Under review as a conference paper at ICLR 2026

WHICH LLM MULTIAGENT PROTOCOL TO CHOOSE?

Anonymous authors
Paper under double-blind review

ABSTRACT

As large-scale multi-agent systems evolve, the communication protocol layer
has become a critical yet under-evaluated factor shaping performance and
reliability. Despite the existence of diverse protocols (A2A, ACP, ANP,
Agora, etc.), the selection of them is often intuition-driven and lacks stan-
dardized guidance. We introduce ProtocolBench, a benchmark that system-
atically compares agent protocols along four measurable axes: task success,
end-to-end latency, message or byte overhead, and robustness under fail-
ures. On ProtocolBench, the choice of protocol significantly influences sys-
tem behavior. In the Streaming Queue scenario, overall completion time
varies by up to 36.5% across protocols, and mean end-to-end latency dif-
fers by 3.48 s. Under Fail-Storm Recovery, resilience also differs consis-
tently across protocols. Beyond evaluation, we present ProtocolRouter, a
learnable protocol router that selects per-scenario (or per-module) protocols
from requirement and runtime signals. ProtocolRouter reduces Fail-Storm
recovery time by up to 18.1% versus the best single-protocol baseline, and
achieves scenario-specific gains such as higher success in GATA. We also re-
lease ProtocolRouterBench to standardize protocol evaluation and improve
reliability at scale.

1 INTRODUCTION

LLM-based multi-agent systems are rapidly moving from research prototypes to production
in coding assistants, enterprise search and analytics, scientific workflows, and operations
automation (e.g., CAMEL, ChatDev, MetaGPT, AutoGen (Li et al., 2023a; Qian et al.,
2023; Hong et al., 2023; Microsoft Research, 2024)). These systems rely on effective proto-
cols to coordinate agent communications, including A2A (Google Cloud, 2025), ACP (IBM
BeeAl, 2025), ANP, and Agora; complementary standards such as MCP for tool invoca-
tion (Anthropic, 2024) and IoA for dynamic discovery,/orchestration (Chen et al., 2024)
address adjacent concerns and are out of scope for our evaluation. Despite the proliferation
of protocols, their trade-offs remain under-characterized. Existing benchmarks typically as-
sume a fixed communication mechanism and report task-level outcomes (Zhu et al., 2025;
Hyun et al., 2025), while surveys call for systematic evaluation across efficiency, scalability,
and security (Yang et al., 2025; Ehtesham et al., 2025). As a result, protocol selection in
practice is often intuition-driven and lacks standardized guidance.

In this paper, we ask two questions: (1) Can we evaluate multi-agent protocols in a fair,
reproducible way? (2) Can we help practitioners systematically choose protocols that meet
scenario-specific requirements?

Building a fair benchmark for protocol comparison poses several challenges. First, proto-
col choice simultaneously affects task success/quality, end-to-end latency/throughput, and
message/byte overhead, creating tightly coupled trade-offs. Second, isolating protocol ef-
fects requires pinning non-protocol factors (model, prompts, hardware image, rate limits)
and normalizing behaviors such as retries and streaming. Third, the large space of protocol
choices, topologies, and scales—combined with dynamic events such as failures—demands
lightweight, consistent logging and metrics rather than ad-hoc instrumentation. Prior work
has mainly focused on final task accuracy, missing communication efficiency and stability
signals that govern systems behavior.

Under review as a conference paper at ICLR 2026

@ProtocolRouter

i 1
R ad 2 ent AZA Flexble Agora i : ProfOCOlBenCh i
, ollab Adaptation E Gaia Document QA E ANP TeT
Standardizg A b ANP MCP ! Safety Tech M /_g Vo \/
el e
How to choose protocols? : FailiStorm : Agora ACP

Figure 1: Overview of ProtocolBench and ProtocolRouter. To understand the trade-
off across existing LLM multi-agent protocols, we first design ProtocolBench that covers four
core evaluation dimensions, then propose ProtocolRouter to help users select the optimal
protocol.

We address these issues in two steps. (i) We introduce ProtocolBench, a protocol-agnostic
benchmark that measures four axes—task success/quality, end-to-end latency/throughput,
message/byte overhead, and failure-time robustness—using protocol-normalizing adapters, a
shared scenario suite (GAIA, Streaming Queue, Fail-Storm Recovery, Safety Tech), and uni-
fied logging/metrics to ensure fair comparisons. (ii) We further propose ProtocolRouter, a
learned protocol router that selects per-scenario (or per-module) protocols based on require-
ments and runtime signals. ProtocolRouter performs selection and composition only; cross-
protocol message translation is realized by stateless encode/decode bridges inside adapters,
preserving business semantics and security attributes.

Empirically, ProtocolBench reveals clear, scenario-dependent trade-offs. In GAIA, A2A
attains the highest task utility (quality 2.51 vs. next-best 2.33, +7.7%; success 9.29 vs.
next-best 7.28, +27.6%). In Streaming Queue, ACP achieves the lowest mean latency
(9.66s) with the smallest variance, whereas Agora incurs a higher mean (13.14s), yielding
a ~ 3.48s gap; overall completion time varies by up to 36.5% across protocols (40.28 vs.
54.97 minutes). Under Fail-Storm, A2A preserves 98.85% of pre-fault answer discovery (post
14.57 vs. pre 14.74), compared with ACP 92.41%, ANP 86.96%, and Agora 81.29%.

Finally, router-in-the-loop experiments show that ProtocolRouter can outperform single-
protocol deployments in targeted settings: it reduces Fail-Storm recovery time by 18.1%
versus the best single-protocol baseline (A2A: 8.00s — router: 6.55s) and increases GAIA
success over the A2A baseline (9.90 vs. 9.29). These results underscore that protocol choice
is consequential and that dynamic, scenario-aware selection is a practical path to reliable,
efficient multi-agent systems.

2 RELATED WORK

Benchmarks and Multi-agent frameworks. LangChain provides modular
pipelines (LangChain, 2024a), LangGraph adds graph-based control flow (LangChain,
2024b), and CrewAlI simplifies role-based collaboration (Moura, 2024). Microsoft’s AutoGen
enables conversational multi-agent systems (Microsoft Research, 2024), while OpenAl’s
Swarm offers lightweight coordination (OpenAl, 2024). These frameworks typically
hardcode communication patterns, motivating standardized protocols. Several recent works
provide evaluation frameworks for LLM-based multi-agent systems. (Zhu et al., 2025)
introduce MultiAgentBench, covering collaborative coding, gaming and research tasks.
(Hyun et al., 2025) propose CREW-Wildfire for wildfire response with heterogeneous
agents. (Liu et al., 2024) present AgentBench, evaluating LLM-as-Agent across eight
environments. While these benchmarks offer rich scenarios, they evaluate agents under
fixed communication mechanisms and do not compare protocol designs. Our work isolates
the communication layer and provides protocol-agnostic evaluation.

Agent protocols and communication mechanisms. Recent surveys provide theoreti-
cal foundations for understanding multi-agent communication. (Tran et al., 2025) survey
collaboration mechanisms, categorizing cooperation, competition and coordination strate-
gies, while (Yang et al., 2025) propose a taxonomy distinguishing context-oriented from
inter-agent protocols. (Ehtesham et al., 2025) compare existing protocols, analyzing their

Under review as a conference paper at ICLR 2026

. - Communication System Representative
Protocol Primary Utility Method Characteristics Scenarios
A2A Ente.rpn.se Structured Consistent .La.rge-sc.alle
coordination throughput mission-critical
Framework Framework- Cross-platform
s integration A dependent collaboration
ANP Securlty Merichies) Variable Docume.nt
routing latency aggregation
Decentralized Network- Dynamic
CRCES workflows e dependent networks

Table 1: Comparison of investigated LLM multi-agent protocols. Key term definitions (e.g.,
Structured, Async, Targeted, P2P) are provided in Appendix B.

interaction modes and security models. The ecosystem features diverse protocol implemen-
tations (Ehtesham et al., 2025) : MCP standardizes tool invocation (Anthropic, 2024),
A2A enables agent communication across enterprise platforms with 50+ industry part-
ners (Google Cloud, 2025), IBM’s ACP provides open standards for cross-framework col-
laboration (IBM BeeAl, 2025), the Internet of Agents (IoA) enables dynamic discovery
and orchestration among heterogeneous agents (Chen et al., 2024), and Agora establishes a
decentralized communication layer that emphasizes interoperability and governance across
agent networks (Marro et al., 2024). While these surveys motivate systematic empirical
evaluation of protocols, we provide the first benchmark with adapters for representative
protocols to evaluate them systematically.

3 PROTOCOLBENCH: A SYSTEMATIC EVALUATION OF AGENT
PrOTOCOLS
To assess multi-agent protocols along orthogonal dimensions, we implement ProtocolBench

covering four representative scenarios and a unified set of endpoints that expose protocol

trade-offs while holding non-protocol factors constant.
3.1 PROTOCOLBENCH SCENARIOS

As shown in Fig. 2, each scenario stresses a different property of the communication layer.

, GAIA Document QA

IMI Agent config: role +tool + prompt
Network config: topology + workflow
planner e g

Streaming Queue

MS MARCO

Fail-Storm Recovery

N 2WikiMultiHopQA
] / \‘ %
query answer
@

accuracy rate
time consumption
Recovery time

<5

T sumaye. o °f
!

summarizer

Task solution, Quality
Time, Token usage

Time recording, success rate, network error
retry, response time, time out...

judge

reconnecting...

Figure 2: Illustration of four multi-agent scenarios evaluated in this work.

GAITA Document Question Answering targets hierarchical information aggregation in
collaborative workflows. A planner instantiates a small team of agents with role-specialized
tools and a fixed message flow; agents coordinate to extract, summarize, and adjudicate
evidence for document-centric questions (Mialon et al., 2023). Primary signals are task suc-
cess and LLM-judge quality (1-5), together with per-message byte counts. Implementation
details are provided in Appendix D.1.

Safety Tech assesses privacy-preserving communication in a medical Q&A setting. A
registration gateway, a coordinator, and two LLM doctors process 10 augmented cases from
ChatDoctor-HealthCareMagic (Li et al., 2023b). We inject concrete probes into the stack to
test transport and session protections, including TLS downgrade and weak-cipher attempts,

Under review as a conference paper at ICLR 2026

) Scene description ne key featur q 4
? R0 €y leatures Final decision
#Module:2 Modulel: Speed, stability Module 1: A2A
Description:... Mudule2:Securaty lu‘;’:i:l]:uti‘ml‘.‘
Protocol description Protocol features fits scene TR A
A2A:... A2A: HTTP + JRPC, Fast, stable L
3 ot Justification:...
ANP:... ANP: Safe, DID authentication

Protocol router reasoning

UTE Message

o8
;l@‘

Server Adapter | Client Adapter
-——— T -

Translated '@
ANP Msg -

Database manager module

& |

Server Adapter | Client Adapter
'

Protocol Router Pipeline

(DDecide which protocol to use

We have some data for each module
collected. Please save (@Run and cross-protocol
them to the dataset. communication

Sure. I will save them
to the database and
make them safe.

Front desk Service module

Agent 1 Agent 2

Figure 3: ProtocolRouter overview. A scenario-aware selector (top) (Appendix C.10)
outputs a structured plan with one protocol per module. The agent protocol adapters and
connects agents (bottom); cross-protocol links use stateless encode/decode bridges without
shared session state.

invalid /expired /self-signed certificates, hostname mismatches, replay attacks, clock-skew
windows, tunnel sniffing, and session-hijack tokens. Endpoints report block rates and leakage
detection. Implementation details are provided in Appendix D.2.

Streaming Queue evaluates high-throughput API serving. One coordinator and four work-
ers process 1,000 MS MARCO entries (Bajaj et al., 2018) under a fixed local environment,
with queue-based load distribution. We measure mean end-to-end latency (s), dispersion
(std. dev.), total duration (min), and success rate. Implementation details are provided in
Appendix D.3.

Fail-Storm Recovery tests resilience under cyclic node failures in a Shard-QA ring.
Queries/answers from 2WikiMultihopQA (Ho et al., 2020) are sharded across 8 agents; ev-
ery 120s, 3 of 8 agents are killed and later rejoin. We report time-to-recovery (s), post-fault
success, and steady-state latency (s). Implementation details are provided in Appendix D 4.

3.2 SYSTEM DESIGN AND EVALUATION

Scenario Description Key Metrics Key Feature

GAIA GATA document task analysis Success rate, Traj quality Hierarchical routing
Safety Tech Medical Q&A with security probes Security Score, Probe Block Rate Security probing
Streaming Queue High-throughput request handling P95 latency, Drop rate Load balancing
Fail-Storm Recovery Resilience under node failures Recovery time, Success rate drop Fault detection/recovery

Table 2: Overview of ProtocolBench scenarios with key metrics and features.
Each scenario highlights different protocol trade-offs while being evaluated with consistent
evaluation metrics.

To isolate protocol-specific effects, we pin non-protocol factors (LLM/model version,
prompts, hardware image, rate limits) and use three named components: (i) Protocol
Adapters that normalize envelopes, field mappings, retries, and streaming semantics across
A2A/ACP/ANP/Agora; (ii) a Scenario Harness that fixes topologies and workloads for
GATIA, Streaming Queue, Fail-Storm, and Safety Tech; and (iii) a Logging & Metrics Stack
that collects success/quality, end-to-end latency/throughput, byte overhead, and failure-
time robustness with standardized aggregation (per-request, per-run, per-scenario). Re-
peated runs and statistical procedures are reported in the Experiments section.

Under review as a conference paper at ICLR 2026

4 PROTOCOLROUTER: A TASK-DEPENDENT SELECTION OF PROTOCOLS

The diversity of multi-agent protocols (A2A, ACP, ANP, Agora) makes protocol choice
both consequential and non-trivial: no single protocol dominates across all scenarios, while
manual selection is brittle and time-consuming. ProtocolRouter addresses this by selecting
one protocol per scenario (or per module) based on stated requirements and observable
signals. The router performs selection and composition only; when different endpoints
use different protocols, translation is provided by protocol adapters that encode/decode
messages between wire formats while preserving semantics and security.

4.1 PROTOCOLROUTER DESIGN

Goals. (1) Correct-by-constraints: respect hard requirements (e.g., end-to-end confidential-
ity, streaming, delivery semantics) before any optimization; (2) Simple and deterministic:
identical inputs — identical selections; (3) Interoperable: selections may be heterogeneous
across modules, with adapter-based translation at link boundaries; (4) Low overhead: se-
lection adds negligible latency and does not alter application logic.

Inputs. (i) A scenario or module specification (natural language or structured) that
states requirements and preferences (e.g., "must support TLS/E2E", "streaming updates",
"REST-style idempotent operations"); (ii) Optional runtime signals and scenario-agnostic
performance priors from prior runs (e.g., typical latency dispersion, recovery characteristics,
security coverage).

Outputs and runtime. For each module, the router emits a protocol assignment (e.g.,
GATA: mixed per-module; Streaming Queue: ACP; Fail-Storm: A2A; Safety: ANP). The
runtime binds the corresponding protocol adapters on each endpoint. If two endpoints on
a link use different protocols, the adapters perform encode/decode translation between the
two wire formats; translation is purely syntactic (envelope/field mapping), with no change
to business content or security attributes.

Non-goals and limits. The router does not modify application semantics, re-encrypt
payloads, or override organizational security policies. Unless explicitly configured, it does
not perform online exploration (e.g., bandits). Advanced prompt schemas, JSON schemas,
and adapter mapping tables are provided in the Appendix for reproducibility, not required
to understand the main method.

4.2 PROTOCOLROUTERBENCH: EXTENDING PROTOCOLBENCH TO EVALUATE
MULTI-AGENT PROTOCOL ROUTERS

Objective and evaluation modes. We extend ProtocolBench with PROTOCOLROUTER-
BENCH to assess the selection quality of protocol routers independent of execution artifacts:
given a scenario, the router must choose the correct protocol for each independent module
under explicit hard requirements. We evaluate in two complementary modes. Spec-only:
a fixed capability table maps each protocol to supported capabilities (transport/interaction,
long-running and artifact handling, identity/confidentiality, delivery and replay, operation
semantics, governance). The router first filters out protocols that violate hard constraints,
then breaks ties by the most relevant interaction preference (e.g., streaming vs. request/re-
sponse), and finally applies a stable fallback order if needed. Spec+Perf: under the same
hard-constraint filter, the router additionally leverages priors (aggregated numerical perfor-
mance of protocols under certain conditions from ProtocolBench) only to break ties among
feasible candidates; no per-scenario numbers are used.

Data and ground truth.We create 60 test scenarios across five difficulty levels (L1-L5)
through human-Al collaboration: humans write the basic requirements, Al adds details,
and humans finalize each scenario. Difficulty increases with the number of communication
modules: level L; has ¢ independent modules per scenario (i € {1,...,5}), giving us 12
scenarios per level and 180 total modules to evaluate.

Communication modules are the basic building blocks that need protocol selection - things
like message passing, data sharing, or coordination between agents. We remove brand
names and specific product mentions to focus on technical requirements. Each scenario
includes helpful constraints like "must support end-to-end encryption" or "avoid REST-style
communication" to guide protocol selection. These constraints ensure that each module has

Under review as a conference paper at ICLR 2026

exactly one correct protocol choice from {A2A, ACP, ANP, Agora}. Human experts assign
the correct labels based on the stated requirements and protocol capabilities.

5 EXPERIMENTAL RESULTS AND ANALYSIS

5.1 EXPERIMENTAL SETTINGS AND METRICS

Experiment settings. We evaluate four protocols (A2A, ACP, ANP, Agora) on the four
ProtocolBench scenario families introduced in Section 3. For each (protocol, scenario) pair
we execute R independent runs with distinct seeds. Each run has a warm-up phase of W
seconds and a steady-state measurement window of Ti,c.s seconds. Unless otherwise noted,
the same LLM, prompts, decoding parameters, and agent graphs are used across protocols;
rate limits and network conditions are controlled as in Section 3.2. Traffic is generated
by a closed-loop driver at a fixed offered load A. Timestamps are recorded at send, queue-
start, service-start, service-end, and first-token. Failure injection follows a fixed schedule: at
kill time k, we crash a fraction p of agent processes/links for duration D ; processes/links
rejoin at r;. Security capabilities are exercised with each protocol’s recommended stack
(e.g., TLS/mTLS/MLS, DID/PKI) and probed via handshake, rotation, and replay tests.

