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ABSTRACT

As large-scale multi-agent systems evolve, the communication protocol layer has
become a critical, yet understudied, component affecting system performance and
reliability. Despite a range of protocols, such as JSON-RPC, A2A, ANP, and ACP,
protocol selection remains ad hoc. To address this, we introduce ProtocolBench, a
benchmark designed to evaluate agent communication protocols across task util-
ity, communication overhead, system performance, and resilience under failure.
ProtocolBench uses a three-layer architecture with protocol adapters for fair com-
parison, diverse scenarios (e.g., document aggregation, collaborative coding), and
detailed telemetry. Our results show protocol choice can impact task completion
time by up to 36%, communication overhead by 3.5 seconds, and resilience with
statistically observable differences. We also propose ProtocolRouter, a learnable
protocol routing system that dynamically selects protocols based on runtime con-
ditions, improving performance by up to 18% compared to individual protocols.
Our findings highlight that hybrid protocol deployments outperform homogeneous
ones by approximately 6.6%, with negligible protocol translation overhead. We
release ProtocolBench as an open-source framework to standardize protocol eval-
uation and improve multi-agent system reliability at scale.

1 INTRODUCTION

Large Language Model (LLM) based multi-agent systems evolve from research prototypes to pro-
duction deployments. These systems rely on effective protocols to coordinate communications
among agents, from lightweight JSON-RPC to sophisticated frameworks like MCP for standardized
tool invocation (Anthropic, 2024), A2A for enterprise-scale agent communication (Google Cloud,
2025), IBM’s ACP for cross-framework collaboration (IBM BeeAI, 2025), and IoA for dynamic
agent discovery and orchestration (Chen et al., 2024). Despite this proliferation of protocols, there
is a lack of fundamental understanding of their trade-offs. While existing benchmarks (Zhu et al.,
2025; Hyun et al., 2025) typically assume fixed protocols and focus on task-level metrics, and sur-
veys (Yang et al., 2025; Ehtesham et al., 2025) highlight the need for systematic evaluation across
dimensions such as efficiency, scalability, and security, practitioners still lack systematic guidance
for protocol selection and environments to compare different protocols’ roles in multi-agent sys-
tems. In this paper, we aim to answer the key research question: can we understand the tradeoffs
among multi-agent protocols, and further help users systematically choose optimal protocols?

The technical challenges in building such a benchmark are substantial. Multi-agent Protocols ex-
hibit tightly coupled dimensions where task accuracy, end-to-end latency, and communication costs
interact in complex ways. Ensuring fair comparison requires isolating protocol-specific factors from
hardware, model, and scheduling variations. The combinatorial explosion of protocol-topology-
scale configurations, combined with dynamic events like failures and scaling, necessitates precise,
low-overhead monitoring and analysis infrastructure. Previous approaches that only measure final
task accuracy miss critical insights about communication efficiency and system stability. Building a
router over protocols is highly nontrivial. Real-world constraints like budget limits, latency require-
ments, and security policies often conflict, requiring dynamic trade-offs that static protocol selection
cannot address. Make protocol interoperable is challenging, where agents using different protocols
must collaborate, demands a unified framework for translation and routing.

To address these gaps, we first introduce ProtocolBench, the first benchmark explicitly designed
to evaluate communication protocols in multi-agent systems. ProtocolBench provides comprehen-
sive evaluation across multiple dimensions including task utility, communication overhead, system
performance, and resilience. Through a three-layer architecture—Protocol Adapter Layer for uni-
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Figure 1: Overview of ProtocolBench and ProtocolRouter. To understand the tradeoff across
existing LLM multi-agent protocols, we first design ProtocolBench that covers four core evaluation
dimensions, then propose ProtocolRouter to help users select the optimal protocol.

fied protocol interfaces, Scenario Harness with five representative workloads, and Metric and Log-
ger Stack for fine-grained telemetry—the benchmark enables fair comparison across heterogeneous
protocol implementations while addressing key evaluation challenges such as protocol isolation and
dynamic event handling.

Our evaluation reveals several surprising findings. In gaia document QA tasks, A2A’s distinguished
long-context communication directly translates into a 25.8% higher task success rate and 7.7%
higher quality compared to the next-best protocol. For streaming workloads, A2A’s offset-replay
mechanism maintains 99.5% reliability under 30% node failures while JSON-based protocols drop
to 67%.

Building on insights from ProtocolBench, we further present ProtocolRouter, a learnable protocol
routing system that dynamically selects and composes protocols based on scenario characteristics
and runtime conditions. To evaluate protocol routing capabilities, we construct an annotated dataset
derived from ProtocolBench results, capturing protocol performance patterns across diverse scenar-
ios. ProtocolRouter leverages these insights to make informed routing decisions, demonstrating that
intelligent protocol selection can outperform any single protocol choice. Furthermore, it enables
cross-protocol communication, facilitating seamless integration of heterogeneous agents and future
extensibility of multi-agent networks. By capturing scenario-dependent performance signals, Proto-
colRouter adapts its routing strategy to evolving conditions, ensuring robustness beyond what fixed
rules can offer. The learned ProtocolRouter router consistently outperforms static selection by 2-
18% across composite metrics, with particularly strong gains in scenarios with dynamic workload
changes or partial failures.

In sum, this paper makes three main contributions. First, we provide the first systematic char-
acterization of existing agent communication protocols across multiple dimensions and scenarios.
Second, we release ProtocolBench as an open-source evaluation dataset, evaluation harnesses, and
analysis tools to enable reproducible protocol research. Third, we demonstrate through Protocol-
Router that dynamic protocol selection and composition can unlock performance gains that exceed
the capabilities of any individual protocol.

2 RELATED WORK

Benchmarks and Multi-agent frameworks.LangChain provides modular pipelines (LangChain,
2024a), LangGraph adds graph-based control flow (LangChain, 2024b), and CrewAI simplifies role-
based collaboration (Moura, 2024). Microsoft’s AutoGen enables conversational multi-agent sys-
tems (Microsoft Research, 2024), while OpenAI’s Swarm offers lightweight coordination (OpenAI,
2024). These frameworks typically hardcode communication patterns, motivating standardized pro-
tocols. Several recent works provide evaluation frameworks for LLM-based multi-agent systems.
(Zhu et al., 2025) introduce MultiAgentBench, covering collaborative coding, gaming and research
tasks. (Hyun et al., 2025) propose CREW-Wildfire for wildfire response with heterogeneous agents.
(Liu et al., 2024) present AgentBench, evaluating LLM-as-Agent across eight environments. While
these benchmarks offer rich scenarios, they evaluate agents under fixed communication mechanisms
and do not compare protocol designs. Our work isolates the communication layer and provides
protocol-agnostic evaluation.

