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Abstract

Existing Task-Oriented Dialogue (TOD) sys-001
tems primarily focus on single-session dia-002
logues, limiting their effectiveness in long-term003
memory augmentation. To address this chal-004
lenge, we introduce a MS-TOD1 dataset, the005
first multi-session TOD dataset designed to006
retain long-term memory across sessions, en-007
abling fewer turns and more efficient task com-008
pletion. This defines a new benchmark task for009
evaluating long-term memory in multi-session010
TOD. Based on this new dataset, we propose a011
Memory-Active Policy (MAP) that improves012
multi-session dialogue efficiency through a two-013
stage approach. 1) Memory-Guided Dialogue014
Planning retrieves intent-aligned history, identi-015
fies key QA units via a memory judger, refines016
them by removing redundant questions, and017
generates responses based on the reconstructed018
memory. 2) Proactive Response Strategy de-019
tects and correct errors or omissions, ensur-020
ing efficient and accurate task completion. We021
evaluate MAP on MS-TOD dataset, focusing022
on response quality and effectiveness of the023
proactive strategy. Experiments on MS-TOD024
demonstrate that MAP significantly improves025
task success and turn efficiency in multi-session026
scenarios, while maintaining competitive per-027
formance on conventional single-session tasks.028

1 Introduction029

Task-oriented dialogue (TOD) systems (Wang et al.,030

2021; He et al., 2022; Bang et al., 2023; Swamy031

et al., 2023a) have traditionally focused on single-032

session scenarios, overlooking the fact that real033

world interactions often span multiple sessions over034

extended periods. While LLMs have been intro-035

duced to improve TOD (Xu et al., 2024a,b; Chung036

et al., 2023; Heck et al., 2023a), most efforts re-037

main confined to single-session settings and over-038

look long-term memory augmentation across multi-039

session interactions (Du et al., 2025). Moreover,040

1Code and dataset will be released upon paper acceptance.

Can you please 
provide me with the 
details of your flight 
reservation?

Hello. I'm ready to 
finalize the flight 
reservation we 
discussed last time.

Ok, Just to confirm,…

Yes, that's correct.

w/o. multi-session memory
Turn Number: 10

Multi-Session Memory 

Turn Number: 2
w/. multi-session memory

...

When do you …

Hello. I'm ready to 
finalize the flight 
reservation we 
discussed last time.

Ok, Just to confirm,…

Yes, that's correct.

Retriever

...
… March 3rd …

… fly from San 
Francisco to Sydney.

<original city: San Francisco>
<destination city : Sydney >
<airlines : United Airlines>
<seating class : Economy>

Could you help ...

Yes, please tell ...
...

Could you update me on my flight 
reservation?
…finalize your flight reservation from 
San Francisco to Sydney with United 
Airlines. … , in Economy class ... 

Figure 1: Task-oriented dialogue, without (left) vs. with
(right) multi-session memory; the latter demands more
turns of conversation.

existing TOD datasets (Stacey et al., 2024; Liu 041

et al., 2024a; Budzianowski et al., 2018; Rastogi 042

et al., 2020) are limited to single-session dialogues, 043

leaving a gap in benchmarks for evaluating long- 044

term memory retention across sessions. 045

As shown in Figure 1, single-session systems 046

require users to restate details (e.g., flight times, 047

seat preferences) in every session, leading to inef- 048

ficiency and frustration. In contrast, multi-session 049

memory enables seamless retrieval of prior con- 050

text, supporting fewer turns and a more personal- 051

ized experience. In contrast, multi-session mem- 052

ory allows systems to retrieve prior user-specific 053

information—such as preferences or booking his- 054

tory—thereby reducing redundancy and supporting 055

more efficient, goal-oriented interactions. 056

To bridge this gap, we introduce the Multi- 057

session Task-oriented Dialogue Dataset (MS- 058

TOD), comprising 132 simulated speaker parti- 059
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tions, each spanning over 20 sessions with di-060

verse task goals derived from SGD (Rastogi et al.,061

2020). MS-TOD supports comprehensive evalua-062

tion of TOD systems to retrieve long-term context,063

maintain consistent task slots, and adapt responses064

across sessions. This also defines a novel task set-065

ting for evaluating long-term memory integration in066

multi-session TOD, where systems must leverage067

cross-session knowledge to support coherent and ef-068

ficient task completion. While existing approaches069

in open-domain multi-session conversations focus070

on retrieving dialogue history or summaries (Lu071

et al., 2023; Zhong et al., 2024; Joko et al., 2024;072

Li et al., 2024a; Du et al., 2024), multi-session073

TOD system face additional demands: they must074

recall critical slot-value pairs, track evolving user075

intents, and proactively resolve missing or outdated076

information while minimizing redundant queries.077

Therefore, we propose the Memory-Active Pol-078

icy (MAP) to incorporate long-term memory in079

the multi-session TOD task. MAP consists of two080

core phases: (1) Memory-Guided Dialogue Plan-081

ning, where an LLM generates an intent hypothesis082

retrieves relevant memory entries to support cross-083

session goal tracking. Furthermore, a memory084

judger identifies key QA units and refines them by085

removing redundant questions, distilling slot-level086

content for precise, context-aware response genera-087

tion. (2) Proactive Response Strategy, which iter-088

atively detects missing or mismatched slots by com-089

paring predicted responses with task goals, actively090

engaging users to resolve incomplete slots, thereby091

reducing redundancy and ensuring smooth, goal-092

oriented interactions. Experimental results on MS-093

TOD demonstrate that MAP effectively improves094

dialogue coherence, response quality, task success095

rate, and dialogue efficiency in multi-session TOD.096

The main contributions include:097

• We introduce MS-TOD, the first multi-session098

TOD dataset and benchmark task for evaluat-099

ing long-term memory integration across ses-100

sions.101

• We propose MAP, a two-stage framework that102

distills and leverages cross-session memory103

for efficient, minimal-turn task completion.104

• We demonstrate that MAP consistently outper-105

forms strong baselines across multiple metrics,106

confirming the effectiveness of its memory ac-107

tivation policy.108

Settings GPT-4 Score Slot Acc.

No Retrieval (Direct Prompting)
Current Session Context 2.60 0.13
Full Conversation Context 4.76 0.61
Retrieval-Augmented Generation
BM25-Based Retrieval 5.90 0.53
Embedding-Based Retrieval 7.01 0.67
Hybrid Retrieval 7.04 0.68
Oracle (Upper Bound)
Oracle 8.51 0.82

Table 1: Evaluation of confirmation-type response gen-
eration under different prompting and retrieval strate-
gies.

2 Preliminary Experiments 109

To investigate the effectiveness of different strate- 110

gies for handling dialogue history in multi-session 111

task-oriented response generation, We conduct 112

a preliminary study comparing direct prompting 113

(Swamy et al., 2023b; Xu et al., 2024a) with 114

retrieval-augmented generation (RAG) (Huang 115

et al., 2024; Lu et al., 2023) in multi-session TOD. 116

Because standard TOD datasets lack multi- 117

session dependencies, we construct a test set specif- 118

ically for confirmation-type response generation 119

(details in Section 3). Our pipeline includes (1) 120

Retrieval. We explore three strategies for retriev- 121

ing relevant historical dialogues: sparse retrieval 122

(BM25 (Robertson and Zaragoza, 2009)), dense 123

retrieval (text-embedding-small-32), and a hybrid 124

approach that combines both to leverage their com- 125

plementary strengths. (2) Response Generation. 126

GPT-4o-mini then generates confirmation-type re- 127

sponses by incorporating the retrieved dialogue 128

history and task goal information. 129

As shown in Table 1, RAG consistently out- 130

performs direct prompting. For instance, dense 131

retrieval achieves 0.67 slot accuracy and a 7.01 132

GPT-4 score, surpassing full-context prompting 133

(0.61 and 4.76, respectively). Hybrid retrieval fur- 134

ther improves slot accuracy to 0.68 and the GPT-4 135

score to 7.04, demonstrating the value in combin- 136

ing sparse and dense strategies. Oracle retrieval 137

(using ground-truth context) reaches 0.88 and 8.51, 138

underscoring the need for more accurate retrieval 139

strategies in multi-session TOD. 140

2OpenAI. text-embedding-3-small. 2025. OpenAI, https:
//platform.openai.com/docs/guides/embeddings.
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Domain: Travel Intent: BookHotel

User: Hi. Did you find any good 
hotel options for my stay in San 
Francisco?
Assistant: Hi! Yes, I did. The 
first option is Hotel ABC, which 
offers free breakfast and Wi-Fi. 
The second option is Hotel XYZ, 
located near popular tourist 
spots and includes a gym facility. 
Which one sounds better to you.
User: Hotel XYZ sounds better.
Assistant: Just to confirm, you 
would like to book a room at 
Hotel XYZ in San Francisco for 
one adult from March 1st to 
March 8th, correct?