GAIA Document Question Answering (collaboration). GAIA Document Question
Answering (collaboration) evaluates hierarchical information aggregation in collaborative
workflows. In this scenario, a planner instantiates a small team of agents with role-
specialized tools and a fixed message flow. Agents coordinate to extract, summarize, and
adjudicate evidence for document-centric questions from the GAIA benchmark (Mialon
et al., 2023).

We measure two key metrics: Quality Average (1-5 scale) represents the overall quality
of the multi-agent system’s problem-solving process and final answer, as assessed by an
LLM judge using a detailed rubric that evaluates factual accuracy, reasoning coherence, and
task completion. Success Average measures the number of tasks where agents successfully
produce valid, complete answers that meet the task requirements.

Fail-Storm Recovery (Discovery, Latency, Recovery).For each fault cycle, we define
two measurement windows: Pre-fault (60 seconds before failure) and Post-fault (60 sec-
onds after recovery). We measure Answer Discovery Rate as the percentage of queries
successfully resolved in each window, Latency as the median task completion time, and
Recovery Time as the duration from fault injection to system stabilization.

Streaming Queue (Latency).Let run r contain N, requests indexed by 4, with arrival
and completion times ¢7" and tﬁ?f‘e. End-to-end(E2E) latency for request i is

i,r

e2e __ ydone arr
T;,r - ti,r -t

Run-level duration (reported as “Duration (min)”) is

max; t?‘;ﬂe — min; ¢
;

DurationEQ = 60

Per run, we summarize {Tﬁfc}f\f:"'l by median (Med), Min and Max.

Tables report the run-average of these summaries across the R runs.

Safety Tech (Security capabilities). We evaluate security capabilities using a binary
matrix indicating whether each protocol supports specific security features (TLS transport,
session hijacking protection, end-to-end encryption, tunnel sniffing resistance, and metadata
leakage prevention). We also measure probe block rates as the percentage of security attacks
successfully blocked by each protocol.

Reporting note. We intentionally omit generic task accuracy or F1 and other basic statistics;
they are not differentiating for our protocol-level study and are scenario-dependent. All
tables (Table 3, Table 3a—Table 3d) use the definitions above.

Under review as a conference paper at ICLR 2026

Scenario Protocol Quality avg Success avg
ACP 2.27 5.25
A2A 2.51 9.29
GAIA ANP 2.14 7.28
AGORA 2.33 6.27

(a) GAIA. Task-utility metrics (averages only).

Scenario Protocol Answer (%) Latency (s) Recovery
(s)
Pre Post Pre Post
ACP 14.76 13.64 4.38 4.19 8.05
Fail-Storm Recover A2A 14.74 14.57 4.34 4.19 8.00
] Y ANP 14.88 12.94 4.34 4.18 8.00
AGORA 14.91 12.12 4.33 4.18 8.00

(b) Fail-Storm Recovery. Pre-/post-failure answer discovery (%), steady-state latency (s), and
recovery time (s). All times include a 2.00s restart delay; see Appendix D.4.

. Duration Mean Min Max Std. Dev.
Scenario Protocol .
(min) ©) ©) ©) ©)
ACP 40.28 9.66 6.88 14.24 1.08
Streaming A2A 40.45 9.70 6.94 15.13 1.13
Queue ANP 47.38 11.36 0.24 50.10 5.73
AGORA 54.97 13.14 0.52 28.21 5.09

(c) Streaming Queue. End-to-end latency statistics (duration, mean, min, max, std.).

ACP X v v X v
A2A X v v X v
Safety Tech ANP v v v v v
AGORA v v v v v

(d) Safety Tech. Binary capability matrix; v' indicates presence and x indicates absence.

Table 3: Consolidated experimental results by scenario. Panels correspond to GAIA, Fail-
Storm, Streaming Queue, and Safety Tech.

5.2 AGENTIC TASKS PERFORMANCE

A2A emerges as the superior protocol for overall task utility across the ProtocolBench sce-
narios, achieving the highest average quality score of 2.51 and success rate of 9.29 (Table 3a).

Compared to ACP, A2A demonstrates a substantial 10.57% improvement in quality metrics
and a remarkable 76.95% enhancement in success rate, establishing it as the most effective
protocol for heterogeneous collaborative workloads.

Qualitative analysis. GAIA mainly stresses hierarchical, planner-driven multi-hop coor-
dination rather than raw throughput. A2A fits this pattern best because its lightweight
HTTP+JSON-RPC envelopes and agent cards make turn-based agent coordination cheap
and easy to bind to the planner’s role manifest. For workloads dominated by structured
multi-hop reasoning in a single-tenant setting, protocols that favor lightweight envelopes and
simple turn-based semantics over heavy identity or meta-protocol machinery are therefore
preferable.

Under review as a conference paper at ICLR 2026

Protocol Mean latency (s) 95% CI [lower, upper| Std. dev. (s)

ACP 9.663 [9.597, 9.729] 1.08
A2A 9.698 9.629, 9.770] 1.13
ANP 11.364 [11.013, 11.716] 5.73
Agora 13.135 [12.819, 13.444] 5.09

Table 4: Streaming Queue: mean end-to-end latency with 95% bootstrap confidence inter-
vals and standard deviations.

Protocol 4 agents 8 agents 16 agents 32 agents

ACP 0.13 0.14 0.16 0.18
A2A 1.20 2.50 5.80 10.50
ANP 1.60 3.10 7.20 14.10
Agora 4.00 8.30 19.20 33.60

Table 5: Streaming Queue scale-up: adapter-side per-message latency (ms) as the number
of worker agents increases from 4 to 32. Values are averaged over multiple runs and only
include adapter work.

5.3 LATENCY PERFORMANCE AND TAIL BEHAVIOR

ACP demonstrates superior latency characteristics in the Streaming Queue scenario,
achieving the lowest mean response time of 9,663 ms with the smallest variance of 1,077 ms
and the most controlled maximum latency of 14,235ms (Table 3c). This consistent per-
formance profile makes ACP particularly suitable for high-throughput API services where
latency-critical applications demand strict tail latency requirements and uniform load dis-
tribution among worker agents.

A2A follows closely with competitive latency performance, exhibiting only a 0.36% increase
in mean latency compared to ACP while maintaining reasonable tail behavior. In contrast,
ANP and Agora incur significant latency penalties of 17.60% and 35.93% respectively, ac-
companied by substantially higher variance and heavy-tail distributions that may impact
application predictability in high-throughput scenarios processing large-scale datasets like
MS MARCO entries.

Statistical analysis. We further summarize these latency differences with 95% bootstrap
confidence intervals and Welch’s t-tests with Holm-Bonferroni correction (Table 4). The
confidence intervals show that ACP and A2A are statistically indistinguishable in mean
latency, whereas both are significantly faster than ANP and Agora in this high-throughput
setting; full pairwise statistics are provided in Appendix E.5.

Scale-up experiment inside Streaming Queue. We further examine how protocol
adapter overhead behaves as we scale up the number of workers in a Streaming Queue-
style environment. In this experiment, we keep the overall traffic pattern and coordinator
logic unchanged, and vary the number of worker agents from 4 to 8, 16, and 32, measuring
only the time spent inside the protocol adapter (encoding/decoding; LLM inference and
network I/O are excluded).

Table 5 reports the average per-message adapter latency for each protocol. Adapter overhead
grows slowly with the number of agents and remains in the sub-millisecond to few-tens-of-
milliseconds range even at 32 agents. Given that end-to-end latencies in Streaming Queue
are on the order of 9-13 seconds, this confirms that protocol adapter overhead is not the
bottleneck in the regimes we study.

Qualitative analysis. Streaming Queue stresses high-throughput, shallow request—reply
serving where both mean and tail latency matter. ACP and A2A perform best here because
their HTTP/REST-style interfaces with connection reuse and simple streaming make each
request cheap to negotiate and easy for the coordinator to pipeline across workers. For
latency-critical serving workloads, this suggests choosing protocols with REST/SSE-like
interaction patterns and minimal per-request negotiation or session overhead.

Under review as a conference paper at ICLR 2026

5.4 FAILURE RECOVERY AND RESILIENCE

Under the Fail-Storm Recovery scenario testing resilience under node failures, A2A ex-
hibits exceptional performance, maintaining 98.85% of its pre-failure answer discovery ca-
pability (14.57% vs. 14.74% pre-failure rate) as shown in Table 3b. This superior retention
capability significantly outperforms other protocols in the challenging Shard QA environ-
ment where query-answer matching must continue despite systematic node failures: ACP
retains 92.41%, ANP maintains 86.96%, and Agora preserves 81.29% of pre-failure perfor-
mance.

Recovery time analysis reveals relatively uniform behavior across all protocols, with recovery
times clustering around 8.0 seconds when agents reconnect to the loop topology. ACP shows
a marginal 46 ms additional delay, which is negligible in practical deployment scenarios
involving distributed multi-hop question answering with periodic connection losses.

Qualitative analysis. Fail-Storm stresses resilience under cyclic node crashes, focusing on
how quickly the system recovers and how much answer-discovery ability is preserved after
faults. A2A (and to a slightly lesser extent ACP) benefits from nearly stateless HTTP
endpoints and idempotent retries, so that agents can resume normal behavior as soon as a
process restarts, without complex session repair. For failure-prone or high-churn environ-
ments, protocols that keep the transport layer stateless and default to idempotent semantics
are better suited than those that rely on heavy, long-lived sessions.

5.5 SECURITY CAPABILITY ANALYSIS

The Safety Tech scenario reveals a clear split between protocol families in protocol-level
privacy and transport security (Table 3d). ANP and Agora provide full coverage across
all five evaluated dimensions (TLS transport security, session hijacking protection, end-
to-end encryption, tunnel sniffing resistance, and metadata leakage prevention), making
them well suited for medical Q&A workloads that handle sensitive information and must
withstand adversarial probing. In contrast, A2A and ACP lack native protection against
TLS misconfiguration and tunnel sniffing, so they require additional security layers for
deployments where strong privacy guarantees are mandatory.

Qualitative analysis. Safety Tech stresses protocol-level privacy and transport security un-
der downgrade, replay, sniffing, and metadata-leakage probes. ANP and Agora are strongest
here because ANP’s DID-based end-to-end encryption and our hardened Agora TLS/meta-
data configuration directly block these probes at the protocol layer, whereas A2A and ACP
rely on more conventional web security. For privacy-sensitive or cross-boundary deploy-
ments, protocols with identity-first designs and native E2E or strict transport hardening
are preferred, while lighter protocols typically require additional security layers on top.

5.6 PROTOCOLROUTERBENCH: PROTOCOL SELECTION EVALUATION

ProtocolRouterBench isolates the protocol-selection problem in ProtocolRouter: given a sce-
nario graph with module specifications and cross-protocol linking rules (Fig. 3), the router
must produce a structured plan with exactly one protocol per module that satisfies all con-
straints. The suite spans 60 scenarios (180 modules) organized into five difficulty levels
(L1-L5), and we evaluate selections using scenario accuracy (exact plan match), module ac-
curacy, and macro-F1 to surface systematic confusions (e.g., A2A«+>ACP) and robustness for
rarer protocols (ANP, Agora). We compare a spec-only router that uses protocol specifica-
tions only against a spec+perf variant that additionally uses scenario-agnostic performance
priors for tie-breaking.

Spec-only vs. spec-+perf. Table 6 reports scenario- and module-level accuracy for the
two settings. Overall, the spec-only router reaches 53.5% scenario accuracy and 71.2%
module accuracy, while adding performance priors improves these numbers to 63.3% and
81.7% and raises macro-F1 from 0.721 to 0.824. The largest gains appear on the more
complex levels (L4-L5), where priors help resolve A2A«+>ACP confusions without hurting
ANP /Agora behavior.

End-to-end validation.We also instantiate the router’s selections end-to-end on the four
ProtocolBench scenarios to compare against single-protocol deployments. For each scenario,
ProtocolRouter selects protocols based on scenario characteristics: Streaming Queue —

Under review as a conference paper at ICLR 2026

Split Scenario Accuracy Module Accuracy
Spec-only Spec+Perf Spec-only Spec+Perf
Overall (60 scen / 180 mods) 0.535 0.633 0.712 0.817
L1 (12 scen / 12 mods) 0.750 0.667 0.750 0.667
L2 (12 scen / 24 mods) 0.500 0.583 0.708 0.750
L3 (12 scen / 36 mods) 0.750 0.750 0.861 0.889
L4 (12 scen / 48 mods) 0.500 0.917 0.771 0.958
L5 (12 scen / 60 mods) 0.100 0.250 0.540 0.717

Table 6: Router selection correctness: overall and by difficulty across spec-only and
performance-aware conditions.

GAIA (per-module selection) Streaming Queue (router: ACP)
Metric Router Best Single Metric Router Best Single
Quality avg (1-5) 2.50 2.51 (A2A) Duration (s) 2375 2417 (ACP)
Success avg 9.90 9.29 (A2A) Mean latency (ms) 9495 9663 (ACP)

Std. dev. (ms) 2866 1077 (ACP)

Fail-Storm (router: A2A) Safety (secure protocol selected)

Metric Router Best Single Security Check Router Best Single
Pre-failure disc. (%) 14.86 14.91 (Agora) TLS transport v v (ANP)
Post-failure disc. (%) 13.98 14.57 (A2A) Session protection v v (ANP)
Recovery time (s) 6.55 8.00 (A2A) E2E encryption v v (ANP)

Tunnel resistance v v (ANP)

Metadata protection v v (ANP)

Table 7: Router execution validation: performance comparison against the best single-
protocol baselines across four scenario types.

ACP (latency-optimized), Fail-Storm — A2A (resilience-focused), GAIA — per-module
dynamic selection, and Safety — ANP/Agora (secure defaults). As summarized in Ta-
ble 7, in GATA the router raises the success average from 9.29 (best single: A2A) to 9.90
while keeping quality essentially unchanged; in Fail-Storm it reduces recovery time from
8.00s (A2A) to 6.55s with similar pre-/post-fault answer discovery; in Streaming Queue it
slightly shortens total duration without hurting latency; and in Safety Tech it consistently
selects ANP/Agora for the most sensitive modules, matching the strongest single-protocol
security coverage. A detailed GAIA case study illustrating per-module routing is provided
in Appendix E.4.

Performance analysis. ProtocolRouter demonstrates competitive performance across all
scenarios while providing adaptive protocol selection (Table 7). The router achieves lower la-
tency in Streaming Queue, significantly reduces recovery time in Fail-Storm (6.55s vs 8.00s),
yields higher success rates in GATA (9.90 vs 9.29), and ensures perfect security compliance
in Safety scenarios. Overall, these results show that ProtocolRouter’s per-module protocol
composition can match or surpass the best single-protocol deployment across all scenarios.

6 CONCLUSION

This paper introduces ProtocolBench, the first comprehensive benchmark for evaluating
agent communication protocols, and ProtocolRouter, a dynamic router that leverages pro-
tocol diversity for improved performance. Our systematic evaluation across diverse sce-
narios reveals that protocol choice significantly impacts system behavior across multiple
dimensions—no single protocol dominates universally. By providing standardized evalua-
tion tools and demonstrating the benefits of dynamic selection, we aim to transform protocol
choice from ad-hoc decisions to principled engineering. As multi-agent systems mature from
research curiosities to production infrastructure, understanding and optimizing communi-
cation layers becomes essential for building reliable, efficient, and scalable deployments.

10

Under review as a conference paper at ICLR 2026

7 ETHICS STATEMENT

Benchmarking communication protocols raises several ethical considerations. Efficient agent
coordination could enable both beneficial applications and harmful automation. We ex-
plicitly exclude scenarios involving deception, manipulation, or privacy violation from our
benchmark. The open-source release includes usage guidelines emphasizing responsible de-
ployment.

Our fault injection experiments simulate infrastructure failures rather than adversarial at-
tacks, avoiding the creation of tools for system disruption. We engage with the security
community to ensure our protocol adapters do not introduce new vulnerabilities.

ACKNOWLEDGMENT

L. Ding is supported by the Laboratory Directed Research and Development Program of
Oak Ridge National Laboratory, managed by UT-Battelle, LLC, for the US DOE.

REFERENCES

Anthropic. Model Context Protocol. https://modelcontextprotocol.io, 2024. Accessed:
2025.

Payal Bajaj, Daniel Campos, Nick Craswell, Li Deng, Jianfeng Gao, Xiaodong Liu, Rangan
Majumder, Andrew McNamara, Bhaskar Mitra, Tri Nguyen, Mir Rosenberg, Xia Song,
Alina Stoica, Saurabh Tiwary, and Tong Wang. Ms marco: A human generated machine
reading comprehension dataset, 2018. URL https://arxiv.org/abs/1611.09268.

Weize Chen, Ziming You, Ran Li, Yitong Guan, Chen Qian, Chenyang Zhao, Cheng Yang,
Ruobing Xie, Zhiyuan Liu, and Maosong Sun. Internet of agents: Weaving a web of
heterogeneous agents for collaborative intelligence, 2024. URL https://arxiv.org/abs/
2407.07061.

Abul Ehtesham, Aditi Singh, Gaurav Kumar Gupta, and Saket Kumar. A survey of agent
interoperability protocols: Model context protocol (MCP), agent communication protocol
(ACP), agent-to-agent protocol (A2A), and agent network protocol (ANP). arXiv preprint
arXi:2505.02279, 2025. URL https://arxiv.org/abs/2505.02279.