Agent protocols and communication mechanisms.Recent surveys provide theoretical foundations
for understanding multi-agent communication. (Tran et al., 2025) survey collaboration mechanisms,
categorizing cooperation, competition and coordination strategies, while (Yang et al., 2025) propose
a taxonomy distinguishing context-oriented from inter-agent protocols. (Ehtesham et al., 2025)
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Protocol Task Utility Communication
Overhead

System
Performance

Optimal
Scenarios

A2A Enterprise
coordination

Medium
(structured)

Consistent
throughput

Large-scale
mission-critical

ACP Framework
integration

Low-medium
(async)

Framework-
dependent

Cross-platform
collaboration

ANP Semantic
routing

Low
(targeted)

Variable
latency

Document
aggregation

Agora Decentralized
workflows

Low
(P2P)

Network-
dependent

Dynamic
networks

Table 1: Summary of investigated LLM multi-agent protocols.

compare existing protocols, analyzing their interaction modes and security models. The ecosystem
features diverse protocol implementations (Ehtesham et al., 2025) : MCP standardizes tool invo-
cation (Anthropic, 2024), A2A enables agent communication across enterprise platforms with 50+
industry partners (Google Cloud, 2025), IBM’s ACP provides open standards for cross-framework
collaboration (IBM BeeAI, 2025), the Internet of Agents (IoA) enables dynamic discovery and or-
chestration among heterogeneous agents (Chen et al., 2024), and Agora establishes a decentralized
communication layer that emphasizes interoperability and governance across agent networks (Marro
et al., 2024). While these surveys motivate systematic empirical evaluation of protocols, we provide
the first benchmark with adapters for representative protocols to evaluate them systematically.

3 PROTOCOLBENCH: A SYSTEMATIC EVALUATION OF AGENT PROTOCOLS

To asses the multi-agent protocols along different dimensions, we implement ProtocolBench that
cover four different multi-agent scenarios along with different metrics to evaluate the performance
of different multi-agent protocols.

3.1 PROTOCOLBENCH SCENARIOS

As shown in Fig. 2, we design and implement four representative scenarios, each stressing a different
protocol property.

coordinator

GAIA Document QA

planner
Agent config: role + tool + prompt
Network config: topology + workflow

memory

summarizer
Summary: …

judge
Task solution, Quality
Time, Token usage

Safety Tech Streaming Queue Fail-Storm Recovery

coordinator

worker 1 worker 2

worker 3 worker 4

MS MARCO

stable server + local host

Time recording, success rate, network error
retry, response time, time out…

2WikiMultiHopQA

query answer

jump connect

reconnecting…

accuracy rate
time consumption

Recovery time

doctor A
doctor B

Registration 
gateway

medical QA

probe

data
fetcher

final
synthesizer

data 
analyzer

file
processor

calculator

fake register

Figure 2: Illustration of four different multi-agent scenarios evaluated in this work.

GAIA Document Question-Answering tests hierarchical information aggregation of the multi-
agent system. In this scenarios, a Planner module generates JSON configurations for agents, defin-
ing roles, tools, prompts, network topology and workflow of the multi-agent system. Following the
GAIA framework (Mialon et al., 2023), agents are connected with each other, cooperate with sand-
boxed tools and log interactions in a memory pool. The shared memory is then summarized and
judged by LLM.

Safety Tech assesses the privacy-preserving capability of protocols under a medical Q&A scenario.
In this setup, a network with a registration gateway, coordinator, and two LLM doctors processes 10
cases from ChatDoctor-HealthCareMagic 100k (Li et al., 2023) with synthetic identity information.
Meanwhile, comprehensive security probes are systematically injected into the protocol stack to test
privacy protection mechanisms against various attack vectors.
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Figure 3: ProtocolRouter overview. (top) A scenario-aware selector (Appendix C.10) outputs
a structured plan with one protocol per module. (bottom) The runtime instantiates adapters and
connects modules; cross-protocol links use stateless encode/decode bridges without shared session
state.

Streaming Queue evaluates high-throughput API services. In this scenario, one coordinator and
four workers process 1000 MS MARCO entries (Bajaj et al., 2018), with the coordinator balancing
load for uniform distribution among all worker agents.

Fail-Storm Recovery tests resilience under node failures in Shard QA. In this scenarios, query
and answers from 2WikiMultihopQA (Ho et al., 2020) and shuffled and distributed among 8 agents
connected in a loop. Agents need to find the match for each query and answer while 3 of 8 agents
lose connection every 2 minuts.

3.2 PROTOCOLBENCH DESIGN AND EVALUATION

As summarized in Table 2, we also design different evaluation metric for different scenarios.

Scenario Description Key Metrics Key Feature
Gaia Document QA GAIA document task analysis Success rate, Collaboration quality Hierarchical routing
Safety Tech Medical Q&A with security probes Security Score, Probe Block Rate Security probing
Streaming Queue High-throughput request handling P95 latency, Drop rate Load balancing
Fail-Storm Recovery Resilience under node failures Recovery time, Success rate drop Fault detection/recovery

Table 2: Overview of ProtocolBench scenarios with key metrics and features. Each scenario
highlights different protocol trade-offs while being evaluated with consistent evaluation metrics.

To ensure fair and comprehensive evaluation across all scenarios and different multi-agent protocols,
we employ a three-layer architecture for the experimental design: a protocol adapter layer as unified
interfaces, a scenarios harness for consistent workload execution, and a metric and logger stack for
fine-grained telemetry. This design isolates protocol-specific effects while controlling for confound-
ing factors such as hardware, LLM model, decoding parameters, prompts, and rate limits. Different
scenarios are evaluated with different metrics. As listed in Table 2 and detailed in Appendix C,
these metrics seek to capture the key performance feature of each scenario. For better statistics and
more fair evaluation, we run each protocol-scenario configuration three time with distinct run IDs
for reproducibility.

4 PROTOCOLROUTER: A TASK-DEPENDENT SELECTION OF PROTOCOLS

The diversity of LLM multi-agent protocols (e.g., A2A, ACP, ANP, Agora) creates a challenge: no
single protocol excels across all scenarios, yet manual selection is inefficient and error-prone. To
address this issue and optimize the protocol selection for different use case while supporting flexible
protocol selection, we design and benchmark ProtocolRouter.

