training. Unlike traditional per-frame template match-
ing, this method trains FARTrack directly on continuous video sequences without applying data
augmentations. The model is optimized using AdamW with a weight decay of 5×10−2. The learning
rate for the backbone is set to 4 × 10−7 and 4 × 10−6 for other parameters. The training process
consists of 20 epochs, with 1,000 video slices randomly sampled from continuous video per epoch.
Due to GPU memory limitations, each slice contains 32 frames.

B TEMPLATE QUANTITY

In this section, an ablation experiment is conducted on the number of templates. The number of
templates not only affects the operation efficiency of the model but also impacts the tracking accuracy.
Therefore, it is essential to explore this aspect.

Table 8: Impact of Templates on Efficiency and Performance.

Template Count MACs Params CPU GPU AO SR50 SR75

1 1.70G 6.82M 64 141 66.4 77.0 58.0

3 2.17G 6.82M 55 139 68.1 78.6 60.9

5 2.65G 6.82M 53 135 70.6 81.0 63.8

7 3.13G 6.82M 48 124 69.6 80.3 62.5

9 3.61G 6.82M 45 115 70.0 80.7 62.3

As shown in Table 8, when the number of templates gradually increases from 1 to 5, the AO gradually
rises from 66.4% to 70.6%, and the MACs increases synchronously by 35.8% (from 1.70G to 2.65G).
During this stage, adding every two templates can increase the AO by approximately 2.1%, which
verifies that the multi-template mechanism can effectively aggregate the appearance changes of the
target and achieve an accurate representation of the target’s dynamic appearance. However, when the
number of templates exceeds 5 (e.g., 7-9), the AO instead drops to the range of 69.6%-70.0%. This
indicates that redundant templates lead to the dispersion of attention weights and interfere with the
extraction of key features.

15



810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

Base2tiny-Distillation

Distillation-Free

search layer 0 layer 1 layer 2 layer 3 layer 4 layer 5 layer 6 layer 7 layer 8 layer 9 layer 10 layer 11 layer 13 layer 14layer 12

Self-Distillation

Figure 8: Layer-wise cross-attention visualization Comparison. search: Search region and
template. layer 0-14: Trajectory sequences to search cross-attention maps at each layer.

Finally, we choose to use 5 templates because it achieves the optimal efficiency at the critical point of
the accuracy peak.

C TEMPLATE UPDATE STRATEGY

In this section, an ablation experiment is conducted on the template update strategy. Different test
benchmarks have an obvious correlation with different template update strategies. Therefore, it is
necessary to experiment with different update strategies.

Table 9: Template Update Strategy Comparison.

Update Strategy
GOT - 10k LaSOT

AO SR50 SR75 AUC PNorm P

Linear 70.9 81.6 63.4 62.5 70.2 65.3

Exponential Decay 70.6 81.0 63.8 63.2 71.6 66.7

Logarithmic Increasing 69.6 80.1 62.8 61.6 68.7 65.4

Equal-interval 69.5 79.4 63.1 62.1 69.3 65.5

As shown in Table 9, linear sampling achieves relatively mediocre values among all the update
strategies. However, since it always samples all templates linearly, it is not sensitive to the length
of the target sequence, and thus it has good performance on different datasets. Exponential decay
sampling samples more frames closer to the current frame. This is more friendly to long sequences
such as the LaSOT benchmark and also performs well in short video sequences like GOT-10k.
Logarithmic increasing sampling samples more frames that are farther from the current frame, which
makes it perform poorly in long video sequences such as LaSOT. Equal-interval sampling performs
poorly both in GOT-10k and LaSOT. This is because equal-interval sampling may fail to sample the
initial static template. And if there is a long period of tracking failure, such as the target disappearing
or being occluded, it is very likely that all templates will become invalid, resulting in a decrease in
accuracy.

D INTER-LAYER ATTENTION VISUALIZATION COMPARISON

In this section, we conduct ablation experiments on the inter-layer attention of different distillation
methods. Given the evident correlation between the distribution patterns of inter-layer attention and
various distillation approaches, experimental validation is therefore deemed necessary.

16



864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

For the layer-wise cross-attention visualized in Figure 8, the inter-layer attention distributions under
the distillation-free setting exhibit diversity with distinct differences across various layers. Compared
with self-distillation, the inter-layer attention distributions in the base2tiny distillation setting are
more scattered. In contrast, the deep-layer attention distributions after trajectory self-distillation
demonstrate consistency — a characteristic that confirms the effectiveness of the self-distillation
mechanism in transferring deep-layer knowledge to middle layers (e.g., layers 5–14). Thus, compared
with other configurations, self-distillation enables more coherent inter-layer feature alignment.