Session #24

User Task_Goal
check_in_date:    March 1st
check_out_date : March 8th
where_to : San Francisco
number_of_adults: one adult

Domain: Travel Intent: BookHotel

User: Hi, I'm looking to book 
a room in San Francisco.
Assistant: Sure! I can help 
with that. When would you 
like to check in?
User: I'd like to check in on 
March 1st.
Assistant: Got it. And when 
will you be checking out?
User: I'll be checking out on 
March 8th.
Assistant: Alright. How 
many adults will be staying?
User: Just one adult.

User Task_Goal
check_in_date:    March 1st
check_out_date : March 8th
where_to : San Francisco
number_of_adults: one adult

Session #1

Task dialog history Task Completion Evaluation

Figure 2: An Example of MS-TOD dataset.

3 Dataset141

To systematically evaluate TOD systems requiring142

multi-session long-term memory integration, we143

develop the MS-TOD dataset, derived from the144

Schema-Guided Dialogue (SGD) dataset (Rastogi145

et al., 2020). Compared with existing TOD and146

open-domain datasets, MS-TOD uniquely supports147

multi-session memory retrieval, slot tracking, and148

intent continuity (see Appendix Table 9 for dataset149

comparison). MS-TOD comprises two subsets: a150

training subset for training the memory judger (Sec-151

tion 4.2) and an evaluation subset designed to as-152

sess multi-session memory activation and TOD re-153

sponse generation shown in Figure 2.154

3.1 Data Generation155

Multi-Session Dialogue Construction. Be-156

cause existing TOD corpora typically feature157

single-session interactions lacking structured multi-158

session dependencies, we create three dialogue159

sessions for each task in the SGD dataset. Com-160

pared with single-session dialogues, this design161

more closely simulates how users revisit and refine162

the same task at different times and in different163

contexts. We chose three sessions—rather than a164

higher number—to strike a balance between captur-165

ing realistic user behavior and avoiding repetitive166

dialogue data, particularly given that SGD tasks167

involve fewer than ten task slots. As a result, three168

sessions offer sufficient coverage of task variations169

without overpopulating the dataset. More details170

can be found in Appendix A.1.171

Confirmation-Type Response Annotation. In172

Attribute Evaluation

Domains 16
Intentions 19
Task goals 956
Dialogues 2,861
Utterances 18,530
Avg. slots per task goal 4.24

Number of individuals 132
Avg. intentions per individual 5.45
Avg. sessions per individual 21.67
Avg. Utterances per individual 140.38

Table 2: MS-TOD dataset statistics for evaluation.

the final session of each task, we introduce 173

confirmation-type annotations to mark utterances 174

indicating the completion of long-term or recur- 175

ring tasks. These annotations serve two primary 176

functions: (1) Guiding Memory Activation: High- 177

lighting key dialogue points to trigger long-term 178

memory activation, summaries, or confirmations; 179

and (2) Supporting System Evaluation: They en- 180

able evaluation of the system’s ability to recognize 181

and record cross-session information or long-term 182

goals during dialogue strategy assessment. 183

3.2 Memory Bank Construction 184

Since multi-session interactions occur at the in- 185

dividual level, we group sessions into Individual 186

Memory Banks (Figure 2), each storing an indi- 187

vidual’s historical dialogues to maintain continuity 188

and enable adaptive responses. Each bank contains 189

over 20 sessions spanning more than six distinct 190

user intentions (Table 2), with one evaluation ses- 191

sion per intent to assess confirmation-type genera- 192

tion. Task goals are included to support memory 193

activation and task handling. We employ a GPT-4- 194

based generator to extract intent descriptions and 195

construct task-specific QA pairs (Appendix A.2), 196

enabling efficient and intention-aware memory re- 197

trieval across domains. Additional dataset details 198

appear in Appendix B.1 and B.2. 199

MS-TOD is derived from the Schema-Guided 200

Dialogue (SGD) dataset, selected for its broad do- 201

main coverage, schema-driven design, and support 202

for multi-domain interactions. Our memory bank 203

structure (20 sessions, 6+ intents) reflects typical 204

slot-intent patterns in SGD and aligns with prior 205

multi-session benchmarks (Appendix B.5). 206

Human Validation. To ensure the quality and 207

coherence of the constructed dataset, we conducted 208

a multi-stage manual validation process to verify 209

intent accuracy, slot-value correctness, dialogue 210
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Alright, playing Black Widow on the bedroom speaker now. Enjoy your music!ResponseLLM-Reader

Historical Sessions

······

Retriever

…

Memory Judgement and Refinement

Figure 3: Overflow of our MAP framework, which comprises Memory-Guided Dialogue Planning and Proactive
Response Strategy.

coherence, and confirmation-response alignment.211

Full validation procedures are described in Ap-212

pendix B.3.213

4 Memory-Active Policy214

To address the need for long-term memory and215

multi-session context in TOD, the Memory-Active216

Policy (MAP) combines memory-driven dialogue217

planning with a proactive policy strategy as shown218

in Figure 3.219

4.1 Task Definition220

The objective of this task is to generate a natural221

language response r based on the provided dia-222

logue context c and individual memory bank M .223

The dialogue context c represents the ongoing in-224

teraction, comprising chronologically ordered user225

utterances uj and system responses rj . The indi-226

vidual memory bank M consists of memory repre-227

sentations from multiple dialogue sessions, where228

each session provides an intent description ki and229

a corresponding set of QA pairs vi. Formally, we230

define: M = {(ki, vi)}Ni=1, vi = {(qij , aij)}nj=1.231

Here, ki represents the session’s high-level intent,232

while vi stores detailed task-related information.233

This structured design facilitates efficient retrieval234

and utilization of long-term user-specific memory.235

The response r is generated by a large language236

model LLM that integrates c and M , ensuring237

semantic coherence, memory relevance, and task238

slot accuracy. Formally, the optimal response is239

obtained by maximizing the conditional probability240

distribution: 241

r∗ = argmax
r∈R

P (r | c,M), (1) 242

whereR denotes the set of all possible responses. 243

This approach emphasizes understanding the dia- 244

logue context and leveraging individual memory to 245

produce coherent and relevant responses. 246

4.2 Memory-Guided Dialogue Planning 247

Memory-Guided Dialogue Planning consists of two 248

key steps: (1) Intent Capture and Memory Activa- 249

tion, where the system identifies and retrieves rele- 250

vant memories aligned with the user’s intentions; 251

(2) Memory Judgement and Refinement, which 252

detects missing task slots, and re-ranks relevant 253

memories to ensure optimal information recall for 254

response generation. 255

Intent Capture and Memory Activation. Given 256

the dialogue context ci, we use LLM (GPT4o-mini) 257

to generate a high-level intent description ki, which 258

summarizes the user’s objective in the current ses- 259

sion. The intent description ki is then used to re- 260

trieve relevant memory units from the long-term 261

memory M , represented as M = {(kj , vj)}mj=1, 262

where kj is an intent-related key and vj is the cor- 263

responding structured information, such as paired 264

questions and answers. Using an embedding model, 265

ki is mapped to a dense representation and com- 266

pared with kj to activate the most relevant memory 267

units vi. These activated memory units vi, con- 268

taining structured information such as task-related 269
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questions and answers, are then used to guide sub-270