4
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4.1 PROTOCOLROUTER DESIGN

The goal of ProtocolRouter is to act as a dynamic router that not only enables agents using different
protocols to communicate, but also intelligently assigns protocols based on the specific scenarios.
This approach will eliminate the need for manual configuration and enable adaptable and scalable
multi-agent coordination.

Given a natural-language scenario description, ProtocolRouter assigns one protocol per module us-
ing a deterministic selection process based on the canonical feature model. The output is machine-
verifiable JSON objects that bind modules to protocol adapters, with cross-protocol communication
handled through stateless bridges.

ProtocolRouter evaluates each module’s requirements against the four protocols’ characteristics
(transport model, security features, typical strengths and costs) and selects the best match. In
the performance-aware mode, it additionally considers historical performance data from previous
benchmarks to make more informed selections.

In addition, the communication between different protocols is implemented using the Protocol
Adapter Layer in ProtocolBench, with stateless encode/decode bridges enabling interoperability.
Each protocol has an adapter that standardizes communication, and ProtocolRouter uses bridges to
translate messages between protocols, preserving semantics and security.(See Appendix E for more
details about router prompt and cross router implementations.)

When protocol choices imply specific capabilities, ProtocolRouter automatically enables these fea-
tures through each protocol’s native mechanisms. For streaming workloads, protocols like A2A and
ANP leverage their built-in streaming capabilities to handle continuous data flows efficiently. Long-
running job state management is handled through protocol-specific persistence mechanisms—ACP
uses simple state tracking, while AGORA employs distributed state management for complex multi-
agent scenarios.

4.2 PROTOCOLROUTERBENCH: EXTENDING PROTOCOLBENCH TO EVALUATE
MULTI-AGENT PROTOCOL ROUTERS

Furthermore, we benchmark the ProtocolRouter by extending ProtocolBench and compare the per-
formance of ProtocolRouter with each individual protocol. This benchmark is carried out in two
approaches. And more details can be found in Appendix C.3.

When there is no information about the performance of different protocols under any testing scenar-
ios, the ProtocolRouter will only execute the automatic protocol selection based on the description
of the given scenario and protocol features. This benchmark is tested on all four scenarios listed in
the ProtocolBench.

When there is already known information about the protocol performance under different scenar-
ios, the ProtocolRouter will make decision on protocol selection based on these benchmark results
for individual protocols. For example, if the new testing scenario is within the four scenarios in
ProtocolBench, ProtocolRouter will naturally choose the best performing one. Meanwhile, even if
the new testing scenario is out-of-sample, the ProtocolRouter will make better decision condition-
ing on the description of each scenario and previous ProtocolBench results. This design make the
ProtocolRouter extendable as it improves with additional benchmark information.

All evaluation scenarios in ProtocolRouterBench are human–LLM co-created. Human draft the
task intent and constraints, LLMs expand auxiliary details, and humans finalize the prompt pack
(scenario card + module graph). Ground truth (one-protocol-per-module) is human-annotated based
on explicit requirements and protocol features. We set different difficulty (L1–L5, each level have
different number of modules) by scale of scene and number of modules. Each difficulty have 12
scenes, with total 60 scenes and 180 modules. Full construction guidelines, annotation rubric, and
examples are provided in Appendix C.3.

5 EXPERIMENTAL RESULTS AND ANALYSIS

5.1 EXPERIMENTAL OVERVIEW AND METHODOLOGY

We evaluate four agent communication protocols (ACP, A2A, ANP, AGORA) across the four Pro-
tocolBench scenarios to assess their suitability for different deployment requirements. Our evalua-
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Scenario Protocol Quality avg Success avg

GAIA

ACP 2.27 5.25
A2A 2.51 9.29
ANP 2.14 7.28

AGORA 2.33 6.27

(a) GAIA. Task-utility metrics (averages only).

Scenario Protocol Answer discovery (%) Latency (s) Recovery (s)

Pre Post Pre Post

Fail-Storm Recovery

ACP 14.76 13.64 4.38 4.19 8.05
A2A 14.74 14.57 4.34 4.19 8.00
ANP 14.88 12.94 4.34 4.18 8.00
AGORA 14.91 12.12 4.33 4.18 8.00

(b) Fail-Storm Recovery. Pre-/post-failure answer discovery, steady-state latency, and recovery time (s). All
measured times include a 2.00 s restart delay; see Appendix B.4.

Scenario Protocol Duration
(min)

Mean
(s)

Min
(s)

Max
(s)

Std. Dev.
(s)

Streaming Queue

ACP 40.28 9.66 6.88 14.24 1.08
A2A 40.45 9.70 6.94 15.13 1.13
ANP 47.38 11.36 0.24 50.10 5.73
AGORA 54.97 13.14 0.52 28.21 5.09

(c) Streaming Queue. End-to-end latency statistics (duration, mean, min, max, std.).

Scenario Protocol TLS/Transport Session
Hijack

E2E
Encryption

Tunnel
Sniffing

Metadata
Leakage

Safety Tech

ACP × ✓ ✓ × ✓
A2A × ✓ ✓ × ✓
ANP ✓ ✓ ✓ ✓ ✓
AGORA ✓ ✓ ✓ ✓ ✓

(d) Safety Tech. Binary capability matrix; ✓ indicates presence and × indicates absence.

Table 3: Consolidated experimental results by scenario. Four panels correspond to Gaia Docu-
mented QA, Fail-Storm Recovery, Streaming Queue, and Safety Tech, each reported with scenario-
appropriate metrics.

tion framework systematically examines task utility, latency characteristics including tail behavior,
failure resilience capabilities, and security properties across the diverse multi-agent scenarios de-
scribed in Section 3.

The experimental results are presented in Table 3, covering task utility metrics, failure recovery
behavior with steady-state latency measurements, streaming queue latency statistics, and security
capability matrices. All metrics follow the benchmarking methodology and controlled experimental
design outlined in Section 3.2.

5.2 OVERALL TASK UTILITY PERFORMANCE

A2A emerges as the superior protocol for overall task utility across the ProtocolBench scenarios,
achieving the highest average quality score of 2.51 and success rate of 9.29 (Table 3a). This per-
formance advantage is particularly evident in the Gaia Document QA scenario, where A2A’s hi-
erarchical information aggregation capabilities and peer-to-peer coordination excel in distributed
document analysis tasks.

