Published as a conference paper at COLM 2025

C3PO: Critical-Layer, Core-Expert, Collaborative Pathway Op-
timization for Test-Time Expert Re-Mixing

Zhongyang Li

Department of Computer Science
Johns Hopkins University
z1i1300@jh.edu

Ziyue Li

Department of Computer Science
University of Maryland, College Park
litzy619@umd.edu

Tianyi Zhou
tianyi.david.zhou@gmail.com

Abstract

Mixture-of-Experts (MoE) Large Language Models (LLMs) suffer from
severely sub-optimal expert pathways—our study reveals that naive expert
selection learned from pretraining leaves a surprising 10-20% accuracy
gap for improvement. Motivated by this observation, we develop a novel
class of test-time optimization methods to re-weight or “re-mixing” the
experts in different layers jointly for each test sample. Since the test
sample’s ground truth is unknown, we propose to optimize a surrogate
objective defined by the sample’s “successful neighbors” from a reference
set of samples. We introduce three surrogates and algorithms based on
mode-finding, kernel regression, and the average loss of similar reference
samples/tasks. To reduce the cost of optimizing whole pathways, we apply
our algorithms merely to the core experts” mixing weights in critical layers,
which enjoy similar performance but save significant computation. This
leads to “Critical-Layer, Core-Expert, Collaborative Pathway Optimization
(C3PO)”. We apply C3PO to two recent MoE LLMs and examine it on six
widely-used benchmarks. It consistently improves the base model by 7-15%
in accuracy and outperforms widely used test-time learning baselines,
e.g., in-context learning and prompt/prefix tuning, by a large margin.
Moreover, C3PO enables MoE LLMs with 1-3B active parameters to
outperform LLMs of 7-9B parameters, hence improving MoE’s advantages
on efficiency. Our thorough ablation study further sheds novel insights on
achieving test-time improvement on MoE. Our code can be accessed here.

1 Introduction

Mixture-of-Experts (MoE) has achieved remarkable success when being extended to recent
large language models (LLMs). By only selecting one (or a few) out of N experts in each
layer, MoE LLMs can reduce their activated parameters to 1/N during inference while
keeping their model capacity the same as models of the same size, thereby providing a more
efficient scaling law in practice (Lepikhin et al., 2020; Fedus et al., 2022). In MoE LLMs, the
sequence of expert choices or weights across multiple layers, i.e., the so-called “pathway”,
differs across samples and is generated by routers or gates trained together with other
model parameters in an end-to-end manner. The pathway determines the experts to apply
in each layer and thus greatly impacts the final performance. However, we find that the
pathways generated by routers in existing MoE LLMs are prone to severe sub-optimality on

https://github.com/tianyi-lab/C3PO.git

Published as a conference paper at COLM 2025

various samples/tasks, leading to a large gap (10-20%) between base model and the oracle
with optimal pathways, as shown in Table 1. This implies a large room for improvement
that existing approaches have not explored.

Although test-time optimization and adaptation on large language models (LLMs), e.g.,
in-context learning (ICL) (Brown et al., 2020), prompt/prefix tuning (Lester et al., 2021;
Li & Liang, 2021), etc., have been widely studied, showing great potential of enhancing
downstream task performance without finetuning any pre-trained parameters, it is still an
open problem on MoE/Pathway LLMs what test-time optimization can effectively enhance
the adaptation performance. Motivated by the observed sub-optimality of pathways and
their routing weights, we propose to optimize the pathways for each test sample/task.
Compared to prompt/prefix tuning, pathway optimization only needs to optimize much
fewer variables (e.g., tens to hundreds of expert routing weights) than prompt/prefix, in
which every token is composed of thousands of dimensions. Compared to ICL, which
requires a large memory of exemplars yet still suffers from high variance of exemplar
selection, pathways are much more compact representations describing how an MoE LLM
addresses each task using different experts at different stages. Moreover, due to the relatively
low dimensions of pathways, it is possible to avoid gradient-based backpropagation and
instead rely on much more efficient gradient-free search.

To this end, we explore three pathway optimization approaches developed for test-time
adaptation, all leveraging reference pathways for a few successful samples/tasks close to
the test sample/task collaboratively. Ideally, a test sample’s optimal pathway minimizes
its loss on the model output (oracle). However, since the test sample’s ground truth is
unknown, we resort to its nearest neighbors in a reference set of samples associated with
pathways leading to correct responses. Specifically, we optimize a surrogate objective as (1)
mode finding in the space of pathways; (2) kernel regression of pathway routing weights in
the neighborhood; and (3) weighted sum of losses on nearest neighbors. While optimizing
the first two objectives does not require backpropagation, gradient-based optimization is
needed for the third. In our experiments, (1) achieves comparable performance to more
expensive ICL and prompt/prefix tuning, while (2), especially (3), significantly outperforms
them, demonstrating the advantages of Collaborative Pathway Optimization (CPO) on both
efficiency and performance.

Since a pathway still involves tens to hundreds of routing weights or expert choices
to optimize, can we further reduce the optimization cost? To answer this question, we
investigate the importance and contribution of layers and experts in CPO. Our analysis
reveals that at most 5 layers suffice to achieve the best performance across all the evaluated
downstream tasks, where optimizing the pathways in the last few layers usually performs
the best among other combinations of layers, as shown in Figure 3. In addition, as recent
sparse MoE LLMs have 64 experts per layer but only select the top-8 for each input, we
investigate whether optimizing a small portion of experts’ routing weights can cover the
top-8 and retain the performance of all-expert pathway optimization. As revealed by
Figures 4, 5 and 7, only optimizing the top 8-20 experts can preserve the top-8 and the
performance of all-expert optimization.

Motivated by these empirical analyses, we propose “Critical-Layer, Core-Expert,
Collaborative Pathway Optimization (C3PO)” that focuses on optimizing pathways on
critical layers for core experts. We apply C3PO to two SOTA MoE LLMs, i.e., OLMoE
and DeepSeekMOoE, and consistently achieve improvement of 7-15% over the base models
in accuracy across six benchmarks. Moreover, C3PO enables the MoE LLMs with 1-3B
active parameters to outperform LLMs with 7-9B parameters. Furthermore, we conduct a
comprehensive ablation study of different choices in C3PO, such as optimized tokens, steps,
neighbors, kernel, etc. C3PO shows great potential to thoroughly exploit the advantages of
MoE/pathway LLMs in model capacity and inference efficiency.

2 Related Work

MOoE LLMs MOoE architectures have been widely adopted in LLMs to improve efficiency
and specialization (Shazeer et al., 2017). Recent works such as OLMoE (Muennighoff et al.,

Published as a conference paper at COLM 2025

Reference Set

_ Input
Qwen-7B DeepSeek-7B Mistral-7B Test Sample

OLMoE-1B-7B OLMoE-C3PO = C3PO Improvement .
X -
- HellaSwag E Embedding

Succ

a

ssful Pathways

1
N
(]

Pretrained
Routers

- B8
EE
BEE

Original Pathway

ARC-E| %128 578 655 | MmLU C3PO
BB
—
Optimized Pathway
. , B E
WinoGrande < El [E| (E
Gl
Figure 1: Comparison of OLMoE-1B-7B (1B acti-

vated parameters) with C3PO against multiple .) T
7B dense models across six benchmarks. C3PO }l?guretZ. fathwaly 08221(1)2 atltor_l in C3PO.
improves OLMOoE-1B-7B’s accuracy by 7-15%, or fa les tS}? mpie, re rlevesf sue
outperforming 7B models over all benchmarks, ~ €551 pathways (green arrows) from

validating the efficiency of MoE architecture similar samples in the reference set and
and C3PO’s optimization effectiveness. adjusts the initial pathway (red arrow)
based on them to achieve better predic-

tion.