sequent dialogue processing.271

Memory Judgement and Refinement. To guide272

accurate memory selection, we first identify miss-273

ing task information using a Chain-of-Thought274

(CoT) prompting strategy (Wei et al., 2022), which275

generates a hypothesized missing slot query qmiss276

based on the current dialogue context ci This miss-277

ing query serves as a proxy for what information278

is needed from memory to complete the task. We279

then assess the relevance of each QA pair in the280

retrieved memory using a memory judger instanti-281

ated by LLaMA 3.1-8B (Meta AI, 2024). Given ci,282

qmiss and (qj,u, aj,u), the judger estimates:283

sj,u = P (y = 1|(ci, qmiss, (qj,u, aj,u))) (2)284

where y = 1 indicates that the QA pair contributes285

to the task goal, while y = 0 indicates irrelevance.286

The model is trained with cross-entropy loss:287

L = −
∑

y log sj,u + (1− y) log(1− sj,u) (3)288

To balance retrieval relevance and judger evalua-289

tion, we re-rank all QA pairs using a weighted com-290

bination of initial retrieval score sf,ju and judger291

score sju:292

sf,ju = α · sprev,ju + (1− α) · sju, (4)293

The top 5 QA pairs vselected with the highest294

sfinal,ju scores are selected for refinement.295

Memory Refinement. In the refinement stage,296

we clean and restructure the selected QA pairs297

to remove noise and improve response grounding.298

Specifically, we discard auxiliary questions qj,u)299

and retain only the core answers Acore = {aj,u}.300

These core answers are concatenated into the dia-301

logue context to form a memory-enhanced prompt302

for the generation module. This step ensures that303

only high-relevance, low-noise content is passed304

forward for response planning.305

4.3 Proactive Response Strategy306

The response generation phase synthesizes the di-307

alogue context c and pruned memory Acore (from308

memory reconstruction) into a confirmation re-309

sponse r. Using LLMReader, the system evaluates310

if integrated memory supports task completion:311

r = LLMReader(c, Acore) (5)312

where r serves dual purposes: (1) providing task 313

guidance and (2) explicitly verifying memory rele- 314

vance to user goals (see Appendix A.3 for details). 315

To provide more comprehensive responses to 316

user queries, we propose a proactive dialogue 317

policy. Based on the generated response r, we 318

identify missing or incorrect slots within the dia- 319

logue. This results in a set of slots, denoted as 320

L = {l1, l2, ..., ln}, where each li represents a 321

missing or erroneous slot. We design an agent 322

to simulate the user, explicitly informing it of the 323

slot set L. The user agent then interacts with our 324

dialogue model in an interactive conversation to 325

address the identified slots. 326

At each dialogue turn, a supervisor (played by 327

an LLM) evaluates whether the conversation accu- 328

rately fulfills the slot information requirements. If 329

a slot si is successfully resolved during the inter- 330

action, it is removed from L. Mathematically, the 331

update to the slot set is expressed as: 332

S ← L {li} (6) 333

The interaction continues for multiple turns until 334

the slot set becomes empty, L = ∅, ensuring all 335

missing or erroneous slots are resolved. 336

5 Experiments 337

5.1 Experimental Setups 338

Evaluation Metrics. We use four core metrics to 339

evaluate model performance: GPT-4 score, Joint 340

Goal Accuracy (JGA), Dialogue Turn Efficiency 341

(DTE), and Success Rate (S.R.). GPT-4 Score 342

(1–10) 3 reflects response quality based on fluency, 343

coherence, and informativeness. JGA measures 344

slot prediction accuracy, DTE captures the num- 345

ber of turns required to complete a task, and S.R. 346

indicates whether the user goal is achieved. To 347

support analysis, we report auxiliary metrics in- 348

cluding Recall@k for memory retrieval accuracy, 349

Slot Accuracy for value correctness, and BLEU 350

and ROUGE for generation overlap. Human eval- 351

uation further assesses Accuracy, Informativeness, 352

and Coherence, with A.I.C. denoting their average. 353

Annotation details are provided in Appendix C.3. 354

Baselines. We comprehensively evaluate MAP 355

against three baseline categories: 356

• General-purpose LLMs. We evaluate 357

prompting-based dialogue performance with 358

3GPT4-as-the-judge prompts can be found in Appendix
A.4
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Model Setting GPT4 JGA DTE S.R.

LLaMA3-8B w/o MAP 4.89 0.64 5.37 0.82
w/ MAP 6.39 0.63 3.46 0.92

Qwen-7B w/o MAP 6.26 0.66 4.93 0.83
w/ MAP 6.81 0.66 4.31 0.87

Mistral-7B w/o MAP 6.20 0.73 2.52 1.00
w/ MAP 6.48 0.80 1.21 1.00

GPT4o-mini w/o MAP 6.93 0.67 6.03 0.88
w/ MAP 7.14 0.70 3.19 0.99

Table 3: Performance comparison of general-purpose
LLM models with and without long-term memory inte-
gration. The w/o MAP setting uses full-context prompt-
ing, feeding the entire dialogue history as input, while
w/ MAP leverages memory active policy to retrieve and
utilize relevant long-term memory.

instruct models including LLaMA3-8B (Tou-359

vron et al., 2024), Qwen2.5-7B (Team, 2024c),360

Mistral-7B (Team, 2024a), and GPT-4o-mini361

(Team, 2024b).362

• Traditional Task-Oriented Dialogue Sys-363

tems. To assess MAP in structured DST sce-364

narios, we compare with task-specific fine-365

tuned BERT-DST (Chao and Lane, 2019), Au-366

toTOD (Xu et al., 2024a), and LDST (Feng367

et al., 2024). Among these, AutoTOD incor-368

porates an external memory module to track369

user goals across turns.370

• Long-term Summarization Baseline. We ad-371

ditionally implement a summarization-based372

baseline inspired by ChatCite (Li et al.,373

2024c), which produces concise history sum-374

maries for each session. The same inference375

model (GPT-4o-mini) is used across all set-376

tings to ensure fairness.377

To ensure a fair assessment of generalization, all378

models are evaluated on a held-out multi-session379

test set that is excluded from all training processes.380

5.2 Main Results381

Comparision with General-purpose LLMs. We382

conduct the experiments comparing full context383

prompting and our MAP framework in the metric384

of GPT4, JGA, DTE, and S.R. As shown in Ta-385

ble 3, MAP demonstrates consistent performance386

gains over baseline prompting methods. For in-387

stance, applying MAP to Mistral-7B increases JGA388

from 0.73 to 0.80 and S.R. from 0.83 to 0.87. No-389

tably, LLaMA3-8B, Qwen-7B, and GPT-4o-mini390

also show significant improvements in both JGA391

and S.R. when integrated with MAP. In terms of392

Model GPT4 JGA DTE S.R.

Bert-DST∗ - 0.067 - -
LDST∗ - 0.234 - -
AutoTOD† 6.49 0.440 7.80 0.81
ChatCite 6.59 0.660 4.71 0.84
MAP 7.14 0.698 3.19 0.99

Table 4: Performance comparison of traditional TOD
models, summary-based methods, and MAP. Models
marked with ∗ focus on DST only. † indicates simplified
AutoTOD pipeline. The ChatCite represents a long-term
memory baseline using dialogue summarization.

Model Confirmation Multi-Turn

w/o MAP w/ MAP w/o MAP w/ MAP

LLaMA3-8B 1.64 1.99 1.60 2.03
Qwen-7B 1.46 1.88 1.48 1.77
Mistral-7B 1.79 1.99 2.04 2.18
GPT4o-mini 1.86 2.27 1.72 1.85

Table 5: Human evaluation results based on the average
A.I.C., which is the mean of Accuracy, Informativeness,
and Coherence. w/ denotes with, w/o denotes without.

response quality, GPT-4 score rises notably for all 393

models; for example, LLaMA3-8B achieves the 394

largest gain, from 4.89 to 6.39. Regarding DTE, 395

MAP considerably shortens the required turns, with 396

reductions of 35.6% for LLaMA3-8B, 12.6% for 397

Qwen-7B, 52.0% for Mistral-7B, and 47.1% for 398

GPT-4o-mini. These results demonstrate that inte- 399

grating long-term memory enhances both response 400

quality and conversation efficiency. 401

Comparison with Traditional TOD and Long- 402

term Summarization Models. As no prior model 403

explicitly targets multi-session TOD, we compare 404

MAP with traditional DST baselines (BERT-DST, 405

LDST) and full-pipeline systems (AutoTOD). As 406

shown in Table 4, MAP substantially outperforms 407

these models, achieving a JGA of 0.698 (vs. 0.440 408

for AutoTOD) and reducing DTE from 7.8 to 3.19. 409

We also evaluate against a summarization-based ap- 410

proach (ChitChat), where MAP again achieves su- 411

perior results: higher GPT-4 score (7.14 vs. 6.98), 412

better JGA (0.70 vs. 0.66), shorter DTE (3.19 vs. 413

4.71), and improved success rate (0.99 vs. 0.84). 414

These results highlight the effectiveness of MAP’s 415

memory integration and proactive strategy in en- 416

hancing both accuracy and interaction efficiency. 417

Human Evaluation. We conduct human eval- 418

uation to further assess the effectiveness of the 419

MAP structure across two key dialogue settings: (1) 420

confirmation-type responses after memory-guided 421

dialogue planning, and (2) multi-turn dialogues un- 422
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Figure 4: Comparison of Hybrid RAG (blue) vs. MAP
(purple) across four LLMs on two metrics: JGA and
DTE.