Compared to ACP, A2A demonstrates a substantial 10.57% improvement in quality metrics and a
remarkable 76.95% enhancement in success rate, establishing it as the most effective protocol for
heterogeneous collaborative workloads. From a stability perspective, the run-to-run analysis reveals

6
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that ACP exhibits the most consistent quality performance with minimal variance across three eval-
uation runs, while A2A shows greater variability in success rates, indicating potential sensitivity to
environmental conditions or workload characteristics in complex multi-agent coordination scenar-
ios.

5.3 LATENCY PERFORMANCE AND TAIL BEHAVIOR

ACP demonstrates superior latency characteristics in the Streaming Queue scenario, achieving the
lowest mean response time of 9,663ms with the smallest variance of 1,077ms and the most con-
trolled maximum latency of 14,235ms (Table 3c). This consistent performance profile makes ACP
particularly suitable for high-throughput API services where latency-critical applications demand
strict tail latency requirements and uniform load distribution among worker agents.

A2A follows closely with competitive latency performance, exhibiting only a 0.36% increase in
mean latency compared to ACP while maintaining reasonable tail behavior. In contrast, ANP and
AGORA incur significant latency penalties of 17.60% and 35.93% respectively, accompanied by
substantially higher variance and heavy-tail distributions that may impact application predictability
in high-throughput scenarios processing large-scale datasets like MS MARCO entries.

5.4 FAILURE RECOVERY AND RESILIENCE

Under the Fail-Storm Recovery scenario testing resilience under node failures, A2A exhibits ex-
ceptional performance, maintaining 98.85% of its pre-failure answer discovery capability (14.57%
vs. 14.74% pre-failure rate) as shown in Table 3b. This superior retention capability significantly
outperforms other protocols in the challenging Shard QA environment where query-answer match-
ing must continue despite systematic node failures: ACP retains 92.41%, ANP maintains 86.96%,
and AGORA preserves 81.29% of pre-failure performance.

Recovery time analysis reveals relatively uniform behavior across all protocols, with recovery times
clustering around 8.0 seconds when agents reconnect to the loop topology. ACP shows a marginal
46ms additional delay, which is negligible in practical deployment scenarios involving distributed
multi-hop question answering with periodic connection losses.

5.5 SECURITY CAPABILITY ANALYSIS

The Safety Tech scenario assessment reveals a clear bifurcation between protocol families in
privacy-preserving capabilities (Table 3d). ANP and AGORA provide comprehensive security cov-
erage across all evaluated dimensions, including TLS transport security, session hijacking protection,
end-to-end encryption, tunnel sniffing resistance, and metadata leakage prevention—critical features
for medical Q&A scenarios handling sensitive patient information and defending against adversarial
probing attempts.

In contrast, ACP and A2A offer partial security capabilities, lacking TLS transport layer protection
and tunnel sniffing resistance while maintaining session hijacking protection, end-to-end encryption,
and metadata leakage prevention. This security-performance trade-off represents a critical consid-
eration for deployment scenarios where comprehensive privacy guarantees are mandatory, as ANP
and AGORA’s enhanced security comes at the cost of increased latency overhead documented in
the previous subsections. The binary security matrix demonstrates that only ANP and AGORA can
fully satisfy the stringent privacy requirements of healthcare applications with synthetic identity
information protection and resistance to registration gateway attacks.

Takeaway

Experiments show that protocol choice materially impacts Multi-Agent System across speed (laten-
cy/throughput), security (E2E/TLS, leakage resistance), and collaborative effectiveness (quality/suc-
cess). Scenario-aware, per-module composition can match or surpass the best single protocol.

Findings

(1) GAIA — A2A leads task utility; (2) Streaming Queue — ACP wins on mean/tails; (3) Fail-Storm
— A2A retains best post-fault utility with near-fastest recovery; (4) Safety Tech — Only ANP/Agora
provide full security coverage.

7
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Split Scenario Accuracy Module Accuracy

Spec-only Spec+Perf Spec-only Spec+Perf

Overall (60 scen / 180 mods) 0.535 0.633 0.712 0.817

L1 (12 scen / 12 mods) 0.750 0.667 0.750 0.667
L2 (12 scen / 24 mods) 0.500 0.583 0.708 0.750
L3 (12 scen / 36 mods) 0.750 0.750 0.861 0.889
L4 (12 scen / 48 mods) 0.500 0.917 0.771 0.958
L5 (12 scen / 60 mods) 0.100 0.250 0.540 0.717

Table 4: Router selection correctness: overall and by difficulty across spec-only and performance-
aware conditions.

Case Study: Combined protocol for each module to raise performance in GAIA

Router Decision

Location Identifier

Web Browser Tool

Protocol: Agora

Task: Count metro                    

stations in D.C. 

Output: A single integer.
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station info

Complexity: High

Modules: 6

Distance Calculator

Python Executor Tool

Protocol: Agora

Metro Route Finder

Web Browser Tool

Protocol: Agora

Answer Synthesizer

Chat  Completion Tool

Protocol: ACP

Location Identifier
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discuss, so I use agora.

Metro Route Finder

Agora agent2: Yes. 

And I will check the 
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Answer Synthesizer

Python Executor

ACP1: You guys give 

me result. I am very 

fast.

Web Browser Web BrowserAgora Layer Agora Layer

ACP Layer

Distance Calculator

Python Executor

Agora3: Give me data

and I will calculate

distance. We talks a lot.

Agora Layer

Figure 4: Case study: ProtocolRouter assigns protocols per module for the GAIA metro-counting
task, enabling each module to run on its most suitable protocol (e.g., Agora for upstream discov-
ery/compute and ACP for the final commit). This per-module assignment yields an overall accuracy
that exceeds the single-protocol A2A baseline by 6.5%.

5.6 PROTOCOLROUTERBENCH: PROTOCOL SELECTION EVALUATION

5.6.1 PROTOCOL SELECTION ACCURACY: SPEC-ONLY VS PERFORMANCE-AWARE

Setup and overall results.We evaluate ProtocolRouter under two conditions: a spec-only baseline
(using protocol specifications only) and a performance-aware variant (spec+perf) that is augmented
with scenario-agnostic performance priors. The benchmark covers 60 scenarios (180 modules)
across five difficulty levels (L1–L5). The spec-only baseline attains 53.5% scenario accuracy and
71.2% module accuracy, with errors dominated by A2A↔ACP confusions. Adding performance
priors lifts accuracy to 63.3% (scenario) and 81.7% (module), i.e., +18.3% and +14.7% respec-
tively, and improves macro-F1 from 0.721 to 0.824 while preserving perfect recall for ANP and
high precision/recall for Agora.