Google Cloud. Agent2Agent Protocol (A2A). Technical report, Google, 2025. With sup-
port from 50+ technology partners including Atlassian, Box, Cohere, Intuit, MongoDB,
PayPal, Salesforce, SAP, ServiceNow.

Xanh Ho, Anh-Khoa Duong Nguyen, Saku Sugawara, and Akiko Aizawa. Constructing
a multi-hop qa dataset for comprehensive evaluation of reasoning steps. arXiv preprint
arXi:2011.01060, 2020.

Sirui Hong, Mingchen Zhuge, Jiaqi Chen, Xiawu Zheng, Yuheng Cheng, Ceyao Zhang,
Jinlin Wang, Zili Wang, Steven Ka Shing Yau, Zijuan Lin, Liyang Zhou, Chenyu Ran,
Lingfeng Xiao, Chenglin Wu, and Jirgen Schmidhuber. Metagpt: Meta programming
for a multi-agent collaborative framework. arXiv preprint arXiv:2308.00352, 2023. URL
https://arxiv.org/abs/2308.00352.

Mengkang Hu, Yuhang Zhou, Wendong Fan, Yuzhou Nie, Bowei Xia, Tao Sun, Ziyu
Ye, Zhaoxuan Jin, Yingru Li, Qiguang Chen, Zeyu Zhang, Yifeng Wang, Qianshuo
Ye, Bernard Ghanem, Ping Luo, and Guohao Li. Owl: Optimized workforce learning
for general multi-agent assistance in real-world task automation, 2025. URL https:
//arxiv.org/abs/2505.23885.

Jonathan Hyun, Nicholas R. Waytowich, and Boyuan Chen. CREW-Wildfire: Benchmark-

ing agentic multi-agent collaborations at scale. arXiv preprint arXiv:2507.05178, 2025.
URL https://arxiv.org/abs/2507.05178.

11

https://modelcontextprotocol.io
https://arxiv.org/abs/1611.09268
https://arxiv.org/abs/2407.07061
https://arxiv.org/abs/2407.07061
https://arxiv.org/abs/2505.02279
https://arxiv.org/abs/2308.00352
https://arxiv.org/abs/2505.23885
https://arxiv.org/abs/2505.23885
https://arxiv.org/abs/2507.05178

Under review as a conference paper at ICLR 2026

IBM BeeAl. Agent Communication Protocol (ACP). https://docs.beeai.dev/acp/
alpha/introduction, 2025. IBM Research.

LangChain. LangChain: Building applications with LLMs through composability. https:
//github.com/langchain-ai/langchain, 2024a. Accessed: 2025.

LangChain. LangGraph: Build resilient language agents as graphs. https://github.com/
langchain-ai/langgraph, 2024b. Accessed: 2025.

Guohao Li, Hasan Abed Al Kader Hammoud, Hani Itani, Dmitrii Khizbullin, and Bernard
Ghanem. Camel: Communicative agents for "mind" exploration of large language model
society. arXiv preprint arXiv:2303.17760, 2023a. URL https://arxiv.org/abs/2303.
17760.

Yunxiang Li, Zihan Li, Kai Zhang, Ruilong Dan, Steve Jiang, and You Zhang. Chatdoctor:
A medical chat model fine-tuned on a large language model meta-ai (llama) using medical
domain knowledge. Cureus, 15(6), 2023b.

Xinbin Liang, Jinyu Xiang, Zhaoyang Yu, Jiayi Zhang, Sirui Hong, Sheng Fan, and Xiao
Tang. Openmanus: An open-source framework for building general ai agents, 2025. URL
https://doi.org/10.5281/zenodo.15186407.

Xiao Liu, Hao Yu, Hanchen Zhang, Yifan Xu, Xuanyu Lei, Hanyu Lai, Yu Gu, Hangliang
Ding, Kaiwen Men, Kejuan Yang, Shudan Zhang, Xiang Deng, Aohan Zeng, Zhengxiao
Du, Chenhui Zhang, Sheng Shen, Tianjun Zhang, Yu Su, Huan Sun, Minlie Huang, Yuxiao
Dong, and Jie Tang. AgentBench: Evaluating LLMs as agents. In ICLR, 2024.

Samuele Marro, Emanuele La Malfa, Jesse Wright, Guohao Li, Nigel Shadbolt, Michael
Wooldridge, and Philip Torr. A scalable communication protocol for networks of large
language models, 2024. URL https://arxiv.org/abs/2410.11905.

Grégoire Mialon, Clémentine Fourrier, Craig Swift, Thomas Wolf, Yann LeCun, and Thomas
Scialom. Gaia: a benchmark for general ai assistants, 2023. URL https://arxiv.org/
abs/2311.12983.

Microsoft Research. AutoGen: Enable next-gen large language model applications. https:
//github.com/microsoft/autogen, 2024. Microsoft.

Jodo Moura. CrewAl: Framework for orchestrating role-playing autonomous Al agents.
https://github.com/joaomdmoura/crewAl, 2024. Accessed: 2025.

OpenAl. Swarm: Educational framework for multi-agent orchestration. https://github.
com/openai/swarm, 2024. OpenAl.

Chen Qian, Wei Liu, Hongzhang Liu, Nuo Chen, Yufan Dang, Jiahao Li, Cheng Yang,
Weize Chen, Yusheng Su, Xin Cong, Juyuan Xu, Dahai Li, Zhiyuan Liu, and Maosong
Sun. Chatdev: Communicative agents for software development. arXiv preprint
arXi:2307.07924, 2023. URL https://arxiv.org/abs/2307.07924.

Khanh-Tung Tran, Dung Dao, Minh-Duong Nguyen, Quoc-Viet Pham, Barry O’Sullivan,
and Hoang D. Nguyen. Multi-agent collaboration mechanisms: A survey of LLMs. arXiv
preprint arXiw:2501.06322, 2025. URL https://arxiv.org/abs/2501.06322.

Yingxuan Yang, Huacan Chai, Yuanyi Song, Siyvuan Qi, Muning Wen, Ning Li, Junwei Liao,
Haoyi Hu, Jianghao Lin, Gaowei Chang, Weiwen Liu, Ying Wen, Yong Yu, and Weinan
Zhang. A survey of Al agent protocols. arXiv preprint arXiv:2504.16736, 2025. URL
https://arxiv.org/abs/2504.16736.

Kunlun Zhu, Hongyi Du, Zhaochen Hong, Xiaocheng Yang, Shuyi Guo, Zhe Wang, Zhen-
hailong Wang, Cheng Qian, Xiangru Tang, Heng Ji, and Jiaxuan You. MultiAgent-
Bench: Evaluating the collaboration and competition of LLM agents. arXiv preprint
arXiw:2505.01935, 2025. URL https://arxiv.org/abs/2503.01935.

12

https://docs.beeai.dev/acp/alpha/introduction
https://docs.beeai.dev/acp/alpha/introduction
https://github.com/langchain-ai/langchain
https://github.com/langchain-ai/langchain
https://github.com/langchain-ai/langgraph
https://github.com/langchain-ai/langgraph
https://arxiv.org/abs/2303.17760
https://arxiv.org/abs/2303.17760
https://doi.org/10.5281/zenodo.15186407
https://arxiv.org/abs/2410.11905
https://arxiv.org/abs/2311.12983
https://arxiv.org/abs/2311.12983
https://github.com/microsoft/autogen
https://github.com/microsoft/autogen
https://github.com/joaomdmoura/crewAI
https://github.com/openai/swarm
https://github.com/openai/swarm
https://arxiv.org/abs/2307.07924
https://arxiv.org/abs/2501.06322
https://arxiv.org/abs/2504.16736
https://arxiv.org/abs/2503.01935

Under review as a conference paper at ICLR 2026

A LIMITATIONS, DISCUSSIONS AND FUTURE WORK

While ProtocolBench provides a first systematic view of agent communication protocols, sev-
eral limitations merit discussion. First, our scenario suite, though representative of common
multi-agent workloads (hierarchical doc QA, high-throughput serving, failure-heavy coordi-
nation, and privacy-sensitive Q&A), cannot capture all possible communication patterns or
topologies. Edge cases such as very large swarms, deeply nested hierarchies, or highly dy-
namic graphs remain unexplored, and our current scenarios are deliberately non-adversarial:
we focus on protocol behavior under normal workloads plus protocol-level security probes,
rather than on byzantine agents or prompt-level attacks.

Second, all of our main experiments fix a single strong open-source model (Qwen2.5-VL-
72B-Instruct) and hold the model constant within each run. Preliminary cross-model exper-
iments on Streaming Queue suggest that, while absolute latencies shift across base models,
the relative protocol trade-offs remain similar (ACP/A2A favored for latency; ANP/Agora
favored for security). However, we do not claim that our conclusions are model-agnostic in
a strict sense, and a more systematic cross-model study—especially on closed-source models
and vision-capable variants—is an important direction for future work. At the same time,
both ProtocolBench and ProtocolRouter are designed to be model-agnostic at the interface
level: new models can be plugged in without changing the benchmark or router formulation.

Third, ProtocolRouter in this work is used as an offline or low-frequency planner: it takes a
scenario description and optional, scenario-agnostic performance priors, and outputs a pro-
tocol plan that is then held fixed under stationary or slowly-changing workloads. We do not
address highly dynamic or strongly adversarial environments where workload characteristics
or threat models shift rapidly over time. Extending the same capability-based formulation
with online monitoring, change detection, and lightweight bandit-style adaptations—while
still respecting hard security and semantic constraints—is a natural next step.

Finally, our scalability experiments focus on moderate-scale settings. The scale-up study
shows that adapter-side encode/decode overhead stays in the sub-millisecond to few-tens-of-
milliseconds range even at 32 agents, and is therefore negligible compared to multi-second
end-to-end latency in our current scenarios. However, in truly large deployments with
hundreds or thousands of agents, additional systems concerns such as connection pooling,
sharded configuration management, and more aggressive backpressure become important,
and our design does not yet address them in depth. Future work should expand scenario cov-
erage along both the number-of-agents and task-complexity axes (e.g., larger GAIA teams,
deeper coordination chains), integrate with production orchestration systems for real-world
validation, and study theoretical limits and impossibility results for protocol and routing
architectures under realistic constraints.

B ProToCOL TERMINOLOGY AND CAPABILITY FACETS

Structured (communication method).Messages conform to an explicitly versioned
schema (envelope + fields) with validation at send/receive; schema violations fail fast.
Typical features include typed payloads, required/optional fields, and deterministic codec
mappings.

Async (communication method).Decoupled send/receive with queue- or event-driven
delivery; producers and consumers progress without lockstep rounds. Delivery may be at-
least-once with idempotency keys for de-duplication; eventual consistency is acceptable.

Targeted (communication method).Unicast to a single selected agent or module (rather
than broadcast/multicast). A router picks one feasible destination per hop using con-
straints/policies; backpressure and retry respect that single target.

P2P (communication method).Peer-to-peer links without a central broker. Discovery is
overlay-based (e.g., gossip/registry); routing is hop-wise between peers. Reliability, ordering,
and identity are achieved by end hosts or overlay mechanisms.

Long-running / job semantics.Operations that span multiple steps/time windows and
expose status transitions (pending — running — committed/aborted); may support
progress streaming and resumable retrieval.

13

Under review as a conference paper at ICLR 2026

Streaming (SSE/WS).First-byte latency is favored by chunked delivery via Server-Sent
Events or WebSocket. Streams carry partial tokens/updates before a final commit or ter-
minal state.

Idempotency and replay window.Each request carries an idempotency_key; servers
coalesce duplicates across a bounded replay window. This enables safe retries and reduces
tail amplification under failures.

End-to-end (E2E) confidentiality.Payload content is encrypted from sender to intended
receiver(s) beyond transport-level TLS, typically using application-layer or identity-bound
cryptography; intermediaries cannot read plaintext content.

Identity and trust.Authentication/authorization primitives (e.g., enterprise PKI, DID-
based identity) bind messages and sessions to verifiable principals; support for key rotation,
revocation, and audit trails is considered part of the trust fabric.

Governance and routine/versioning.Protocols may expose routine manifests and ver-
sioned procedures (e.g., protocolHash) to make interactions auditable and reproducible
across heterogeneous stacks.

C ADDITIONAL QUALITATIVE ANALYSIS OF PROTOCOL BEHAVIORS

This section expands the qualitative analysis of protocol behaviors that we summarize briefly
in Section 5. For each scenario in ProtocolBench, we connect the observed metrics to
concrete protocol design choices and distill simple design lessons.

C.1 GAIA DOCUMENT QUESTION ANSWERING

GATA document QA stresses hierarchical, planner-driven multi-hop coordination more than
raw throughput. A planner instantiates a small, fixed team of agents (planner, readers,
aggregator, judge) with role-specialized tools and a predefined message flow; most queries
go through a shallow but multi-step pipeline with several intermediate hops and limited
concurrency. In this setting, small per-hop overheads accumulate, and the ability to bind
agent roles to capabilities cleanly is more important than exotic transport features.

A2A aligns well with these requirements. Its HTTP+JSON-RPC framing produces compact,
schemaed envelopes, so each hop involves parsing and generating a relatively small JSON-
RPC request instead of a heavier REST resource or meta-protocol wrapper. The agent-card
abstraction also matches our planner’s manifest of abilities: each agent exposes a single
card describing its capabilities, and the planner can bind roles (e.g., "document reader",
"aggregator") to specific endpoints without any additional discovery or negotiation logic.
In our implementation, A2A endpoints are stateless servers behind a simple routing layer,
which keeps turn-based communication lightweight and predictable.

By contrast, ANP and Agora introduce overheads that are not directly needed in this single-
tenant GAIA setting. ANP’s DID+E2E stack provides strong identity and encryption guar-
antees, but these guarantees are not exercised here: all agents belong to the same logical
domain, and there is no cross-organization trust boundary. The cryptographic work required
to maintain DID-bound channels shows up as extra per-hop latency without improving task
success or judged quality. Agora’s meta-protocol design, which wraps application seman-
tics behind a protocolHash and routine description, is valuable when routines need to be
governed or negotiated, but in GAIA the routine (the planner’s workflow) is already fixed
by construction. The extra layer therefore adds description and dispatch overhead to every
message.

ACP sits between these extremes: its REST-first envelopes and resource-style semantics
make sense for long-running jobs or resource management, but they are not fully exploited
in GAIA’s short, logic-heavy hops. The additional bookkeeping (e.g., resource identifiers,
status endpoints) introduces modest overhead without providing much benefit in this par-
ticular pipeline.

Overall, GATA highlights that in tightly orchestrated, single-tenant multi-hop workflows,
protocols that prioritize lightweight envelopes and straightforward, turn-based semantics
(A2A-like designs) are better suited than identity-heavy or meta-protocol designs. When the

14

Under review as a conference paper at ICLR 2026

primary stressor is multi-hop reasoning rather than cross-boundary security, extra identity
or governance machinery mostly shows up as latency.

C.2 STREAMING QUEUE

Streaming Queue is almost the opposite of GAIA: it stresses high-throughput, shallow
request—reply serving. A single coordinator pushes roughly 1,000 independent queries
through four workers, and the main goal is to minimize end-to-end latency and control
the tails, not to coordinate complex multi-hop reasoning. Each worker exposes a simple
inference endpoint, and the coordinator uses a work-queue pattern to balance load across
workers; there is no multi-step pipeline for individual requests.

ACP’s REST-first design fits this pattern particularly well. Workers expose a straightfor-
ward HTTP endpoint, and connections are reused aggressively, so the cost of establishing
and negotiating each request is very small. Streaming support and status endpoints make it
natural for the coordinator to send a request, stream tokens back as they are generated, and
move on to the next task without head-of-line blocking. Because requests are structurally
simple and independent, ACP’s resource-style semantics (IDs, status, optional cancellation)
do not introduce extra complexity and can be ignored when not needed.

A2A shares much of the same transport stack—HTTP + JSON-RPC + optional SSE—and
therefore achieves very similar latency. The main difference is that A2A’s richer envelopes
and capability negotiation add a small amount of overhead to every message, which only
becomes visible in a high-throughput regime where thousands of messages are processed per
run. This explains why ACP has a slightly lower mean latency and shorter completion time,
while A2A remains competitive.

ANP and Agora, on the other hand, pay more per-request overhead for features that are
less relevant in a pure serving context. ANP often uses persistent DID-authenticated Web-
Socket sessions with end-to-end encryption; establishing and maintaining these sessions
incurs cryptographic and bookkeeping work, and handling many independent short-lived
queries through a small number of long-lived channels amplifies tail behavior. Agora’s meta-
protocol layer requires choosing and validating routines based on protocolHash or similar
descriptors; when each request is just "run this model once and stream the answer", the
extra step of routine dispatch becomes pure overhead.

Thus, Streaming Queue illustrates that when mean and tail latency under high throughput
are the primary objectives, simple REST /SSE-style protocols with aggressive connection
reuse and minimal per-request negotiation (ACP-like, and A2A-like to a slightly lesser ex-
tent) are more appropriate than identity-first or meta-protocol designs.

C.3 FAIL-STORM RECOVERY

Fail-Storm stresses resilience under repeated node crashes rather than steady-state speed.
In our Shard-QA setup, eight agents are arranged in a ring; every 120 seconds three agents
are abruptly killed and later rejoin. The key questions are how quickly the system recovers
normal behavior and how much answer-discovery ability is preserved after each fault cycle.

In our implementation, A2A stands out because its endpoints are almost stateless at the
transport layer. Shard agents run as lightweight HTTP servers without complex session
objects; when a process restarts, it only needs to re-expose its endpoint. Messages carry
enough routing information (source and destination IDs, trace IDs) for neighbors to resume
communication as soon as a process is healthy again. Idempotent retries are cheap, because
the protocol does not encode delicate conversational state in the transport, and duplicate
requests can be handled safely by the application logic.

