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Abstract
We develop a general layer-wise and adaptive quantization framework with with
error and code-length guarantees and applications to solving large-scale distributed
variational inequality problems. We also propose Quantized and Generalized
Optimistic Dual Averaging (QODA) which achieves the optimal rate of convergence
for distributed monotone VIs under absolute noise. We empirically show that the
adaptive layer-wise quantization achieves up to a 47% speedup in end-to-end
training time for training Wasserstein GAN on 4 GPUs.

1 Introduction
For high-dimensional and non-convex settings with deep neural networks (DNNs), minimizing the
empirical risk is a challenging optimization task due to non-convexity and lack of guarantees in
terms of global optimality. Beyond empirical risk minimization, formulating the problems of training
generative adversarial networks (GANs) [1] and equilibrium in more general and possibly non-
zero-sum game-theoretic settings require more complicated mathematical frameworks. Variational
inequality (VI) is a mathematical framework for modeling equilibrium problems [2–4], e.g., in
applications such as robust adversarial reinforcement learning [5], auction theory [6], and adversarially
robust learning [7]. For an operator A : Rd → Rd, a VI finds some x⋆ ∈ Rd such that

⟨A(x⋆),x− x⋆⟩ ≥ 0 for all x ∈ Rd. (VI)

In terms of implementation in a synchronous system with K nodes, first-order solvers for empirical
risk minimization and VI-solvers are scaled by distributing computation among nodes, e.g., by
partitioning the entire dataset in a cloud data center, followed by aggregation of local computations.1
Nodes can be, e.g., hospitals and cellphones that train a global model or personalized models
collaboratively in a federated learning setting.

In large-scale settings, communication costs for broadcasting huge stochastic gradients and dual
vectors is the main performance bottleneck [8–11]. Several methods have been proposed to accelerate

1For simplicity, in the following, we use the term node to refer to client, FPGA, APU, CPU, GPU, worker.
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large-scale training such as quantization, sparsification, and reducing the frequency of communication
though local updates [10]. In particular, unbiased quantization is unique due to both enjoying strong
theoretical guarantees along with providing communication efficiency on the fly, i.e., it converges
under the same hyperparameters tuned for uncompressed variants while providing substantial savings
in terms of communication costs [9, 11].

Popular DNNs including convolutional architectures, transformers, and vision transformers have
various types of layers such as feedforward, residual, multi-head attention including self-attention and
cross-attention, bias, and normalization layers [12–14]. Different types of layers learn different types
of features. The current literature communication-efficient liteature does not rigorously take into
account heterogeneity in terms of representation power, impact on the final learning outcome, and
statistical heterogeneity across various layers of neural networks and across training for each layer.
Recently, layer-wise and adaptive compression schemes have shown tremendous empirical success in
accelerating training deep neural networks and transformers in large-scale settings [15, 16], which
is yet to have strong theoretical guarantees and to handle statistical heterogeneity over the course
of training. Hence, these layer-wise compression schemes suffer from a dearth of generalization
and statistically rigorous argument to optimize the sequence of quantization and the number of
sparsification levels for each layer.

1.1 Summary of Contributions

• We propose a theoretical framework for layer-wise and adaptive unbiased quantization schemes.
We also establish tight variance and code-length bounds, which generalize those of global quantiza-
tion frameworks [9, 17, 18].

• We propose Quantized Optimistic Dual Averaging (QODA) and establish joint convergence and
communication guarantees with the competitive rate O(1/

√
T ) under absolute noise models. We

obtain these bounds without the restrictive almost sure boundedness assumption of stochastic
dual vectors in related VI works [4, 19, 20] including the SoTA distributed VI-solverQ-GenX [11].

• Empirically, we show that QODA with layer-wise compression improves accuracy compared to
[11] and achieves up to a 47% speedup in terms of end-to-end training time in an application of
training Wasserstein Generative Adversarial Network [21] on 4 GPUs.

2 Preliminaries
A detailed literature review is in Appendix A.1. A summary of commonly used notations in this paper
is provided in Appendix A.2. Given an operator A : Rd → Rd, consider the standard assumptions:
Assumption 2.1 (Monotonicity). We have that for all x, x̂ ∈ Rd, ⟨A(x)−A(x̂),x− x̂⟩ ≥ 0.

Assumption 2.2 (Solution Existence). The solution set X ⋆ := {x⋆ ∈ Rd : x⋆solves (VI)} ≠ ∅.
Assumption 2.3 (L-Lipschitz). Let L ∈ R+. Then an operator A is L-Lipschitz if

∥A(x)−A(x′)∥∗ ≤ L∥x− x′∥ ∀ x,x′ ∈ Rd.
In this work, we consider methods that rely on a so-called stochastic first-order oracle [22]. This
oracle, when called at x, draws an i.i.d. sample ω from a complete probability space (Ω,F ,P) and
returns a stochastic dual vector g(x;ω) given by:

g(x;ω) = A(x) + U(x;ω), (1)

where U(x;ω) denotes the (possibly random) error in the measurement or noise. Next, we consider
absolute noise profile formally defined as:
Assumption 2.4 (Absolute Noise). Let x ∈ Rd and ω ∼ P. The oracle g(x;ω) satisfies unbiasedness
E[g(x;ω)] = A(x) and bounded absolute variance E

[
∥U(x, ω)∥2∗

]
≤ σ2.

As the noise variance is independent of the value of the operator at the queried point, this type of
randomness is absolute. Absolute noise is quite common in the (distributed) VI literature [23–25].
This noise profile is also known as the bounded variance assumption in stochastic optimization
literature [26, 27].
Let X ⊂ Rd denote a non-empty and compact test domain. The main measure to evaluate the quality
of a candidate solution is the restricted gap function [28, 29] (more properties in Appendix A.3):

GAPX (x̂) = sup
x∈X
⟨A(x), x̂− x⟩. (GAP)

2



3 Quantized Optimistic Dual Averaging
Consider a distributed and synchronous setting with K nodes, along the lines of the standard setting
for data-parallel SGD [9, 30]. Here, the nodes partition the entire dataset among themselves such
that each node retains only local copy of the current parameter vector while having access to
independent private stochastic dual vectors. In each iteration, each node receives stochastic dual
vectors, aggregates them, computes an update, and broadcasts the compressed update to accelerate
training. These compressed updates are decompressed before the next aggregation step at each node.

3.1 Adaptive Layer-wise Quantization

Let Vk,t and V̂k,t denote the uncompressed and compressed stochastic dual vector in node k at time
t, respectively. Let v ∈ Rd be a vector to be quantized. For i = 1, . . . , d, let ui = |vi|/∥v∥q
be the normalized coordinate. At each time t, instead of a global sequence of quantization levels
for all coordinates [9, 11], we consider a set Lt,M of M types of sequences {ℓt,1, . . . , ℓt,M} to
be optimized with flexible and adjustable numbers of levels α1, . . . , αM , respectively. We denote
ℓt,m ∈ Lt,M the sequence of type m at time t, given by [ℓ0, ℓ

t,m
1 , . . . , ℓt,mαm

, ℓαm+1]
⊤, where 0 =

ℓ0 < ℓt,m1 < · · · < ℓt,mαm
< ℓαm+1 = 1. Let St,m be the set of all normalized coordinates

that use type m sequence ℓt,m at time t. Let τ t,m(u) denote the index of a level with respect to
u ∈ [0, 1] such that ℓt,mτt,m(u) ≤ u < ℓt,mτt,m(u)+1. Let ξt,m(u) = (u−ℓt,mτt,m(u))/(ℓ

t,m
τt,m(u)+1−ℓ

t,m
τt,m(u))

be the relative distance of u to the level τ t,m(u) + 1. Define the random variable qℓt,m(u) =

ℓt,mτt,m(u) with probability 1− ξt,m(u), and ℓt,mτt,m(u)+1 with probability ξt,m(u).