What the performance priors add and where they help most.The performance-aware condition
injects latency percentiles, throughput characteristics, failure-recovery metrics, and security capabil-
ities from Section 5 as scenario-agnostic priors that are used solely for quantitative tie-breaking in
ambiguous choices (without exposing per-scenario numbers in rationales). The largest gains appear
at higher difficulties: L4 scenario accuracy jumps from 50.0% to 91.7% (+83.4%), and L5 from
10.0% to 25.0% (+150%), primarily by reducing A2A↔ACP confusions while maintaining ANP
separation and Agora robustness.

5.6.2 ROUTER PERFORMANCE VALIDATION ON PROTOCOLBENCH

We also test our Protocol router on ProtocolBench. We use Spec-only Prompts to let router Choose
protocols. We examine both router’s ability to choose protocol(combinations) and performace on

8
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Metric Router Best Single (A2A)

Quality avg (1–5) 2.50 2.51
Success avg 9.90 9.29

Table 5: Gaia (per-module selection)

Metric Router Best Single (ACP)

Duration (s) 2375 2417
Mean latency (ms) 9495 9663
Std. dev. (ms) 2866 1077

Table 6: Streaming Queue (router: ACP)

Metric Router Best Single

Pre-failure discovery (%) 14.86 14.91 (Agora)
Post-failure discovery (%) 13.98 14.57 (A2A)
Recovery time (s) 6.55 8.00 (A2A)

Table 7: Fail-Storm (router: A2A)

Security Check Router Best Single(ANP)

TLS transport ✓ ✓
Session protection ✓ ✓
E2E encryption ✓ ✓
Tunnel resistance ✓ ✓
Metadata protection ✓ ✓

Table 8: Safety (secure protocol selected)

Table 9: Router execution validation: performance comparison against best single-protocol baselines across
four scenario types.

each scenarios. We assume each agent in GAIA as a module in real network, and assign each agent a
protocol. For the rest of three, all network are seen as one module and will assign only one protocol.

Router deployment strategy. For each scenario, ProtocolRouter selects protocols based on scenario
characteristics: Streaming Queue → ACP (latency-optimized), Fail-Storm → A2A (resilience-
focused), Gaia → per-module dynamic selection (see the empirical assignment distribution in Ta-
ble 11, dominated by mixed bundles), and Safety → ANP (secure protocol). Except for Gaia’s
special case, the selections for the other three scenarios align with expectations.

Performance analysis. ProtocolRouter demonstrates competitive performance across all scenarios
while providing adaptive protocol selection (Table 9). The router achieves lower latency in Stream-
ing Queue, significantly reduces recovery time in Fail-Storm (6.55s vs 8.00s), yields higher success
rates in Gaia (9.90 vs 9.29), and ensures perfect security compliance in Safety scenarios.

Takeaway

(1) On PROTOCOLROUTERBENCH, the spec+perf setting clearly outperforms spec-only, while notably
reducing A2A↔ACP confusions. (2) Across the three single-module scenarios, the router’s choices
match or surpass the best single-protocol baselines—lower mean/tail latency in Streaming Queue,
faster recovery in Fail-Storm, and full security compliance in Safety.

Findings

In Gaia, selections of mixed bundles match or surpass the best single-protocol baseline. ProtocolRouter
attains best-of-single performance per module while unlocking system-level gains via cross-module
protocol specialization.

6 CONCLUSION

This paper introduces ProtocolBench, the first comprehensive benchmark for evaluating agent com-
munication protocols, and ProtocolRouter, a dynamic router that leverages protocol diversity for im-
proved performance. Our systematic evaluation across diverse scenarios reveals that protocol choice
significantly impacts system behavior across multiple dimensions—no single protocol dominates
universally. By providing standardized evaluation tools and demonstrating the benefits of dynamic
selection, we aim to transform protocol choice from ad-hoc decisions to principled engineering.
As multi-agent systems mature from research curiosities to production infrastructure, understanding
and optimizing communication layers becomes essential for building reliable, efficient, and scalable
deployments.

9
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7 ETHICS STATEMENT

Benchmarking communication protocols raises several ethical considerations. Efficient agent coor-
dination could enable both beneficial applications and harmful automation. We explicitly exclude
scenarios involving deception, manipulation, or privacy violation from our benchmark. The open-
source release includes usage guidelines emphasizing responsible deployment.

Our fault injection experiments simulate infrastructure failures rather than adversarial attacks, avoid-
ing the creation of tools for system disruption. We engage with the security community to ensure
our protocol adapters do not introduce new vulnerabilities.

LLM USE STATEMENT

In this work, we employed large language models (LLMs) in two ways. First, LLMs served as the
backbone of our LLM-based agents, providing the core reasoning, planning, memory, and reflection
capabilities necessary for our experimental evaluation. Specifically, we instantiated different pro-
tocols and error-detection modules on top of the same LLM backbone to ensure a fair comparison
across agentic settings. Second, we used LLMs to assist in the preparation of the manuscript by
refining the wording, improving sentence fluency, and ensuring clarity of presentation. All scientific
claims, analyses, and conclusions were conceived, validated, and written by the authors.

=======
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A LIMITATIONS AND FUTURE WORK

While ProtocolBench provides comprehensive protocol evaluation, several limitations merit dis-
cussion. Our scenarios, though representative, cannot capture all possible agent communication
patterns. Edge cases like byzantine failures or adversarial agents remain unexplored. The focus on
LLM-based agents may not generalize to hybrid systems incorporating traditional software compo-
nents.

ProtocolRouter’s learning approach assumes stationary or slowly-changing workload distributions.
Rapid context switches or rare events may not provide sufficient signal for adaptation. The com-
putational overhead of maintaining multiple protocol states could become prohibitive at very large
scales.

Future work should expand scenario coverage, particularly for emerging patterns like agent swarms
and hierarchical delegation. Integration with production orchestration systems would enable real-
world validation. Theoretical analysis of protocol complexity bounds and impossibility results
would complement our empirical findings.
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B DETAILED DESCRIPTION OF BENCHMARK IMPLEMENTATION

B.1 GAIA DOCUMENT QUESTION-ANSWERING IMPLEMENTATION

The Gaia Document Question-Answering scenario evaluates hierarchical information aggregation in
multi-agent protocols. Below, we detail its implementation, covering the planner module, agent life-
cycle, network memory, evaluation pipeline, sandboxed execution, time accounting, adjudication,
and fairness mechanisms.