ACP behaves somewhat similarly but relies more heavily on connection reuse and HTTP-
level keep-alive. When a worker process crashes, existing connections break and need to
be re-established; this causes slightly more reconnect churn than in the A2A setup and
leads to a modestly lower post-fault answer-discovery retention. ANP and Agora rely more
on sessionful abstractions (DID-bound channels and meta-protocol contexts), so when a
node dies these sessions must be re-established or renegotiated. During that window, some
requests are dropped or retried in ways that do not fully restore pre-fault answer-discovery

15

Under review as a conference paper at ICLR 2026

rates, even though steady-state latency once the system has stabilized looks very similar
across protocols.

This explains why, in Fail-Storm, our statistical analysis finds no meaningful differences in
steady-state latency across protocols, while A2A preserves the highest fraction of pre-fault
answer discovery and ACP/ANP/Agora progressively lose more performance. For high-
churn or failure-heavy environments, protocols whose transport layer remains stateless and
whose semantics are idempotent by default (like our A2A configuration) are better suited
than those that encode richer session state in the communication layer.

C.4 SAFETY TECH

Safety Tech focuses on protocol-level privacy and transport security in a medical Q&A set-
ting. Here the primary goal is to protect against TLS downgrade and weak-cipher attempts,
invalid or misconfigured certificates, replay attacks, tunnel sniffing, and metadata leakage,
rather than to minimize latency or maximize throughput.

ANP and Agora perform best under these criteria. ANP is explicitly designed as a network
and trust substrate: it binds communications to W3C DIDs and protects them with end-to-
end encryption using ECDHE-based key exchange and AEAD ciphers. As a result, ANP can
block most downgrade, replay, and sniffing-style probes at the protocol layer, independent of
application logic. In our deployment, we configure Agora with strict TLS, robust certificate
validation, and hardened metadata endpoints, so it also passes all of our transport and
metadata-leakage probes.

A2A and ACP, by contrast, rely on more conventional enterprise web security: they use TLS
and bearer tokens but do not natively enforce DID-style identity or end-to-end encryption
beyond transport-level guarantees. In our tests, this means A2A and ACP successfully
protect against basic session hijack attempts and metadata exposure, but they are more
vulnerable than ANP and Agora to tunnel sniffing and TLS misconfiguration probes. The
binary security matrix in Table 3d reflects exactly this split: only ANP and Agora cover all
five evaluated security dimensions.

Safety Tech therefore highlights the complementary side of the trade-offs seen in GATA and
Streaming Queue: when strong identity and confidentiality are primary requirements, ANP-
like and Agora-like designs that put identity and E2E protection at the center are preferred,
even if they incur higher latency in other tasks. Lighter protocols such as A2A and ACP
remain attractive for many internal or latency-sensitive applications, but in privacy-sensitive
or cross-boundary deployments they typically require additional security layers on top of
the protocol.

D DETAILED DESCRIPTION OF BENCHMARK IMPLEMENTATION

D.1 GAIA DOCUMENT QUESTION-ANSWERING IMPLEMENTATION

The GAIA Document Question-Answering scenario evaluates hierarchical information aggre-
gation in multi-agent protocols. Below, we detail its implementation, covering the planner
module, agent lifecycle, network memory, evaluation pipeline, sandboxed execution, time
accounting, adjudication, and fairness mechanisms.

1. Planner Module: A large language model (LLM) generates a JSON manifest encod-
ing agent configurations (roles, toolsets, prompt templates), tool-call metadata (interfaces,
arguments, outputs), and network topology with explicit workflow and message-flow defini-
tions. Discrete difficulty levels map to agent counts (2, 4, or 8 agents for levels 1, 2, or 3)
to ensure reproducibility, with a recorded prompting seed. The manifest ensures identical
configurations across protocols for fair comparisons.

2. Agent Lifecycle and Network Communication: Agents operate in a distributed
communication model where any agent can communicate with any other agent in the network
through unique addressable endpoints. They follow the manifest’s workflow, processing
messages by parsing inputs, invoking tools or LLMs, and routing responses to designated
next hop(s). The network layer abstracts protocol differences and ensures reliable message
delivery.

16

Under review as a conference paper at ICLR 2026

3. Step-Based Network Memory: An append-only memory pool logs all interactions
in structured JSON, capturing step indices, agent IDs, fine-grained timestamps, execution
status, and message histories with tool invocations. The memory supports offline analysis,
replay, and LLM-driven summarization.

4. LLM-Based Summarization and Evaluation: Post-workflow, an LLM summarizer
generates a concise outcome from the memory pool using a standardized prompt. A separate
LLM judge evaluates the result and execution log against a rubric assessing factual accuracy,
relevance, and completeness. The pipeline records resource metrics (e.g., token usage, time).

5. Tool Design and Execution: Many distinguished open-source agent collaboration
frameworks Liang et al. (2025); Hu et al. (2025) provide high-quality toolkits. Building
upon these advancements, the tools in our GAIA scenario are designed through selective
reuse and adaptation, enabling both efficient integration and tailored functionality. All
code execution tools operate within isolated environments with virtualized dependencies,
restricted filesystem /network access, and resource limits (CPU, memory, wall time). Logs
and artifacts are captured and linked to execution steps to facilitate traceability and repro-
ducibility.

6. Fine-Grained Time Accounting: Timestamps are recorded at agent, step, and work-
flow levels in milliseconds (Unix epoch), enabling latency profiling and straggler detection.

7. LLM-Driven Adjudication: The LLM judge assesses outcomes using structured
prompts and rubric criteria, producing pass/fail results and quality scores (e.g., accuracy,
task alignment). Judgments are stored as structured metadata.

8. Metrics and Reporting: The evaluation report includes comprehensive performance
metrics (success rate, execution time breakdown, resource consumption by agent and task),
quality scores with detailed LLM judge analysis, and operational statistics (task completion
rates, communication overhead). Reports are emitted in both structured JSON format and
human-readable console summaries with visual indicators.

9. Experimental Fairness: All protocols use the same planner-generated manifest and
canonical seed to control variability, ensuring only protocol implementations differ.

This implementation ensures rigorous, reproducible evaluation of hierarchical routing in
multi-agent settings, with detailed metrics and fairness controls.

D.2 SAFETY TECH IMPLEMENTATION

The Safety Tech scenario evaluates privacy-preserving protocols in medical Q&A under
adversarial conditions, focusing on protocol-stack security penetration testing and multi-
dimensional confidentiality protection.Below, we detail its implementation, including sce-
nario setup, test points, probe mechanisms, reporting, and technical features.

1. Scenario Setup: The setup launches a registration gateway (RG), coordinator, and
two LLM doctors using native protocols (e.g., Agora_Doctor A/B, ANP_ Doctor A/B).
Doctors register with the RG, pull directories via the coordinator, and engage in bidirec-
tional communication through protocol-specific endpoints. The system processes 10 aug-
mented cases from ChatDoctor-HealthCareMagic-100k with synthetic identity information.
Comprehensive probe mode is enabled via environment variables, injecting probes real-time
into message/HTTP /TLS paths using a unified probe config for protocol-agnostic testing
across Agora SDK, ANP DID encryption, ACP routing, and A2A execution.

2. Transport and Certificate Security: Conducts 3 rounds of TLS downgrade attacks
using weak cipher suites, obsolete TLS versions, and HTTP plaintext fallback, recording
success and block rates for each attempt. A comprehensive certificate matrix systemat-
ically verifies security blocking across 6 test dimensions: expired certificates, self-signed
certificates, hostname mismatches, incomplete certificate chains, weak cipher suites, and
TLS version downgrades. Each matrix test generates detailed blocking metrics and assigns
scores based on successful interception prevention, providing a systematic assessment of
transport-layer security robustness.

17

Under review as a conference paper at ICLR 2026

3. End-to-End Payload Confidentiality: Injects watermarks and plaintext probes (e.g.,
PLAINTEXT_PROBE_*, HIDDEN_MARKER:SQ_EQE_WATERMARK_TEST_*) into payloads. Uses
tcpdump on the 100 interface (8 seconds) to capture network traffic and detect plaintext
leakage through sensitive keyword matching. The system evaluates encryption effective-
ness by analyzing watermark visibility and sensitive keyword hits (e.g., patient ID, SSN,
credit card numbers), assigning scores based on watermark injection participation and leak
prevention performance.

4. Session and Timing Protection: For session hijack, injects privilege-escalation to-
kens (e.g., expired_session_*, admin_session_x*), measuring interception rates via de-
nials or 404s. Clock skew tests £30s/42m/+5m/+10m offsets and window anomalies (e.g.,
TIME_SKEW, WINDOW_REPEAT/DISORDER/DUPLICATE) over 12 rounds. Replay attacks involve
2 rounds of old message replays, distinguishing real blocks from errors like ReadTime-
out /500.

5. Metadata and Side-Channel Protection: Probes endpoints (e.g., /health,
/metrics, /status) for exposed meta-info, quantifying exposure counts. tcpdump ana-
lyzes plaintext bytes and sensitive keyword hits to assess information leakage and calculate
metadata exposure scores.

6. Real-Time Probe Injection Mechanism: Probes are injected via protocol clients’
send() methods into native paths (e.g., before Agora SDK calls, ANP signatures, ACP
requests). The system dispatches probe_config parameters for clock skew, watermarks,
and replays, ensuring authentic testing.

7. Weighting and Reporting: Employs a multi-dimensional assessment system across
TLS/transport security, session hijack protection, E2E encryption detection, tunnel sniffing,
and metadata leakage dimensions.

8. Technical Features: Unified ProbeConfig class standardizes parameters (e.g.,
tls_downgrade, e2e_payload_detection, time_skew_matrix) for cross-protocol consis-
tency. Real-time injections in native paths ensure authenticity. Multi-dimensional assess-
ment covers transport, application, session, and timing layers comprehensively.

This implementation provides a robust, protocol-agnostic framework for evaluating adver-
sarial robustness and privacy protection capabilities across multi-agent communication pro-
tocols.

D.3 STREAMING QUEUE IMPLEMENTATION

The Streaming Queue scenario evaluates distributed question-answering coordination and
protocol performance in multi-agent systems. It focuses on task orchestration, load balanc-
ing across workers, and cross-protocol compatibility, covering scenario setup, intelligent task
routing, comprehensive metrics collection, and protocol-agnostic architecture design.

1. Scenario Setup: A centralized network comprises one coordinator and four workers,
processing 1000 preprocessed entries from the MS MARCO dataset (Bajaj et al., 2018). The
dataset is simplified to focus on communication metrics rather than task difficulty. Testing is
conducted on an AMD server localhost to eliminate network fluctuations, ensuring consistent
timing measurements.

2. Task Processing and Load Balancing: The coordinator employs a work-stealing
approach where workers compete for tasks from a shared queue, achieving natural load dis-
tribution based on individual worker processing speeds. The system tracks completion times,
task counts per worker, and calculates load balance variance to assess protocol communica-
tion efficiency and stability. This approach enables evaluation of how protocol complexity,
including authentication and encryption mechanisms, affects task distribution uniformity
across workers.

3. Metrics Collection: Metrics focus on communication performance and stability, in-
cluding: - Total test duration.

- Success rate (fraction of completed tasks).

- Response times (average, minimum, maximum, standard deviation, median).

- Load-balancing variance (task distribution across workers).

18

Under review as a conference paper at ICLR 2026

- Network errors and retries.

- Timeout counts (tasks exceeding time limits).

Network errors, retries, and timeouts are expected to be zero or consistent across protocols,
as per design.

4. Technical Features:

- Load Balancing: The coordinator uses a work-stealing approach where workers compete
for tasks, with load balance variance measured to assess distribution uniformity.

- Local Testing: Running on localhost isolates protocol performance from external
network variability.

- Metric Granularity: Per-task response times and worker-specific metrics enable
fine-grained analysis of protocol efficiency and stability.

- Protocol Comparison: Uniform task sets and configurations ensure fair comparisons,
with performance differences attributable to inherent protocol characteristics and imple-
mentation complexity (e.g., A2A’s lightweight routing vs. Agora’s authentication overhead).

This implementation stress-tests communication efficiency and stability, providing insights
into protocol performance under standardized workload conditions.

D.4 FAIL-STORM RECOVERY IMPLEMENTATION

The Fail-Storm Recovery scenario evaluates protocol resilience under node failures in a Shard
QA setup, testing robustness, reconnect times, and collaborative performance. Below, we
detail its implementation, covering the Shard QA base scenario, failure injection, recovery
mechanisms, metrics, and technical features.

1. Shard QA Base Scenario: A ring topology with 8 QA agents processes groups of 8
data points from the 2WikiMultiHopQA dataset (Ho et al., 2020), including shuffled queries,
answers, and contents. FEach agent receives one query and a random content segment. To
resolve the query, agents forward requests to neighbors for matching content. Messages
propagate up to 8 hops; failure occurs if unresolved after 8 hops. This tests communication
efficiency and multi-agent collaboration.

2. Failure Injection: Every 2 minutes during a running Shard QA session, 3 agents are
randomly terminated (killed) to simulate sudden dropouts. Killed agents initiate reconnect
attempts after a 2-second delay, mimicking realistic network recovery patterns where agents
need brief time to detect failures and initialize reconnection procedures.

3. Recovery Mechanisms: Upon detecting a failed target agent, messages skip it and
forward to the next in the ring. Recovery time is measured from the kill event to the
successful reconnection of the last affected agent. The process involves 3 agents departing
and rejoining, assessing network stability during transitions.

4. Performance Phases:

- Pre-Fault: The 2 minutes before a kill event, establishing baseline performance.

- Recovery: The period from kill to full reconnection.

- Post-Fault: From recovery completion to the next kill event.

Performance differences across phases (e.g., success rates, latencies) quantify robustness.

5. Metrics Collection: Key metrics include recovery time (seconds from fault injection
to system stabilization), answer discovery rate (percentage of queries successfully resolved,
measured pre- vs. post-fault), and steady-state average latency (task completion times
in seconds, comparing pre-fault and post-fault phases). These metrics quantify protocol
resilience by measuring both functional performance degradation and temporal recovery
characteristics.

6. Technical Features:

- Failure Detection: Agents detect failures via timeouts or heartbeat checks, enabling
ring skips.

- State Recovery: Reconnecting agents restore state from logs or peers to minimize
disruptions.

- Fair Comparison: Identical datasets and topologies across protocols ensure differences

19

Under review as a conference paper at ICLR 2026

stem from failure handling.
- Simulation Controls: Random kills are seeded for reproducibility, with multiple runs
averaging results.

This implementation rigorously assesses fault tolerance, state recovery, and sustained col-
laboration in dynamic multi-agent networks.

E BENCHMARK IMPLEMENTATION

Protocol versions (frozen for reproducibility).We pin protocol stacks to specific re-
leases; the exact wheels and commit hashes are listed in the artifact manifest. The versions
used in all reported runs are:

Component Package / Artifact Version

ACP acp-sdk 1.0.3
A2A a2a-sdk 0.3.3
Agora agora-protocol 0.2.0
ANP agent-connect 0.3.5

E.1 CoONTROLS AND FAIRNESS (DETAILS)
E.1.1 EXPERIMENTAL SETUP: CONSTANTS AND VARIABLES

We categorize the experimental setup into pinned constants (ensuring reproducibility) and
scenario-specific variables (capturing task diversity).

Pinned Constants. All non-protocol factors are fixed and verified:

e Model and decoding: Qwen2.5-VL-72B-Instruct; temperature=0.0, top p=1.0,
max_tokens=4096.

¢ Hardware/OS/container: Single-node AMD server; pinned image with identical
OS, drivers, and libraries for all runs.

e Prompts: Version-anchored prompts for base system, GAIA judge, Safety evalua-
tor, and ProtocolBench router.

e Rate limits/timeouts: connection timeout=10s, message timeout=30s,
qa_cycle timeout=15s, max_retries=3 with exponential backoff.

e Adapter/router versions: Commit hashes are recorded in the artifact manifest.

e Internal retries/reconnects: Disabled at protocol adapters; recovery is imple-
mented uniformly in the upper PAL layer to avoid bias.

Scenario Variables. Each scenario introduces its own communication topology and dy-
namics:

Fail-Storm (FS): 8-node ring; at most 8 hops; skip failed nodes until recovery.

Streaming Queue (SQ): Star topology with 1 coordinator and 4 workers.
GAITA: Dynamic star; agent count increases with level (L1=2, L2=4, L3=8).
Safety: Point-to-point with two endpoints (two doctors).

E.1.2 FAIRNESS VERIFICATION

We perform replay equality checks: given identical inputs, non-protocol side-effects (planner
outputs, tool calls) are identical across adapters. ProtocolBench operates with temperature
0 to ensure deterministic outputs. All equality checks and logs are included in the artifacts.

E.2 WINDOWING, BYTE ACCOUNTING, AND AGGREGATION
E.2.1 FS WINDOWING AND RECOVERY METRICS

For cycle t with kill timestamp k; and last reconnection timestamp 7:

20

Under review as a conference paper at ICLR 2026

e Pre window: [k; — 60s, k).
e Recovery window: [k, ry].
e Post window: (r;, r; + 60s]; truncated if the next kill begins earlier.
Primary FS endpoints:
Time-to-Recovery (TTR) = r — k¢,

successful requests in post
Post-fault retention = 7 q P

successful requests in pre -
If pre has zero successes, retention is marked NA and excluded from aggregates.

E.2.2 LATENCY AND PERCENTILES

Latency distributions are summarized by mean, median, and percentile endpoints. For
SQ, the primary endpoint is P95 end-to-end latency per run; we report medians and BCa
bootstrap 95% Cls across runs.

E.2.3 BYTE ACCOUNTING

We separate:

e MSG_BYTES_PAYLOAD: application payload bytes (requests + responses).
e MSG_BYTES_RETRY_OVERHEAD: bytes due to retries and protocol-level overhead.
TLS handshakes and cryptographic negotiation bytes are excluded from both counters.

Counting is performed at the middleware boundary to avoid double counting. For streaming,
bytes are bucketed by message boundaries before aggregation.

E.2.4 AGGREGATION LEVELS
e Per-request: latency, payload bytes, overhead bytes.
e Per-run: success rate, F'S recovery metrics.

e Per-scenario/module: ProtocolBench accuracies.