2024) and DeepSeekMoE (Dai et al., 2024) demonstrate the effectiveness of sparse MoE
layers in reducing active parameters while maintaining model capacity. These models
leverage token-choice routing to activate subsets of experts dynamically, enabling fine-
grained specialization. The performance of MoE models heavily depends on expert selection
mechanisms. Traditional routing strategies are trained end-to-end with the model (Fedus
et al., 2022; Jiang et al., 2024), but our study reveals significant sub-optimality in these
pathways.

Efficient Adaptation of LLMs Recent work has explored efficient adaptation of LLMs to
downstream tasks with minimal computational overhead, aligning closely with our goal of
efficient inference-time optimization. Among these approaches (Li et al., 2025a; Li & Zhou,
2024; Li et al., 2025c), In-Context Learning (Brown et al., 2020) appends task demonstrations
to the input prompt to steer model behavior through attention mechanisms, avoiding weight
updates but significantly increasing sequence length and memory requirements. Alternative
methods like Prefix Tuning (Li & Liang, 2021) prepend trainable vectors to transformer
layers to guide model outputs, while Prompt Tuning (Lester et al., 2021) learns continuous
or discrete prompt tokens through gradient updates to embedding parameters. While these
methods (Li et al., 2025b; Li & Zhou, 2025) share our objective of avoiding full parameter
retraining, C3PO introduces two fundamental innovations. First, where existing techniques
either modify model weights or substantially expand input length, our method preserves
all original model parameters entirely while maintaining the standard input token budget.
Second, rather than relying on static task-specific adaptations encoded through prompts or
tuned parameters, we dynamically optimize routing weights for each test sample based on
similarity to successful reference examples.

3 Methodology

MoE LLMs use routers to dynamically select and weight experts across layers, forming a
specific pathway. However, these end-to-end trained routers often produce suboptimal
pathways for challenging or out-of-distribution samples, which can significantly degrade
the performance of MoE on diverse downstream tasks. The importance of expert pathways

Published as a conference paper at COLM 2025

has been broadly demonstrated on six benchmarks in our experiments: There exists a
substantial performance gap between the base model (using the default expert pathways)
and the oracle (using the optimal expert pathways) as shown in Table 1, revealing the
potential benefits of optimizing expert pathways during inference.

To address this limitation, Critical-Layer, Core-Expert, Collaborative Pathway Optimization
(C3PO) introduces a dynamic test-time re-mixing mechanism that adapts the pathway
matrices for each test sample based on similar samples in a reference set—a collection of
samples on which the MoE LLM’s outputs are correct or preferred. Specifically, given a
reference set of m samples {(x;,y;) }/", and their corresponding expert pathway matrices
{wi}" | (Where each w; € REXE, with L denoting the number of layers and E the number of

experts) on which the model makes correct predictions (i.e., f(x;, w;) = y;), for a new test
sample x, the goal of C3PO is to find an improved expert pathway matrix w for x that leads
to more accurate and higher-quality output f(x, w).

3.1 Gradient Descent

We iteratively update w using gradient descent:
w4 w—AVyL(w), 1)
where A is the learning rate and L(w) is the objective function. Two variants are considered:

Oracle (Upper Bound) Assuming we know the ground truth label y for x, we set
L(w) = £(f(x,w),y), 0

where /(- -) is the loss function (e.g., cross-entropy or L2 loss) measuring the discrepancy
between model output f(x, w) and ground truth y. Although impractical to have the ground
truth in real scenarios, this method provides a performance ceiling to reveal the degradation
caused by sub-optimal expert pathways and evaluate the effectiveness of other methods.

Neighborhood Gradient Descent (NGD) Without the truth label y for x, we approximate
the gradient of w by using the loss functions of the nearest neighbors of x in the reference

set :
L(w) = Yien(x) K(xi, %) £(f (xi,), i)
Eie./\/(x) K(xir x)
where K(-, -) is the kernel function, e.g., Gaussian kernel, Matern kernel, etc. By leveraging
loss information from the neighborhood of x, NGD establishes a test-time adaptation

mechanism without accessing truth label y. This approach effectively aligns w with the
successful expert pathways in the reference set.

/ ®)

3.2 Kernel Regression

Kernel regression estimates the optimal expert pathways by computing a weighted average
of the neighbors’ expert pathway matrices:
2 LieN(») K(xi, x) wj

w
Yien(x) K(xi, x)

@)
Although setting w <— @ already improves performance in the experiments, we further
refine the result by interpolating between the initial w and @:
w—aw+(1—a)d,)
with the optimal & chosen as
a*:argrrhinL(ucw—i—(l—oc)dJ). (6)

This refinement step balances the kernel regression estimate with the original expert pathway
matrices.

Published as a conference paper at COLM 2025

3.3 Mode Finding (Meanshift)

Mode finding shifts w toward the densest region of the mixing weight space to capture the
most consistent routing patterns among neighbors. The update is performed as:

w—aw+(1—a)w, (7)
where the local average @ is computed in the w-space:
s LieN(w) K(wi, @) w;
YieN (w) K(wi, w)

Here, N (w) denotes the neighborhood defined in the expert pathway matrices space.

w

®)

3.4 Neighborhood and Embedding Space
Neighborhood The neighborhood A (x) can be defined via kNN or e-ball:
N(x)Zarg min Y d(x;,x),)

AC2m | Al<k f=
N(x) £ {i € [m] :d(x;,x) <€}, (10)
where d(-, -) is is defined as one minus the cosine similarity between the embedding vectors.

Embedding Space Instead of applying K(-, -) and d(-, -) directly on the raw inputs x; and x,
we can replace x and x; with their embedding E(x) and E(x;), where E(-) is a pre-trained
embedding model applied to the task description of each sample.

3.5 Efficient Pathway Optimization

Given that pathway models consist of multiple layers with numerous experts per layer,
optimizing all layers and experts can be computationally expensive. To mitigate this
challenge, we investigate selective optimization strategies, focusing on critical layers and
core experts to determine whether such targeted approaches can maintain or even enhance
overall model performance. Our analysis is performed on OLMoE, optimizing only the
routing weights of the last token, whose effectiveness is demonstrated in Section 4.3.

Critical Layers We first explore the role of critical layers by examining various layer-
specific optimization strategies. Our experiments, as shown in Figure 3, systematically
compare scenarios including optimization of early (F), middle (M), deep (L), and com-
binations of these layers. Our analysis, illustrated in Figure 3, reveals a clear hierarchy:
optimizing more layers improves performance, but full-layer optimization (All16) is sur-
prisingly inefficient. The last five layers (L5) yield the highest accuracy, outperforming both
partial and full-layer optimization. This suggests that deeper layers are disproportionately
responsible for refining task-specific representations, making full-layer updates compu-
tationally wasteful. Beyond the number of layers, layer positioning plays a pivotal role.
A consistent pattern emerges: M1 < F1 < L1, M2 < F2 < L2, M5 < F5 < L5. Late layers
contribute the most to performance, but early layers also have a greater impact than middle
layers. This is likely because early layers encode fundamental feature representations, while
deeper layers specialize in high-level semantic understanding. Middle layers, in contrast,
appear to play a more transitional role with less direct influence on final predictions. These
findings redefine optimization strategies. Instead of expending resources on full-layer
updates, focusing on critical layers—specifically, the last five—delivers superior accuracy
while significantly reducing computational overhead.