1. Planner Module: A large language model (LLM) generates a JSON manifest encoding agent
configurations (roles, toolsets, prompt templates), tool-call metadata (interfaces, arguments, out-
puts), and network topology with explicit workflow and message-flow definitions. Discrete diffi-
culty levels map to agent counts (2, 4, or 8 agents for levels 1, 2, or 3) to ensure reproducibility, with
a recorded prompting seed. The manifest ensures identical configurations across protocols for fair
comparisons.

2. Agent Lifecycle and Network Communication: Agents operate in a distributed communica-
tion model where any agent can communicate with any other agent in the network through unique
addressable endpoints. They follow the manifest’s workflow, processing messages by parsing in-
puts, invoking tools or LLMs, and routing responses to designated next hop(s). The network layer
abstracts protocol differences and ensures reliable message delivery.

3. Step-Based Network Memory: An append-only memory pool logs all interactions in structured
JSON, capturing step indices, agent IDs, fine-grained timestamps, execution status, and message
histories with tool invocations. The memory supports offline analysis, replay, and LLM-driven
summarization.

4. LLM-Based Summarization and Evaluation: Post-workflow, an LLM summarizer generates
a concise outcome from the memory pool using a standardized prompt. A separate LLM judge
evaluates the result and execution log against a rubric assessing factual accuracy, relevance, and
completeness. The pipeline records resource metrics (e.g., token usage, time).

5. Tool Design and Execution: Many distinguished open-source agent collaboration frame-
works Liang et al. (2025); Hu et al. (2025) provide high-quality toolkits. Building upon these
advancements, the tools in our Gaia scenario are designed through selective reuse and adaptation,
enabling both efficient integration and tailored functionality. All code execution tools operate within
isolated environments with virtualized dependencies, restricted filesystem/network access, and re-
source limits (CPU, memory, wall time). Logs and artifacts are captured and linked to execution
steps to facilitate traceability and reproducibility.

6. Fine-Grained Time Accounting: Timestamps are recorded at agent, step, and workflow levels
in milliseconds (Unix epoch), enabling latency profiling and straggler detection.

7. LLM-Driven Adjudication: The LLM judge assesses outcomes using structured prompts and
rubric criteria, producing pass/fail results and quality scores (e.g., accuracy, task alignment). Judg-
ments are stored as structured metadata.

8. Metrics and Reporting: The evaluation report includes comprehensive performance metrics
(success rate, execution time breakdown, resource consumption by agent and task), quality scores
with detailed LLM judge analysis, and operational statistics (task completion rates, communica-
tion overhead). Reports are emitted in both structured JSON format and human-readable console
summaries with visual indicators.

9. Experimental Fairness: All protocols use the same planner-generated manifest and canonical
seed to control variability, ensuring only protocol implementations differ.

This implementation ensures rigorous, reproducible evaluation of hierarchical routing in multi-agent
settings, with detailed metrics and fairness controls.

B.2 SAFETY TECH IMPLEMENTATION

The Safety Tech scenario evaluates privacy-preserving protocols in medical Q&A under adversarial
conditions, focusing on protocol-stack security penetration testing and multi-dimensional confiden-
tiality protection.Below, we detail its implementation, including scenario setup, test points, probe
mechanisms, reporting, and technical features.
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1. Scenario Setup: The setup launches a registration gateway (RG), coordinator, and two
LLM doctors using native protocols (e.g., Agora Doctor A/B, ANP Doctor A/B). Doctors regis-
ter with the RG, pull directories via the coordinator, and engage in bidirectional communication
through protocol-specific endpoints. The system processes 10 augmented cases from ChatDoctor-
HealthCareMagic-100k with synthetic identity information. Comprehensive probe mode is enabled
via environment variables, injecting probes real-time into message/HTTP/TLS paths using a uni-
fied probe config for protocol-agnostic testing across Agora SDK, ANP DID encryption, ACP
routing, and A2A execution.

2. Transport and Certificate Security: Conducts 3 rounds of TLS downgrade attacks using weak
cipher suites, obsolete TLS versions, and HTTP plaintext fallback, recording success and block rates
for each attempt. A comprehensive certificate matrix systematically verifies security blocking across
6 test dimensions: expired certificates, self-signed certificates, hostname mismatches, incomplete
certificate chains, weak cipher suites, and TLS version downgrades. Each matrix test generates
detailed blocking metrics and assigns scores based on successful interception prevention, providing
a systematic assessment of transport-layer security robustness.

3. End-to-End Payload Confidentiality: Injects watermarks and plaintext probes (e.g.,
PLAINTEXT PROBE *, HIDDEN MARKER:S2 E2E WATERMARK TEST *) into payloads. Uses
tcpdump on the lo0 interface (8 seconds) to capture network traffic and detect plaintext leakage
through sensitive keyword matching. The system evaluates encryption effectiveness by analyzing
watermark visibility and sensitive keyword hits (e.g., patient ID, SSN, credit card numbers), assign-
ing scores based on watermark injection participation and leak prevention performance.

4. Session and Timing Protection: For session hijack, injects privilege-escalation tokens
(e.g., expired session *, admin session *), measuring interception rates via denials or
404s. Clock skew tests ±30s/±2m/±5m/±10m offsets and window anomalies (e.g., TIME SKEW,
WINDOW REPEAT/DISORDER/DUPLICATE) over 12 rounds. Replay attacks involve 2 rounds of
old message replays, distinguishing real blocks from errors like ReadTimeout/500.

5. Metadata and Side-Channel Protection: Probes endpoints (e.g., /health, /metrics,
/status) for exposed meta-info, quantifying exposure counts. tcpdump analyzes plaintext bytes
and sensitive keyword hits to assess information leakage and calculate metadata exposure scores.

6. Real-Time Probe Injection Mechanism: Probes are injected via protocol clients’ send()
methods into native paths (e.g., before Agora SDK calls, ANP signatures, ACP requests). The
system dispatches probe config parameters for clock skew, watermarks, and replays, ensuring
authentic testing.

7. Weighting and Reporting: Employs a multi-dimensional assessment system across TLS/trans-
port security, session hijack protection, E2E encryption detection, tunnel sniffing, and metadata
leakage dimensions.

8. Technical Features: Unified ProbeConfig class standardizes parameters (e.g.,
tls downgrade, e2e payload detection, time skew matrix) for cross-protocol con-
sistency. Real-time injections in native paths ensure authenticity. Multi-dimensional assessment
covers transport, application, session, and timing layers comprehensively.

This implementation provides a robust, protocol-agnostic framework for evaluating adversarial ro-
bustness and privacy protection capabilities across multi-agent communication protocols.