We then define the random quantization of vector v as QLt,M (v) = [QLt,M (v1), . . . , QLt,M (vd)]
⊤

where for m = 1, 2, . . . ,M , and any ui ∈ St,m, we have QLt,M (vi) = ∥v∥q ·sign(vi) ·qℓt,m(ui). Let
qLt,M ∼ PQ represent d variables {qℓt,m(ui)}i∈[d] sampled independently for random quantization.
As this scheme is unbiased, we can measure the quantization error by measuring the variance
EqLt,M

[∥QLt,M (v)− v∥22] given by

∥v∥2q
M∑

m=1

∑
ui∈St,m

σ2
Q(ui; ℓ

t,m), (Var)

where σ2
Q(ui; ℓ

t,m) = E[(qℓt,m(ui) − ui)
2] = (ℓt,mτt,m(ui)+1 − ui)(ui − ℓt,mτt,m(ui)

) is the variance
of quantization of a single coordinate ui ∈ St,m with type m sequence ℓt,m. We can optimize M
quantization sequences by minimizing the overall quantization variance

min
Lt,M∈Lt,M

EωEqLt,M

[
∥QLt,M (g(xt;ω))−A(xt)∥22

]
,

where Lt,M =
{
{ℓt,1, . . . , ℓt,M} : ∀m ∈ [M ], ∀j ∈ [αm], ℓt,mj ≤ ℓt,mj+1, ℓ0 = 0, ℓαm+1 = 1

}
,

denoting the collection of all feasible sets of type m levels. Since random quantization and random
samples are statistically independent, the above minimization is equivalent to

min
Lt,M∈Lt,M

EωEqLt,M

[
∥QLt,M (g(xt;ω))− g(xt;ω)∥22

]
. (MQV)

3.2 Encoding

Coding schemes are applied on top of our layer-wise quantization to further reduce communication
costs. We now introduce a practical coding protocol for layer-wise quantization that require a
fine-grained analysis different from those for global quantization [9, 11, 17, 18]. For some q ∈ Z+,
any vector v ∈ Rd can be uniquely represented by a tuple (∥v∥q, s,u) where ∥v∥q is the Lq norm of
v, s := [sign(v1), . . . , sign(vd)]

⊤ comprises of signs of each coordinate vi, and u := [u1, . . . , ud]
⊤,

where ui = |vi|/∥v∥q , are the normalized coordinates. Note that 0 ≤ ui ≤ 1 for all i ∈ [d].
Let At,m = {ℓt,m0 , ℓt,m1 , . . . , ℓt,mαm

, ℓt,mαm+1} be the collection of all the levels of the sequence ℓt,m.
Let Ωt,M =

⋃M
m=1At,m be the collection of all the levels of M sequences at time t. The overall

encoding, i.e., composition of coding and quantization, ENC(∥v∥q, s, qLt,M ) : R+ × {±1}d ×
(Ωt,M )d → {0, 1}∗ in Algorithm 1 uses a standard floating point encoding with Cq bits to represent
the non-negative scalar ∥v∥q, encodes the sign of each coordinate with one bit, and then utilizes an
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integer encoding scheme Ψ : (Ωt,M )d → {0, 1}∗ to efficiently encode every quantized coordinate
with the minimum expected code-length. To solve (MQV), we sample Z stochastic dual vectors
{g(xt;ω1), . . . , g(xt;ωZ)}. Let Fz denote the marginal cumulative distribution function (CDF) of
normalized coordinates conditioned on observing ∥g(xt;ωz)∥q. By law of total expectation, for
Lt,M ∈ Lt,M , (MQV) can be approximated by:

min
Lt,M

Z∑
z=1

∥g(xt;ωz)∥2q
M∑

m=1

αm∑
i=0

∫ ℓ
t,m
i+1

ℓ
t,m
i

σ2
Q(u; ℓ

t,m) dFz(u) or min
Lt,M

M∑
m=1

αm∑
i=0

∫ ℓ
t,m
i+1

ℓ
t,m
i

σ2
Q(u; ℓ

t,m) dF̃ (u), (2)

where F̃ (u) =
∑Z

z=1 λzFz(u) is the weighted sum of the conditional CDFs with

λz = ∥g(xt;ωz)∥2q/
Z∑

z=1

∥g(xt;ωz)∥2q. (3)

To solve (MQV), we first sample Z stochastic dual vectors {g(xt;ω1), . . . , g(xt;ωZ)}. Let Fm
z de-

note the marginal CDF of normalized coordinates of type m conditioned on observing ∥g(xt;ωz)∥q .

In our implementation (details in Section 5), we utilize L-GreCo [16] which executes a dynamic
programming algorithm optimizing the total compression ratio while minimizing compression error.
The decoding DEC : {0, 1}∗ → Rd first reads Cq bits to reconstruct ∥v∥q, then applies decoding
schemes (Ψm)−1 : {0, 1}∗ → At,m to obtain normalized type m coordinates. The discussion for the
choice of a specific lossless prefix code and more details on coding schemes are in Appendix C.1.

3.3 Optimistic Dual Averaging

Algorithm 1: Quantized Optimistic Dual Averaging

Input: Local training data; local copies of Xt, Yt; up-
date steps set U ; learning rates {γt}, {ηt}

1: for t = 1 to T do
2: if t ∈ U then
3: for i = 1 to K do
4: Estimate distributions of normalized dual

vectors and update Lt,M (Appendix A.4)
5: Update M sequences of levels in parallel
6: end for
7: end if
8: for i = 1 to K do
9: Retrieve previously stored V̂k,t−1/2

10: Xt+1/2 ← Xt − γt
∑K

k=1 V̂k,t−1/2/K
11: Vi,t+1/2 ← Ai(Xt+1/2) + Ui(Xt+1/2)

12: di,t ← ENCODE
(
QLt,M (Vi,t+1/2);Lt,M

)
13: Broadcast di,t
14: Receive di,t from each node i

15: V̂i,t+1/2 ← DECODE(di,t;Lt,M )

16: Store V̂k,t+1/2

17: Yt+1 ← Yt −
∑K

k=1 V̂k,t+1/2/K
18: Xt+1 ← ηt+1Yt+1 +X1

19: end for
20: end for

Our described layer-wise quantization and
the coding protocol are general with ap-
plications such as empirical risk minimiza-
tion by training transformers [15, 16]. In
this section, we will show one such ap-
plication with our novel Quantized Opti-
mistic Dual Averaging (QODA), Algorithm
1, to efficiently solve distributed VI. Impor-
tantly, this optimistic approach reduces one
“extra” gradient step that extra gradient
methods and variants such as the baseline
[11] take (by storing the gradient from the
previous iteration, refer to line 9 and 16),
thereby reducing the communication bur-
den by half decoupled from acceleration
due to quantization. At certain steps, ev-
ery node calculates the sufficient statistics
of a parametric distribution to estimate dis-
tribution of dual vectors in lines 3 to 5. Let
V̂k,t = Q(Vk,t) = Q(Ak(Xt) + Uk(Xt))
denote the unbiased and quantized stochas-
tic dual vectors for node k ∈ [K] and itera-
tion t ∈ [T ]. The optimistic dual averaging
updates in (4) appear in lines 10, 17 and 18.
Layer-wise quantization with QLt,M and the
coding protocol are in lines 12 and 15. The
loops are executed in parallel on the nodes.