Core Experts After identifying the critical layers, it is also important to determine which
experts within these layers should be optimized for maximum efficiency. OLMOE activates
only 8 out of 64 experts per inference step for each token, making selective optimization
crucial. Figure 4 illustrates the trade-off between accuracy and computational cost (FLOPs)
as a function of the number of top experts (top-n experts before optimization) selected for

Published as a conference paper at COLM 2025

2]
o

W Base [1layer [2layers [5layers [All Layers [EZA Ours

~N N
o ©

Avg Accuracy (%)
~ ~
N =

~
o

[<)]
¢

0 ﬂﬂﬂ

Base F1 F1IM1 F1L1 M1L1 F2 M2 L2

F2M3 F2L3 M2L3 F5 M5 L5

Alll6

Figure 3: Analysis of critical layers in OLMOE (F: early layers, M: middle layers, L: late lay-
ers). Optimizing only the last five layers (L5) achieves the highest accuracy, outperforming
full-layer optimization (All16) and partial combinations (e.g., F2L3).

optimization. Our experiments show that optimizing beyond the top-8 experts improves
accuracy, with gains continuing up to the top-12 experts and stabilizing at the top-20. No-
tably, optimizing only the top-20 experts achieves the same performance as optimizing
all 64, significantly reducing computational cost. Further analysis (Figure 5) reveals that
optimizing the top-8 experts captures 71.3% of the final top-8 experts identified after full
optimization. Expanding to the top-20 ensures 99.8% alignment, effectively covering the op-
timal selection. Since the top-8 activated experts (determined post-optimization) are already
included in the pre-optimization top-20, peak performance is maintained with far fewer
experts requiring full optimization. In summary, focusing on the core experts—the top-20
experts per layer—strikes an optimal balance between efficiency and accuracy, minimizing
computational overhead while preserving peak performance.

100 4 05,0 2271000

78 ’

74 1
1 n values

@ =0 (Base) @ =20 (Ours)
O n=8 O n=25

! @ n=12 @ n=64
(]

n=15

Avg Accuracy (%)
Final top-8 experts
retained percentage (%

0| @
0 10 20 30 8 9 10

11 12

15 20 25

FLOPs (10M1)

Figure 4: Accuracy-FLOPs Trade-off by
changing the number of core experts (1) of
OLMOE to optimize by C3PO. The accuracy
achieves the greatest boosting at n = 8 and
plateaus at n = 20, indicating 8-20 core ex-
perts suffices to retain most gain by path-
way optimization.

4 Experiment

4.1 Experimental Settings

Top-n experts optimized by C3PO

Figure 5: Average percentage of the top-8
experts (after optimizing all experts) being re-
tained in the top-n experts identified by pre-
trained router in OLMoE. The results indicate
that selecting n > 20 in advance can effec-
tively cover almost all the 8 core experts
contributing to performance.

Models We evaluate two recent MoE LLMs: OLMOoE and DeepSeekMoE. OLMOoE uses
16 transformer layers with 64 experts per layer, activating 8 experts per token. This design
yields 6.9B total parameters, with 1.3B active per token. DeepSeekMOoE features a 28-layer
architecture that includes 2 shared experts and 64 routed experts per layer, activating all
shared experts and 6 routed experts per token. This results in 16.4B total parameters and
2.8B active parameters per forward pass.

Published as a conference paper at COLM 2025

Evaluation benchmarks and reference sets We use a variety of benchmarks and reference
sets across four key language model tasks. For general knowledge, we employ MMLU with
BIG-Bench and SuperGLUE as references. For commonsense reasoning, we use HellaSwag
and PIQA, along with CommonsenseQA and SociallQA as references. Scientific question
answering is assessed using ARC-C and ARC-E, with OpenBookQA and SciQ as references.
For coreference resolution, we use WinoGrande with KnowRef as a reference. To prevent
overlap, reference samples with a question similarity above 0.95 are removed during the
kNN search. Further details are provided in Appendix A.2.

Baselines We compare different variants of C3PO with both dense and MoE LLMs across
various parameter scales, as shown in Tables 1 and 2. Additionally, we compare with three
adaptation techniques—In-Context Learning (ICL), Prefix Tuning, and Soft Prompt Tuning.
For ICL, we retrieve similar reference samples based on embedding similarity and use them
as few-shot demonstrations. In contrast, Prefix Tuning and Soft Prompt Tuning are trained
on the full reference sets while keeping the base model frozen.

Evaluations We adopt zero-shot evaluation protocols, as our methods rely solely on
external reference sets. The final performance is reported as the mean accuracy across all
benchmarks.

4.2 Main Results

Comparison of different baselines and C3PO methods Table 1 compares various methods
for OLMoE and DeepSeekMOoE across six benchmarks. Neighborhood Gradient Descent
(NGD) consistently outperforms the base models and established baselines, achieving up to
a 15.0% improvement on ARC-C for OLMoE and 10.8% for DeepSeekMoE. Although the
Oracle (upper bound) represents the theoretical maximum (requiring ground truth labels
at inference), NGD attains 85-95% of this potential without such labels, highlighting its
effectiveness in optimizing MoE routing weights.

Advantages of C3PO over State-of-the-Art models Table 2 compares LLMs across six
benchmarks, categorized by active parameter counts. Notably, OLMoE-C3PO, despite using
only 1B active parameters, outperforms many larger models. Among all configurations,
OLMOE-C3PO delivers the best overall performance, showcasing the efficiency of our ap-
proach in maintaining competitive performance while using fewer parameters. Additional
details on the baseline models can be found in Appendix A.3.

4.3 Ablation Study

We conduct an ablation study on OLMOoE to dissect the core design choices in C3PO and
their impact on performance. Specifically, we examine: (1) which tokens to optimize, (2)
the effectiveness of different neighborhood selection strategies, and (3) the influence of key
hyperparameters, including optimization steps and kernel function choices. Additional
analyses can be found in Appendix A.7.

Token optimization strategies Table 3 summarizes how routing weight optimization at
different token positions affects performance in C3PO. We evaluated modifications on the
first, middle, and last tokens using one or three tokens. Optimizing only the last token
achieves the highest accuracy (79.20%, a 9.25% improvement over the baseline), while
expanding to three tokens lowers accuracy to 77.90%. This indicates that focusing on the
final token is the most effective optimization strategy.

Neighborhood selection Table 4 compares neighborhood selection strategies for routing
weight optimization. Both the e-neighborhood and k-Nearest Neighbors (kNN) methods
improve upon the baseline, with kNN at k = 3 achieving the highest accuracy of 79.20%
(+9.25%). Although the optimal e-neighborhood setting is € = 0.5, it still underperforms
compared to kNN. These results suggest that a moderate number of neighbors optimally
balances local adaptability and generalization.

Published as a conference paper at COLM 2025

Hella- Wino-
MMLU Swag ARC-C ARCE PIQA = .. Avg
DeepSeekMoE
Base model 46.2 78.0 50.3 73.8 79.9 70.1 66.4
In-Context Learning 49.0 81.6 56.3 76.2 81.4 72.3 69.5
Prefix Tuning 47.8 77.9 52.4 73.8 79.2 70.3 66.9
Soft Prompt 49.3 78.6 55.1 74.7 80.5 72.0 68.8
Mode Finding 48.0 78.8 57.0 75.9 81.2 72.0 68.8
Kernel Regression 53.8 82.3 59.8 78.9 84.5 75.8 72.5
NGD 55.4 85.7 61.1 80.7 85.8 77.5 74.4
Oracle (upper bound) 63.8 92.5 70.8 85.2 90.3 82.1 80.8
OLMoE

Base model 57.8 77.9 51.3 79.8 80.7 722 69.9
In-Context Learning 60.3 80.6 58.1 82.5 83.6 76.8 73.7
Prefix Tuning 59.3 78.2 54.5 80.4 82.1 73.5 71.3
Soft Prompt 59.7 79.5 55.9 81.3 82.4 74.1 72.2
Mode Finding 58.9 79.1 57.8 81.8 824 74.3 724
Kernel Regression 63.1 82.0 64.6 84.7 86.6 80.2 76.9
NGD 65.5 85.3 66.3 87.4 88.0 82.7 79.2

Oracle (upper bound) 72.2 91.5 74.8 91.4 93.6 87.7 85.2

Table 1: Accuracy (%) comparison of baseline models, three C3PO variants (mode finding,
kernel regression, NGD), and test-time adaptation methods (ICL, prefix tuning) across six
tasks. NGD improves DeepSeekMoE by 8.0% (66.4% — 74.4%) and OLMOoE by 9.3% (69.9%
— 79.2%), capturing around 93% of the Oracle (upper bound).