E ADDITIONAL TRACKER COMPARISONS

We have supplemented the performance and complexity comparisons with the latest state-of-the-art
(SOTA) methods published in 2024 and 2025. (*) denotes results on GOT-10k obtained following
the official one-shot protocol. The speeds of both GPU and CPU were tested on the same hardware
device.

Table 10: State-of-the-art comparison on GOT-10k Huang et al. (2019), TrackingNet Muller et al.
(2018), LaSOT Fan et al. (2019) and NFS Kiani Galoogahi et al. (2017). Best in bold, second best
underlined. (*) denotes results on GOT-10k obtained following the official one-shot protocol.

Methods
GPU CPU MACs Params GOT-10k TrackingNet LaSOT NFS

FPS FPS G M AO(%) SR50(%) SR75(%) AUC(%) PNorm(%) P(%) AUC(%) PNorm(%) P(%) AUC(%)

LiteTrack-B4(*) Wei et al. (2024) 195 29 6.78 26.18 65.2 74.7 57.7 79.9 84.9 76.6 62.5 72.1 65.7 63.4

PromptVT Zhang et al. (2024) 104 30 2.90 3.00 68.2 79.3 61.8 78 83.5 74.4 63.7 73.8 66.8 -

SMAT Gopal & Amer (2024b) 135 40 - 3.78 64.5 74.7 57.8 78.6 84.2 75.6 61.7 71.1 64.6 62.0

ECTTrack Xu et al. (2025) 104 46 - - 65.6 75 60.7 78.8 84.6 76.5 62.4 71.5 66.3 61.1

CompressTracker-OSTrack-2 Hong et al. (2025) 207 48 6.38 21.24 - - - 78.2 83.3 74.8 60.4 68.5 61.5 -

SSTrack(*) Zheng et al. (2025) 62 18 32.55 92.12 67.1 76.6 59.1 80.1 86.7 78.9 64.8 75.2 69.7 -

AsymTrack-B Zhu et al. (2025) 135 32 1.81 3.36 67.7 76.6 61.4 80.0 84.5 77.4 64.7 73.0 67.8 64.4

FARTrackpico w/o VastT - - 1.08 2.81 61.5 71.8 50.2 76.1 80.9 70.5 58.4 66.6 58.9 -

FARTracknano w/o VastT - - 1.78 4.59 68.9 79.5 60.9 80.0 85.0 76.1 61.1 68.5 63.4 -

FARTracktiny w/o VastT - - 2.65 6.82 69.6 80.4 62.8 80.6 85.4 77.2 63.5 71.6 66.5 -

FARTrackpico 343 121 1.08 2.81 62.8 72.6 50.9 75.6 81.3 70.5 58.6 67.1 59.6 62.0

FARTracknano 210 77 1.78 4.59 69.9 81.2 61.4 79.1 84.5 75.6 61.3 69.7 64.1 65.1

FARTracktiny 135 53 2.65 6.82 70.6 81.0 63.8 80.7 85.6 77.5 63.2 71.6 66.7 66.9

As can be seen from the Table 10, our FARTrack achieves state-of-the-art (SOTA) performance on the
NFS/GOT-10k/TrackingNet benchmark and competitive accuracy on the LaSOT benchmarks. On the
LaSOT benchmark, the AUC of SSTrack is 1.6% higher than that of our tiny model (64.8% > 63.2%).
This is attributed to the fact that its parameter count is is much larger than that of ours (92.12M >
6.82M), thus endowing SSTrack with stronger robustness in long-term temporal tracking. However,
under the condition of comparable parameter counts, our model should deliver higher accuracy.

F ANALYSIS OF INDEPENDENT PERFORMANCE GAINS OF EACH MODULE

To disentangle the gains of each Module, we supplement comparative experiments with ARTrack
and ARTrackV2 (ARTrack, ARTrackV2, and FARTrack all adopt the ViT-Tiny architecture with 6
Encoder layers.), and the results are shown in Table 11.

Table 11: Performance Comparison with ARTrack and ARTrackV2.