B.3 STREAMING QUEUE IMPLEMENTATION

The Streaming Queue scenario evaluates distributed question-answering coordination and protocol
performance in multi-agent systems. It focuses on task orchestration, load balancing across workers,
and cross-protocol compatibility, covering scenario setup, intelligent task routing, comprehensive
metrics collection, and protocol-agnostic architecture design.

1. Scenario Setup: A centralized network comprises one coordinator and four workers, processing
1000 preprocessed entries from the MS MARCO dataset (Bajaj et al., 2018). The dataset is simpli-
fied to focus on communication metrics rather than task difficulty. Testing is conducted on an AMD
server localhost to eliminate network fluctuations, ensuring consistent timing measurements.
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2. Task Processing and Load Balancing: The coordinator employs a work-stealing approach
where workers compete for tasks from a shared queue, achieving natural load distribution based on
individual worker processing speeds. The system tracks completion times, task counts per worker,
and calculates load balance variance to assess protocol communication efficiency and stability. This
approach enables evaluation of how protocol complexity, including authentication and encryption
mechanisms, affects task distribution uniformity across workers.

3. Metrics Collection: Metrics focus on communication performance and stability, including: -
Total test duration.
- Success rate (fraction of completed tasks).
- Response times (average, minimum, maximum, standard deviation, median).
- Load-balancing variance (task distribution across workers).
- Network errors and retries.
- Timeout counts (tasks exceeding time limits).
Network errors, retries, and timeouts are expected to be zero or consistent across protocols, as per
design.

4. Technical Features:
- Load Balancing: The coordinator uses a work-stealing approach where workers compete for
tasks, with load balance variance measured to assess distribution uniformity.
- Local Testing: Running on localhost isolates protocol performance from external network
variability.
- Metric Granularity: Per-task response times and worker-specific metrics enable fine-grained
analysis of protocol efficiency and stability.
- Protocol Comparison: Uniform task sets and configurations ensure fair comparisons, with
performance differences attributable to inherent protocol characteristics and implementation
complexity (e.g., A2A’s lightweight routing vs. Agora’s authentication overhead).

This implementation stress-tests communication efficiency and stability, providing insights into pro-
tocol performance under standardized workload conditions.

B.4 FAIL-STORM RECOVERY IMPLEMENTATION

The Fail-Storm Recovery scenario evaluates protocol resilience under node failures in a Shard QA
setup, testing robustness, reconnect times, and collaborative performance. Below, we detail its im-
plementation, covering the Shard QA base scenario, failure injection, recovery mechanisms, metrics,
and technical features.

1. Shard QA Base Scenario: A ring topology with 8 QA agents processes groups of 8 data points
from the 2WikiMultiHopQA dataset (Ho et al., 2020), including shuffled queries, answers, and
contents. Each agent receives one query and a random content segment. To resolve the query, agents
forward requests to neighbors for matching content. Messages propagate up to 8 hops; failure occurs
if unresolved after 8 hops. This tests communication efficiency and multi-agent collaboration.

2. Failure Injection: Every 2 minutes during a running Shard QA session, 3 agents are randomly
terminated (killed) to simulate sudden dropouts. Killed agents initiate reconnect attempts after a 2-
second delay, mimicking realistic network recovery patterns where agents need brief time to detect
failures and initialize reconnection procedures.

3. Recovery Mechanisms: Upon detecting a failed target agent, messages skip it and forward to
the next in the ring. Recovery time is measured from the kill event to the successful reconnection
of the last affected agent. The process involves 3 agents departing and rejoining, assessing network
stability during transitions.

4. Performance Phases:
- Pre-Fault: The 2 minutes before a kill event, establishing baseline performance.
- Recovery: The period from kill to full reconnection.
- Post-Fault: From recovery completion to the next kill event.
Performance differences across phases (e.g., success rates, latencies) quantify robustness.

5. Metrics Collection: Key metrics include recovery time (seconds from fault injection to system
stabilization), answer discovery rate (percentage of queries successfully resolved, measured pre- vs.
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post-fault), and steady-state average latency (task completion times in seconds, comparing pre-fault
and post-fault phases). These metrics quantify protocol resilience by measuring both functional
performance degradation and temporal recovery characteristics.

6. Technical Features:
- Failure Detection: Agents detect failures via timeouts or heartbeat checks, enabling ring skips.
- State Recovery: Reconnecting agents restore state from logs or peers to minimize disruptions.
- Fair Comparison: Identical datasets and topologies across protocols ensure differences stem
from failure handling.
- Simulation Controls: Random kills are seeded for reproducibility, with multiple runs averaging
results.

This implementation rigorously assesses fault tolerance, state recovery, and sustained collaboration
in dynamic multi-agent networks.

C BENCHMARK IMPLEMENTATION

C.1 CONTROLS AND FAIRNESS (DETAILS)

C.1.1 EXPERIMENTAL SETUP: CONSTANTS AND VARIABLES

We categorize the experimental setup into pinned constants (ensuring reproducibility) and scenario-
specific variables (capturing task diversity).

Pinned Constants. All non-protocol factors are fixed and verified:

• Model and decoding: Qwen2.5-VL-72B-Instruct; temperature=0.0, top p=1.0,
max tokens=4096.

• Hardware/OS/container: Single-node AMD server; pinned image with identical OS,
drivers, and libraries for all runs.

• Prompts: Version-anchored prompts for base system, Gaia judge, Safety evaluator, and
ProtocolBench router.

• Rate limits/timeouts: connection timeout=10s, message timeout=30s,
qa cycle timeout=15s, max retries=3 with exponential backoff.

• Adapter/router versions: Commit hashes are recorded in the artifact manifest.
• Internal retries/reconnects: Disabled at protocol adapters; recovery is implemented uni-

formly in the upper PAL layer to avoid bias.

Scenario Variables. Each scenario introduces its own communication topology and dynamics:

• Fail-Storm (FS): 8-node ring; at most 8 hops; skip failed nodes until recovery.
• Streaming Queue (SQ): Star topology with 1 coordinator and 4 workers.
• Gaia: Dynamic star; agent count increases with level (L1=2, L2=4, L3=8).
• Safety: Point-to-point with two endpoints (two doctors).

C.1.2 FAIRNESS VERIFICATION

We perform replay equality checks: given identical inputs, non-protocol side-effects (planner out-
puts, tool calls) are identical across adapters. ProtocolBench operates with temperature 0 to ensure
deterministic outputs. All equality checks and logs are included in the artifacts.