Step numbers Table 5 demonstrates that the optimization step count significantly affects
routing weight performance. Performance improves substantially from 3 to 10 steps (+2.5%
between 3-5 steps alone), but plateaus thereafter. The minimal fluctuations at 20 and 50
steps suggest that 10 steps provide optimal balance between computational efficiency and
accuracy.

Kernel choice Table 6 compares kernel functions for NGD. The Gaussian kernel (Williams
& Rasmussen, 2006) yields the highest average accuracy (79.20%, a +9.25% improve-
ment over the base model), outperforming the Polynomial (Cortes, 1995) (73.33%) and
Matern (Williams & Rasmussen, 2006) (76.28%) kernels. This indicates that the Gaussian ker-
nel most effectively captures non-linear relationships in high-dimensional spaces, making it
optimal for routing optimization.

4.4 Understanding C3PO Optimization: Prediction Evolution and Expert Specialization

Prediction Evolution: How C3PO Improves Accuracy Over Optimization Step Figure 6
tracks the progression of predictions over 10 NGD optimization steps on ARC-C. A sharp
accuracy increase (+11.6%) occurs within the first 6 steps, reaching +15.0% by Step 10.
Notably, only 5.1% of initially correct predictions become incorrect, suggesting that as
optimization converges, adjustments to routing weights stabilize, leading to more refined
improvements rather than disruptive changes. This demonstrates the effectiveness and
stability of NGD optimization in enhancing MoE model performance.

Expert Specialization: How C3PO Refines MoE Routing Figure 7 visualizes expert
activation patterns in the last 5 layers before and after C3PO optimization. Initially, most
experts remain underutilized, with only 12-20 experts being frequently activated. After

Published as a conference paper at COLM 2025

Hella- Wino-

MMLU Swa ARC-C ARC-E PIQA Grande Avg
LMs with ~1B active parameters
Pythia-1B 23.1 45.1 26.2 48.1 68.7 52.3 43.9
Llama3.2-1B 27.4 57.9 32.1 53.9 72.4 57.4 50.2
OLMo-1B 24.1 61.8 29.6 55.7 75.6 56.8 50.6
TinyLyne-1B-7B 24.7 58.9 32.5 53.7 73.3 58.6 50.3
LMs with ~2-3B active parameters
OpenMoE-3B-9B 23.8 41.5 25.2 46.3 59.7 48.2 40.8
StableLM-2B 31.6 65.1 37.2 67.2 76.1 62.6 56.6
JetMoE-2B-9B 39.4 72.6 51.8 72.1 735 63.4 62.1
Gemma2-3B 43.7 66.3 58.4 75.2 71.8 64.5 63.3
Qwenl.5-3B-14B 51.3 714 68.2 82.7 74.3 65.1 68.8
LMs with ~7-9B active parameters
Llama2-7B 42.9 74.6 44.9 68.4 77.4 66.7 62.5
Qwen-7B 53.4 74.9 45.8 69.7 77.2 68.1 64.9
Mistral-7B 59.6 81.0 53.8 79.6 82.2 74.0 71.7
DeepSeek-7B 48.0 76.8 45.7 71.9 80.0 70.0 65.4
Llama3.1-8B 57.7 77.9 48.7 80.8 81.4 73.5 70.0
OLMo2-7B 63.2 85.3 59.7 83.1 82.3 76.1 75.0

Ours (LMs with ~1B and ~3B active parameters)

DeepSeekMoE-3B-16B 46.2 78.0 50.3 73.8 79.9 70.1 66.4
DeepSeekMoE-C3PO 55.4 85.7 61.1 80.7 85.8 77.5 744
OLMOoE-1B-7B 57.8 77.9 51.3 79.8 80.7 72.2 69.9
OLMOoE-C3PO 65.5 85.3 66.3 87.4 88.0 82.7 79.2

Table 2: Models grouped by active parameters (1B, 2-3B, 7-9B) evaluated on six benchmarks.
OLMOoE-C3PO (1B active) achieves 79.2% average accuracy, outperforming most 7-9B dense
models (e.g., Llama2-7B 62.5%, Mistral-7B 71.7%), demonstrating MoE+C3PO'’s efficiency.

Model Avg (%) Model Avg (%)
Base model 69.95 Base model 69.95
First 1 Token 74.45 €e=03 73.68
Middle 1 Token 71.40 €c=05 77.12
Last 1 Token (Ours) 79.20 €e=07 76.87
First 3 Tokens 73.63 k=1 75.28
Middle 3 Tokens 70.73 k = 3 (Ours) 79.20
Last 3 Tokens 77.90 k=5 77.70

Table 3: Optimizing pathways at token(s) of ~ Table 4: Comparison of e-ball and kNN
different positions (first/middle/last) and neighborbood in C3PO on OLMoE. k = 3
number (1 or 3 tokens) in OLMoE. Optimiz- achieves the highest accuracy, proving mod-
ing only the last token yields the best ac- erate neighbor counts balance locality and
curacy, while three-token C3PO degrades generalization.

performance.

optimization, activation becomes more concentrated, reinforcing specialization among
highly utilized experts. This suggests that C3PO refines expert selection, enabling the model
to make more efficient use of a subset of core experts rather than diffusing activation across
many different experts. An example of how C3PO refines MoE routing can be found in
Appendix A.1.

Published as a conference paper at COLM 2025

#Steps Avg (%)
Base model 69.95
3 74.22
5 76.90
10 (Ours) 79.20
20 79.25
50 79.22

Table 5: Increasing NGD steps in C3PO im-
proves the accuracy on OLMOoE.

511:3
57.3 60.3 62.9 65.1 66.3

B o
- X300 Y K- OT8% C:;g-fg;f X-/712% [x_/a15%
3 oy [SY2X(0: _V-X007% [| V-x0.04%
g 48.7 E .
§ - 42.7 39.7 371 349 337
£

0 2 4 sep © 8 10

Figure 6: Impact of NGD optimization steps
(x-axis) on OLMOoE for ARC-C task accuracy
for OLMOE. The first 6 steps yield an 11.6%
gain (initial 51.3% — 62.9%), reaching 66.3%
at Step 10. Only 5.1% of initially correct pre-
dictions flip, confirming stable and efficient
convergence.

Kernel Avg (%)
Base model 69.95
Linear 69.95
Polynomial 73.33
Matern 76.28
Gaussian (Ours) 79.20

Table 6: Comparison of different kernel
choices in C3PO on OLMOoE.

Expert Activation Heatmap (Before)

Expert Activation Heatmap (After)

10 20 30 40 50 60
Expert Index

Figure 7: Heatmap comparison of expert
activation frequency in OLMOoE's last five
layers for ARC-C (top: base model, right:
C3PO-optimized). Post-optimization, ac-
tivations concentrate, focusing on high-
frequency experts per layer (darker = higher
usage), showing C3PO enhances expert spe-
cialization and reduces redundancy.

5 Conclusions

Our work demonstrates that dynamic pathway optimization unlocks the latent potential
of MoE models by addressing a critical bottleneck: suboptimal expert routing. C3PO’s
key insight reveals that adaptive, sample-specific routing decisions - particularly in critical
layers - can significantly boost performance without architectural changes or additional
training. The framework’s practical impact stems from its efficient approach: by selectively
optimizing only the most influential experts and layers, it achieves substantial accuracy
gains while maintaining computational efficiency. This enables smaller MoE models to
match or surpass larger dense counterparts, reinforcing the value of sparse architectures
when properly utilized. For MoE models and beyond, dynamic adaptation of computational
pathways emerges as a powerful yet underutilized strategy for improving both performance
and efficiency.

References

Marco Bellagente, Jonathan Tow, Dakota Mahan, Duy Phung, Maksym Zhuravinskyi,
Reshinth Adithyan, James Baicoianu, Ben Brooks, Nathan Cooper, Ashish Datta, et al.
Stable Im 2 1.6 b technical report. arXiv preprint arXiv:2402.17834, 2024.