Xt+1/2 = Xt − γt

K∑
k=1

V̂k,t−1/2/K; Yt+1 = Yt −
K∑

k=1

V̂k,t+1/2/K; Xt+1 = X1 + ηt+1Yt+1. (4)

In general, learning rates γt and ηt can be chosen such that they are non-increasing and γt ≥ ηt > 0.
We propose the following adaptive learning rate schedules for updates (4) and in Algorithm 1.

ηt = γt =
(
1 +

t−1∑
s=1

K∑
k=1

∥∥∥V̂k,s+1/2 − V̂k,s−1/2

∥∥∥2
∗
/K2

)−1/2

. (5)
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4 Theoretical Guarantees

4.1 Quantization Bounds

We drop time index t for notation simplicity. Let q ∈ Z+. Let ℓ̄m = max0≤j≤αm
ℓmj+1/ℓ

m
j , and

ℓ̄M = max1≤m≤M ℓ̄M . Denote the largest level 1 across M types ℓ̄M1 = max1≤m≤M ℓM1 . Let
dth = (2/ℓ̄M1 )min{2,q}. We now present the variance bounds for our layer-wise quantization schemes:

Theorem 4.1 (Quantization Variance Bound). Let v ∈ Rd be a vector to be quantized with Lq

normalization. With unbiased quantization of v, i.e., EqLM
[QLM (v)] = v, we have that

EqLM

[
∥QLM (v)− v∥22

]
≤ εQ∥v∥22, (6)

where

εQ = (ℓ̄M − 1)2/(4ℓ̄M ) + (ℓ̄M1 )2d2/min{q,2}
1{d < dth}/4 + (ℓ̄M1 d2/min{q,2} − 1)d2/min{q,2}

1{d ≥ dth}.
The proof is in Appendix B. For the special case of M = 1, our bound recovers [11, Theorem 1],
matching the lower bound Ω(d) in the specific regime of large d and L2 normalization. Furthermore,
this bound, under M = 1, holds for general Lq normalization and arbitrary sequence of quantization
levels in comparison to [9, Theorem 3.2] and [17, Theorem 4], which hold only for L2 normalization
with uniform and exponentially spaced levels, respectively. Next, we establish code-length bounds for
the coding protocol. The guarantee for coding protocol is as follows with the proof in Appendix C.2

Theorem 4.2 (Code-length Bound). Let pmj denote the probability of occurrence of ℓmj for
m ∈ [M ] and j ∈ [αm]. Under the setting specified in Theorem 4.1, the expectation
EwEqLM

[
ENC

(
QLM (g(x;ω));LM

)]
of the number of bits under the coding protocol is

EωEqLM

[
ENC

(
QLM (g(x;ω));LM

)]
= O

((
−

M∑
m=1

pm0 −
M∑

m=1

αm∑
j=1

pmj log pmj

)
d

)
. (7)

For the special case of M = 1, our bound for the coding protocol in Theorem 4.2 recovers [11,
Theorem 2]. Under the specific scenario of M = 1, L2 normalization and s =

√
d as in [9, Theorem

3.4], our bound for the coding protocol can be arbitrarily smaller than [9, Theorem 3.4] and [17,
Theorem 5] depending on the probabilities {p0, . . . , ps+1}. Under similar settings, we obtain that
the expected O(Kd/ε) bits are required to reach an ε gap, matching the lower bound for convex
optimization problems with finite-sum structures [31, 32].

4.2 Algorithm Complexity

Here, Algorithm 1 is executed for T iterations on K nodes with learning rates in (5). Denote the
average square root variance bound ε̂Q =

∑M
m=1

∑Jm

j=1 Tm,j
√
εQ,m,j/T .

Under the absolute noise model, we can bound GAP of Algorithm 1 with the proof in Appendix D:

Theorem 4.3. Suppose the iterates Xt of Algorithm 1 are updated with learning rate schedule
in (5) for all t = 1/2, 1, . . . , T . Let X ⊂ Rd be a compact neighborhood of a VI solution and
D2 := supp∈X ∥X1 − p∥22. Under Assumptions 2.1, 2.2, 2.3, and 2.4, we have

E

[
GapX

(
T∑

t=1

Xt+1/2/T

)]
= O

(
((LD + ∥A(X1)∥2 + σ)ε̂Q + σ)D2L2/

√
TK

)
.

This theorem show that increasing the number of processors K lead to faster convergence for
monotone VIs, matching the asymptotic rates for T and K in [11] which requires an extra almost
sure boundedness assumption. Under the absolute noise model and by setting the number of gradients
per round to one, our results match the known lower bound for convex and smooth optimization
Ω(1/

√
TK) [23, Theorem 1]. Previously, [11, Theorem 3] matches this lower bound but with an

extra assumption that the operator is almost sure bounded.
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Figure 1: FID evolution during training. We compare basic Adam optimization against QODA-based extension
of Adam with global (Q-GenX [11]) and layer-wise (L-GreCo) quantizations.

5 Numerical Experiments

We have implemented QODA in Algorithm 1 based on the codebase of [33] and train WGAN [21] on
CIFAR10 and CIFAR100 [34]. To support efficient compression, we used the torch_cgx Pytorch
extension [15]. Moreover, we adapt compression choices layer-wise, following the L-GreCo [16]
algorithm. Specifically, L-GreCo periodically collects gradients statistics, then executes a dynamic
programming algorithm optimizing the total compression ratio while minimizing compression error.
In our experiments, we use 4 nodes, each with a single NVIDIA RTX 3090 GPU, in a multi-node
Genesis Cloud environment. For the communication backend, we picked the best option for quantized
and full-precision regimes: OpenMPI [35] and NCCL [36], respectively. The maximum bandwidth
between nodes is estimated to be around 5 Gbit/second.

We follow the training recipe of Q-GenX [11], where authors set large batch size (1024) and keep all
other hyperparameters as in the original codebase of [33]. For global and layer-wise compression,
we use 5 bits (with bucket size 128), and run the L-GreCo adaptive compression algorithm every
10K optimization steps for both the generator and discriminator models. The convergence results are
presented in Figure 1. The figure demonstrates that the adaptive QODA approach not only recovers
the baseline accuracy but also improves convergence relative to Q-GenX [11].