E.3 PrROTOCOLROUTERBENCH: DATA, RULES, AND ARTIFACTS
E.3.1 DATA

Corpus and ID conventions. File: ProtocolBench_scenarios. jsonl with 60 scenar-
ios. Scenario IDs: RB-L{levell}-{idx}, where levele {1,...,5} and idxe {01,...,12}.
Module IDs: RB-L{level}-{idx}-M{m} (1-based). The artifact manifest MANIFEST.yaml
records file hashes and the commit for the corpus.

Difficulty stratification and construction. There are 12 scenarios per level (L1-L5).
Modules per scenario increase with level (L1:1, 1.2:2, L.3:3, L4:4, L5:5), totaling 180 modules.
Construction constraints:

1. Explicit role/module descriptors per scenario.

2. Lock/exclude phrases prevent multi-label ground truth when needed
(e.g., “REST/idempotent/batch/archival” locks resource semantics; “avoid
resource/state-machine semantics” excludes them).

3. No cross-module context sharing; each module is prompted and judged indepen-
dently.

4. Single-choice ground truth in {A2A, ACP, Agora, ANP}.

E.3.2 RULES

Feature facets and evidence mapping. We fix a compact facet set and a lexicon that
maps scenario spans to facets:

e Transport/interaction: SSE/streaming, RPC, batch.

21

Under review as a conference paper at ICLR 2026

Level # Scenarios Modules per Scenario # Modules

L1 12 1 12
L2 12 2 24
L3 12 3 36
L4 12 4 48
L5 12 5 60
Total 60 - 180
Table 8: ProtocolBench difficulty breakdown.

Rank Assignment (ordered by module index) #Mods Count Share (%)
1 [agora, acp] 2 70 42.4
2 [agora, agora, acp] 3 33 20.0
3 [agora, agora, agora, acp] 4 25 15.2
4 [acpl 1 7 4.2
5 [agora, a2a, agora, acp] 4 6 3.6
6 [agora, agora, agora, agora, acp] 5 4 2.4
7 [a2a, acp] 2 4 2.4
8 [agora, agora, a2a, acpl 4 3 1.8
9 [agora, agora, agora, agora, agora, agora, acpl] 7 3 1.8
10 [agora, a2a, acpl 3 3 1.8
11 [agora, agora, agora, agora, agora, acp] 6 1 0.6
12 [agora, agora, agora, a2a, agora, agora, agora, 8 1 0.6

acp]
13 [agora, agora, agora, agora, a2a, acpl 6 1 0.6
14 [agora, a2a, agora, a2a, acpl 5 1 0.6
15 [agora, agora, agora, a2a, acp] 5 1 0.6
16 [agora, agora, agora, agora, agora, agora, 7 1 0.6
agora, acp]
17 [agora, a2a, a2a, acp] 4 1 0.6

Table 9: GAIA — Router assignment patterns per run (total matches = 165, unique assign-
ments = 17). Assignment lists map module m; (index = position) to protocol in order.

Long-running/artifacts: job orchestration, checkpoints, artifacts.

Identity /E2E: DID, key material, end-to-end encryption.

Delivery/replay: at-least-once, idempotency, replay windows.

Operation semantics: REST, idempotent updates, state machines.

Trust/governance: audit, consent, policy hooks.

Hard constraints first prune incompatible candidates (e.g., strict E2E removes proto-

cols without native E2E). The decision order in priority_decide() is |identity /E2E

— | operation semantics‘ — ‘interaction (streaming/long-job) ‘ If candidates remain tied,

pick_by_narrative() selects the protocol whose defining capability anchor appears earliest
in the scenario text; stable fallback order: [A2A, ACP, Agora, ANP].

Prompt and function-call contract. Router uses a fixed, version-anchored prompt
PROTOCOL_SELECTION_PROMPT as shown in G.10.2. Responses are emitted via a structured
function call with JSON fields:

22

Under review as a conference paper at ICLR 2026

{

"module_id": "RB-L3-07-M2",

"selected_protocol": "ACP",

"evidence_spans": ["..."],

"rationale": "Short textual reason; no numbers, no performance claims."
}

Rationales must not contain numbers or performance claims. A linter enforces a field
whitelist and rejects numeric tokens in rationales.

Scoring and missingness. Scenario accuracy equals 1 only if all modules are correctly
predicted. Module accuracy is the fraction of correctly predicted modules. If a module
record is malformed or absent, the entire scenario is list-wise excluded and the exclusion is
logged; no zero-filling.

Train/dev/test policy. This release ships only the 60 evaluation scenarios. A stratified
split will be added in a future release.

Non-leakage and pre-specification. All texts are model-generated with human curation.
Vendor, product, and library names are removed or neutralized; only generic capabilities
and interaction semantics remain. The decision rules, prompts, and schema are pre-specified
and version-anchored.

E.3.3 ARTIFACTS

We release configs, scripts, commit hashes, dashboards, dataset splits, execution logs, and
the full ProtocolBench bundle. A one-shot script reproduces the entire pipeline (scenarios
— decisions — metrics — tables). The manifest records file hashes and commits.

Example one-shot command (for illustration)

bash run_all.sh --scenarios data/ProtocolBench_scenarios.jsonl \
--router_prompt prompts/PROTOCOL_SELECTION_PROMPT.txt \
--out_dir outputs/ --seed O --temperature O

MANIFEST.yaml (excerpt)

corpus:
file: ProtocolBench_scenarios.jsonl
sha256: <TBD>
commit: <TBD>
prompts:
router_prompt: PROTOCOL_SELECTION_PROMPT.txt
sha256: <TBD>
runs:
- id: run_001
seed: 0O
temperature: 0O

23

Under review as a conference paper at ICLR 2026

ProtocolRouterBench JSON schema (abridged)
{

"scenario_id": "RB-L3-07",

"difficulty": "L3",

"modules": [
{"module_id":"RB-L3-07-M1","role":"retriever","gt":"ACP"},
{"module_id":"RB-L3-07-M2","role":"coordinator","gt":"A2A"},
{"module_id":"RB-L3-07-M3","role":"auditor","gt":"Agora"}

] b

"text": "<scenario description with lock/exclude cues>"

}
{

"$schema": "http://json-schema.org/draft-07/schema#",

"title": "ProtocolBenchScenario",

lltypell R Ilobjectll s

"required": ["scenario_id", "modules"],

"properties": {

"scenario_id": {"type": "string"},
"level": {"type": "integer", "minimum": 1, "maximum": 5},
"modules": {
lltype " . llarray" .
"items": {
Iltypell B |l°bjectll,
"required": ["module_id", "text", "label"],
"properties": {
"module_id": {"type": "string"},
"text": {"type": "string"},
"Jabel": {Iltypell : "string" s "enum" : [IIA2AII s "ACP" s "Agora" s "ANP"] } s
"locks": {"type": "array", "items": {"type": "string"l}},
"excludes": {"type": "array", "items": {"type": "string"}}
}
}
}
}
}

E.4 GAIA CASE STUDY FOR PROTOCOLROUTER

Figure 4 provides a concrete case study of per-module routing on a GAIA metro-counting
task. In this example, ProtocolRouter assigns different protocols to different modules (e.g.,
Agora for upstream discovery/compute and ACP for the final commit), so that each part of
the pipeline runs on the protocol best aligned with its objective. This per-module compo-
sition yields an overall accuracy that exceeds the best single-protocol A2A baseline by 6.5
percentage points.

E.5 THREATS TO VALIDITY, ABLATIONS, AND STATISTICAL PROCEDURES
E.5.1 CONSTRUCT VALIDITY AND MULTI-IMPLEMENTATION CHECK

We separate protocol design from implementation artifacts. A planned multi-
implementation comparison (production-optimized vs. minimal references) is run under
identical adapters; we expect relative orderings to remain stable.

E.5.2 ABLATIONS

1. Envelope-only vs. full-feature paths: disable advanced features and compare
against full stacks.

2. Topology substitution: freeze GAIA’s dynamic star and compare to the default
dynamic configuration.

Under review as a conference paper at ICLR 2026

&>

Web Browser Agora Layer Agora Layer Web Browser

,,,,,,,,,,,,,, Agora agent2: Yes.
And I will check the
metro route for you.

Agora 1: We will often
discuss, so I use agora.

i i
i X
i Loca I
{ - Location Identifier |

i

| ’ Web Browser To ’ Python Executor Tool ’ Web Browser
i

!
i mobAae 3 s \,.Jnl ; Protocol: Agora

Distance Calculator } : Metro Route Finder |
1

)]
! |
! - Answer Synthesizer |

! i
! ’ Chat Completion Tool |
] |
1 Protocol: ACP

@ Router Decision R - T
Distance Calculator Answer Synthesizer

Case Study: Combined protocol for each module to raise performance in GAIA

Figure 4: GAIA case study for ProtocolRouter. ProtocolRouter assigns protocols per
module for a GAIA metro-counting task, enabling each module to run on its most suitable
protocol (e.g., Agora for upstream discovery/compute and ACP for the final commit). This
per-module assignment yields an overall accuracy that exceeds the single-protocol A2A
baseline by 6.5%.

Comparison (row — col) Mean diff (s) Cohen’sd Adjusted p-value

ACP - A2A —0.035 —0.03 0.47

ACP - ANP —1.701 —0.41 <107*
ACP - Agora —3.472 —0.94 <107*
A2A — ANP —1.666 —0.40 <107*
A2A — Agora —3.436 —0.93 <10™*

Table 10: Streaming Queue: pairwise comparisons on mean latency (Welch’s t-test with
Holm—Bonferroni correction). Negative mean differences indicate that the row protocol is
faster.

3. Planner freezing: fix planner outputs to isolate protocol effects.

4. ProtocolBench-specific: remove lock/exclude phrases to quantify A2A«+ACP
confusions; disable priority_decide() to observe tie instability.

E.5.3 STATISTICAL PROCEDURES

For continuous metrics we compute BCa bootstrap 95% Cls with B=10,000 resamples. Pro-
tocolBench accuracies use exact binomial or Wilson intervals. Pairwise comparisons report
Clift’s 6 and Hodges-Lehmann median differences (point estimate with 95% CI). Multiple
comparisons are corrected via Holm—Bonferroni. We separate in-run jitter (per-request co-
efficient of variation) from run-to-run variability (across-run coeflicient of variation) when
repeated runs are available.

Streaming Queue pairwise tests.For completeness, Table 10 reports the pairwise Welch’s
t-tests with Holm—Bonferroni correction and effect sizes (Cohen’s d) for Streaming Queue
mean latency. These results confirm that ACP and A2A are statistically indistinguishable,
while both are significantly faster than ANP and Agora.

E.6 CROSS-MODEL STREAMING QUEUE EXPERIMENTS

To probe how sensitive our protocol-level latency conclusions are to the choice of base
model, we repeat the Streaming Queue experiments with other strong LLMs (GPT-40 and
a Gemini-family model) under the same load, topology, and controls as in the main text.
Table 11 reports the mean per-request latency (in milliseconds) for each protocol-model pair.
While the absolute latency values vary modestly across base models, the relative ordering
between protocols remains stable: ACP consistently achieves the lowest latency, followed

25

Under review as a conference paper at ICLR 2026

Protocol Qwen2.5-VL-72B GPT-40 Gemini-2.5-flash
Mean latency (ms) Mean latency (ms) Mean latency (ms)

ACP 0.148 0.108 0.155

A2A 1.223 1.057 1.141

ANP 1.617 1.386 1.583

Agora 4.016 4.060 3.429

Table 11: Cross-model comparison on Streaming Queue. All runs share the same
load, topology, and controls; values are mean end-to-end latencies in milliseconds.

by A2A, with ANP and Agora incurring higher latency while offering stronger security and
identity guarantees. In all cases, the model is fixed per run and the same coordinator /worker
topology as in Section 5 is used.

F SCENARIO PROMPT DESIGN

FS Shard Worker System Prompt is used by fail-storm shard workers to maximize
answer discovery under cyclic faults.

F'S Shard Worker System Prompt

def _get_system_prompt(self) -> str:
"""Get system prompt for the shard worker - Enhanced for distributed
SeaI‘Ch" nn
max_ttl = self.global_config.get('tool_schema', {3}).get('max_ttl', 15)
return £"""You are agent {self.shard_id} in an intelligent distributed
document search system.

NETWORK TOPOLOGY:

- Your neighbors: {self.neighbors['prev_id'l} <- YOU ->
{self .neighbors['next_id']}

- You process document shard {self.agent_idx}

CURRENT SEARCH TASK:
Question: {self.current_question}

YOUR LOCAL DOCUMENT FRAGMENT:
{self.current_snippet}

AVATLABLE TOOLS:
1. lookup_fragment: Analyze your local document fragment
2. send_message: Communicate with coordinator and neighbors

DISTRIBUTED SEARCH PROTOCOL:

STEP 1 - LOCAL SEARCH:

Call lookup_fragment(question="{self.current_question}", found=<true/false>,
answer="<extracted_info>")

Be GENEROUS with found=true - partial information is valuable!

STEP 2 - ACTION BASED ON RESULT:

If found=true:

send_message(destination="coordinator", content="ANSWER_FQOUND:
<detailed_answer>")

If found=false:
The system will automatically handle neighbor search

No need to manually send neighbor requests

ULTRA-LIBERAL SEARCH CRITERIA (MAXIMIZE DISCOVERY) :
SET found=true if your fragment contains ANY of these:

26

Under review as a conference paper at ICLR 2026

- Direct answers or partial answers

- Names, entities, dates, numbers mentioned in the question

- Related context, background information, or topic-relevant content

- Keywords or concepts that connect to the question

- Similar or related entities (e.g., same type of person, place, thing)

- Historical context or background about the topic

- Even tangentially related information

- ANY word or phrase that appears in both question and fragment

- Information that could help answer the question when combined with other
sources

SET found=false ONLY if:
- Fragment is about completely different, unrelated topics with ZERO overlap
- Absolutely no shared words, concepts, or themes with the question

CRITICAL: When in doubt, ALWAYS choose found=true! It's better to be overly
generous than to miss relevant information.

ANSWER EXTRACTION:

When found=true, extract the most relevant information:
- Include specific facts, names, dates, numbers

- Provide context that helps answer the question

- Be specific and detailed rather than vague

LIBERAL DETECTION EXAMPLES:

FS Local Search Prompt guides generous local matching to maximize discovery before
neighbor /ring forwarding.

F'S Local Search Prompt

def _get_local_search_prompt(self, question: str) -> str:
"""Get optimized prompt for local document search."""
return £"""You are a specialized document search agent analyzing a
document fragment.

SEARCH QUESTION: {question}

YOUR DOCUMENT FRAGMENT:
{self.current_snippet}

TASK: Determine if your document fragment contains ANY information that helps
answer the question.

SEARCH CRITERIA (Be ULTRA-LIBERAL - MAXIMIZE DISCOVERY) :
FOUND (set found=true) if the fragment contains ANY of:
Direct answers to the question
- Names, entities, or keywords mentioned in the question
- Related facts or context that partially answers the question
- Background information about the topic
- Similar entities or concepts (same category/type)
- Historical context or time period mentioned in question
- ANY shared words or phrases between question and fragment
- Information that could contribute to answering when combined with other
sources
- Even tangentially related information

NOT FOUND (set found=false) ONLY if:

- Fragment is about completely different, unrelated topics with ZERO overlap
- Absolutely no shared concepts, words, or themes

27

Under review as a conference paper at ICLR 2026

CRITICAL: When in doubt, choose found=true! Better to include potentially
relevant info than miss it.

RESPONSE FORMAT: Use the lookup_fragment function with:
- found: true/false (be generous with true)

- answer: extract the relevant information if found

- confidence: 0.0-1.0 (how confident you are)

EXAMPLES:

Question: "What nationality were Scott Derrickson and Ed Wood?"

Fragment: "Scott Derrickson is an American filmmaker..." -> found=true,
answer="Scott Derrickson is American"

Fragment: "Ed Wood was born in New York..." -> found=true, answer="Ed Wood was
American (born in New York)"

Fragment: "The Laleli Mosque in Turkey..." -> found=false (completely
unrelated)

Remember: It's better to find partial information than to miss relevant
content. The collaborative system will combine partial answers from multiple
agents . nnn

SQ QA Worker System Prompt is designed for high-throughput QA workers under star
topology.

SQ QA Worker System Prompt

Location:
agent_network/script/streaming_queue/core/qa_worker_base.py:117-120
system_prompt = (

"You are a helpful assistant. Provide concise, accurate answers to

questions. "

"Keep responses under 150 words."

SQ Meta Coordinator Task Prompt describs the streaming pressure test objective and
constraints.

SQ Meta Coordinator Task Prompt

Location:
agent_network/script/streaming_queue/runner/run_meta_network.py:232-241
pressure_test_task = {
"question": "Streaming queue pressure test: process maximum questions in
minimum time",
"context": "High-throughput QA processing with diverse question types",
"metadata": {

"type": "pressure_test",
"volume": 50, # batch_size
"priority": "maximum_speed",

"target_qps": 20

GATIA Planner Prompt defines a task analysis system that classifies a task, assesses
complexity, selects tools, and configures specialized agents with roles. It enforces rules and
provides a few-shot JSON example to guide structured multi-agent planning.

28

Under review as a conference paper at ICLR 2026

GAIA Planner Prompt

TASK_ANALYSIS_SYSTEM = """You are an expert multi-agent system architect.
Analyze the given task with deep understanding and provide a comprehensive
analysis.

Consider these aspects:

1.

5.