der the proactive response strategy. Evaluators are423

instructed to rate responses based on Accuracy (bi-424

nary), Informativeness (Likert 0–3), and Coherence425

(0–3). A weighted average score (A.I.C.) is used426

to summarize overall performance. As shown in427

Table 5, MAP consistently improves perceive re-428

sponse quality across all metrics. All evaluations429

are conducted in a blind review setup. Further430

annotation guidelines, examples, and scoring dis-431

tributions are provided in Appendix C.3.432

5.3 Extended Evaluation433

To examine the applicability of our QA memory434

framework beyond multi-session TOD, we evaluate435

MAP on two widely-used DST benchmarks, SGD436

and MultiWOZ2.2. Although both benchmarks tar-437

get dialogue state tracking (DST), they differ in438

annotation formats and domain complexity, lead-439

ing to different baseline sets (Table 7). On SGD,440

MAP achieves a state-of-the-art JGA of 0.846, sur-441

passing strong baselines such as LDST (Feng et al.,442

2023), GOLOMB (Gulyaev et al., 2020), SGP-DST443

(Ruan et al., 2020), and TS-DST (Du et al., 2022),444

and performs comparably to LDST on AGA. On445

MultiWOZ2.2, MAP* attains a JGA of 0.879, sig-446

nificantly outperforming prior models including447

TRADE (Wu et al., 2019a), TripPy (Heck et al.,448

2020), and SDP-DST (Lee et al., 2021). We at-449

tribute the superior performance to QA memory’s450

ability to capture slot dependencies more effec-451

tively in smaller domain settings, confirming its452

adaptability and robustness across datasets.453

5.4 Ablation Study454

We conduct ablations to evaluate contributions455

of key MAP components, including the judger-456

refinement module and proactive response strategy.457

Judgement-Refinement. We conduct abla-458

tion experiments to analyze the contribution of 459

the judger and refinement components in MAP. 460

Compared with a strong retrieval-based baseline, 461

we evaluate MAP with and without the judger- 462

refinement module, using the same Hybrid RAG- 463

based memory activation. As shown in Figure 4, 464

MAP with judger-refinement consistently outper- 465

forms the baseline across model backbones. On 466

Qwen2.5-7B, JGA rises from 0.41 to 0.74, and 467

on GPT-4o-mini, DTE drops from 4.30 to 3.19, 468

highlighting the benefit of goal-aware filtering and 469

structured memory usage. 470

To isolate the effect of the Memory Judger, 471

we remove it from the pipeline while keeping 472

the refinement step. The judger uses Chain- 473

of-Thought (CoT) prompting to infer missing 474

task slots and assess the alignment of QA pairs 475

with current dialogue goals. This reasoning- 476

guided filtering improves memory relevance, 477

yielding a Recall@5 gain of 7.7% on average 478

across models (Appendix Figure 6); for instance, 479

text-embedding-3-small improves from 0.792 480

to 0.832. 481

To assess the effect of the Refinement module, we 482

remove it while retaining the judger. Refinement 483

restructures selected QA pairs by discarding aux- 484

iliary questions and preserving only core answers 485

aligned with intent. As shown in Table 6, remov- 486

ing Refinement causes performance to drop: JGA 487

decreases from 0.70 to 0.64, GPT-4 Score from 488

7.14 to 6.94, and Success Rate from 0.99 to 0.88, 489

while DTE increases from 3.19 to 4.33. These 490

results demonstrate that both components are es- 491

sential for precise memory integration and efficient 492

multi-session dialogue. 493

Proactive Response Strategy. MAP identifies 494

incomplete or inconsistent slot values by compar- 495

ing predicted responses with task goals, and proac- 496

tively engages the user to resolve them. The ef- 497

fectiveness of this strategy is reflected in the ob- 498

served improvement from 0.68 slot accuracy prior 499

to correction to a task success rate of 0.99 after 500

correction. These results demonstrate its critical 501

role in early error resolution and goal fulfillment. 502

Detailed statistics are provided in Appendix C.2. 503

5.5 Case Study 504

In our case study, we compared four methods 505

for generating confirmation responses: (1) Direct 506

Prompting with full conversation history, (2) Hy- 507

brid RAG retrieving relevant dialogue history, (3) 508

Hybrid RAG retrieving a summary of the conversa- 509
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Model Variant GPT-4 Score JGA DTE S.R.

MAP 7.14 0.70 3.19 0.99
- w/o refinement 6.94 0.64 4.33 0.88

Table 6: Impact of memory refinement in the memory
activation module. Refinement improves JGA, GPT-4
score, and overall task success.

Dataset Methods JGA AGA

SGD

SGD Baseline 0.254 0.906
GOLOMB 0.465 0.750
SGP-DST 0.722 0.913
TS-DST 0.786 0.956
LDST 0.845 0.994
MAP∗ 0.846 0.965

MultiWOZ 2.2

SGD Baseline 0.420 -
TRADE 0.454 -
DS-DST 0.517 -
TripPy 0.530 -
TOATOD 0.638 -
SDP-DST 0.576 0.985
LDST 0.607 0.988
MAP∗ 0.879 0.976

Table 7: Results of different methods on SGD and Mul-
tiWOZ 2.2. MAP∗ is a single-session variant of MAP,
where the Memory Judger is disabled while retaining
the QA memory.

tion, and (4) MAP with intention-based QA mem-510

ory. As shown in Figure 5, Direct Prompting intro-511

duces noise, while Hybrid RAG variants often omit512

key task slots due to retrieval inaccuracies. In con-513

trast, MAP consistently produces accurate, concise514

responses with fewer errors. These findings indi-515

cate that MAP with intention-based QA memory516

better preserves key task information and reduces517

errors in confirmation generation than other base-518

lines. More details are provided in Appendix D.519

6 Related Works520

6.1 Task-Oriented Dialogue Dataset521

TOD datasets are typically constructed via either522

Machine-to-Machine (M2M) (Shah et al., 2018;523

Rastogi et al., 2020) or Wizard-of-Oz (WOz) se-524

tups (Wen et al., 2017; Budzianowski et al., 2018).525

M2M datasets (e.g., SGD, STAR) provide schema-526

driven task flows, while WOz-based datasets (e.g.,527

MultiWOZ, FRAMES) offer more natural but528

annotation-heavy dialogues. Recent efforts aim to529

improve realism and domain diversity (Zhang et al.,530

2022; Hu et al., 2023; Dai et al., 2022; Xu et al.,531

2024b; Li et al., 2024b), yet existing benchmarks532

primarily assume single-session tasks. There re-533

User: Can you play 'Drive' again? Assistant:Dialogue Context

Sure! Just to confirm, you’d like me to play the song 
"Drive" on the bedroom speaker again. Should I start it 
now? Also, would you like me to check out some tickets 
for … (Extra Noise)

Confirmation Response 
(Direct Prompting
with the Full Conversation 
History)

Sure! Let me play "Drive" for you once more. By the 
way, have you decided on the number of tickets you'd 
like to buy for Bill Callahan's concert? It’s coming up on 
March 10th in Los Angeles! (Wrong Answer)

Confirmation Response 
(Hybrid RAG
with Retrieved History)

Sure! I’ve started playing “Drive” again. Is there 
anything else you’d like? (Key Slot Omission)

Confirmation Response 
(Hybrid RAG 
with Summary)

Sure! Just to confirm, you’d like me to play the song 
"Drive" on the bedroom speaker again. Should I start it 
now? (Right Answer)

Confirmation Response 
(MAP)

Session 23 Evaluation  - Intention: The user intends to listen to songs.