Methods Self-distillation Sparsification
MACs Params GPU CPU GOT-10k

(G) (M) (FPS) (FPS) AO(%) SR50(%) SR75(%)

ARTrack_tiny(6) 2.39 13.56 68 34 59.9 69.6 50.4

ARTrackV2_tiny(6) 2.10 8.31 110 49 60.6 70.9 45.7

FARTrack_pico(6) ✓ 1.08 2.81 343 121 60.6 69.5 46.3

FARTrack_pico(6) ✓ 1.25 2.81 266 101 61.8 71.5 50.0

FARTrack_pico(6) ✓ ✓ 1.08 2.81 343 121 62.8 72.6 50.9

The training settings and datasets of ARTrack and ARTrackV2 are consistent with those of FARTrack.
The table demonstrates the effectiveness of the self-distillation and sparsification modules: self-
distillation (enabling middle layers to learn from deep-layer knowledge) improves AO by 1.2%

17



918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

compared to ARTrackV2_tiny(6); sparsification (retaining useful foreground tokens while removing
redundant background tokens) boosts AO by 1.0% (from 61.8 to 62.8).

G COMPARATIVE ANALYSIS OF DISTILLATION VS. SCRATCH-TRAINED
MODELS WITH DIFFERENT DEPTHS

We have supplemented comparative experiments between 10-layer or 6-layer models trained from
scratch and our distilled versions to clarify whether distillation provides benefits beyond simply using
fewer layers (see Table 12).

Table 12: Performance Comparison of Different FARTrack Variants and Their Corresponding Scratch-
Trained Models.

Methods
GOT-10k TrackingNet LaSOT

AO(%) SR50(%) SR75(%) AUC(%) PNorm(%) P(%) AUC(%) PNorm(%) P(%)

FARTrack_tiny 70.6 81.0 63.8 80.7 85.6 77.5 63.2 71.6 66.7

FARTrack_nano(10) 69.9 81.2 61.4 79.1 84.5 75.6 61.3 69.7 64.1

FARTrack_scratch(10) 67.1 77.4 59.9 77.9 83.1 73.6 60.8 69.1 63.3

FARTrack_pico(6) 62.8 72.6 50.9 75.6 81.3 70.5 58.6 67.1 59.6

FARTrack_scratch(6) 60.6 69.5 46.3 73.3 78.4 67.1 56.8 64.1 55.7

The results confirm that distillation offers advantages far beyond simply using fewer layers:

(i) 10-layer or 6-layer models trained from scratch: Suffer severe performance degradation (e.g.,
FARTrack_scratch(10) exhibits a 3.5% drop in AO compared to FARTrack_tiny). This is because
such models lack the learning capacity of deep networks and fail to capture complex visual/temporal
features required for tracking.

(ii) Our distilled versions: Transfer deep-layer knowledge to middle layers via self-distillation,
retaining higher performance (FARTrack_nano(10) only sees a 0.7% AO drop compared to FAR-
Track_tiny) while achieving lower training costs than 10-layer or 6-layer models trained from scratch.

H TRAINING COST COMPARISON: CROSS-LAYER VS. TASK-SPECIFIC
SELF-DISTILLATION

We have supplemented the training cost comparison between cross-layer distillation (Deep-to-
Shallow) Cui et al. (2023) and our task-specific self-distillation, with details as follows.

Both methods were trained on 8 NVIDIA RTX A6000 GPUs:

(i) Deep-to-Shallow distillation: Stage 1 (15-to-10 layers) takes about 40 hours; Stage 2 (10-to-6
layers) takes about 38 hours (two-stage sequential training required).

(ii) Task-specific self-distillation: Takes about 36 hours total, with one-time training enabling direct
utilization of multiple model versions.

This comparison fully demonstrates the training efficiency advantage of our proposed method.

I THE USE OF LARGE LANGUAGE MODELS (LLMS)

We only used LLMs minimally to aid or polish writing. For instance, when describing a concept, we
might leverage LLMs to ensure terminological precision, enhance logical coherence, or optimize the
academic tone of the exposition.

18


	Introduction
	Related Work
	Method
	Revisiting ARTrack
	Network Architecture
	Task-Specific Self-Distillation
	Inter-frame Autoregressive Sparsification
	Training and Inference

	Experiments
	Implementation Details
	Main Results
	Experimental Analyses

	Conclusion
	Training Details
	Template Quantity
	Template Update Strategy
	Inter-layer Attention Visualization Comparison
	Additional Tracker Comparisons
	Analysis of Independent Performance Gains of Each Module
	Comparative Analysis of Distillation vs. Scratch-Trained Models with Different Depths
	Training Cost Comparison: Cross-Layer vs. Task-Specific Self-Distillation
	The Use of Large Language Models (LLMs)