In order to illustrate the impact of QODA on the wall-clock training time, we have benchmarked the
training in three different communication setups. The first is the original 5 Gbps bandwidth, whereas
the second and the third reduce this to half and 1/5 of this maximum bandwidth. We measured the
time per training step for uncompressed and QODA 5-bit training. Note that time per step is similar
for for both data sets. Table 1 shows that layer-wise quantization achieves up to a 47% improvement
in terms of end-to-end training time.

Mode 1 Gbps 2.5 Gbps 5 Gbps
Baseline 291 265 251
QODA5 197 195 195
Speedup 1.47× 1.36× 1.28×

Table 1: Time per optimization step2(in ms) for baseline and QODA5 with different inter-node bandwidths.

6 Conclusion

In brief, we introduce optimism in distributed VI with adaptive learning rates, develop layer-wise
quantization with joint convergence and communication guarantees, and show improvements in
end-to-end training time in a practical multi-node WGAN setting. We also establish tight variance
and code-length bounds for a general layer-wise and adaptive family of compression schemes that
generalize previous bounds for global quantization.

2The optimization step includes forward and backward times. More precisely, the backward step consists of
backpropagation, compression, communication and de-compression.
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A Addition Information

A.1 Literature Review

For empirical risk minimization, adaptive quantization, has been proposed to adapt quantization
levels [18, 37, 38] and the number of quantization levels [39, 40] over the trajectory of optimization.
All these quantization schemes are global w.r.t. layers and do not take into account heterogeneities
in terms of representation power and impact on the final learning outcome across various layers of
neural networks and across training for each layer. Markov et al. [15, 16] have empirically studied
unbiased and layer-wise quantization where quantization parameters are updated across layers in a
heuristic manner and have shown tremendous empirical success in training popular DNNs.

Unbiased quantization provides communication efficiency on the fly for empirical risk minimization,
i.e., quantized variants of SGD converge under the same hyperparameters tuned for uncompressed
variants while providing substantial savings in terms of communication costs [9, 15–18, 41, 42]. [43]
has proposed lattice-based quantization for distributed mean estimation problem.

There is a line of research that focuses on designing distributed methods for VI and saddle points
problems. Kovalev et al. [44] consider strongly monotone VI; Beznosikov et al. [45] concern with
VI problems under co-coercivity assumptions. Assumptions such as strong monotonicity and co-
coercivity are quite restrictive in ML applications. Beznosikov et al. [46, 47] consider VI problems
with finite sum structure with an extra δ-similarity assumption in [47] . Several works [48–50] explore
dual averaging for distributed finite-sum minimization in networks.

A.2 Notations

We use lower-case bold letters to denote vectors. E[·] denotes the expectation operator. ∥ · ∥0 and
∥ · ∥∗ are number of nonzero elements of a vector and dual norm, respectively. | · | denotes the length
of a binary string, the length of a vector, and cardinality of a set. Sets are typeset in a calligraphic
font. The base-2 logarithm is denoted by log, and the set of binary strings is denoted by {0, 1}∗. For
any integer n, we use [n] to denote the set {1, . . . , n}. 1 denotes the indicator function.

A.3 More Details on GAP

Several properties of (GAP) have been explored in the literature [28, 29]. In particular, the following
classical results characterize the solutions of (VI) via zeros of (GAP).

Proposition A.1. [28] Let X ⊆ Rd be a non-empty and convex set. Then, we have

• GAPX (x̂) ≥ 0 for all x̂ ∈ X ;

• If GAPX (x̂) = 0 and X contains a neighbourhood of x̂, then x̂ is a solution of (VI).

A.4 Clarifications about Algorithm 1

One possible solution of efficiently estimating the distributions of dual vectors (line 4 in Algorithm
1) is to use a parametric model of density estimation such as modelling via truncated normal with
efficiently computing sufficient statistics [18]. The set of update steps set U in Algorithm 1 is
determined by the dynamics of distribution of of normalized dual vectors over the course of training.
In Section 5, we use L-Greco [16] to update the levels.

B Proof of Quantization Variance Bound

Theorem 4.1 (Quantization Variance Bound). Let v ∈ Rd be a vector to be quantized with Lq

normalization. With unbiased quantization of v, i.e., EqLM
[QLM (v)] = v, we have that

EqLM

[
∥QLM (v)− v∥22

]
≤ εQ∥v∥22, (6)

where

εQ = (ℓ̄M − 1)2/(4ℓ̄M ) + (ℓ̄M1 )2d2/min{q,2}
1{d < dth}/4 + (ℓ̄M1 d2/min{q,2} − 1)d2/min{q,2}

1{d ≥ dth}.
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Proof. First let us remind ourselves of the notations in the main paper. Fix a time t. Let the
normalized coordinates be u. Let ℓ̄m = max0≤j≤αm ℓmj+1/ℓ

m
j , and ℓ̄M = max1≤m≤M ℓ̄M . Denote

the largest level 1 among the M sequences ℓ̄M1 = max1≤m≤M ℓM1 . Also let dth = (2/ℓ̄M1 )min{2,q}.
Let Bmj := [ℓmj , ℓmj+1] for m ∈ [M ], j ∈ [αm].

Now, we can rewrite the equation (Var) for a fixed time t as follows

EqLM

[
∥QLM (v)− v∥22

]
= ∥v∥2q

M∑
m=1

∑
ui∈Sm

σ2
Q(ui; ℓ

m)

= ∥v∥2q
M∑

m=1

∑
ui∈Sm

(ℓmτm(ui)+1 − ui)(ui − ℓmτm(ui)
)

= ∥v∥2q
M∑

m=1

 ∑
ui∈Bm

0

(ℓm1 − ui)ui +

αm∑
j=1

∑
ui∈Bm

j

(ℓmj+1 − ui)(ui − ℓmj )

 .

We now find the minimum kmj , satisfying (ℓmj+1 − ui)(ui − ℓmj ) ≤ kmj u2
i for ui ∈ Bmj for m ∈ [M ],

j ∈ [αm]. Let ui = ℓmj θ for 1 ≤ θ ≤ ℓmj+1/ℓ
m
j . Then, we have

kmj = max
1≤θ≤ℓmj+1/ℓ

m
j

(ℓmj+1 − ui)(ui − ℓmj )

(ℓmj θ)2

= max
1≤θ≤ℓmj+1/ℓ

m
j

(ℓmj+1/ℓ
m
j − θ)(θ − 1)

θ2

=
(ℓmj+1/ℓ

m
j − 1)2

4(ℓmj+1/ℓ
m
j )

,

where the last equality follows from a simple differentiation with respect to θ. Since the function
(x− 1)2/(4x) is monotonically increasing function for x > 1, we obtain

(ℓmj+1/ℓ
m
j − 1)2

4(ℓmj+1/ℓ
m
j )