Xiao Bi, Deli Chen, Guanting Chen, Shanhuang Chen, Damai Dai, Chengqi Deng, Honghui
Ding, Kai Dong, Qiushi Du, Zhe Fu, et al. Deepseek llm: Scaling open-source language
models with longtermism. arXiv preprint arXiv:2401.02954, 2024.

10

Published as a conference paper at COLM 2025

Stella Biderman, Hailey Schoelkopf, Quentin Gregory Anthony, Herbie Bradley, Kyle
O’Brien, Eric Hallahan, Mohammad Aflah Khan, Shivanshu Purohit, USVSN Sai
Prashanth, Edward Raff, et al. Pythia: A suite for analyzing large language models
across training and scaling. In Infernational Conference on Machine Learning, pp. 2397-2430.
PMLR, 2023.

Yonatan Bisk, Rowan Zellers, Jianfeng Gao, Yejin Choi, et al. Piga: Reasoning about physical
commonsense in natural language. In Proceedings of the AAAI conference on artificial
intelligence, volume 34, pp. 7432-7439, 2020.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla
Dhariwal, Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, et al.
Language models are few-shot learners. Advances in neural information processing systems,
pp. 1877-1901, 2020.

Peter Clark, Isaac Cowhey, Oren Etzioni, Tushar Khot, Ashish Sabharwal, Carissa Schoenick,
and Oyvind Tafjord. Think you have solved question answering? try arc, the ai2 reasoning
challenge. arXiv preprint arXiv:1803.05457, 2018.

Corinna Cortes. Support-vector networks. Machine Learning, 1995.

Damai Dai, Chengqi Deng, Chenggang Zhao, RX Xu, Huazuo Gao, Deli Chen, Jiashi Li,
Wangding Zeng, Xingkai Yu, Yu Wu, et al. Deepseekmoe: Towards ultimate expert
specialization in mixture-of-experts language models. arXiv preprint arXiv:2401.06066,
2024.

Ali Emami, Paul Trichelair, Adam Trischler, Kaheer Suleman, Hannes Schulz, and Jackie
Chi Kit Cheung. The knowref coreference corpus: Removing gender and number cues for
difficult pronominal anaphora resolution. arXiv preprint arXiv:1811.01747, 2018.

William Fedus, Barret Zoph, and Noam Shazeer. Switch transformers: Scaling to trillion
parameter models with simple and efficient sparsity. Journal of Machine Learning Research,
23(120):1-39, 2022.

Aaron Grattafiori, Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian,
Ahmad Al-Dahle, Aiesha Letman, Akhil Mathur, Alan Schelten, Alex Vaughan, et al. The
llama 3 herd of models. arXiv preprint arXiv:2407.21783, 2024.

Dirk Groeneveld, 1z Beltagy, Pete Walsh, Akshita Bhagia, Rodney Kinney, Oyvind Tafjord,
Ananya Harsh Jha, Hamish Ivison, lan Magnusson, Yizhong Wang, et al. Olmo: Acceler-
ating the science of language models. arXiv preprint arXiv:2402.00838, 2024.

Dan Hendrycks, Collin Burns, Steven Basart, Andy Zou, Mantas Mazeika, Dawn Song, and
Jacob Steinhardt. Measuring massive multitask language understanding. arXiv preprint
arXiv:2009.03300, 2020.

Albert Q. Jiang, Alexandre Sablayrolles, Arthur Mensch, Chris Bamford, Devendra Singh
Chaplot, Diego de las Casas, Florian Bressand, Gianna Lengyel, Guillaume Lample, Lucile
Saulnier, Lélio Renard Lavaud, Marie-Anne Lachaux, Pierre Stock, Teven Le Scao, Thibaut
Lavril, Thomas Wang, Timothée Lacroix, and William El Sayed. Mistral 7b, 2023.

Albert Q Jiang, Alexandre Sablayrolles, Antoine Roux, Arthur Mensch, Blanche Savary,
Chris Bamford, Devendra Singh Chaplot, Diego de las Casas, Emma Bou Hanna, Florian
Bressand, et al. Mixtral of experts. arXiv preprint arXiv:2401.04088, 2024.

Dmitry Lepikhin, HyoukJoong Lee, Yuanzhong Xu, Dehao Chen, Orhan Firat, Yanping
Huang, Maxim Krikun, Noam Shazeer, and Zhifeng Chen. Gshard: Scaling giant models
with conditional computation and automatic sharding. arXiv preprint arXiv:2006.16668,
2020.

Brian Lester, Rami Al-Rfou, and Noah Constant. The power of scale for parameter-efficient
prompt tuning. arXiv preprint arXiv:2104.08691, 2021.

11

Published as a conference paper at COLM 2025

Xiang Lisa Li and Percy Liang. Prefix-tuning: Optimizing continuous prompts for generation.
arXiv preprint arXiv:2101.00190, 2021.

Zhongyang Li, Ziyue Li, and Tianyi Zhou. R2-t2: Re-routing in test-time for multimodal
mixture-of-experts. arXiv preprint arXiv:2502.20395, 2025a.

Ziyue Li and Tianyi Zhou. Your mixture-of-experts llm is secretly an embedding model for
free. arXiv preprint arXiv:2410.10814, 2024.

Ziyue Li and Tianyi Zhou. Sparser mixture-of-adapters with cross-layer generalization. In
Proceedings of the 2025 Conference of the Nations of the Americas Chapter of the Association
for Computational Linguistics: Human Language Technologies (Volume 1: Long Papers), pp.
3988-4002, 2025.

Ziyue Li, Chenrui Fan, and Tianyi Zhou. Where to find grokking in llm pretraining? monitor
memorization-to-generalization without test. arXiv preprint arXiv:2506.21551, 2025b.

Ziyue Li, Yang Li, and Tianyi Zhou. Skip a layer or loop it? test-time depth adaptation of
pretrained llms. arXiv preprint arXiv:2507.07996, 2025c.

Todor Mihaylov, Peter Clark, Tushar Khot, and Ashish Sabharwal. Can a suit of armor
conduct electricity? a new dataset for open book question answering. arXiv preprint
arXiv:1809.02789, 2018.

Niklas Muennighoff, Luca Soldaini, Dirk Groeneveld, Kyle Lo, Jacob Morrison, Sewon
Min, Weijia Shi, Pete Walsh, Oyvind Tafjord, Nathan Lambert, et al. Olmoe: Open
mixture-of-experts language models. arXiv preprint arXiv:2409.02060, 2024.

Team OLMo, Pete Walsh, Luca Soldaini, Dirk Groeneveld, Kyle Lo, Shane Arora, Akshita
Bhagia, Yuling Gu, Shengyi Huang, Matt Jordan, et al. 2 olmo 2 furious. arXiv preprint
arXiv:2501.00656, 2024.

Keisuke Sakaguchi, Ronan Le Bras, Chandra Bhagavatula, and Yejin Choi. Winogrande: An
adversarial winograd schema challenge at scale. Communications of the ACM, 64(9):99-106,
2021.

Maarten Sap, Hannah Rashkin, Derek Chen, Ronan LeBras, and Yejin Choi. Socialiqa:
Commonsense reasoning about social interactions. arXiv preprint arXiv:1904.09728, 2019.

Paul-Edouard Sarlin, Daniel DeTone, Tomasz Malisiewicz, and Andrew Rabinovich. Su-
perglue: Learning feature matching with graph neural networks. In Proceedings of the
IEEE/CVF conference on computer vision and pattern recognition, pp. 49384947, 2020.

Noam Shazeer, Azalia Mirhoseini, Krzysztof Maziarz, Andy Davis, Quoc Le, Geoffrey
Hinton, and Jeff Dean. Outrageously large neural networks: The sparsely-gated mixture-
of-experts layer. arXiv preprint arXiv:1701.06538, 2017.