TASK TYPE - Classify precisely:

- qa_with_reasoning: Question-answering requiring logical reasoning

- multi_step_analysis: Complex analysis requiring multiple processing
stages

- content_generation: Creating new content, documents, reports

- computational_task: Mathematical calculations, data processing

- research_task: In-depth information gathering and synthesis

- general_qga: Simple question-answering

. COMPLEXITY ASSESSMENT:

- low: Simple, straightforward tasks requiring 1-2 steps

- medium: Moderate complexity requiring 3-5 processing steps

- high: Complex tasks requiring 6+ steps, domain expertise, or
sophisticated reasoning

. REQUIRED TOOLS - Select from available tools:

Available tools: {available_tools}

. AGENT CONFIGURATION - For each required tool, specify:

- name: Descriptive agent name (e.g., "WebResearcher", "DataAnalyst",
"CodeExecutor")

- role: Create meaningful, task-specific roles (e.g.,
"information_gatherer", "computational_specialist", "data_processor",
"final_synthesizer", "document_analyzer", "web_navigator", etc.)

- Be creative with roles - they should reflect the agent's specific
function in solving the task

Example role types you can use as inspiration:

* information_gatherer: Searches for and collects relevant information from
various sources

* computational_specialist: Executes calculations, data processing, and
analytical tasks

* document_analyzer: Processes and extracts information from documents and
files

* evidence_synthesizer: Integrates information from multiple sources into
coherent conclusions

* task_coordinator: Breaks down complex tasks and manages workflow
execution

* content_creator: Generates reports, summaries, and structured outputs
domain_expert: Provides specialized knowledge in specific fields
data_processor: Handles data transformation, cleaning, and formatting
web_navigator: Specializes in web search and online information retrieval
final_synthesizer: Provides comprehensive final answers and conclusions

* X ¥ ¥

DOMAIN EXPERTISE needed (technology, science, business, finance,

healthcare, etc.)

6.

PROCESSING REQUIREMENTS:

- Sequential vs parallel processing needs
- Validation/verification requirements

- Error handling complexity

IMPORTANT HARD RULES:

29

Under review as a conference paper at ICLR 2026

- The tool 'create_chat_completion' is reserved for the FINAL agent only.
Include it exactly once and position it as the LAST step in the workflow. Do
NOT assign or call it in intermediate steps or by non-final agents.

IMPORTANT: Based on the GAIA task level {level}, we recommend using
approximately {recommended_agents} agents for optimal performance. However,
you can adjust this number based on task complexity:

- Use fewer agents (1-2) for very simple, single-step tasks

- Use the recommended number ({recommended_agents}) for typical level {level}
tasks

- Use more agents (up to {max_agents}) only if the task genuinely requires
complex multi-step processing

You must limit your agent recommendations to a maximum of {max_agents} agents
total. Plan efficiently within this constraint.

Respond with detailed JSON analysis including your reasoning.

Analyze the task and respond with a JSON object containing:

81
"task_type":
"general_qal|research_task|computational_task|multi_step_analysis",
"complexity": "low|medium|high",

"required_tools": ["tooll", "tool2"],
"agents": [

{{
"tool": "tool_name",
"name": "AgentName",
"role": "specific_role_based_on_function",
13
] s
"estimated_steps": number,
"domain_areas": ["domainl", "domain2"]
1}
Example:
{
"task_type": "research_task",
"complexity": "medium",
"required_tools": ["browser_use", "create_chat_completion"],
"agents": [
a8
"tool": "browser_use",
"name": "WebResearcher",
"role": "academic_information_gatherer",
11,
{{
"tool": "create_chat_completion",
"name": "ReasoningSynthesizer",
"role": "evidence_synthesizer",
1
] b

"estimated_steps": 3,
"domain_areas": ["general_knowledge"]

1}

Agent Role template instantiates agent expertise, responsibilities, and collaboration,
ensuring structured coordination and quality outcomes in multi-agent systems.

30

Under review as a conference paper at ICLR 2026

Agent Role template

AGENT_ROLE_TEMPLATE = """You are {agent_name}, a {role_words.lower()}
specialist. Your primary responsibilities include:

EXECUTE tasks related to your {role_words.lower()} expertise

PROVIDE expert-level insights and analysis within your domain

PROCESS information efficiently and accurately according to your role
COLLABORATE effectively with other agents in the workflow

DELIVER high-quality results that contribute to the overall task completion

O WN =

Your expertise in {role_words.lower ()} makes you an essential part of the
multi-agent system."""

LLM Judge Prompt provides the LLM with a process-oriented evaluation framework
emphasizing a consistent, rubric-based assessment to ensure transparent and reproducible
scoring. To thoroughly evaluate the MAS’s communication process as well as the final
answer, full execution logs are prioritized over summaries as they provide the necessary
unabridged evidence.

LLM Judge Prompt

LLM_JUDGE_PROMPT = """You are an expert judge evaluating AI system responses
for the GAIA benchmark. Your evaluation must consider both the final answer's
correctness and the quality of the process taken by the AI.

**TASK DETAILS: %%
- **x0RIGINAL QUESTION:#** {question}
- **GROUND TRUTH ANSWER:#** {ground_truth}

EXTRACTED FINAL ANSWER: {final_answer}

- **FULL AI SYSTEM RESPONSE (TRACE) (Brief summary / final output) :*x*
{predicted_answer}

IMPORTANT: When assessing the agent, PRIORITIZE the FULL NETWORK EXECUTION LOG
(JSON) below if provided. This log contains all inter-agent messages, tool
calls, and intermediate data exchanges. Your process-quality judgment MUST be
based primarily on the content, clarity, correctness, and completeness of
inter-agent communication and tool interactions recorded in the network
execution log. Do NOT rely only on any short summary or the extracted final
answer.

FULL NETWORK EXECUTION LOG (JSON) :
{network_log_content}

If the network log is unavailable, fall back to using the FULL AI SYSTEM
RESPONSE (TRACE) above.

**%EVALUATION INSTRUCTIONS:*x*

Your task is to perform a two-part evaluation:

1. =*xCorrectness (“is_correct’):** First, determine if the “EXTRACTED FINAL
ANSWER™ is correct when compared to the “GROUND TRUTH ANSWER". Consider
semantic equivalence and allow for minor formatting differences.

2. x**Process Quality (“quality_score™):*x Second, and just as importantly,
evaluate the agent's problem-solving process based on the FULL NETWORK
EXECUTION LOG (preferred) or the “FULL AI SYSTEM RESPONSE (TRACE)~ when the
log is unavailable. Use the detailed rubric below to assign a score from 1 to
5.

31

Under review as a conference paper at ICLR 2026

**QUALITY SCORE RUBRIC (1-5):*x*

Your primary focus for the “quality_score™ is the agent's methodology and the
quality of inter-agent communication. A high score can be given for a good
process even if the final answer is incorrect.

- *xScore 5 (Excellent) :**
- The final answer is correct.
- Inter-agent communication is clear, complete, and correct. Tools are used
correctly and efficiently. Intermediate results are validated and shared
appropriately.

- *xScore 4 (Good) :**
- The final answer is correct, but communication may have minor
inefficiencies or small omissions.

- *#xScore 3 (Fair / Good Process) :**
- Solid reasoning and reasonable communication, but a late error or omission
causes the final answer to be incorrect.

- x*xScore 2 (Poor) :x*
- Communication is incomplete or incorrect, tools are misused, or agents
fail to share necessary details.

- *xScore 1 (Very Poor) :*x
- No meaningful communication, hallucinated tool use, or completely
irrelevant traces.

**RESPONSE FORMAT : **

Respond with a single JSON object. Do not include any other text or
explanations outside the JSON.
{
"is_correct": true/false,
"quality_score": 1-5,
"reasoning": "Detailed explanation for your judgment. Justify BOTH the
correctness of the final answer and the quality score based on the process
trace and the rubric.",
"answer_quality": "excellent/good/fair/poor",
"final_answer_present": true/false,
"partial _credit": 0.0-1.0
3}

Be thorough but fair in your evaluation. Provide specific reasoning for your
judgment .

G PROTOCOLROUTER TECHNICAL DETAILS

This section specifies the ProtocolRouterin full detail, covering the unified API, field align-
ment, transport and interaction semantics, reliability and ordering guarantees, identity and
security, conformance testing, and known limitations. The description corresponds 1:1
to the implementation of BaseAgent, BaseProtocolAdapter and its concrete subclasses
(A2AAdapter, ACPAdapter, ANPAdapter, AgoraClientAdapter). The final subsection re-
places the previous router notes with a complete, self-contained router specification that
sits above PAL and uses the same universal message envelope.

G.1 UNIFIED INTERFACE SPECIFICATION

Roles and objects.

32

Under review as a conference paper at ICLR 2026

e BaseAgent (dual role): Acts as a server (receives messages) and as a multi-
client (sends to multiple destinations via multiple protocols). Server responsibili-
ties are provided by BaseServerAdapter implementations (e.g., A2AServerAdapter,
AgentProtocolServerAdapter, ACPServerAdapter, ANPServerAdapter). The execu-
tion entry point is SDK-native, e.g., async def execute(context, event_queue).

e BaseProtocolAdapter (egress abstraction): One adapter instance per egress edge
(destination/URL/credentials) for isolation and precise metering. Each adapter encap-
sulates encoding/decoding, transport, auth, and feature negotiation for a single protocol
and destination.

Unified send/receive API and lifecycle.
(A

async def send_message(self, dst_id: str, payload: Dict[str, Any]) -> Any
async def send_message_streaming(self, dst_id: str, payload: Dict[str, Any]
) -> AsyncIterator[Dict[str, Any]]

async def receive_message(self) -> Dict[str, Any]

async def initialize(self) -> None

async def health_check(self) -> bool

async def cleanup(self) -> None

e send message: Sends a protocol-specific payload and returns the protocol response.
PAL unifies encoding/decoding via the UTE (Unified Transport Envelope).

e send message streaming (optional): Yields protocol events/chunks as a stream
(e.g., SSE).

e receive message: Typically a no-op for client adapters; ANP can poll an inbound
session queue.

e initialize /health check/cleanup: Capability discovery/priming (cards/manifests),
readiness checks, and resource teardown.

Unified Transport Envelope (UTE).
(D

{

"id": "uuid-v4",

"ts": 1730000000.123,

"src": "agent_A",

"dst": "agent_B",

"intent": "qa/search",

"content": { "question": "..." },

"context": {
"trace_id": "uuid-v4",
"parent_id": "uuid-v4",
"idempotency_key": "uuid-v4",
"session_id": "s-123",
"priority": O,
"ttl_ms": 30000,
"stream": false,
"artifact_refs": ["uri://..."],
"tags" . ["GAIA" s "dOan"]

}’

"meta": { "protocol_hint": "a2al|acpl|anplagora", "retry_count": O }

}

Minimal required fields: src, dst, content, context. In BaseAgent.send (), UTE.new(...)
produces the envelope that ENCODE_TABLE [protocol_name] transforms into protocol pay-
load; responses are converted back via DECODE_TABLE into a UTE, and upper layers consume
ute_response.content.

33

Under review as a conference paper at ICLR 2026

Table 12: UTE to protocol field alignment (send path).

UTE Field A2A (/message) ACP ANP (/an- AGORA (task)
(/acp/mes- p/message /
sage) WS)

Shorthand: In the ANP column, leading “payload.” is omitted. In the ACP/AGORA columns,
leading “metadata.” is omitted when applicable.

id request.id id request_id request_id

src params. - sender source_id / source
routing.source session DID

dst params. - receiver target_did / target (URL)
routing. - session
destination

content params.message payload payload message /

parameters

trace_id params. - trace_id trace_id trace_id
context.-
trace_id

idempotency params.- correlation_id idempotency_key idempotency_key
context.- or
idempotency_key idempotency_key

stream HTTP Accept: stream=true / WS persistent by type /
event-stream SSE stream task

session_id params. - session_id connection / session
context.- session
session_id

meta.protoc passthrough passthrough enables influences task

meta-protocol

Async event model and hooks (recommended).

e before _encode / after _encode: UTE — protocol payload, pre/post.
e before_transport / after transport: Network send/receive, pre/post.
e on_ stream_ event: Streaming fragment/event callback.

e on_retry / on_ backoff: Retry and backoff callbacks.

e on_decode / on_ error: Protocol response decoding and normalized error handling.

Unified metrics (e.g., REQUEST_LATENCY, REQUEST_FAILURES, MSG_BYTES) are labeled by
(src_agent, dst_id, protocol). MSG_BYTES reports the byte length of the serialized
protocol payload.

Unified error taxonomy.Adapter exceptions are normalized by PAL into: E_TIMEOUT,
E_HTTP, E_CONN, E_PROTOCOL, E_ENCODE/DECODE, E_UNSUPPORTED. PAL increments failure
counters and re-raises so routing/network layers can decide on retries or failover.

G.2 MESSAGE/EVENT FIELD ALIGNMENT (A2A/ACP/ANP/AGORA — UTE)

Table 12 aligns key fields on the send path (UTE—protocol). Paths use an English
JSONPath-like notation.

Reserved/extension notes. A2A exposes authenticated cards; ACP provides
/acp/capabilities and /acp/status; ANP carries protocol_type (META/AP-
PLICATION/NATURAL) and DID/WS semantics; AGORA registers routines via task
decorators.

G.3 TRANSPORT AND INTERACTION SEMANTICS

Sync/async and streaming.

e A2A: HTTP sync POST /message; obtain SSE via Accept: text/event-stream.

34

Under review as a conference paper at ICLR 2026

e ACP: HTTP sync POST /acp/message; SSE supported; long-running jobs via
/acp/status polling.

e ANP: WebSocket persistent sessions (SimpleNodeSession); HTTP fallback POST
/anp/message for local/testing.

e AGORA: Official SDK task model or simplified POST /agora for single-round conver-
sations and POST /conversations/conversationId for multi-round conversations.

Long-running job state. Native support priority: ACP (status endpoint) > A2A (SSE
increments/custom heartbeats) ~ ANP (session heartbeats/app-level receipts) > AGORA
(task-level receipts). PAL recommends context.session_id and idempotency_key as an-
chors for idempotency and resumption.

Artifact handling. Inline artifacts if <1MB in content; otherwise reference via
context.artifact_refs (e.g., s3:// or pre-signed URLs). ANP/WS can send binary
frames; for HT'TP, prefer chunking or external links to avoid max_message_size limits.

G.4 RELIABILITY AND ORDERING GUARANTEES

Retry /backoff and deduplication. PAL does not implicitly retry; routing/network layers
decide based on error category. Idempotency is propagated via context.idempotency_key
and mapped to protocol fields. Servers/business logic should implement deduplication on
arrival.

Ordering and replay.
e HTTP (A2A/ACP): Transport is unordered; applications should reorder using
seq/trace_id.

e ANP (WS): Within a single session, ordering is approximately sequential; across ses-
sions/links, merge at the application layer. For SSE, Last-Event-ID enables replay if
supported by the server.

Normalized error mapping (examples).

e httpx.TimeoutException — E_TIMEOUT

e httpx.HTTPStatusError — E_HTTP (status code and summary included)
e WS handshake/DID resolution failure — E_CONN

e json.JSONDecodeError — E_DECODE

e Missing/unsupported capability — E_UNSUPPORTED

G.5 IDENTITY AND SECURITY

Authentication/authorization.

e HTTP (A2A/ACP/AGORA): Authorization: Bearer <token>; recommend
mTLS at gateway/reverse proxy; /.well-known/agent.json may expose capabilities
and endpoints; A2A supports authenticated cards.

e ANP (DID): did:wba identities; local/remote DID creation and resolution. Test setups
may enable verification bypass for interoperability; production must enforce strict public-
key validation and DID document checks.

End-to-end confidentiality (E2E).ANP uses ECDHE + AES-GCM for transparent per-
session encryption. For HT'TP protocols, use TLS/mTLS; optionally add application-layer
encryption for content when regulatory or cross-tenant constraints apply.

Trust anchors and certificate chains. HT'TP relies on public or private root CAs. DID
trust anchors are the method and resolver service; cache DID documents (TTL/expiry
policy) and support key rotation/revocation.

35

Under review as a conference paper at ICLR 2026

G.6 ADAPTER CONFORMANCE TESTING

Per-protocol test suite (capability x protocol).

1.

Basic connectivity: initialize() fetches cards/capabilities (A2A/ACP/AGORA),
ANP establishes DID /session; health_check() returns true.

. Single round trip: UTE<«protocol encode/decode consistency (field fidelity, null-

handling policy, case conventions).

Streaming: SSE/WS event ordering, boundaries, termination (including empty lines
and data: prefix); interruption/resume behavior.

Long-running: ACP /acp/status vs. A2A/ANP heartbeats/progress; resumption
keyed by session_id.

Security /auth: Rejection on missing/invalid credentials; card access control; DID fail-
ures and certificate expiry.

Edge cases: Large messages (near max_message_size), high concurrency, network jit-
ter, server 4xx/5xx/malformed JSON.

Regression corpus and coverage.

Maintain stable wire-contract fixtures per protocol (request/response/event fragments)
as baselines.

Achieve coverage across encode/decode, error, and streaming branches.

Fix load-test baselines and concurrency; report P50/P95/P99 and jitter coefficient
(std/mean).

Known limitations and notes.

A2AAdapter: /inbox is not universally implemented (PAL keeps a negative cache);
receive_message () is a compatibility stub.

ACPAdapter: Streaming depends on server SSE; long-running flows require
/acp/status.

ANPAdapter: Test configs may enable DID verification bypass; if no DID service is
available, use HTTP fallback POST /anp/message; the local resolver caches target DIDs
and is not a general-purpose resolver.

AgoraClient Adapter: Without official toolformer, uses simplified HTTP with key-
word classification; semantics and performance are limited.

Local loopback: IntelligentAgentNetwork._execute_single_agent_task() may
use agent.send(agent_id, ...) for self-delivery; the network must bind an explicit
default adapter for that agent_id or provide a loopback route.

Ordering: HTTP is not ordered; ANP is near-ordered per session; cross-session requires
merge logic.

Idempotency/dedup: Client adapters do not persist deduplication; implement on the
server or one layer up.

G.7 CoMMON ENDPOINTS AND SAMPLE REQUESTS (CAPTURE REFERENCE)
A2A.