≤ (ℓ̄M − 1)2

4ℓ̄M
,

which leads to
αm∑
j=1

∑
ui∈Bm

j

(ℓmj+1 − ui)(ui − ℓmj ) ≤
αm∑
j=1

∑
ui∈Bm

j

kmj u2
i

=

αm∑
j=1

∑
ui∈Bm

(ℓmj+1/ℓ
m
j − 1)2

4(ℓmj+1/ℓ
m
j )

u2
i

≤
αm∑
j=1

∑
ui∈Bm

(ℓ̄M − 1)2

4ℓ̄M
u2
i

=
(ℓ̄M − 1)2

4ℓ̄M

∑
ui∈Sm/Bm

0

u2
i ,

yielding

∥v∥2q
M∑

m=1

αm∑
j=1

∑
ui∈Bm

j

(ℓmj+1 − ui)(ui − ℓmj ) ≤ ∥v∥2q
M∑

m=1

(ℓ̄M − 1)2

4ℓ̄M

∑
ui∈Sm/Bm

0

u2
i

= ∥v∥2q
(ℓ̄M − 1)2

4ℓ̄M

M∑
m=1

∑
ui∈Sm/Bm

0

u2
i

≤ ∥v∥2q
(ℓ̄M − 1)2

4ℓ̄M
∥v∥22
∥v∥2q

=
(ℓ̄M − 1)2

4ℓ̄M
∥v∥22.
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Next, we attempt to bound
∑M

m=1

∑
ui∈Bm

0
(ℓm1 − ui)ui with these two known lemmas

Lemma B.1. Let v ∈ Rd. Then, for all 0 < p < q, we have ∥v∥q ≤ ∥v∥p ≤ d1/p−1/q∥v∥q. This
holds even when q < 1 and ∥ · ∥ is merely a seminorm.

Lemma B.2. [17, Lemma 15] Let p ∈ (0, 1) and u ∈ B0. Then we have u(ℓ1 − u) ≤ Kpℓ
2−p
1 up,

where

Kp =
1/p

2/p− 1

(
1/p− 1

2/p− 1

)1−p

.

Now, from these two lemma, for any 0 < p < 1 and q ≤ 2, we obtain that

∥v∥2q
M∑

m=1

∑
ui∈Bm

0

(ℓm1 − ui)ui ≤ ∥v∥2q
M∑

m=1

∑
ui∈Bm

0

Kp(ℓ
m
1 )2−pup

i

≤ ∥v∥2qKp(ℓ̄
M
1 )2−p

M∑
m=1

∑
ui∈Bm

0

up
i

= ∥v∥2qKp(ℓ̄
M
1 )2−p

M∑
m=1

∑
ui∈Bm

0

|vi|p

∥v∥pq

≤ Kp(ℓ̄
M
1 )2−p∥v∥pp∥v∥2−p

q

≤ Kp(ℓ̄
M
1 )2−p∥v∥p2d1−p/2∥v∥2−p

2

= Kp(ℓ̄
M
1 )2−pd1−p/2∥v∥22,

where the penultimate inequality holds due to the first given lemma and ∥v∥q ≤ ∥v∥2 for q ≥ 2.
Now combining the bounds, we obtain

EqLM
[∥QLM (v)− v∥22] ≤

(
(ℓ̄M − 1)2

4ℓ̄M
+Kp(ℓ̄

M
1 )2−pd1−p/2

)
∥v∥22.

Moreover, if q ≥ 1, note that ∥v∥2−p
q ≤ ∥v∥2−p

2 d
2−p

min{2,q}−
2−p
2 , yielding

EqLM
[∥QLM (v)− v∥22] ≤

(
(ℓ̄M − 1)2

4ℓ̄M
+Kp(ℓ̄

M
1 )2−pd

2−p
min{2,q}

)
∥v∥22.

Now we can minimize εQ with finding the optimal p∗ by minimizing

λ(p) =
1/p

2/p− 1

(
1/p− 1

2/p− 1

)1−p

υ1−p =
1

2− p

(
1− p

2− p

)1−p

υ1−p = (2− p)p−2(1− p)1−pυ1−p,

where υ = ℓ̄M1 d
1

min{2,q} . This is equivalent to minimizing the log

log λ(p) = (p− 2) log(2− p) + (1− p) log(1− p) + (1− p) log(v)

Setting the derivative of log λ(p) to zero, we have

−1 + log(2− p∗) + 1− log(1− p∗) + log(υ) = 0,

yielding the optimal p∗ to be

p∗ =


υ − 2

υ − 1
, υ ≥ 2 or d ≥ dth

0, υ < 2 or d < dth.

In brief, we have

εQ =
(ℓ̄M − 1)2

4ℓ̄M
+ (ℓ̄M1 d

2
min{q,2} − 1)d

2
min{q,2}1{d ≥ dth}+

1

4
(ℓ̄M1 )2d

2
min{q,2}1{d < dth}.

■
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C Coding Framework

C.1 Further Details on Coding Framework

The choice of a specific lossless prefix code for encoding qLt,M relies on the extent to which the
distribution of the discrete alphabet of levels is known. If we can estimate or know the distribution
of the frequency of the discrete alphabet Ωt,M , we can apply the classical Huffman coding with an
efficient encoding/decoding scheme and achieve the minimum expected code-length among methods
encoding symbols separately [51, 52]. On the other hand, if we only know smaller values are more
frequent than larger values without knowing the distribution of the discrete alphabet, we can consider
Elias recursive coding (ERC) [53].

The decoding DEC : {0, 1}∗ → Rd first reads Cq bits to reconstruct ∥v∥q, then applies decoding
scheme Ψ−1 : {0, 1}∗ → (Ωt,M )d to obtain normalized coordinates.

Given quantization levels ℓt,m and the marginal PDF of normalized coordinates, K nodes can
construct the Huffman tree in parallel. A Huffman tree of a source with s + 2 symbols can be
constructed in timeO(s) through sorting the symbols by the associated probabilities. It is well-known
that Huffman codes minimize the expected code-length:

Theorem C.1. [51, Theorems 5.4.1 and 5.8.1] Let Z denote a random source with a discrete
alphabet Z . The expected code-length of an optimal prefix code to compress Z is bounded by
H(Z) ≤ E[L] ≤ H(Z) + 1 where H(Z) ≤ log2(|Z|) is the entropy of Z in bits.

C.2 Proof of Code Length Bound for Coding Protocol

Theorem 4.2 (Code-length Bound). Let pmj denote the probability of occurrence of ℓmj for
m ∈ [M ] and j ∈ [αm]. Under the setting specified in Theorem 4.1, the expectation
EwEqLM

[
ENC

(
QLM (g(x;ω));LM

)]
of the number of bits under the coding protocol is

EωEqLM

[
ENC

(
QLM (g(x;ω));LM

)]
= O

((
−

M∑
m=1

pm0 −
M∑

m=1

αm∑
j=1

pmj log pmj

)
d

)
. (7)

Proof. Following the Coding Protocol , we first use a constant Cq bits to represent the positive scalar
∥v∥q with a standard 32-bit floating point encoding. Then we use 1 bit to encode the sign of each
nonzero entry of u. Next, the probabilities associated with the symbols to be encoded, i.e., the levels
in ΩM , can be computed using the weighted sum of the conditional CDFs of normalized coordinates
as follows.