Figure 5: Case study.

mains a notable gap in datasets designed for multi- 534

session TOD, where tracking long-range goals and 535

user intents is essential. 536

6.2 Task-Oriented Dialogue Systems 537

Traditional TOD systems adopt modular pipelines 538

for NLU, DST, and response generation (Wu et al., 539

2019b; Peng et al., 2018), later unified into end-to- 540

end models trained on annotated dialogues (Wen 541

et al., 2017; Wang et al., 2020). With the rise of 542

LLMs, recent work explores their use in zero-shot 543

and fine-tuned TOD (Madotto et al., 2021; Bang 544

et al., 2023), often achieving strong results on intent 545

recognition and slot filling. In parallel, long-term 546

memory (LTM) methods such as ChitChat (Li et al., 547

2024c), MemoryBank (Zhong et al., 2024), and Lo- 548

CoMo (Maharana et al., 2024) support extended 549

context retention through summarization or heuris- 550

tic filtering, but lack structured memory aligned 551

with task goals. Most assume single-session di- 552

alogues and overlook challenges in maintaining 553

multi-session goal continuity. This work addresses 554

these gaps by introducing a memory-active policy 555

for long-range, goal-aware tracking. 556

7 Conclusion 557

This study introduces a multi-session TOD task 558

and the MS-TOD dataset, which features diverse 559

task goals and structured memory banks across 560

sessions. To address the challenges of long-term 561

context integration, we propose MAP, a memory- 562

augmented framework that combines dialogue plan- 563

ning with a proactive response strategy for effi- 564

cient task completion. Experimental results show 565

that MAP significantly reduces dialogue turns, im- 566

proves response quality, and boosts task success 567

rate, outperforming both direct prompting and ex- 568

isting long-term retrieval methods. 569
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Limitation570

While our model demonstrates effectiveness on the571

current dataset, several limitations remain. First,572

our experiments are limited to locally deployable573

LLM models, and we have not explored the po-574

tential benefits of scaling to larger models, which575

may yield further improvements. Second, our ap-576

proach does not incorporate external knowledge577

bases or internet search functionality, which could578

enhance contextual understanding and factual accu-579

racy. Lastly, the model’s generalizability to broader580

domains and more complex real-world scenarios581

remains untested, necessitating further evaluation582

across diverse datasets and tasks. Future work will583

address these limitations by expanding model scal-584

ability, integrating external knowledge sources, and585

conducting more comprehensive evaluations.586

Ethics Statement587

Our research enhances multi-session task-oriented588

dialogue through memory-augmented processing589

while complying with ethical standards. All590

datasets are public and contain no personally iden-591

tifiable information; no user-sensitive data are col-592

lected, and no human subjects are involved. Model593

evaluations are conducted by three trained research594

assistants, each paid $20/hour, above the local aver-595

age. We acknowledge risks including misinforma-596

tion, algorithmic bias, and issues specific to long-597

term memory, such as retaining outdated user pref-598

erences or privacy concerns from cross-session data599

accumulation. These are addressed through evalua-600

tion safeguards, memory control mechanisms, and601

design principles promoting transparency, fairness,602

and accountability.603
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Milica Gašić. 2020. Trippy: A triple copy strategy680
for value independent neural dialog state tracking.681
Preprint, arXiv:2005.02877.682

Songbo Hu, Han Zhou, Mete Hergul, Milan Gritta,683
Guchun Zhang, Ignacio Iacobacci, Ivan Vulić, and684
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A Prompts 873

A.1 Prompt of dialogue generation 874

We designed a multi-session dialogue prompt (as 875

shown in Figure 7) that generates multi-session di- 876

alogue data based on input dialogue intent, task 877

goal, and target session count. Additionally, during 878

the generation process, we annotate whether each 879

utterance is a confirmation response. These annota- 880

tions, after manual verification, will be used in the 881

main experiment for confirmation-type response 882

generation. 883

A.2 Prompt of Task Slot Query Generation 884

During the evaluation process, we design a prompt 885

(as shown in Figure 8) that generates a query corre- 886

sponding to the missing task attributes based on the 887

current dialogue context and task objectives. The 888

input to this prompt is the dialogue context history 889

and the generated task objectives. This query is 890
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Attribute Train

Domains 16
Intentions 22
Task goals 4,534
Dialogues 13,441
Utterances 89,152
Avg. slots per task goal 4.49

Number of individuals 565
Avg. intentions per individual 6.24
Avg. sessions per individual 23.79
Avg. Utterances per individual 157.80

Table 8: MS-TOD Subset Statistics for Memory Judger
Training.

then used as input to the memory judger to assist891

in selecting QA memory units that align with the892

task objectives.893

A.3 Prompts of Confirmation Response894

Generation895

In the evaluation process, we employed a896

confirmation-type response generation approach to897

assess the integration performance of multi-session898

memory in task-oriented dialogues. We designed899

the prompt as shown in Figure 9, which leverages900

the dialogue context, task objectives, and activated901

memory units to generate responses.902

A.4 Prompts of GPT4 Evaluation903

During the evaluation process, we employed a GPT-904

4 prompt (as shown in Figure 11) to assess the qual-905

ity of confirmation-type responses. This prompt906

evaluates the response holistically from four per-907

spectives: requirement alignment, content accuracy,908

language quality, and comparison to the reference909

answer. The input to this prompt includes the di-910

alogue history, task objectives, the reference re-911

sponse, and the model-generated response. This912

design ensures that the evaluation of the response913

is not solely based on the dataset’s reference reply914

but also takes into account multiple factors such as915

whether the task objectives are met and the over-916

all quality of the response. Such an evaluation917

approach is more comprehensive.918

A.5 Prompts of Dialogue State Tracking919

we used a prompt modified from (Heck et al.,920

2023b) (as shown in Figure 10) that generates the921

dialogue state for each user turn in the dialogue.922

Let 923

A1 = P ⊕ system : M1 ⊕ user : U1 924
925

At = At−1⊕system : Mt⊕user : Ut, ∀t ∈ [2, T ] 926

where P is the task description which provides the 927

model with instructions for how to process a dia- 928

logue between a system M and a user U. In con- 929

trast to (Heck et al., 2023b), P does not include 930

the detailed description for slots to challenge Chat- 931

GPT’s ability to understand the meaning of the 932

slots. Apart from that, ChatGPT often generated 933

answers with excessively detailed explanations, de- 934

viating from the expected response format. To ad- 935

dress this issue, a prompt that includes "No explana- 936

tion!" as an instruction to ChatGPT not to provide 937

detailed explanations was introduced (Feng et al., 938

2023) and we added this to our prompt. 939

B Dataset 940

B.1 Dataset for Memory Judger 941

To ensure that the memory judger generalizes 942

across different domains and scenarios, we gen- 943

erated the training dataset(as shown in Table 8) 944

using the same method described in the main text. 945

The dataset spans 16 domains, 4,534 task goals, 946

and 13,411 dialogues, involving a total of 565 in- 947

dividuals, each with an average of 6.24 intentions. 948

Beyond training the memory judger, this dataset 949

can also serve as an alternative evaluation set for 950

broader benchmarking. 951

B.2 Dataset Structure 952

MS-TOD encompasses multiple individual task- 953

oriented dialogue datasets, each consisting of sev- 954

eral sessions. We present an example of one ses- 955

sion (as shown in Figure 12) from an individ- 956

ual. This session includes a session_id, where 957

a larger value indicates a more recent timestamp. 958

The domain represents the specific field or area 959

of the dialogue. The reference_dialogue_id cor- 960

responds to the dialogue_id in the original SGD 961

dataset that shares the same task objective. The 962

exist_confirmation indicates whether the ses- 963

sion contains a confirmation-type response and 964

whether it is an evaluation target. The intent rep- 965

resents the specific purpose or goal of the dia- 966

logue. The content stores the actual dialogue text. 967

The task_goal includes task slots and their cor- 968

responding attribute values. Each individual con- 969

tains dozens of session data structured as described 970

above. 971
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Dataset Task Type Multi-
Session?

Grounded
Memory?

User
Intention?

Retrieval
Support?

Memory
Format

MULTIWOZ (Hu et al., 2023) TOD ✗ ✗ ✓ ✗ –
SGD (Rastogi et al., 2020) TOD ✗ ✓ ✓ ✗ schema
TOAD (Liu et al., 2024b) TOD ✗ ✗ ✓ ✗ –
LUCID (Stacey et al., 2024) TOD ✗ ✓ ✓ ✗ latent goal
MSC (Xu et al., 2022) OD ✓ ✓ ✓ ✓ dialogue history
CC (Jang et al., 2023) OD ✓ ✓ ✗ ✓ persona/dialogue history
MEMORYBANK (Zhong et al., 2024) OD ✓ ✓ ✗ ✓ dialogue history
LOCOMO (Maharana et al., 2024) OD ✓ ✓ ✗ ✓ dialogue history
LONGMEMEVAL (Wu et al., 2025) OD ✓ ✓ ✗ ✓ dialogue history
MS-TOD (ours) TOD ✓ ✓ ✓ ✓ qa memory/dialogue history

Table 9: Comparison of MS-TOD with representative Task Oriented Dialogue (TOD) and Open Domain (OD)
datasets along memory-related attributes.