GET /.well-known/agent.json
GET /health
POST /message

{"id":"<uuid>","params":{"message":{"text":"..."},
"context":{"trace_id":"..."},

"routing":{"destination":"agent_B","source":"agent_A"}}}

36

Under review as a conference paper at ICLR 2026

ACP.

e GET /.well-known/agent.json
e GET /acp/capabilities

e GET /acp/status

e POST /acp/message

{"id":"<uuid>","type":"request","sender":"agent_A",

"receiver":"agent_B", "payload":{"text":"..."},
"timestamp":1730000000.0,"correlation_id":"<uuid>",
"metadata":{"trace_id":"..."}}

ANP.

e WS: ws(s)://<host>:<port>/ws
e HTTP fallback: POST /anp/message

{"type":"anp_message","request_id":"<uuid>",
"payload":{"text":"...","context":{"trace_id":"..."}},
"timestamp":1730000000.0, "source_id":"anp_client"}

AGORA.
e Official SDK tasks

e Single round Conversation: POST /agora

e Multi-round Conversation: /conversations/conversationId
{"status":"...", "body":"...}

G.8 IMPLEMENTATION GUIDANCE AND VERSIONING

e Protocol name convention: protocol_name is lowercase
"a2a"|"acp" | "anp" | "agora" and must match ENCODE_TABLE/DECODE_TABLE keys.

e Version negotiation: Expose protocolVersion in cards; optionally include
min_version/max_version in context for soft negotiation.

e Observability and label cardinality: Restrict metric labels to (src_agent, dst_id,
protocol) to avoid high cardinality (e.g., dynamic URLs/tenants).

e Rollback and canarying: Keep old codecs and switch using meta.protocol_hint or
advertised capabilities.

e Production essentials: Implement idempotency/dedup on the server
(id/idempotency_key); for ANP, disable test bypasses and enforce strict DID/key
governance.

G.9 ROUTER LAYER TECHNICAL DETAILS

This subsection replaces the previous router notes with a complete, self-contained specifica-
tion. The Router sits above PAL and decides where and how to send a UTE-based request.
It implements destination selection, policy enforcement, resilience primitives (retry/back-
off /circuit breaking/hedging), ordering semantics, and observability. It preserves PAL’s
security posture and never alters business semantics.

Goal and scope. Given (i) a Canonical Feature Model (protocol features) of protocol
capabilities and (ii) a natural-language scenario, the router deterministically selects ezactly
one protocol per module from {A2A, ACP, ANP, AGORA} and emits a structured decision
record. A network builder then assembles homogeneous or heterogeneous links accordingly.
When links are heterogeneous, messages are bridged through the same UTE using stateless
encode/decode only, preserving business semantics and security attributes. By default the
router runs in a spec-only regime (no historical numbers or hidden heuristics).

37

Under review as a conference paper at ICLR 2026

Inputs, outputs, and determinism. Inputs: scenario text S; module set M; the protocol
features (boolean/enumerated facets with compatibility constraints). Output (fized JSON):

{
"module_id": "retriever",
"selected_protocol": "A2A|ACP|ANP|AGORA",
"evidence_spans": ["REST", "idempotent", "no E2E"],
"rationale": "Chosen by capability match; no numeric claims."
}

The router runs with temperature = 0; identical inputs yield identical outputs. Rationales
cite only extracted evidence spans; no numeric claims or invented capabilities.

protocol features. Capabilities are organized into six facets: (1) transport & interaction
(sync/async, streaming, persistent session, back-pressure); (2) long-running & artifacts (run
lifecycle, status/resume, artifact refs/transfer); (3) identity & confidentiality (enterprise au-
thIN/Z, DID, E2E, mTLS); (4) delivery & replay (ordering, idempotency keys, replay/offset,
dedup); (5) operation semantics (REST /idempotent /batch/resource-oriented vs. conversa-
tional /NL routines); (6) cross-org trust & governance (interop, routine governance,/version-
ing). Hard constraints remove incompatible protocols upfront (e.g., strict E2E excludes
protocols without confidentiality).

Spec-only selection pipeline. Three stages: evidence extraction — semantic mapping
— candidate reduction and priority. Fixed priority for tie-breaking: (i) identity/confiden-
tiality — (ii) operation semantics (REST /idempotent vs. conversational) — (iii) interaction
preferences (streaming/long-job).

Complete function: deterministic spec-only router.

def route_spec_only(spec_text: str,
modules: list,
cfm: dict) -> dict:
nnn
Deterministic spec-only router: select one protocol per module.
Returns: dict module_id -> selection_record.
nnn
spans = extract_evidence_spans(spec_text) # ["REST", "idempotent",
"E2E", "streaming"]
required_caps = map_spans_to_cfm(spans, cfm) # normalized set of
capability flags

decisions = {}

for m in modules:
candidates = [p for p in ["A2A", "ACP", "ANP", "AGORA"] if
is_protocol_compatible(p, required_caps, cfm)]

chosen = priority_decide(candidates, required_caps)

if isinstance(chosen, list) and len(chosen) > 1:
chosen = pick_by_narrative(spec_text, chosen) # deterministic
tie

record = {
"module_id": m["id"],
"selected_protocol": chosen,
"evidence_spans": spans,
"rationale": "Chosen by capability match and priority order."
}
decisions[m["id"]] = record
return decisions

38

Under review as a conference paper at ICLR 2026

Where to modify: adjust priority_decide(...) for a different priority order; extend the
candidate set and is_protocol_compatible for new protocols.

Helper interfaces.

e extract_evidence_spans(text) — List[str]: rule/regex phrase extractor (temper-
ature = 0).

e map_spans_to_cfm(spans, cfm) — Set[cap]: phrase — capability alignment.

e is_protocol_compatible(proto, caps, cfm) — bool: hard-constraint check.

e priority_decide(candidates, caps) — strlList[str]: fixed-priority chooser.

e pick_by_narrative(text, candidates) — str: deterministic tie-break by narrative

consistency.

Communication semantics for cross-protocol links. We enforce " change transport, not
semantics or security." Homogeneous links use the chosen protocol natively. Heterogeneous
links install stateless bridges around the UTE:

e Envelope (illustrative JSON).
(S

{ "id":"uuid-v4", "ts":1730000000.1, "src":"A", "dst":"B",
"intent":"qa/search",

"content":{ "question":"..." },
"context":{
"trace_id":"uuid-v4", "parent_id":"uuid-v4",

"idempotency_key":"uuid-v4", "session_id":"s-1",

"priority":0, "ttl_ms":30000, "stream":false,

"artifact_refs":["uri://..."], "tags":["GAIA","docqa"]
},

"meta":{ "protocol_hint":"a2alacplanplagora", "retry_count":0 } }

e Bridging policy: install encode(Envelope, proto) and decode(ProtoMsg) —
Envelope per heterogeneous edge; bridges perform only field re-mapping and semantic
alignment, never altering business content or security markers.

e Feature toggles: if selections imply streaming/long-job/artifact/state-
sync/identity/E2E, the link activates native protocol primitives (e.g., SSE/WS,
status endpoints, DID+E2E).

e Causality & errors: messages carry unified trace_id/parent_id; errors map to a
common taxonomy (timeout/HTTP /connection/codec/unsupported).

Router base interface.

class BaseRouter(Protocol):
async def route(self, ute: Dict[str, Any]) -> Dictl[str, Any]:

async def route_streaming(self, ute: Dict[str, Any]
) -> AsyncIterator[Dict[str, Any]]:
async def health(self) -> Dict[str, Any]:

Policies and resilience.Selection policies: static first-match; weighted; latency-aware
(EWMA /percentile-aware); consistent hashing by session_id/trace_id. Resilience prim-
itives: jittered exponential backoff; hedging with cancel-on-first-success; circuit break-
ing (open/half-open/close); bulkheading via per-slot concurrency caps. Ordering can
be enforced with per-trace_id/session_id work queues; idempotency is preserved via
context.idempotency_key and an optional client-side request cache.

Deterministic tie-break with a protocol-level prior (optional).

39

Under review as a conference paper at ICLR 2026

def tie_break_with_prior(candidates: list, prior_table: dict) -> str:
nnn
Deterministic tie-break with a protocol-level prior.
No numeric values are surfaced in the rationale.
nnn
ranking = prior_table.get("ranking", ["A2A","ACP","ANP","AGORA"])
ranked = sorted(candidates, key=lambda p: ranking.index(p)
if p in ranking else len(ranking))
return ranked[0]

Online bandit overlay (optional). After hard-constraint pruning, a contextual bandit
(e.g., Thompson sampling) may choose among feasible protocols using runtime feedback
while respecting all security /semantic invariants.

def bandit_select(feasible: list, context: dict, posterior: dict, rng) ->
str:
nnn
Thompson sampling over feasible protocols.
Security/semantic constraints are enforced upstream.
nnn
draws = {}
for p in feasible:
a, b = posterior.get(p, (1.0, 1.0)) # Beta prior
draws [p] = rng.beta(a, b)
best = sorted(draws.items(), key=lambda kv: (-kv[1], kv[0])) [0] [0]
return best

From decisions to network (complete function).

40

Under review as a conference paper at ICLR 2026

def apply_router_decisions(decisions: dict,
modules: list) -> dict:

nnn

Build a protocol-consistent topology and link configs

from router decisions. Stateless bridging is toggled

for heterogeneous links; native features are enabled

per-link according to the chosen protocol.

Returns: { "nodes": [...], "links": [...], "bridges": [...] }.

nnn

nodes, links, bridges = [1, [1, []

proto_of = {d["module_id"]: d["selected_protocol"]
for d in decisions.values()} if isinstance(decisions, dict) \
else {k: v["selected_protocol"] for k, v in
decisions.items()}

for m in modules:
nodes . append ({
llidll : m["id"]
"protocol": proto_of [m["id"]],
"features": decide_native_features(proto_of[m["id"]1], m)

b

create links according to scenario-defined topology
for m in modules:
for nbr in m.get("neighbors", []1):
src_p, dst_p = proto_of[m["id"]], proto_of [nbr]
links.append({"src": m["id"], "dst": nbr, "protocol": (src_p,
dst_p)})
if src_p != dst_p:
bridges.append ({
"src": m["id"], "dst": nbr,
"encode": f"encode_to_{dst_p.lower()}",
"decode": f"decode_from_{src_p.lower()}",
"stateless": True
b

return {"nodes": nodes, "links": links, "bridges": bridges}

Security posture and observability. Routers must not downgrade PAL security: pre-
serve Authorization headers, mTLS bindings, and ANP DID constraints. Observabil-
ity exports ROUTER_DECISIONS, HEDGE_FIRES, CIRCUIT_STATE, QUEUE_DEPTH, end-to-end
REQUEST_LATENCY; all correlated via trace_id.

Testing matrix.

e Policy conformance: selection, sticky sessions, hedging, retry categories.
e Failure drills: open circuit, half-open probes, bulkhead saturation.
e Ordering: monotonic sequence under enforced queues.

e Streaming: hedged streams deduplicated; cancellation correctness.

G.10 ROUTER PROMPTS

G.10.1 FaiL STorM ROUTER PROMPT
Fail Storm Router Prompt

You are "ProtoRouter", a deterministic and evaluation-friendly protocol
selector for multi-agent systems.

Your job: For each agent in a scenario, pick exactly ONE protocol from {A2A,
ACP, Agora, ANP} that best matches the agent's requirements.

You must justify choices with transparent, metric-level reasoning and produce
machine-checkable JSON only.

41

Under review as a conference paper at ICLR 2026

A2A (Agent-to-Agent Protocol)

- Transport/Model: HTTP + JSON-RPC + SSE; first-class long-running tasks;
task/artifact lifecycle.

- Performance: avg 3.42-7.39s response, 6.0s recovery time (fastest), 59.6%
success rate

- Capability/UX: Multimodal messages (text/audio/video) and explicit UI
capability negotiation.

- Discovery: Agent Card (capability advertisement) with ability -> endpoint
linkage.

- Security/Trust: Enterprise-style authN/Z; NOT end-to-end encryption by
default (E2E optional via outer layers).

- Integration: Complements MCP (tools/data); broad vendor ecosystem; high
feature richness.

- Typical Strengths: enterprise integration, complex workflows, multimodal
streaming, UI handshakes, long jobs, fast recovery.

- Typical Costs: spec breadth -> higher learning/ops complexity; cross-org
privacy needs extra layers.

- Primary orientation: sustained agent-to-agent interaction and lightweight
turn-taking.

- Less suited: scenarios dominated by resource/state-machine style operations
and bulk archival/ingestion pipelines.

ACP (Agent Communication Protocol)

- Transport/Model: REST-first over HTTP; MIME-based multimodality; async-first
with streaming support.

- Performance: avg 4.00-7.83s response, 8.0s recovery time, 59.0% success rate
- Discovery: Agent Manifest & offline discovery options; clear
single/multi-server topologies.

- Security/Trust: Relies on web auth patterns; E2E not native.

- Integration: Minimal SDK expectations; straightforward REST exposure.

- Typical Strengths: simplicity, REST familiarity, deployment flexibility,
easy wrapping of existing services.

- Typical Costs: less emphasis on UI capability negotiation; moderate recovery
performance.

- Primary orientation: structured, addressable operations with clear progress
semantics and repeatable handling at scale.

- Less suited: ultra-light conversational micro-turns where resource/state
semantics are explicitly avoided.

Agora (Meta-Protocol)

- Positioning: Minimal "meta" wrapper; sessions carry a protocolHash binding
to a plain-text protocol doc.

- Performance: avg 7.10-9.00s response, 6.1s recovery time, 60.0%, success rate
- Discovery: /.wellknown returns supported protocol hashes; natural language
is a fallback channel.

- Evolution: Reusable "routines"; fast protocol evolution and heterogeneity
tolerance.

- Security/Trust: No strong identity/E2E built-in; depends on deployment or
upper layers.

- Typical Strengths: lightweight, negotiation-friendly, highly adaptable for
research/decentralized experiments, balanced recovery.

- Typical Costs: governance/audit features not built-in; production-grade
security must be composed.

- Primary orientation: explicit procedure governance - selecting and following
a concrete routine/version that must be auditable.

- Less suited: when no concrete procedure/version needs to be fixed or
referenced.

ANP (Agent Network Protocol)

42

Under review as a conference paper at ICLR 2026

- Positioning: Network & trust substrate for agents; three layers:
identity+E2E, meta-protocol, application protocols.

- Performance: avg 4.78-6.76s response, 10.0s recovery time (slowest), 61.0%
success rate (highest), 22.0% answer discovery rate (highest)

- Security/Trust: W3C DID-based identities; ECDHE-based end-to-end encryption;
cross-org/verifiable comms.

- Discovery/Semantics: Descriptions for capabilities & protocols; supports
multi-topology communications.

- Typical Strengths: strong identity, E2E privacy, cross-organization trust,
highest answer discovery rate.

- Typical Costs: DID/keys lifecycle adds integration/ops complexity; ecosystem
still maturing; UI/multimodal not first-class; slowest recovery.

- Primary orientation: relationship assurance and information protection
across boundaries (identity, confidentiality, non-repudiation).

- Less suited: purely local/benign traffic where verifiable identity and
confidentiality are not primary concerns.

**xScenario Description:*x*

Multi-agent distributed document search system operating under cyclic fault
injection conditions. The system must maintain high answer discovery rates
while minimizing recovery time during agent failures. Agents are organized in
a mesh topology where 3 out of 8 agents are killed every 120 seconds,
requiring rapid fault detection, recovery, and service restoration.

**Module Details: *x*

**Module 1: Fault-Tolerant Document Search Network*x

- Agents: Agent-1, Agent-2, Agent-3, Agent-4, Agent-5, Agent-6, Agent-7,
Agent-8

- Protocol Selection: Choose 1 protocol(s) from A2A, ACP, Agora, ANP

**xTasks: **
- Perform distributed document fragment search across 8 agents in mesh

topology.

- Maintain collaborative retrieval with TTL-based message forwarding and ring
communication.

- Detect agent failures through heartbeat monitoring (10s intervals, 30s
timeout) .

- Execute rapid reconnection and service restoration after fault injection.
- Preserve answer discovery capability during 3-agent simultaneous failures.
- Support coordinator-worker communication for result aggregation.

- Handle cyclic fault patterns with 120s intervals over extended runtime
(1800s) .

**xPotential Issues:*x*

- Simultaneous failure of 37.5% of agents (3/8) every 120 seconds.
- Network partitions during fault injection causing message loss.
- Recovery time bottlenecks affecting overall system availability.
- Duplicate work during recovery phases reducing efficiency.

- Answer quality degradation under reduced agent availability.

- Heartbeat timeout false positives during mnetwork jitter.

- Reconnection storms when multiple agents recover simultaneously.
- TTL exhaustion in message forwarding during network instability.

**xYour Task:*x*
For each module in this scenario, you must select exactly ONE protocol from

{A2A, ACP, Agora, ANP} that best matches the module's requirements.

You must respond using the protocol_selection function call with your analysis
and selectioms.

43

Under review as a conference paper at ICLR 2026

G.10.2 STREAMING QUEUE ROUTER PROMPT

Streaming Queue Router Prompt

You are "ProtoRouter", a deterministic and evaluation-friendly protocol
selector for multi-agent systems.

Your job: For each agent in a scenario, pick exactly ONE protocol from {A2A,
ACP, Agora, ANP} that best matches the agent's requirements.

You must justify choices with transparent, metric-level reasoning and produce
machine-checkable JSON only.

A2A (Agent-to-Agent Protocol)

- Transport/Model: HTTP + JSON-RPC + SSE; first-class long-running tasks;
task/artifact lifecycle.

- Performance: avg 3.42-7.39s response, 6.0s recovery time (fastest), 59.6%
success rate

- Capability/UX: Multimodal messages (text/audio/video) and explicit UI
capability negotiation.

- Discovery: Agent Card (capability advertisement) with ability -> endpoint
linkage.

- Security/Trust: Enterprise-style authN/Z; NOT end-to-end encryption by
default (E2E optional via outer layers).

- Integration: Complements MCP (tools/data); broad vendor ecosystem; high
feature richness.