Proposition C.2. Let j ∈ [αm], we have the probability pmj of occurrence of ℓmj is

pmj = Pr(ℓmj ) =

∫ ℓmj

ℓmj−1

u− ℓmj−1

ℓmj − ℓmj−1

dF̃ (u) +

∫ ℓmj+1

ℓmj

ℓmj+1 − u

ℓmj+1 − ℓmj
dF̃ (u),

where F̃ (u) is the weighted sum of the conditional CDFs as defined in (2). Consequently we deduce

pm0 = Pr(ℓm0 ) =

∫ ℓm1

ℓm0

ℓm1 − u

ℓm1 − ℓm0
dF̃ (u) =

∫ ℓm1

0

ℓm1 − u

ℓm1
dF̃ (u),

pmαm+1 = Pr(ℓmαm+1) =

∫ ℓmαm+1

ℓmαm

u− ℓmαm

ℓmαm+1 − ℓmαm

dF̃ (u) =

∫ 1

ℓmαm

u− ℓmαm

1− ℓmαm

dF̃ (u).

Then, we can get the expected number of non-zeros after quantization.

Lemma C.3. For arbitrary v ∈ Rd, the expected number of non-zeros in QM
L (v) is

E
[
∥QM

L (v)∥0
]
=

(
1−

M∑
m=1

pm0

)
d.
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The optimal expected code-length for transmitting one random symbol is within one bit of the entropy
of the source [51]. Hence, we can transmit entries of normalized u in at most

(∑M
m=1 H(ℓm) + 1

)
d,

where H(ℓm) = −
∑αm

j=1 p
m
j log(pmj ) is the entropy in bits.

In brief, we obtain

EwEqLM

[
ENC

(
QLM (g(x;ω));LM

)]
= Cq +

(
1−

M∑
m=1

pm0

)
d+

(
M∑

m=1

H(ℓm) + 1

)
d.

■

C.3 Unbiased Compression under Absolute Noises

The following two lemmas show how additional noise due to compression affects the upper bounds
under absolute noise Assumption 2.4. Let’s keep in mind that qLM ∼ PQ represent d variables
sampled independently for random quantization, and qLM is independent of random sample w ∼ P.

Lemma C.4 (Unbiased Compression under Absolute Noise). Let x ∈ X and w ∼ P. Suppose the
oracle g(x;ω) satisfies Assumption 2.4. Suppose QLM satisfies Theorem 4.1 and Theorem 4.2, then
the compressed QLM (g(x;ω)) satisfies Assumption 2.4 with

E
[
∥QLM (g(x;ω))−A(x)∥22

]
≤ εQ(2L

2D2 + 2∥A(X1)∥22 + σ2) + σ2.

Proof. The unbiasedness property immediately follows from the construction of the unbiased quanti-
zation QLM . Next, we note that that the maximum norm increase when compressing QLM (g(x;ω))
occurs when each normalized coordinate of g(x;ω), {ui}i∈[d], is mapped to the upper level ℓmτm(ui)+1

for some m ∈ [M ]. We can show bounded absolute variance as follows

EwEqLM

[
∥QLM (g(x;ω))−A(x)∥22

]
= EwEqLM

[∥QLM (g(x;ω))− g(x;ω)

+g(x;ω)−A(x)∥22
]

= EwEqLM

[
∥QLM (g(x;ω))− g(x;ω)∥22

]
+ Ew

[
∥U(x;ω)∥22

]
≤ εQEw

[
∥g(x;ω)∥22

]
+ σ2

= εQEw

[
∥A(x) + U(x;ω)∥22

]
+ σ2

= εQ∥A(x)∥22 + εQEw

[
∥U(x;ω)∥22

]
+ σ2

≤ εQ∥A(x)∥22 + εQσ
2 + σ2,

where the second equality occurs due to unbiasedness of qLM , the third steps follos from Theorem 4.1,
and the last inequality holds according to Assumption 2.4 for g(x;ω).

Now we note that in Theorem 4.3, D2 := supx∈X ∥X1 − x∥22, where X ⊂ Rd is a compact
neighborhood of a VI solution. Since A is L-Lipschitz (Assumption 2.3), we note that

∥A(X1)−A(x)∥22 ≤ L2∥X1 − x∥22 ≤ L2D2 ∀ x ∈ X .

Since X1 is our initialization, A(X1) has a finite value, so A(x) is bounded for all x ∈ X . Hence for
the quantization in Algorithm 1, we can obtain

∥A(x)∥22 ≤ 2∥A(X1)−A(x)∥22 + 2∥A(X1)∥22 ≤ 2L2D2 + 2∥A(X1)∥22,

which implies the desired conclusion. ■

D QODA Convergence Analysis

Proposition D.1 (Template Inequality). Suppose the iterates Xt of (4) are updated with non-
increasing step-size schedule γt and ηt as in (5) for all t = 1/2, 1, . . .. Then for any X ∈ Rd,
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we have
T∑

t=1

〈
1

K

K∑
k=1

V̂k,t+1/2, Xt+1/2 −X

〉

≤ ∥X∥
2
∗

2ηT+1
+

T∑
t=1

ηt
2K2

K∑
k=1

∥∥∥V̂k,t+1/2 − V̂k,t−1/2

∥∥∥2
∗
−

T∑
t=1

∥Xt −Xt+1/2∥2∗
2ηt

.

Proof. First, decompose the LHS individual term
1

K

〈∑K
k=1 V̂k,t+1/2, Xt+1/2 −X

〉
into two terms

as follows
1

K

〈
K∑

k=1

V̂k,t+1/2, Xt+1/2 −X

〉
= A+B,

where

A =
1

K

〈
K∑

k=1

V̂k,t+1/2, Xt+1/2 −Xt+1

〉
, B =

1

K

〈
K∑

k=1

V̂k,t+1/2, Xt+1 −X

〉
.

From the update rule of 4 (with ηt), note that
B = ⟨Yt − Yt+1, Xt+1 −X⟩

=

〈
Yt −

ηt+1

ηt
Yt+1, Xt+1 −X

〉
+

〈
ηt+1

ηt
Yt+1 − Yt+1, Xt+1 −X

〉
=

1

ηt
⟨ηtYt − ηt+1Yt+1, Xt+1 −X⟩+

(
1

ηt+1
− 1

ηt

)
⟨−ηt+1Yt+1, Xt+1 −X⟩

=
1

ηt
⟨Xt −Xt+1, Xt+1 −X⟩+

(
1

ηt+1
− 1

ηt

)
⟨X1 −Xt+1, Xt+1 −X⟩

=
1

2ηt

(
∥Xt −X∥2∗ − ∥Xt −Xt+1∥2∗ − ∥Xt+1 −X∥2∗

)
+

(
1

2ηt+1
− 1

2ηt

)(
∥X1 −X∥2∗ − ∥X1 −Xt+1∥2∗ − ∥Xt+1 −X∥2∗

)
≤ 1

2ηt
∥Xt −X∥2∗ −

1

2ηt
∥Xt −Xt+1∥2∗

− 1

2ηt+1
∥Xt+1 −X∥2∗ +

(
1

2ηt+1
− 1

2ηt

)
∥X1 −X∥2∗,

the last inequality holds as the non-positive term −
(

1

2ηt+1
− 1

2ηt

)
∥X1 −Xt+1∥2∗ is dropped. We

can rearrange the above inequality as
1

2ηt+1
∥Xt+1 −X∥2∗ ≤

1

2ηt
∥Xt −X∥2∗ −

1

2ηt
∥Xt −Xt+1∥2∗ +

(
1

2ηt+1
− 1

2ηt

)
∥X∥2∗ −B

=
1

2ηt
∥Xt −X∥2∗ −

1

2ηt
∥Xt −Xt+1∥2∗ +

(
1

2ηt+1
− 1

2ηt

)
∥X∥2∗

+
1

K

〈
K∑

k=1

V̂k,t+1/2, Xt+1/2 −Xt+1

〉
− 1

K

〈
K∑

k=1

V̂k,t+1/2, Xt+1/2 −X

〉
.