B.3 Human Validation Protocol972

To ensure the realism, coherence, and usability of973

MS-TOD, we apply a structured human validation974

process during dataset construction. This process975

involves three research assistants with prior experi-976

ence in natural language processing and dialogue977

systems. The validation pipeline includes the fol-978

lowing stages:979

1. Intent and Slot Accuracy Check. For each980

dialogue turn derived from the SGD intent981

annotations, annotators verify whether the in-982

tent is preserved and whether all required slot983

values are present and semantically correct.984

2. Redundancy Removal. Annotators manually985

review and remove multi-session dialogues986

that contain excessive repetition across ses-987

sions, which could undermine diversity and988

realism.989

3. Confirmation Accuracy Validation. For990

final-session confirmation-type utterances, an-991

notators examine whether the confirmed slot992

values align with the task goal. Mismatched,993

ambiguous, or hallucinated confirmations are994

flagged and discarded.995

4. Dialogue Coherence Filtering. Dialogues996

that fail to complete any defined task goal997

are considered incoherent. Sessions missing998

necessary confirmation-type turns are also ex-999

cluded to ensure logical task flow.1000

5. Intent Redundancy Filtering. Episodes ex-1001

hibiting unnatural repetition of similar intents1002

across turns or sessions are excluded, as such1003

patterns deviate from realistic multi-session1004

user behavior.1005

This multi-stage quality control procedure yields 1006

a filtered evaluation subset used for system bench- 1007

marking. The validation process ensures that 1008

the dataset aligns with realistic task-oriented dia- 1009

logue patterns and supports the evaluation of multi- 1010

session memory-aware dialogue systems. 1011

B.4 Intent-driven QA Memory 1012

For each historical session, we generated an intent 1013

description and the corresponding QA memory (as 1014

shown in Figure 13) for the objectives of that intent 1015

description. The QA memory consists of multiple 1016

QA pairs, where each query is a question about a 1017

task attribute under that intent, and the answer is 1018

the slot value corresponding to that task attribute. 1019

B.5 Dataset Design Rationale 1020

Choice of Seed Dataset. We select the Schema- 1021

Guided Dialogue (SGD) dataset as the foundation 1022

for constructing MS-TOD. Compared to other pop- 1023

ular benchmarks like MultiWOZ, SGD provides 1024

broader domain coverage, a larger and more diverse 1025

set of user intents, and a schema-driven annota- 1026

tion format that supports extensibility and dynamic 1027

intent representation. These characteristics make 1028

SGD more suitable for modeling realistic, multi- 1029

domain, and multi-session interactions. A detailed 1030

comparison is shown in Table 10. 1031

Design of Memory Bank Structure. Each MS- 1032

TOD memory bank contains 20 sessions involving 1033

more than six distinct user intents. This structure is 1034

informed by two factors. First, prior multi-session 1035

datasets such as LoCoMo (?) typically use memory 1036

segments with 20+ sessions, providing a reference 1037

for session scale under long-term memory settings. 1038

Second, based on analysis of the SGD schema, each 1039

user intent generally corresponds to fewer than 10 1040

slot types. Organizing 3 sessions per intent enables 1041
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natural progression while minimizing redundancy.1042

As a result, grouping 6–8 distinct intents yields1043

a total of around 20 sessions per memory bank,1044

balancing diversity, realism, and memory demand.1045

C Supplementary Experimental Results1046

C.1 Memory Activation Comparision1047

Table 12 compares the performance of different1048

activation modules on memory retrieval. text-1049

embed3-small achieves the highest recall across1050

all thresholds, with 0.702 at Recall@3, 0.792 at1051

Recall@5, and 0.905 at Recall@10, demonstrating1052

superior retrieval capability. Among other models,1053

nv-embed-v2 and bge-large-en-v1.5 also perform1054

well, while traditional retrieval methods like BM251055

remain competitive at Recall@10 but lag behind1056

embedding-based methods at lower recall levels.1057

T5-base and BERT-based models exhibit lower1058

recall, suggesting that general pre-trained models1059

are less effective for specialized memory retrieval.1060

These results highlight text-embed3-small as the1061

most effective choice for long-term memory activa-1062

tion in multi-session dialogues.1063

C.2 Effectiveness of the Proactive Response1064

Strategy1065

To better understand the impact of the proactive1066

response strategy, we present a complementary1067

analysis that examines two distinct metrics: slot1068

accuracy measured during the confirmation phase1069

and the final task success rate. Although these1070

metrics reflect different aspects of system per-1071

formance—localized slot-level correctness versus1072

overall goal completion—they jointly capture the1073

effectiveness of proactive correction.1074

As shown in Table 11, slot accuracy remains rel-1075

atively low (ranging from 0.48 to 0.62) before cor-1076

rection, indicating frequent omission or mismatch1077

in predicted slot values. Nevertheless, the final1078

task success rates reach 0.87 or higher across all1079

models after proactive correction is applied. This1080

pattern suggests that the proactive response strat-1081

egy plays a critical role in bridging the gap between1082

partial slot-level understanding and complete task1083

execution by enabling the system to recover from1084

intermediate errors through user interaction.1085

C.3 Human Evaluation Details1086

Table 15 presents the results of human evaluation,1087

including accuracy, informativeness, and coherency1088

scores. Accuracy is rated on a scale of 0 to 1, while1089

informativeness and coherency are rated from 0 1090

to 3. The average scores in 5 are computed using 1091

a weighted sum with weights of 1, 1/3, and 1/3. 1092

All evaluations were conducted in a blind review 1093

manner to compare the response quality of w/o 1094

MAP and w/ MAP. Additionally, the Confirmation- 1095

type Response type assesses the response quality 1096

after memory-guided dialogue planning, while the 1097

multi-turn evaluation focuses on dialogues under 1098

the proactive response strategy, continuing until 1099

task completion or forced termination. 1100

C.4 Additional Evaluation Metrics 1101

Table 13 compares the performance of task- 1102

oriented dialogue models with and without 1103

memory-augmented processing (MAP) across Slot 1104

Accuracy, BLEU, and ROUGE metrics. The re- 1105

sults reveal a trade-off between structured slot ac- 1106

curacy and response fluency. In most models, MAP 1107

slightly reduces slot accuracy, as seen in LLaMA3- 1108

8B, which drops from 0.62 to 0.56, and Mistral- 1109

7B, which decreases from 0.59 to 0.56. However, 1110

GPT4o-mini benefits from MAP, achieving the 1111

highest slot accuracy of 0.68. BLEU scores gener- 1112

ally decline, suggesting that MAP shifts responses 1113

away from verbatim accuracy towards greater con- 1114

textual adaptability. Mistral-7B drops from 10.90 1115

to 6.66, and LLaMA3-8B decreases from 10.47 to 1116

9.86. Conversely, ROUGE scores improve with 1117

MAP in several cases. LLaMA3-8B increases from 1118

28.59 to 30.39, and Qwen-7B rises from 29.77 to 1119

31.28, indicating enhanced informativeness and co- 1120

herence. However, Mistral-7B experiences a slight 1121

decrease in ROUGE from 28.42 to 24.64. Overall, 1122

the results suggest that MAP enhances response 1123

informativeness while slightly compromising slot 1124

accuracy and BLEU, highlighting a trade-off be- 1125

tween structured information retention and more 1126

natural, contextually aware responses. 1127

Table 14 presents the performance comparison 1128

between AutoTOD and MAP on Slot Accuracy, 1129

BLEU, and ROUGE. The results indicate that 1130

MAP consistently outperforms AutoTOD across 1131

all three metrics, demonstrating its effectiveness 1132

in enhancing dialogue quality. Slot Accuracy im- 1133

proves from 0.61 to 0.68, indicating better track- 1134

ing of task-specific information. BLEU increases 1135

from 3.34 to 5.47, reflecting more precise and flu- 1136

ent responses. ROUGE also shows a slight im- 1137

provement, rising from 24.07 to 25.03, suggesting 1138

that MAP enhances informativeness and coherence. 1139

These results highlight the advantages of memory- 1140
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Dimension MultiWOZ SGD

# Domains 7 20
Avg. Intents per Domain 8–10 10–15
Total Intents ∼60 ∼200
Annotation Structure Fixed, manually updated Schema-driven, extensible
Cross-Domain Intent Interaction Limited (2–3 domain combos) Rich (multi-domain intent chains)

Table 10: Comparison between MultiWOZ and SGD datasets.

Model Slot Acc. (Pre) Task Rate (Post)

LLaMA3-8B 0.62 0.92
Qwen-7B 0.48 0.87
Mistral-7B 0.59 1.00
GPT4o-mini 0.61 0.99

Table 11: Effectiveness of the Proactive Response Strat-
egy. Slot accuracy is measured before correction, and
task rate reflects the final success after proactive clarifi-
cation.