Yikang Shen, Zhen Guo, Tianle Cai, and Zengyi Qin. Jetmoe: Reaching llama?2 performance
with 0.1 m dollars. arXiv preprint arXiv:2404.07413, 2024.

Aarohi Srivastava, Abhinav Rastogi, Abhishek Rao, Abu Awal Md Shoeb, Abubakar Abid,
Adam Fisch, Adam R Brown, Adam Santoro, Aditya Gupta, Adria Garriga-Alonso, et al.
Beyond the imitation game: Quantifying and extrapolating the capabilities of language
models. arXiv preprint arXiv:2206.04615, 2022.

Alon Talmor, Jonathan Herzig, Nicholas Lourie, and Jonathan Berant. Commonsenseqa:
A question answering challenge targeting commonsense knowledge. arXiv preprint
arXiv:1811.00937, 2018.

Yehui Tang, Fangcheng Liu, Yunsheng Ni, Yuchuan Tian, Zheyuan Bai, Yi-Qi Hu, Sichao

Liu, Shangling Jui, Kai Han, and Yunhe Wang. Rethinking optimization and architecture
for tiny language models, 2024.

12

Published as a conference paper at COLM 2025

Gemma Team, Morgane Riviere, Shreya Pathak, Pier Giuseppe Sessa, Cassidy Hardin, Surya
Bhupatiraju, Léonard Hussenot, Thomas Mesnard, Bobak Shahriari, Alexandre Ramé,
et al. Gemma 2: Improving open language models at a practical size. arXiv preprint
arXiv:2408.00118, 2024.

Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert, Amjad Almahairi, Yasmine Babaei,
Nikolay Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti Bhosale, et al. Llama 2:
Open foundation and fine-tuned chat models. arXiv preprint arXiv:2307.09288, 2023.

Johannes Welbl, Nelson F Liu, and Matt Gardner. Crowdsourcing multiple choice science
questions. arXiv preprint arXiv:1707.06209, 2017.

Christopher KI Williams and Carl Edward Rasmussen. Gaussian processes for machine learning,
volume 2. MIT press Cambridge, MA, 2006.

Fuzhao Xue, Zian Zheng, Yao Fu, Jinjie Ni, Zangwei Zheng, Wangchunshu Zhou, and Yang
You. Openmoe: An early effort on open mixture-of-experts language models. arXiv
preprint arXiv:2402.01739, 2024.

An Yang, Baosong Yang, Beichen Zhang, Binyuan Hui, Bo Zheng, Bowen Yu, Chengyuan Li,
Dayiheng Liu, Fei Huang, Haoran Wei, et al. Qwen2. 5 technical report. arXiv preprint
arXiv:2412.15115, 2024.

Rowan Zellers, Ari Holtzman, Yonatan Bisk, Ali Farhadi, and Yejin Choi. Hellaswag: Can a
machine really finish your sentence? arXiv preprint arXiv:1905.07830, 2019.

13

Published as a conference paper at COLM 2025

A Appendix
A.1 Example Case

Routing Weights Before vs After Optimization

Question: The nearest star to the sun 0071 orgina

is descrlbe'd as being 4.3 ligh?—years 006 o7 Opimies
away. Which statement explains why O Optimized Top-8
the light-year unit of measure is used

in this description?

o
g

Routing Weight
8

e 9o o @9

(A) The distance is extremely large C3PO 02
(B) The distance is a rough estimate 001
(C) Only light can travel between stars 000
(D) Light signals were timed reflecting R U S
ggrr?etctiﬁs;:\; er: (A) Answer:(D) x —> Answer:(A) J
NN
Question Similarity : 0.7623 Question Similarity : 0.7403 Question Similarity: 0.5677
Question: The distance of starsis Question: Question: The distance Question: Question: Which does
measured in what terms, meaning that light can travel in a year is light from the sun arrive at in final
the light takes many thousands of ~ known as what? time length?
years to reach us? (A) light year (A) Uranus
(A) light year (B) earth year (B) Mars
(B) light months (C) beam year (C) Pluto
(C) light decades (D) solar year (D) Earth
(D) light hours Answer: (A) light year Answer: (C) Pluto

Answer: (A) light year

Figure 8: An example of how C3PO optimizes the expert routing weights. Here we only
show the routing weights of the lastl layer. The polyline with red dots represents the
original routing weights of the test sample, while the polyline with blue dots represents
the optimized routing weights. C3PO optimizes the original routing weights by leveraging
similar questions in the reference set, then changing the test sample’s top-8 experts and their
corresponding weights, eventually turning an incorrect answer into a correct one.

A.2 Benchmarks and Reference Sets

Table 7 shows the overview of our benchmarks and reference sets.

Task Type Benchmarks Size Reference Sets Size
General Knowledge MMLU 14,042 BIG-Bench 8,000
SuperGLUE 8,000

Commonsense Reasoning HellaSwag 10,042 CommonsenseQA 6,000
PIQA 1,838 SociallQA 6,000

Scientific Question Answering ARC-C 1,172 OpenBookQA 2,000
ARC-E 2,376 SciQ 2,000

Coreference Resolution WinoGrande 1,267 KnowRef 2,000

Table 7: Overview of evaluation tasks, benchmarks, and reference sets with dataset sizes.

We briefly introduce benchmarks and reference sets categorized by task types as follows:

General Knowledge:

e MMLU (Hendrycks et al., 2020): This benchmark consists of 16,000 multiple-choice
questions across 57 subjects, including mathematics, philosophy, law, and medicine.

14

Published as a conference paper at COLM 2025

It evaluates a model’s ability to understand and reason across diverse academic
disciplines.

BIG-Bench (Srivastava et al., 2022): A comprehensive collection of 204 tasks de-
signed to assess the capabilities of language models beyond traditional benchmarks,
covering a wide range of topics and challenges.

SuperGLUE (Sarlin et al., 2020): An evolution of the GLUE benchmark, Super-
GLUE comprises eight challenging language understanding tasks, including logical
reasoning, commonsense inference, and coreference resolution, aimed at evaluating
general language understanding.

Commonsense Reasoning:

HellaSwag (Zellers et al., 2019): Containing 10,000 descriptions of activities or
events, each with four candidate endings, this dataset challenges models to choose
the most plausible continuation, testing their commonsense reasoning abilities.

PIQA (Bisk et al., 2020): Comprising 17,951 two-choice questions, PIQA assesses a
model’s understanding of physical commonsense by evaluating its ability to choose
the most effective solution to everyday tasks.

CommonsenseQA (Talmor et al., 2018): A dataset with 12,102 multiple-choice
questions that require models to utilize commonsense knowledge to select the
correct answer, focusing on everyday scenarios and concepts.

SocialIQA (Sap et al., 2019): Featuring 38,000 multiple-choice questions, SociallQA
evaluates a model’s understanding of social interactions and norms by assessing its
ability to reason about social situations and their implications.

Scientific Question Answering;:

ARC-C (Clark et al., 2018): Consisting of 2,590 multiple-choice science questions,
the Challenge Set is designed to be difficult for state-of-the-art models, requiring
advanced reasoning and knowledge.

ARC-E (Clark et al., 2018): With 5,197 multiple-choice science questions, the Easy
Set serves as a baseline to evaluate a model’s performance on straightforward
scientific queries.

OpenBookQA (Mihaylov et al., 2018): This dataset includes 5,957 multiple-choice
questions, each associated with an elementary science fact (the “open book”), as-
sessing a model’s ability to apply core scientific principles to answer questions.
SciQ (Welbl et al., 2017): Containing 13,679 science questions, SciQ is designed
to evaluate a model’s proficiency in answering questions across various scientific
domains, including biology, chemistry, and physics.

Coreference Resolution:

WinoGrande (Sakaguchi et al., 2021): An expanded version of the Winograd Schema
Challenge, WinoGrande comprises 44,000 fill-in-the-blank style sentences that test a
model’s ability to resolve ambiguous pronouns within diverse contexts.