(*)

Next, also by the update rule (with γt), we have for any X ∈ Rd

ηt
K

〈
K∑

k=1

V̂k,t−1/2, Xt+1/2 −X

〉
≤ γt

K

〈
K∑

k=1

V̂k,t−1/2, Xt+1/2 −X

〉
= ⟨Xt −Xt+1/2, Xt+1/2 −X⟩

=
1

2
∥Xt −X∥2∗ −

1

2
∥Xt −Xt+1/2∥2∗ −

1

2
∥Xt+1/2 −X∥2∗.
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Substituting X = Xt+1 and dividing both sides of the inequality by ηt, we have

1

K

〈
K∑

k=1

V̂k,t−1/2, Xt+1/2 −Xt+1

〉

≤ 1

2ηt
∥Xt −Xt+1∥2∗ −

1

2ηt
∥Xt −Xt+1/2∥2∗ −

1

2ηt
∥Xt+1/2 −Xt+1∥2∗. (**)

Combining (*) with (**) and after some rearrangements, we obtain

1

K

〈
K∑

k=1

V̂k,t+1/2, Xt+1/2 −X

〉
≤ 1

2ηt
∥Xt −X∥2∗ −

1

2ηt+1
∥Xt+1 −X∥2∗

+

(
1

2ηt+1
− 1

2ηt

)
∥X1 −X∥2∗

+
1

K

〈
K∑

k=1

V̂k,t+1/2 − V̂k,t−1/2, Xt+1/2 −Xt+1

〉

− 1

2ηt
∥Xt −Xt+1/2∥2∗ −

1

2ηt
∥Xt+1/2 −Xt+1∥2∗.

Then, by summing the above expression over t = 1, 2, . . . , T and with some telescoping terms, we
obtain

T∑
t=1

1

K

〈
K∑

k=1

V̂k,t+1/2, Xt+1/2 −X

〉
≤ 1

2η1
∥X1 −X∥2∗ −

1

2ηT+1
∥XT+1 −X∥2∗

+

(
1

2ηT+1
− 1

2η1

)
∥X1 −X∥2∗

+

T∑
t=1

1

K

〈
K∑

k=1

(
V̂k,t+1/2 − V̂k,t−1/2

)
, Xt+1/2 −Xt+1

〉

−
T∑

t=1

1

2ηt
∥Xt −Xt+1/2∥2∗ −

T∑
t=1

1

2ηt
∥Xt+1/2 −Xt+1∥2∗.

Next we consider the substitution X1 = 0 which is just for notation simplicity and can be relaxed
at the expense of obtaining a slightly more complicated expression. We can further drop the term

1

2ηT+1
∥XT+1 −X∥2∗ to obtain

1

K

T∑
t=1

〈
K∑

k=1

V̂k,t+1/2, Xt+1/2 −X

〉
≤ 1

2ηT+1
∥X∥2∗

+
1

K

T∑
t=1

〈
K∑

k=1

(
V̂k,t+1/2 − V̂k,t−1/2

)
, Xt+1/2 −Xt+1

〉

−
T∑

t=1

1

2ηt
∥Xt −Xt+1/2∥2∗ −

T∑
t=1

1

2ηt
∥Xt+1/2 −Xt+1∥2∗.

(†)
Note that by Cauchy-Schwarz and triangle inequalities, we have

1

K

〈
K∑

k=1

(
V̂k,t+1/2 − V̂k,t−1/2

)
, Xt+1/2 −Xt+1

〉

=
1

K

K∑
k=1

〈
V̂k,t+1/2 − V̂k,t−1/2, Xt+1/2 −Xt+1

〉
≤

K∑
k=1

∥∥∥V̂k,t+1/2 − V̂k,t−1/2

∥∥∥
∗

∥∥∥∥Xt+1/2 −Xt+1

K

∥∥∥∥
∗
.
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Combining with the AM-GM inequality of the form xy ≤ ηt

2K2x
2 + K2

2ηt
y2, we deduce from (†)

further that

1

K

T∑
t=1

〈
K∑

k=1

(
V̂k,t+1/2 − V̂k,t−1/2

)
, Xt+1/2 −Xt+1

〉

≤
T∑

t=1

ηt
2K2

K∑
k=1

∥∥∥V̂k,t+1/2 − V̂k,t−1/2

∥∥∥2
∗
+

T∑
t=1

1

2ηt
∥Xt+1/2 −Xt+1∥2∗. (††)

Plugging (††) into (†), we obtain

1

K

T∑
t=1

〈
K∑

k=1

V̂k,t+1/2, Xt+1/2 −X

〉
≤ ∥X∥

2
∗

2ηT+1
+

T∑
t=1

K∑
k=1

ηt
2K2

∥∥∥V̂k,t+1/2 − V̂k,t−1/2

∥∥∥2
∗

−
T∑

t=1

1

2ηt
∥Xt −Xt+1/2∥2∗,

as desired. ■

We first introduce following two useful lemmas that will help to bound the (GAP):

Lemma D.2. [54, 55] For all non-negative numbers α1, . . . , αt, it holds that√√√√ T∑
t=1

αt ≤
T∑

t=1

αt√∑t
i=1 αi

≤ 2

√√√√ T∑
t=1

αt.

Lemma D.3. [19] Let C ∈ Rd be a convex set and h : C → R be a 1-strongly convex w.r.t. a norm
∥ · ∥. Assume that h(x)−minx∈C h(x) ≤ D2/2 for all x ∈ C. Then, for any martingale difference
(zt)

T
t=1 ∈ Rd and any x ∈ C, we have

E

[〈
T∑

t=1

zt,x

〉]
≤ D2

2

√√√√ T∑
t=1

E[∥zt∥2]. (8)

Now we state and prove the complexity of Algorithm 1 under absolute noise and fixed compression
scheme.

Theorem 4.3. Suppose the iterates Xt of Algorithm 1 are updated with learning rate schedule
in (5) for all t = 1/2, 1, . . . , T . Let X ⊂ Rd be a compact neighborhood of a VI solution and
D2 := supp∈X ∥X1 − p∥22. Under Assumptions 2.1, 2.2, 2.3, and 2.4, we have

E

[
GapX

(
T∑

t=1

Xt+1/2/T

)]
= O

(
((LD + ∥A(X1)∥2 + σ)ε̂Q + σ)D2L2/

√
TK

)
.