Activation Module Recall@3 Recall@5 Recall@10

bm25 0.642 0.721 0.842
t5-base 0.443 0.575 0.773
bert-base 0.463 0.584 0.785
bert-large 0.401 0.530 0.730
nv-embed-v2 0.668 0.769 0.896
bge-large-en-v1.5 0.681 0.761 0.888
text-embed3-small 0.702 0.792 0.905

Table 12: Performance evaluation of activation modules
on memory retrieval

Model Setting Slot Accuracy BLEU ROUGE

LLaMA3-8B
w/o MAP 0.62 10.47 28.59

w/ MAP 0.56 9.86 30.39

Qwen-7B
w/o MAP 0.48 10.33 29.77

w/ MAP 0.55 10.90 31.28

Mistral-7B
w/o MAP 0.59 10.09 28.42
w/ MAP 0.56 6.66 24.64

GPT4o-mini
w/o MAP 0.61 20.30 43.49
w/ MAP 0.68 13.6 35.20

Table 13: Performance comparison of task-oriented dia-
logue models with and without long-term memory inte-
gration: Slot Accuracy, BLEU, and ROUGE metrics.

Model Slot Accuracy BLEU ROUGE

AutoTOD 0.61 3.34 24.07
MAP 0.68 5.47 25.03

Table 14: Performance comparison on Slot Accuracy,
BLEU, and ROUGE.

augmented processing, which enables more accu- 1141

rate and contextually relevant dialogue generation. 1142

D Case Study Detail 1143

D.1 Multi-session Dialogue Context 1144

Comparison 1145

Figure 14 presents four different configurations of 1146

conversation contexts not shown in the main paper. 1147

Specifically, (1) Full conversation history includes 1148

every session from the dialogue history as prompt 1149

input to the reader. (2) Retrieval-based methods 1150

retrieve the dialogue sessions most relevant to the 1151

current session (Session 23) and append them to the 1152

reader’s context (3) Retrieving a summary compiles 1153

a summary of past sessions (Sessions 1 to 22) for 1154

inclusion alongside the current context. Finally, 1155

(4) MAP integrates QA memory with the Session 1156

23 context to generate responses. By illustrating 1157

these detailed contexts, Figure 14 provides further 1158

insights into how each approach manages multi- 1159

session dialogue. 1160

D.2 CoT+RAG vs. RAG 1161

To better understand how CoT reasoning and mem- 1162

ory reranking affect confirmation response gener- 1163

ation, we present a step-by-step case study com- 1164

paring CoT+RAG and standard RAG (Appendix 1165

Table 16). In this example, the user attempts to 1166

confirm a restaurant reservation. While both sys- 1167

tems retrieve similar QA memory candidates, the 1168

standard RAG model fails to detect missing slot 1169

information (e.g., number of people), resulting in 1170

an incomplete and partially inaccurate response. In 1171

contrast, CoT+RAG explicitly identifies missing 1172

task information (e.g., time, headcount) through 1173

reasoning, refines the retrieved memories via the 1174

Memory Judger, and generates a more complete 1175

and contextually appropriate confirmation. This 1176

illustrates how structured reasoning and selective 1177

memory grounding improve slot coverage and re- 1178

duce factual errors in multi-turn dialogue. 1179
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Model Setting Confirmation-type Response Multi-Turn

Accuracy Informativeness Coherency Accuracy Informativeness Coherency

GPT4o-mini
w/o MAP 0.62 1.83 1.90 0.81 1.92 2.44
w/ MAP 0.65 2.38 2.48 0.87 1.93 2.74

LLaMA
w/o MAP 0.56 1.47 1.74 0.78 1.64 2.36
w/ MAP 0.61 1.98 2.16 0.88 2.51 2.71

Qwen
w/o MAP 0.43 1.24 1.85 0.82 1.60 2.02
w/ MAP 0.54 1.70 2.30 0.92 1.93 2.47

Mistral
w/o MAP 0.58 1.63 1.99 0.89 2.49 2.72
w/ MAP 0.61 2.06 2.08 0.93 2.74 2.85

Table 15: Comparison of different models on human evaluation metrics: accuracy, informativeness, and coherence.
The results are presented for both confirmation-type responses and multi-turn dialogue settings, comparing standard
inference (‘w/o MAP‘) with memory-augmented processing (‘w/ MAP‘).

0 0.2 0.4 0.6 0.8 1

bm25

t5-base

bert-base

bert-large

nv-embed-v2

bge-en-v1.5

text-embed-3

Recall@k

Memory Activation + Judger Memory Activation Only

Figure 6: Impact of memory judger on memory activa-
tion performance across different embedding models.
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Prompts of the Dataset Generation

User Prompt:
"""
Help me generate an English conversation under the {dialogue_intent} intent, where {task_goal}.
The conversation should be between a user and an assistant, and it should be split into
{task_goal_length} sessions at different points in time, with continuity and connection between the
sessions and each session should not less than 6 turns. Additionally, the final session must include
a assistant response containing a complete confirmation-type utterance before the user confirms,
and this utterance should be marked with ‘is_confirmation‘ set to ‘True‘. and the user must provide
a final confirmation response at the end of the final session. For all other sessions, the conversation
should end with an assistant’s polite declarative statement.
"""
System Prompt:
""" You are dialogue generator assistant.
The sessions should be clearly separated, and the conversation should be formatted as follows:
Each turn should be a dictionary entry.
The conversation should be in the format of a list of sessions, where each session is a list of
dictionaries representing each turn.
Each dictionary entry should have two keys: speaker (either ’user’ or ’assistant’) and text (the
spoken dialogue).
Except for final session, each session should be a seperate dialogue and include a complete
dialogue structure, beginning with a greeting from the user and ending with an assistant’s polite
declarative statement.
Feel free to expand the dialogue with additional relevant details, but avoid redundant expressions
or repeating the same phrases.
Reponse me with a json format

{
" s e s s i o n s " : [

[
{

" s p e a k e r " : " xx " ,
" t e x t " : " xx "

} ,
{

" s p e a k e r " : " xx " ,
" t e x t " : " xx "

}
]

]
}

"""

Figure 7: Prompts of the Dataset Generation
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Prompts of the Task Slot Querying Generation

"""
Please help me generate questions, based on the provided {conversation history}, that correspond
to unanswered attributes in the task goal {task_attributes}.
1. The questions should start with ’What,’ ’When,’ ’Why,’ ’How,’ or ’Where.’
2. Ensure that the generated questions are in third person.
fill the following json: { [Question], }
"""

Figure 8: Prompts of the Task Slot Querying Generation

Prompts of Confirmation Response Generation

""" You are an dialogue assistant.
Generate a confirmation response based on the userś utterance. Include any relevant task goals
[TASK GOALS] identified in the dialogue or related memory [MEMORY]. If [MEMORY]
is unavailable, construct your response accurately and comprehensively using the provided
conversation details. Ensure your reply acknowledges the userś request clearly and incorporates
relevant information from both the dialogue and the related memory units [MEMORY].
[TASK GOAL]
{task_goal}

[MEMORY]
{memory}
"""

Figure 9: Prompt of Confirmation Response Generation
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Prompt of Dialogue State Tracking on MultiWOZ 2.2

"""Consider the following list of concepts, called "slots" provided to you as a json list.

"slots": {
"attraction-area",
"attraction-name",
"attraction-type",
"bus-day",
"bus-departure",
"bus-destination",
"bus-leaveat",
"hospital-department",
"hotel-area",
"hotel-bookday",
"hotel-bookpeople",
"hotel-bookstay",
"hotel-internet",
"hotel-name",
"hotel-parking",
"hotel-pricerange",
"hotel-stars",
"hotel-type",
"restaurant-area",
"restaurant-bookday",
"restaurant-bookpeople",
"restaurant-booktime",
"restaurant-food",
"restaurant-name",
"restaurant-pricerange",
"taxi-arriveby",
"taxi-departure",
"taxi-destination",
"taxi-leaveat",
"train-arriveby",
"train-bookpeople",
"train-day",
"train-departure",
"train-destination",
"train-leaveat",
}

Now consider the following dialogue between two parties called the "system" and "user". Can
you tell me which of the "slots" were updated by the "user" in its latest response to the "system"?
Present the updates in JSON format. If no "slots" were updated, return an empty JSON list. If you
encounter "slots" that were requested by the "user" then fill them with "?". If the user informed
that he did not care about a "slot", fill it with "dontcare". Return the output in JSON format and no
explanation!
{dialogue}
"""

Figure 10: Prompt of Dialogue State Tracking on MultiWOZ 2.2
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Prompts of GPT4 Evaluation

""" You are a strict and objective evaluator. Your task is to assess the quality of the final predicted
response using the provided conversation context, the user’s target goal attributes, and a reference
answer. Your evaluation should be fair, professional, and reflect an expert judgment of the
response’s quality.
[Dialogue Context]
{{conversationhistory}}
[Task Goal]
{{task_goal}}
[reference_answer]
{{reference_anwser}}
[predict_answer]
{{predict_answer}}
Evaluation Criteria:
Requirement Alignment: Does the final predict_answer meet the user’s task goal?
Content Accuracy: Is the information in the final response correct, clear, and logically organized?
Language Quality: Is the language fluent, coherent, and readable? Are there any obvious
grammatical or word choice errors?
Comparison to Reference Answer: Compared to the reference answer, how does the final response
differ in terms of completeness, professionalism, and clarity?
Overall Score: Assign a score from 1 to 10 (10 being the best), considering all of the above factors.