KnowRef (Emami et al., 2018): This dataset contains 8,311 sentences with am-
biguous pronouns, challenging models to accurately determine the antecedents of
pronouns in complex sentences.

A.3 Baseline Models

We briefly introduce each model categorized by active parameter size as follows:

LMs with ~1B active parameters:

¢ Pythia-1B (Biderman et al., 2023): A 1-billion-parameter dense model, trained by

EleutherAl using standard autoregressive training techniques.

15

Published as a conference paper at COLM 2025

¢ Llama3.2-1B (Grattafiori et al., 2024): A compact variant of the Llama family, featur-
ing approximately 1 billion parameters designed by Meta.

* OLMo-1B (Groeneveld et al., 2024): An open-source dense transformer model with
around 1 billion parameters, developed by Allen Institute for AI (AI2).

* TinyLyne-1B-7B Tang et al. (2024): A sparse mixture-of-experts (MoE) model with 1
billion active parameters from a total of 7 billion parameters.

LMs with ~2-3B active parameters:

* OpenMOoE-3B-9B (Xue et al., 2024): An MoE architecture having 3 billion active
parameters selected from a total of 9 billion parameters.

¢ StableLM-2B (Bellagente et al., 2024): A dense transformer-based language model
by Stability Al, containing around 2 billion parameters.

* JetMoE-2B-9B (Shen et al., 2024): A sparse mixture-of-experts model from the Jet
series with 2 billion active parameters chosen from a pool of 9 billion.

¢ Gemma2-3B (Team et al., 2024): A dense transformer model developed by Google
DeepMind with approximately 3 billion parameters.

* Qwenl.5-3B-14B (Yang et al., 2024): A large-scale MoE model by Alibaba, featuring
3 billion active parameters selected from a total of 14 billion parameters.

LMs with ~7-9B active parameters:

¢ Llama2-7B (Touvron et al., 2023): Meta’s open-source dense language model with
approximately 7 billion parameters.

* Qwen-7B (Yang et al., 2024): A 7-billion-parameter dense transformer model devel-
oped by Alibaba.

¢ Mistral-7B (Jiang et al., 2023): A dense language model by Mistral Al, consisting of
roughly 7 billion parameters.

* DeepSeek-7B (Bi et al., 2024): An open-source transformer-based dense language
model with 7 billion parameters.

¢ Llama3.1-8B (Grattafiori et al., 2024): Meta’s latest generation dense transformer
model with about 8 billion parameters.

* OLMo2-7B (OLMo et al., 2024): An advanced 7-billion-parameter dense model by
Allen Institute for A, building upon the OLMo architecture.

A4 Impact of Reference Set Size

We study how the size of the reference set affects C3PO’s effectiveness. We systematically
varied the reference set size from 20 to ~34K examples (randomly sampled) and evaluated
C3P0O’s improvement over OLMoE. With very small pools (<1K), performance gains were
negligible (+0.4%). However, once the size reached 10K, accuracy improved significantly
(+5.0%) and continued to increase gradually, reaching +9.3% at ~34K. This demonstrates
that larger reference sets substantially boost C3PO’s performance, with diminishing returns
beyond ~10K (29%).

A.5 Inference Overhead vs. Accuracy

We quantify the real-world inference cost of C3PO beyond theoretical FLOPs. Using the
default configuration (10 NGD steps, 3 neighbors), per-sample latency increases from 1.8s
(baseline) to 5.1s (=2.8x), while average accuracy improves from 69.9% to 79.2%. For lower-
latency regimes, smaller configurations still yield meaningful gains (e.g., 5 steps with 3
neighbors achieves 76.9% accuracy at 3.2s). Embedding storage for the full reference set
remains lightweight (~20 MB in Parquet), making the method practically deployable with a
controllable accuracy /latency trade-off.

16

Published as a conference paper at COLM 2025

Reference Size Avg Accuracy (%) vs. Baseline (%) vs. Previous size (%)

Baseline 69.9 0.0 -

20 70.0 +0.1 +0.1
200 69.8 -0.1 -0.2
1,000 70.3 +0.4 +0.5
10,000 (29%) 74.9 +5.0 +4.6
17,000 (50%) 76.7 +6.8 +1.8
27,000 (80%) 78.3 +8.4 +1.6
Full (~34K) 79.2 +9.3 +0.9

Table 8: Effect of reference set size on OLMoE-C3PO.

Steps Neighbors Avg Accuracy (%) Latency per Sample (s)
Baseline (1, 0) 0 69.9 1.8
5 1 72.6 2.7
5 3 76.9 3.2
5 5 74.7 3.4
10 1 75.3 4.5
10 (Ours) 3 79.2 5.1
10 5 77.7 5.5

Table 9: Accuracy vs. real-time inference latency for different C3PO configurations.

A.6 Pathway Evolution and Expert Redistribution

We analyze how C3PO modifies expert activations to improve predictions. Focusing on
the final layer for ARC-C, C3PO reduces over-reliance on some initially dominant experts
(e.g., expert9 and expert52 decrease by 7.2% and 9.0%, respectively) while boosting more
informative ones (expert12 and expertl7 increase by 13.1% and 6.0%). This redistribution
correlates with the accuracy improvement from 51.3% to 66.3%. Furthermore, we per-
form interpolation between the base and optimized routing weights, observing that as the
interpolation coefficient a increases, both the concentration on top experts and accuracy
steadily improve (see Table 10), confirming that C3PO sharpens specialization rather than
indiscriminately expanding activation.

Interpolation « Top-8 Activation Frequency Avg Accuracy (%)

0.0 (baseline) 0.65 69.9
0.3 0.71 72.7
0.5 0.76 74.6
0.7 0.79 76.4
1.0 (C3PO) 0.83 79.2

Table 10: Effect of interpolating between original and C3PO-optimized pathways on expert
concentration and accuracy.

A.7 Ablation Study

Layer optimization strategies determine which specific layers’ routing weights should be
modified in each token, directly influencing the model’s performance after optimization.
Table 11 analyzes different layer optimization strategies for routing weights in OLMOoE.
We systematically explore various combinations within the OLMoE’s 16 layers, revealing
that the location of optimized layers significantly impacts performance. Single-layer opti-
mization shows best results when targeting the last layer, while two-layer combinations
including the last layer consistently outperform other configurations. Most importantly,

17

Published as a conference paper at COLM 2025

OLMoE MMLU HellaSwag ARC-C ARC-E PIQA WinoGrande
Base model 57.8 77.9 51.3 79.8 80.7 72.2
1 Layer Optimization

First 1 59.4 78.9 52.8 80.3 82.5 73.9
Middle 1 58.3 78.1 51.9 79.9 81.2 72.8
Last1 60.2 79.7 53.5 81.6 82.9 74.5
2 Layers Routing Weights Optimization

First 1 + Middle 1 60.5 80.2 54.6 82.3 83.1 75.2
First1 + Last 1 61.8 81.3 55.8 83.7 84.5 76.8
Middle 1 + Last 1 60.9 80.7 54.9 82.8 83.4 75.7
First 2 60.7 80.6 55.3 83.1 84.0 76.1
Middle 2 59.9 79.5 53.9 81.9 82.3 74.1
Last2 62.3 81.9 56.7 84.2 85.1 77.3
5 Layers Routing Weights Optimization

First 2 + Middle 3 63.2 82.8 59.4 85.1 85.6 79.2
First 2 + Last 3 64.3 83.7 62.8 86.5 87.1 80.7
Middle 2 + Last 3 63.7 83.1 61.5 85.3 86.2 79.8
First 5 63.9 83.5 62.1 85.9 86.7 80.3
Middle 5 62.5 82.3 58.7 84.6 84.9 78.5
Last5 65.5 85.3 66.3 87.4 88.0 82.7
All Layers Routing Weights Optimization

All (16) Layers 64.1 84.3 63.7 86.1 86.8 81.2

Table 11: Comparison of C3PO applied to different layers in OLMoE. Performance compari-
son of different layer optimization strategies.

optimizing only the final five layers (Last5) achieves the best performance across all bench-
marks, surpassing even the full 16-layer optimization (All16). This suggests that focusing
optimization on the deeper layers near the output is more effective than modifying the
entire network, highlighting the importance of targeted layer selection in MoE architectures.