- Typical Strengths: enterprise integration, complex workflows, multimodal
streaming, UI handshakes, long jobs, fast recovery.

- Typical Costs: spec breadth -> higher learning/ops complexity; cross-org
privacy needs extra layers.

- Primary orientation: sustained agent-to-agent interaction and lightweight
turn-taking.

- Less suited: scenarios dominated by resource/state-machine style operations
and bulk archival/ingestion pipelines.

ACP (Agent Communication Protocol)

- Transport/Model: REST-first over HTTP; MIME-based multimodality; async-first
with streaming support.

- Performance: avg 4.00-7.83s response, 8.0s recovery time, 59.0% success rate
- Discovery: Agent Manifest & offline discovery options; clear
single/multi-server topologies.

- Security/Trust: Relies on web auth patterns; E2E not native.

- Integration: Minimal SDK expectations; straightforward REST exposure.

- Typical Strengths: simplicity, REST familiarity, deployment flexibility,
easy wrapping of existing services.

- Typical Costs: less emphasis on UI capability negotiation; moderate recovery
performance.

- Primary orientation: structured, addressable operations with clear progress
semantics and repeatable handling at scale.

- Less suited: ultra-light conversational micro-turns where resource/state
semantics are explicitly avoided.

Agora (Meta-Protocol)

- Positioning: Minimal "meta" wrapper; sessions carry a protocolHash binding
to a plain-text protocol doc.

- Performance: avg 7.10-9.00s response, 6.1s recovery time, 60.0%, success rate
- Discovery: wellknown returns supported protocol hashes; natural language is
a fallback channel.

- Evolution: Reusable "routines"; fast protocol evolution and heterogeneity
tolerance.

- Security/Trust: No strong identity/E2E built-in; depends on deployment or
upper layers.

44

Under review as a conference paper at ICLR 2026

- Typical Strengths: lightweight, negotiation-friendly, highly adaptable for
research/decentralized experiments, balanced recovery.

- Typical Costs: governance/audit features not built-in; production-grade
security must be composed.

- Primary orientation: explicit procedure governance - selecting and following
a concrete routine/version that must be auditable.

- Less suited: when no concrete procedure/version needs to be fixed or
referenced.

ANP (Agent Network Protocol)

- Positioning: Network & trust substrate for agents; three layers:
identity+E2E, meta-protocol, application protocols.

- Performance: avg 4.78-6.76s response, 10.0s recovery time (slowest), 61.0%
success rate (highest), 22.0% answer discovery rate (highest)

- Security/Trust: W3C DID-based identities; ECDHE-based end-to-end encryption;
cross-org/verifiable comms.

- Discovery/Semantics: Descriptions for capabilities & protocols; supports
multi-topology communications.

- Typical Strengths: strong identity, E2E privacy, cross-organization trust,
highest answer discovery rate.

- Typical Costs: DID/keys lifecycle adds integration/ops complexity; ecosystem
still maturing; UI/multimodal not first-class; slowest recovery.

- Primary orientation: relationship assurance and information protection
across boundaries (identity, confidentiality, non-repudiation).

- Less suited: purely local/benign traffic where verifiable identity and
confidentiality are not primary concerns.

*xScenario Description:*x*

High-throughput question-answering system designed for streaming queue
pressure testing. The system processes batches of questions (50 per batch)
across multiple worker agents coordinated by a central coordinator in star
topology. Primary focus is minimizing end-to-end latency while maintaining
acceptable reliability under concurrent load.

**Module Details: *x*

Module 1: High-Throughput QA Processing Pipelinex

- Agents: Coordinator-1, Worker-1, Worker-2, Worker-3, Worker-4

- Protocol Selection: Choose 1 protocol(s) from A2A, ACP, Agora, ANP

**xTasks: **

- Coordinator loads question batches from JSONL dataset
(top1000_simplified.jsonl).

- Dynamic load balancing across 4 worker agents using queue-based task
distribution.

- Workers process questions with LLM inference and return structured
responses.

- Maintain response time constraints (60s timeout) with retry mechanisms (max
3 retries).

- Collect and aggregate results with comprehensive performance metrics.

- Support concurrent processing with batch sizes of 5 questions per worker.
- Generate detailed performance reports including latency distribution and
success rates.

**xPotential Issues:*x*

- High concurrent load causing worker saturation and queue backups.
- Network timeout errors under sustained throughput pressure.

- Load imbalance between workers leading to processing bottlenecks.
- Connection retry storms during network instability.

- Response time variance affecting P95/P99 latency targets.

45

Under review as a conference paper at ICLR 2026

- Worker failure during batch processing causing partial results loss.
- Memory pressure from large question batches and response buffering.
- Protocol overhead impacting raw throughput under high QPS scenarios.

**xYour Task:*x*
For each module in this scenario, you must select exactly ONE protocol from
{A2A, ACP, Agora, ANP} that best matches the module's requirements.

You must respond using the protocol_selection function call with your analysis
and selectioms.

G.10.3 PROTOCOLROUTERBENCH INSTRUCTION PROMPT

ProtocolRouterBench Instruction

You are "ProtoRouter", a deterministic and evaluation-friendly protocol
selector for multi-agent systems.

Your job: For each agent in a scenario, pick exactly ONE protocol from {A2A,
ACP, Agora, ANP} that best matches the agent's requirements.

You must justify choices with transparent, metric-level reasoning and produce
machine-checkable JSON only.

A2A (Agent-to-Agent Protocol)

- Transport/Model: HTTP + JSON-RPC + SSE; first-class long-running tasks;
task/artifact lifecycle.

- Capability/UX: Multimodal messages (text/audio/video) and explicit UI
capability negotiation.

- Discovery: Agent Card (capability advertisement) with ability -> endpoint
linkage.

- Security/Trust: Enterprise-style authN/Z; NOT end-to-end encryption by
default (E2E optional via outer layers).

- Integration: Complements MCP (tools/data); broad vendor ecosystem; high
feature richness.

- Primary orientation: sustained agent-to-agent interaction and lightweight
turn-taking.

- Less suited: resource/state-machine heavy pipelines and bulk archival
ingestion.

ACP (Agent Communication Protocol)

- Transport/Model: REST-first over HTTP; MIME-based multimodality; async-first
with streaming support.

- Discovery: Agent Manifest & offline discovery options; clear
single/multi-server topologies.

- Security/Trust: Web auth patterns; E2E not native.

- Integration: Minimal SDK expectations; straightforward REST exposure.

- Primary orientation: structured, addressable operations with clear progress
semantics at scale.

- Less suited: ultra-light conversational micro-turns that avoid
resource/state semantics.

Agora (Meta-Protocol)

- Positioning: Minimal meta wrapper; sessions carry a protocolHash bound to a
plain-text protocol document.

- Discovery: /.well-known returns supported protocol hashes; natural language
as fallback.

- Evolution: Reusable "routines"; fast protocol evolution and heterogeneity
tolerance.

- Security/Trust: No strong identity/E2E built-in; depends on deployment or
upper layers.

46

Under review as a conference paper at ICLR 2026

- Primary orientation: explicit procedure governance (choose and follow a
concrete routine/version).
- Less suited: when no procedure/version needs to be fixed or referenced.

ANP (Agent Network Protocol)

- Positioning: Network & trust substrate; three layers: identity+E2E,
meta-protocol, application protocols.

- Security/Trust: W3C DID identities; ECDHE-based end-to-end encryption;
cross-org/verifiable comms.

- Discovery/Semantics: Descriptions for capabilities & protocols; supports
multi-topology communications.

- Primary orientation: relationship assurance across boundaries (identity,
confidentiality, non-repudiation).

- Less suited: benign/local traffic where verifiable identity and
confidentiality are not primary concerns.

Scenario Description: {scenario_description}
xModule Details: {module_details}

*xYour Task:** For each module in this scenario, you must select exactly ONE
protocol from {A2A, ACP, Agora, ANP} that best matches the module's
requirements.

You must respond using the protocol_selection function call with your analysis
and selections (machine-checkable JSON only) .

G.10.4 PROTOCOLROUTERBENCH INSTRUCTION PROMPT(SPEC + PERF)

ProtocolRouterBench Instruction (Spec + Perf)

You are "ProtoRouter", a deterministic and evaluation-friendly protocol
selector for multi-agent systems.

Your job: For each agent in a scenario, pick exactly ONE protocol from {A2A,
ACP, Agora, ANP} that best matches the agent's requirements.

You must justify choices with transparent, metric-level reasoning and produce
machine-checkable JSON only.

A2A (Agent-to-Agent Protocol)

- Transport/Model: HTTP + JSON-RPC + SSE; long-running tasks; task/artifact
lifecycle.

- Capability/UX: Multimodal messages; explicit UI capability negotiation.

- Discovery: Agent Card with ability -> endpoint linkage.

- Security/Trust: Enterprise authN/Z; E2E not default (optional via outer
layers) .

- Integration: Complements MCP; broad ecosystem.

- Orientation: sustained agent interaction and lightweight turn-taking.

ACP (Agent Communication Protocol)

- Transport/Model: REST-first; MIME multimodality; async-first with streaming.
- Discovery: Agent Manifest; single/multi-server topologies.

- Security/Trust: Web auth patterns; E2E not native.

- Integration: Minimal SDK; easy REST wrapping.

- Orientation: structured, addressable operations with clear progress
semantics.

Agora (Meta-Protocol)

47

Under review as a conference paper at ICLR 2026

- Positioning: Meta wrapper; session binds to a protocolHash referencing a
routine document.

- Discovery: /.well-known hashes; NL fallback.

- Security/Trust: Depends on deployment; no strong identity/E2E built-in.
- Orientation: explicit routine/version governance and auditability.

ANP

(Agent Network Protocol)

- Positioning: Identity+E2E substrate; meta-protocol; application protocols.
- Security/Trust: W3C DID; ECDHE E2E; cross-org/verifiable communications.
- Orientation: boundary-crossing identity/confidentiality/non-repudiation.

niq": "G].—QA",
"description": "GAIA hierarchical DocQA with planning, explicit
workflow/message-flow, sandboxed tools, step memory, and LLM judging.",
"modules_count": 1,
"module": [
{
"name": "Hierarchical DocQA Pipeline",
"agents":
["Planner","Reader/Extractor","Aggregator/Summarizer","Judge"],
"protocol_selection": {"choices": ["A2A","ANP","ACP","Agora"],
"select_exactly": 1},
"tasks": [
"Emit machine-readable manifest (roles, tools, workflow).",
"Run P2P serving with explicit message-flow.",
"Record step-based memory with timestamps and tool-call traces.",
"Summarize and judge quality; emit metrics."
],
"potential_issues": [
"Long-running tasks with streaming outputs/partials.",
"Out-of-order or retried deliveries under concurrency.",
"Auditability and replay of full execution log.",
"Cross-run fairness (identical seed/config)."
]
3
])
"experiment_results": {
"quality_avg": {"acp": 2.27, "a2a": 2.51, "anp": 2.14, "agora": 2.33,
"meta": 2.50},
"success_avg": {"acp": 5.25, "a2a": 9.29, "anp": 7.28, "agora": 6.27,
"meta": 9.90},
"single_task_comm_time@5_example": {
"a2a_ms": [25.38, 20.64, 28.19, 21.65, 21.36],
"acp_ms": [15.30, 13.64, 14.75, 16.22, 12.75],
"anp_ms": [39.01, 54.74, 27.60, 21.86, 34.48],
"agora_ms": [29.30, 21.83, 30.49, 22.41, 35.50]

"id": "S1-Queue",
"description": "Streaming Queue: centralized 5-agent network; 1000 items;
pressure test for speed and stability.",
"modules_count": 1,
"module": [
{
"name": "Coordinator-Workers Streaming Queue",
"agents": ["Coordinator","Worker-1","Worker-2","Worker-3","Worker-4"],

48

Under review as a conference paper at ICLR 2026

}’

{

}
{

>

]7

}

"protocol_selection": {"choices": ["A2A","ANP","ACP","Agora"],
"select_exactly": 1},

"tasks": ["Load-balance tasks","Track per-task latency and
completion","Minimize worker variance",'"Measure
errors/retries/timeouts"]

"experiment_results": {
"performance": {

}

"A2A": {"total":1000,"duration_s":2427,"avg_ms":9698,"min_ms":6938,"mj
ax_ms":15129,"std_ms":1127},
"ACP": {"total":1000,"duration_s":2417,"avg_ms":9663,”min_ms":6881,"mj
ax_ms":14235,"std_ms":1077},
"ANP": {"total":1000,"duration_s":2843,"avg_ms":11364,"min_ms”:243,"mj
ax_ms":50104,"std_ms":5732},
"Agora":{"total“:1000,"duration_s":3298,"avg_ms":13135,"min_ms":524,"J
max_ms":28213,"std_ms":5089}

"id": "F1-Storm",

"description": "Fail Storm on ring-structured Shard QA; randomly kill 3
agents every 2 minutes; measure recovery and pre/post metrics.",
"modules_count": 1,

"module": [

])

{

3

"name": "Shard QA with Fault Injection",

"agents" : ["QA—]." s "QA—Q" s "QA—3" s IIQA_4" s "QA—S" s "QA—G" s "QA—7" s "QA—S"] s
"protocol_selection": {"choices": ["A2A","ANP","ACP","Agora"],
"select_exactly": 1}

"experiment_results": {
"performance": [
{"protocol":"ACP", ‘"answer_found pct_pre":14.76,"answer_found_pct_po |

}

]

st":13.64,"steady_latency_s_pre":4.3776,"steady_latency_s_post":4.185J
1,"recovery_s":8.0482},

{"protocol":"AQA", "answer_found_pct_pre":14.74,"answer_found_pct_pOJ
st":14.57,"steady_latency_s_pre":4.3399, "steady_latency_s_post":4.185 |
5,"recovery_s":8.0027},

{"protocol":"ANP", ‘"answer_found pct_pre":14.88,"answer_found pct_po
st":12.94,“steady_latency_s_pre":4.3428,"steady_latency_s_post":4.182J
6,"recovery_s":8.0033},{"protocol":"AGORA" , "answer_found_pct_pre":14.
91,"answer_found_pct_post":12.12,“steady_latency_s_pre":4.3311,"steadj
y_latency_s_post":4.1799, "recovery_s":8.0026}

"id": "Mi-Doctors",

"description": "Doctor-to-doctor dialogue system with two legitimate LLM
agents; multi-round consultatiomns.",

"modules_count": 1,

"module": [

]’

{

}

"name": "Doctor-Doctor Dialogue System",

"agents": ["Doctor A","Doctor B"],

"protocol_selection": {"choices": ["A2A","ANP","ACP","Agora"],
"select_exactly": 1}

"experiment_results": {

49

Under review as a conference paper at ICLR 2026

"safety_matrix": [{"protocol":"Agora","tls_transport":true,"ses
sion_hijack_protection”:true,"eZe_detection":false,"packet_tunnel_protej
ction":true, "metadata_exposure_protection":truel,
{"protocol“:"ANP", ”tls_transport":true,"session_hijack_protection":J
true,"e2e_detection":true,
"packet_tunnel_protection”:true,"metadata_exposure_protection”:true},
{"protocol":"ACP", "tls_transport":false,"session_hijack protection"
:true, "e2e_detection":true,
"packet_tunnel _protection":false,"metadata_exposure_protection':true},
P P P P
{"protocol“:"AQA", ”tls_transport":false,"session_hijack_protection"J
:true, "e2e_detection":true,
"packet_tunnel_protection”:false,"metadata_exposure_protection":true}

x*Scenario Description:** {scenario_description}
Module Details: {module_details}

IMPORTANT: Provide a selection for EVERY module. Use the protocol_selection
function call with analysis and selections (machine-checkable JSON only) .

50

	Introduction
	Related Work
	ProtocolBench: A Systematic Evaluation of Agent Protocols
	ProtocolBench scenarios
	System design and evaluation

	ProtocolRouter: A Task-dependent Selection of Protocols
	ProtocolRouter Design
	ProtocolRouterBench: Extending ProtocolBench to Evaluate Multi-agent Protocol Routers

	Experimental Results and Analysis
	Experimental Settings and Metrics
	Agentic Tasks Performance
	Latency Performance and Tail Behavior
	Failure Recovery and Resilience
	Security Capability Analysis
	ProtocolRouterBench: Protocol Selection Evaluation

	Conclusion
	Ethics Statement
	Limitations, discussions and Future Work
	Protocol Terminology and Capability Facets
	Additional Qualitative Analysis of Protocol Behaviors
	GAIA Document Question Answering
	Streaming Queue
	Fail-Storm Recovery
	Safety Tech

	Detailed description of benchmark implementation
	GAIA Document Question-Answering Implementation
	Safety Tech Implementation
	Streaming Queue Implementation
	Fail-Storm Recovery Implementation

	Benchmark Implementation
	Controls and Fairness (Details)
	Experimental Setup: Constants and Variables
	Fairness verification

	Windowing, Byte Accounting, and Aggregation
	FS windowing and recovery metrics
	Latency and percentiles
	Byte accounting
	Aggregation levels

	ProtocolRouterBench: Data, Rules, and Artifacts
	DATA
	RULES
	Artifacts

	GAIA Case Study for ProtocolRouter
	Threats to Validity, Ablations, and Statistical Procedures
	Construct validity and multi-implementation check
	Ablations
	Statistical procedures

	Cross-model Streaming Queue experiments

	Scenario Prompt design
	ProtocolRouter Technical Details
	Unified Interface Specification
	Message/Event Field Alignment (A2A/ACP/ANP/AGORA UTE)
	Transport and Interaction Semantics
	Reliability and Ordering Guarantees
	Identity and Security
	Adapter Conformance Testing
	Common Endpoints and Sample Requests (capture reference)
	Implementation Guidance and Versioning
	Router Layer Technical Details
	Router Prompts
	Fail Storm Router Prompt
	Streaming Queue Router Prompt
	ProtocolRouterBench Instruction Prompt
	ProtocolRouterBench Instruction Prompt(Spec + Perf)