The evaluation must be structured in the following JSON format:
“‘json
{
"Rationale": "<Explain the rationale of your score.>",
"Score": <An integer score from 1 to 10.>
}
“‘ """

Figure 11: Prompts of GPT4 Evaluation
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MS-TOD dialogue session structure

{
"session_id ": 9,
"domain ": "Travel",
"reference_dialogue_id ": "66 _00101",
"exist_confirmation ": true ,
"intent ": "ReserveHotel",
"content ": [

{
"speaker ": "user",
"utterance ": "Hi again , I’m ready to finalize the booking for Aloft

Portland Airport At Cascade Station.",
"is_confirmation ": false

},
{

"speaker ": "assistant",
"utterance ": "Just to confirm , you are booking 1 room at Aloft Portland

Airport At Cascade Station , Portland , from March 5th to March 7th.
The room is a standard king room with free Wi-Fi and a 24-hour
cancellation policy. Is that correct?",

"is_confirmation ": true
},
{

"speaker ": "user",
"utterance ": "Yes , that is correct.",
"is_confirmation ": false

},
{

"speaker ": "assistant",
"utterance ": "Excellent! Your room has been successfully booked. You

will receive a confirmation email shortly.",
"is_confirmation ": false

},
{

"speaker ": "user",
"utterance ": "Thank you so much for your help!",
"is_confirmation ": false

},
{

"speaker ": "assistant",
"utterance ": "You ’re welcome! Have a great stay in Portland.",
"is_confirmation ": false

}
],
"task_goal ": {

"hotel_name ": "Aloft Portland Airport At Cascade Station",
"location ": "Portland",
"check_in_date ": "March 5th",
"check_out_date ": "March 7th",
"number_of_rooms ": 1

}
}

Figure 12: MS-TOD Session Structure.

21



MS-TOD Intent Description and QA Memory

{
"9": {

"intent_description ": "The user ’s intent is to finalize and confirm a
hotel booking for a specific room at Aloft Portland Airport At Cascade
Station , including details about the stay dates and room type.",

"qa_summary ": [
{

"Question ": "What type of room did the user book?",
"Answer ": "The user booked a standard king room."

},
{

"Question ": "When is the user ’s reservation ?",
"Answer ": "The user ’s reservation is from March 5th to March 7th."

},
{

"Question ": "Where is the user ’s reservation located?",
"Answer ": "The user ’s reservation is located at Aloft Portland Airport

At Cascade Station ."
},
{

"Question ": "What amenities are included in the user ’s reservation ?",
"Answer ": "The user ’s reservation includes free Wi-Fi."

},
{

"Question ": "What is the cancellation policy for the user ’s booking?",
"Answer ": "The cancellation policy for the user ’s booking is 24 hours

."
}

]
}

}

Figure 13: Intent description and QA Memory in MT-TOD.
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Process CoT+RAG RAG
Input and Intent

Dialogue History User: Have you completed the reservation at Gen
Korean BBQ House?

User: Have you completed the reservation at Gen
Korean BBQ House?

Intention Description The user wants to confirm restaurant reservation. The user wants to confirm restaurant reservation.
Memory Retrieval

Retrieved QA Memory
Candidates

Rank 1:

• Q: What is the time of the reservation? A: March 1st

• Q: What is the address of the reservation? A: Los Angeles

Rank 2:

• Q: What is the time of reservation? A: March 4th

• Q: How many people are there? A: 2

• Q: What is the address of the restaurant? A: Gen Korean BBQ House in Milpitas

• Q: What is the time of reservation? A: March 1st

• Q: What is the address of the restaurant? A: Gen Korean BBQ House in Milpitas

CoT Reasoning
Task Goal Reserve Restaurant —
Missing Slots Time, Number of people —
Missing Query When is the time of reservation? How many peo-

ple are there?
—

Memory Judger (Reranking)
Reranked Memory Units

• Q: What is the time of reservation? A:
March 4th

• Q: How many people are there? A: 2

• Q: What is the address of the restaurant? A:
Gen Korean BBQ House in Milpitas

Same as retrieved

Refinement-grounded Response Generation
Confirmation Response Just to confirm, it’s a reservation for 2 at Gen

Korean BBQ House in Milpitas on March 4th at
12:15 pm, with a request for a quieter table. Is that
correct?

To confirm, it’s a reservation for 2 at Gen Korean
BBQ House Los Angeles on March 1st. Is that
correct?

Table 16: Step-by-step comparison of MAP vs. standard RAG in confirmation response generation.
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Intention-driven QA MemorySummaryDialogue HistorySession ID
Intention Description: The user
intends to book a specific
appointment.

"Question": "What type of 
appointment is the user looking to 
book?",
"Answer": "The user is looking to 
book an appointment at Blow Dry 
Bar.”
…

The user wants to book an
appointment at Blow Dry Bar
on March 3rd at 3:15 pm. The
assistant confirms the date
and is checking the
availability for the requested
time.

User:Hi there! I'd like to
book an appointment at
Blow Dry Bar.
Assistant : Sure! When
would you like to
schedule your
appointment?
…

Session 1

Intention Description: The user 
intends to listen to the song.

"Question": "Where was the song 
'Drive' played?",
"Answer": "The song 'Drive' was 
played on the bedroom speaker."

The user requested to play the 
song \"Drive\" on the 
bedroom. The assistant 
confirmed and started the 
song, asking if the user 
needed anything else. The 
user declined further 
assistance and expressed 
gratitude.

User:Hey, can you play 
the song 'Drive' on the 
bedroom speaker?
Assistant:Sure, I can 
play 'Drive' for you. Do 
you want me to start the 
song now?
…

Session 3

Intention Description: The user's 
intent is to purchase a single 
ticket

"Question": "Where will the 
concert be held?",
"Answer": "The concert will be 
held in Los Angeles."

The user expresses interest in 
buying a ticket for the Bill 
Callahan concert on March 
10th in Los Angeles. They 
request one ticket, and the 
assistant confirms availability 
and asks if the user would 
like to proceed with the 
purchase.

User:Hi there! I'm 
interested in buying a 
ticket for the Bill 
Callahan concert?
Assistant:Great choice! 
The Bill Callahan 
concert is happening on 
March 10th in Los 
Angeles. How many 
tickets would you like to 
purchase? …

Session 12

Intention Description: The user's
intent is to arrange a shared
transportation service.

The user wants to book a ride
to 1580 Clayton Road #1 for
three people and has
requested a shared ride.

User:Hi, I need to book 
a ride.
Assistant:Sure, I can 
help with that. Where 
would you like to go? …

Session 16

Intention Guess: The user 
intends to listen to songs.

User: Can you play
'Drive' again?
Assistant:

Session 23
Evaluation

Sure! Just to confirm, you’d like me to play the song "Drive" on the bedroom speaker 
again. Should I start it now? Also, would you like me to check out some tickets for the Bill 
Callahan concert on March 10th in Los Angeles, or are you planning to book a ride 
somewhere else? Let me know! (Extra Noise)

Confirmation Response 
(Direct Prompting
with the Full 
Conversation History)

Sure! Let me play "Drive" for you once more. By the way, have you decided on the number 
of tickets you'd like to buy for Bill Callahan's concert? It’s coming up on March 10th in Los 
Angeles! (Wrong Answer)

Confirmation Response 
(Hybrid RAG
with Retrieved History)

Sure! I’ve started playing “Drive” again. Is there anything else you’d like? (Wrong Answer)Confirmation Response 
(Hybrid RAG 
with Summary)

Sure! Just to confirm, you’d like me to play the song "Drive" on the bedroom speaker 
again. Should I start it now? (Right Answer)

Confirmation Response 
(MAP)

Figure 14: Comparison of confirmation response generation across four approaches: (1) Direct Prompting with
the full conversation history, (2) Hybrid RAG retrieving relevant dialogue history, (3) Hybrid RAG retrieving a
summary of the conversation, and (4) MAP with intention-based QA memory.
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