Proof. Suppose first that no compression is applied, i.e., εQ = 0. Using the result of the template
inequality Proposition D.1, we can drop the negative term to obtain

1

K

T∑
t=1

〈
K∑

k=1

V̂k,t+1/2, Xt+1/2 −X

〉
≤ ∥X∥

2
∗

2ηT+1
+

T∑
t=1

K∑
k=1

ηt
2K2
∥V̂k,t+1/2 − V̂k,t−1/2∥2∗.
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Next we can expand the LHS with the absolute noise model Assumption 2.4 as follows

LHS =
1

K

T∑
t=1

〈
K∑

k=1

Ak(Xt+1/2), Xt+1/2 −X

〉
+

1

K

T∑
t=1

〈
K∑

k=1

Uk(Xt+1/2), Xt+1/2 −X

〉

≥ 1

K

T∑
t=1

〈
K∑

k=1

Ak(X), Xt+1/2 −X

〉
+

1

K

T∑
t=1

〈
K∑

k=1

Uk(Xt+1/2), Xt+1/2 −X

〉

=
1

K

〈
K∑

k=1

Ak(X),

T∑
t=1

Xt+1/2 −
T∑

t=1

X

〉
+

1

K

T∑
t=1

〈
K∑

k=1

Uk(Xt+1/2), Xt+1/2 −X

〉

=
T

K

K∑
k=1

〈
Ak(X), X̄T+1/2 −X

〉
+

1

K

T∑
t=1

〈
K∑

k=1

Uk(Xt+1/2), Xt+1/2 −X

〉
,

where the second inequality follows from the monotonicity of A and X̄T+1/2 =
∑T

t=1 Xt+1/2/T .
Plugging this back to the result from template inequality with some rearrangement, we obtain

1

K

K∑
k=1

〈
Ak(X), X̄T+1/2 −X

〉
≤ 1

T

(
∥X∥2∗
2ηT+1

+

T∑
t=1

K∑
k=1

ηt
2K2
∥V̂k,t+1/2 − V̂k,t−1/2∥2∗

+
1

K

T∑
t=1

〈
K∑

k=1

Uk(Xt+1/2), X −Xt+1/2

〉)
.

By taking the supremum over X , then dividing by T and then taking expectation on both sides, we get

E

[
sup
X

1

K

K∑
k=1

〈
Ak(X), X̄T+1/2 −X

〉]
≤ 1

T
(S1 + S2 + S3),

where
S1 = E

[
D2

2ηT+1

]
, S2 = E

[
T∑

t=1

K∑
k=1

ηt
2K2
∥V̂k,t+1/2 − V̂k,t−1/2∥2∗

]
,

S3 = E

[
sup
X

1

K

T∑
t=1

〈
K∑

k=1

Uk(Xt+1/2), X −Xt+1/2

〉]
.

Here we make an important observation that

E

[
K∑

k=1

∥∥∥V̂k,t+1/2 − V̂k,t−1/2

∥∥∥2
∗

]
≤ 2E

[
K∑

k=1

∥∥Ak(Xt+1/2)−Ak(Xt−1/2)
∥∥2
∗

]

+ 2E

[
K∑

k=1

∥∥Uk(Xt+1/2)− Uk(Xt−1/2)

∥∥2
∗

]

≤ 2

K∑
k=1

L2E
[∥∥Xt+1/2 −Xt−1/2

∥∥2
∗

]
+ 4Kσ2

≤ 2KL2D2 + 4Kσ2, (9)
where the second inequality comes from L-Lipschitzness the operator for the first summand and the
absolute noise assumption for the second summand. Now we proceed to bound these terms one by
one. For S1, from the choice of learning rates ηt ≤ 1, with Equation (9)we obtain

S1 = D2E


√√√√1 +

T∑
t=1

1

K2

K∑
k=1

∥∥∥V̂k,t+1/2 − V̂k,t−1/2

∥∥∥2
∗


≤ D2

√√√√1 +

T∑
t=1

E

[
1

K2

K∑
k=1

∥∥∥V̂k,t+1/2 − V̂k,t−1/2

∥∥∥2
∗

]

≤ D2

√
1 +

2T (L2D2 + 2σ2)

K
.
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Next, we proceed to bound S2

S2 = E

[
T∑

t=1

K∑
k=1

ηt
2K2
∥V̂k,t+1/2 − V̂k,t−1/2∥2∗

]

= E

[
T∑

t=1

K∑
k=1

( ηt
2K2

− ηt+1

2K2

)
∥V̂k,t+1/2 − V̂k,t−1/2∥2∗

]

+ E

[
T∑

t=1

K∑
k=1

ηt+1

2K2
∥V̂k,t+1/2 − V̂k,t−1/2∥2∗

]

≤ E

[
T∑

t=1

( ηt
2K2

− ηt+1

2K2

)
(2KL2D2 + 4Kσ2)

]

+
1

2
E

 T∑
t=1

K∑
k=1

∥V̂k,t+1/2 − V̂k,t−1/2∥2∗/K2√
1 +

∑t
s=1

∑K
k=1

∥∥∥V̂k,s+1/2 − V̂k,s−1/2

∥∥∥2 /K2

 (from Equation (9))

≤ 2L2D2 + 4σ2 +
1

2
E


√√√√1 +

1

K2

T∑
t=1

K∑
k=1

∥∥∥V̂k,t+1/2 − V̂k,t−1/2

∥∥∥2
 (from Lemma D.2)

≤ 2L2D2 + 4σ2 +
1

2

√
1 +

2T (L2D2 + 2σ2)

K
.

Lastly, let’s consider S3

S3 = E

[
sup
X

1

K

T∑
t=1

〈
K∑

k=1

Uk(Xt+1/2), X

〉]
− E

[
sup
X

1

K

T∑
t=1

〈
K∑

k=1

Uk(Xt+1/2), Xt+1/2

〉]
We can bound the first term with Lemma D.3 as follows

E

[
sup
X

1

K

T∑
t=1

〈
K∑

k=1

Uk(Xt+1/2), X

〉]
≤ D2

2K

√√√√E

[
T∑

t=1

K∑
k=1

∥Uk,t+1/2∥2
]
≤ D2σ

√
T

2
√
K

For the second term, we use law of total expectation

E

[
T∑

t=1

〈
K∑

k=1

Uk(Xt+1/2), Xt+1/2

〉]
= E

[
T∑

t=1

K∑
k=1

E
[〈
Uk(Xt+1/2), Xt+1/2

〉
|Xt+1/2

]]
= 0,

implying

S3 ≤
D2σ
√
T

2
√
K

.

Combining the bounds of S1, S2 and S3, we finally obtain the complexity without compression as
E
[
GapX

(
X̄t+1/2

)]
= E

[
sup
X

1

K

K∑
k=1

〈
Ak(X), X̄T+1/2 −X

〉]
≤ 1

T
O

(√
TD2L2

√
K

)
= O

(
D2L2

√
TK

)
.

Now, we consider applying layer-wise compression to this bound. Firstly, recall that the average
square root expected code-length bound is denoted as

ε̂Q =

M∑
m=1

Jm∑
j=1

Tm,j
√
εQ,m,j

T
.

Finally, by applying compression bound Lemma C.4 along the ideas of [18, Theorem 4] and [11,
Theorem 3], we get the desired result

E
[
GapX

(
X̄t+1/2

)]
= O

(
((LD + ∥A(X1)∥2 + σ)ε̂Q + σ)D2L2

√
TK

)
.

■
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