Token optimization strategies determine which specific token numbers and positions
should be modified in the sequence, significantly affecting the inference results after opti-
mization. Table 12 examines the impact of optimizing routing weights at different token
positions in OLMoE. We systematically analyze various positions (first, middle, last) and
quantities (one, three tokens). Results clearly show that token position significantly affects
performance, with last token optimization consistently outperforming other configurations
across all benchmarks. Notably, optimizing only the last token yields the best results, achiev-
ing improvements of +7.7% on MMLU and +15.0% on ARC-C compared to the baseline.
Expanding optimization to three tokens actually decreases performance, suggesting that
focusing exclusively on the final token provides the most effective routing optimization
strategy.

Neighborhood selection Table 13 examines different neighborhood selection strategies for
routing weight optimization in OLMoE. We evaluate two approaches: an e-neighborhood
method with various thresholds and a k-nearest neighbors (kNN) approach with different k
values. While both methods significantly improve performance over the baseline, the kNN
approach with k=3 consistently delivers the best results across all benchmarks, achieving
improvements of +7.7% on MMLU and +15.0% on ARC-C. The e-neighborhood method
shows strong performance at €=0.5, but still falls short of KNN's effectiveness. These results
indicate that selecting a moderate number of nearest neighbors provides the optimal strategy
for neighborhood-based routing optimization.

18

Published as a conference paper at COLM 2025

MMLU HellaSwag ARC-C ARC-E PIQA WinoGrande

Base model 57.8 779 51.3 79.8 80.7 722
1 Token Optimization

First 1 Token 61.4 81.5 58.7 83.6 84.2 77.3
Middle 1 Token 59.2 79.1 53.0 81.2 82.1 73.8
Last 1 Token 65.5 85.3 66.3 87.4 88.0 82.7
3 Tokens Optimization

First 3 Token 60.8 80.7 57.5 82.9 83.5 76.4
Middle 3 Token 58.6 78.5 52.4 80.5 81.3 73.1
Last 3 Token 64.1 84.3 64.8 86.2 86.7 81.3

Table 12: Performance comparison of different token optimization strategies.

MMLU HellaSwag ARC-C ARC-E PIQA WinoGrande

Base model 57.8 77.9 51.3 79.8 80.7 72.2
e=03 60.4 80.5 57.2 834 841 76.5
€=05 63.2 83.7 63.5 858 86.3 80.2
=07 62.8 84.1 62.9 85.1 865 79.8
k=1 61.7 82.3 59.8 842 853 78.4
k=3(Ours) 655 85.3 66.3 874 88.0 82.7
k=5 63.9 84.5 63.7 86.1 867 81.3

Table 13: Performance comparison of different optimization strategies.

Step numbers Table 14 examines how the number of optimization steps affects routing
weight performance in OLMOoE. Results show significant improvements as steps increase
from 3 to 10, with substantial early gains (+2.5% on MMLU from 3 to 5 steps) that gradually
diminish due to our cosine annealing learning rate schedule. Importantly, performance
plateaus beyond 10 steps, with minimal fluctuations at 20 and 50 steps across all benchmarks.
This indicates that 10 optimization steps provide a better balance between computational
efficiency and performance improvement, as additional steps yield negligible benefits.

#Steps MMLU HellaSwag ARC-C ARC-E PIQA WinoGrande
Base model 57.8 77.9 51.3 79.8 80.7 722
3 61.3 81.2 58.3 83.3 84.0 77.2
5 63.8 83.4 62.5 85.4 86.2 80.1
7 64.8 84.7 65.2 86.8 87.3 81.7
10 (Ours) 65.5 85.3 66.3 87.4 88.0 82.7
20 65.4 85.7 66.5 87.2 88.3 82.4
50 65.7 85.2 66.1 87.5 87.9 82.9

Table 14: Performance comparison with different numbers of optimization steps.

Learning rate Table 15 demonstrates the impact of learning rate schedules on model
performance across six benchmarks. The cosine learning rate schedule (10e-2 — 10e-5)
consistently outperforms other methods, achieving improvements of +7.7% on MMLU,
+7.4% on HellaSwag, and +15.0% on ARC-C over the base model. Step decay (10e-2 — 10e-5)
shows comparable but slightly lower gains, while fixed learning rates (le-4 and 1e-3) yield
more modest improvements. These results highlight that adaptive learning rate strategies,
particularly cosine scheduling, significantly enhance model performance.

19

Published as a conference paper at COLM 2025

Learning Rate MMLU HellaSwag ARC-C ARC-E PIQA WinoGrande

Base model 57.8 77.9 51.3 79.8 80.7 72.2
Fixed(1e-3) 59.1 79.4 53.0 81.2 82.1 73.9
Fixed(le-4) 61.5 81.6 57.1 83.5 84.3 76.8
Step Decay 64.8 84.7 65.3 86.8 87.2 81.9
Cosine(Ours) 65.5 85.3 66.3 87.4 88.0 82.7

Table 15: Performance comparison with different learning rate schedules.

Embedding model Table 16 demonstrates the significant impact of embedding model
quality on performance across six benchmarks. NV-Embed-V2 consistently outperforms
other embedding models, achieving improvements of up to +15.0% on ARC-C compared
to the base model. The results show the clear improvement from All-Mini-V6 to our NV-
Embed-V2. This trend confirms that higher-quality embeddings enable more effective
identification of relevant neighbors in the reference set, which directly translates to better
optimization of routing weights and enhanced performance on downstream tasks.

Embedding MMLU HellaSwag ARC-C ARC-E PIQA WinoGrande
Model

Base model 57.8 77.9 51.3 79.8 80.7 72.2
All-Mini-Vé6 58.9 78.6 53.5 80.3 82.3 73.9
Sentence-Bert 61.2 80.8 56.1 83.7 83.1 77 .4
Stella-En-1.5B-V5 62.1 83.4 61.2 84.2 85.8 78.3
Gte-Qwen2-7B-instruct 64.5 83.9 62.8 86.5 85.2 81.4
NV-Embed-V2 (Ours) 65.5 85.3 66.3 87.4 88.0 82.7

Table 16: Performance comparison with different embedding models.

Kernel choice Table 17 compares different kernel functions for NGD across six bench-
marks. The Gaussian kernel consistently outperforms alternatives, achieving substantial
improvements over the linear baseline (+7.7% on MMLU, +7.4% on HellaSwag, +15.0% on
ARC-C). This result suggests the Gaussian kernel’s effectiveness stems from its superior
ability to model non-linear relationships in high-dimensional embedding spaces.

Kernel MMLU HellaSwag ARC-C ARC-E PIQA WinoGrande
Linear 57.8 77.9 51.3 79.8 80.7 72.2
Polynomial 61.2 79.4 58.7 81.5 82.9 76.3
Matern 62.9 83.1 61.8 85.2 84.5 80.2
Gaussian (Ours) 65.5 85.3 66.3 87.4 88.0 82.7

Table 17: Performance comparison with different kernel functions.

20

	Introduction
	Related Work
	Methodology
	Gradient Descent
	Kernel Regression
	Mode Finding (Meanshift)
	Neighborhood and Embedding Space
	Efficient Pathway Optimization

	Experiment
	Experimental Settings
	Main Results
	Ablation Study
	Understanding C3PO Optimization: Prediction Evolution and Expert Specialization

	Conclusions
	Appendix
	Example Case
	Benchmarks and Reference Sets
	Baseline Models
	Impact of Reference Set Size
	Inference Overhead vs. Accuracy
	Pathway Evolution and Expert Redistribution
	Ablation Study