C.2 WINDOWING, BYTE ACCOUNTING, AND AGGREGATION

C.2.1 FS WINDOWING AND RECOVERY METRICS

For cycle t with kill timestamp kt and last reconnection timestamp rt:

• Pre window: [kt − 60s, kt).
• Recovery window: [kt, rt].
• Post window: (rt, rt + 60s]; truncated if the next kill begins earlier.
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Level # Scenarios Modules per Scenario # Modules

L1 12 1 12
L2 12 2 24
L3 12 3 36
L4 12 4 48
L5 12 5 60

Total 60 – 180

Table 10: ProtocolBench difficulty breakdown.

Primary FS endpoints:
Time-to-Recovery (TTR) = rt − kt,

Post-fault retention =
# successful requests in post
# successful requests in pre

.

If pre has zero successes, retention is marked NA and excluded from aggregates.

C.2.2 LATENCY AND PERCENTILES

Latency distributions are summarized by mean, median, and percentile endpoints. For SQ, the
primary endpoint is P95 end-to-end latency per run; we report medians and BCa bootstrap 95% CIs
across runs.

C.2.3 BYTE ACCOUNTING

We separate:

• MSG BYTES PAYLOAD: application payload bytes (requests + responses).

• MSG BYTES RETRY OVERHEAD: bytes due to retries and protocol-level overhead.

TLS handshakes and cryptographic negotiation bytes are excluded from both counters. Counting is
performed at the middleware boundary to avoid double counting. For streaming, bytes are bucketed
by message boundaries before aggregation.

C.2.4 AGGREGATION LEVELS

• Per-request: latency, payload bytes, overhead bytes.

• Per-run: success rate, FS recovery metrics.

• Per-scenario/module: ProtocolBench accuracies.

C.3 PROTOCOLROUTERBENCH: DATA, RULES, AND ARTIFACTS

C.3.1 DATA

Corpus and ID conventions. File: ProtocolBench scenarios.jsonl with 60 scenar-
ios. Scenario IDs: RB-L{level}-{idx}, where level∈ {1, . . . , 5} and idx∈ {01, . . . , 12}.
Module IDs: RB-L{level}-{idx}-M{m} (1-based). The artifact manifest MANIFEST.yaml
records file hashes and the commit for the corpus.

Difficulty stratification and construction. There are 12 scenarios per level (L1–L5). Modules per
scenario increase with level (L1:1, L2:2, L3:3, L4:4, L5:5), totaling 180 modules. Construction
constraints:

1. Explicit role/module descriptors per scenario.

2. Lock/exclude phrases prevent multi-label ground truth when needed (e.g., “REST/idem-
potent/batch/archival” locks resource semantics; “avoid resource/state-machine semantics”
excludes them).

3. No cross-module context sharing; each module is prompted and judged independently.

4. Single-choice ground truth in {A2A, ACP, Agora, ANP}.
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Rank Assignment (ordered by module index) #Mods Count Share (%)

1 [agora, acp] 2 70 42.4
2 [agora, agora, acp] 3 33 20.0
3 [agora, agora, agora, acp] 4 25 15.2
4 [acp] 1 7 4.2
5 [agora, a2a, agora, acp] 4 6 3.6
6 [agora, agora, agora, agora, acp] 5 4 2.4
7 [a2a, acp] 2 4 2.4
8 [agora, agora, a2a, acp] 4 3 1.8
9 [agora, agora, agora, agora, agora, agora,

acp]
7 3 1.8

10 [agora, a2a, acp] 3 3 1.8
11 [agora, agora, agora, agora, agora, acp] 6 1 0.6
12 [agora, agora, agora, a2a, agora, agora,

agora, acp]
8 1 0.6

13 [agora, agora, agora, agora, a2a, acp] 6 1 0.6
14 [agora, a2a, agora, a2a, acp] 5 1 0.6
15 [agora, agora, agora, a2a, acp] 5 1 0.6
16 [agora, agora, agora, agora, agora, agora,

agora, acp]
7 1 0.6

17 [agora, a2a, a2a, acp] 4 1 0.6

Table 11: Gaia — Router assignment patterns per run (total matches = 165, unique assignments
= 17). Assignment lists map module mi (index = position) to protocol in order.

C.3.2 RULES

Feature facets and evidence mapping. We fix a compact facet set and a lexicon that maps scenario
spans to facets:

• Transport/interaction: SSE/streaming, RPC, batch.
• Long-running/artifacts: job orchestration, checkpoints, artifacts.
• Identity/E2E: DID, key material, end-to-end encryption.
• Delivery/replay: at-least-once, idempotency, replay windows.
• Operation semantics: REST, idempotent updates, state machines.
• Trust/governance: audit, consent, policy hooks.

Hard constraints first prune incompatible candidates (e.g., strict E2E removes protocols without na-
tive E2E). The decision order in priority decide() is identity/E2E → operation semantics

→ interaction (streaming/long-job) . If candidates remain tied, pick by narrative() selects
the protocol whose defining capability anchor appears earliest in the scenario text; stable fallback
order: [A2A, ACP, Agora, ANP].

Prompt and function-call contract. Router uses a fixed, version-anchored prompt
PROTOCOL SELECTION PROMPT as shown in E.10.2. Responses are emitted via a struc-
tured function call with JSON fields:

{
"module_id": "RB-L3-07-M2",
"selected_protocol": "ACP",
"evidence_spans": ["..."],
"rationale": "Short textual reason; no numbers, no performance

claims."↪→
}

Rationales must not contain numbers or performance claims. A linter enforces a field whitelist and
rejects numeric tokens in rationales.
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Scoring and missingness. Scenario accuracy equals 1 only if all modules are correctly predicted.
Module accuracy is the fraction of correctly predicted modules. If a module record is malformed or
absent, the entire scenario is list-wise excluded and the exclusion is logged; no zero-filling.

Train/dev/test policy. This release ships only the 60 evaluation scenarios. A stratified split will be
added in a future release.

Non-leakage and pre-specification. All texts are model-generated with human curation. Vendor,
product, and library names are removed or neutralized; only generic capabilities and interaction
semantics remain. The decision rules, prompts, and schema are pre-specified and version-anchored.

C.3.3 ARTIFACTS

We release configs, scripts, commit hashes, dashboards, dataset splits, execution logs, and the full
ProtocolBench bundle. A one-shot script reproduces the entire pipeline (scenarios → decisions →
metrics → tables). The manifest records file hashes and commits.

Example one-shot command (for illustration)

bash run_all.sh --scenarios data/ProtocolBench_scenarios.jsonl \
--router_prompt prompts/PROTOCOL_SELECTION_PROMPT.txt \
--out_dir outputs/ --seed 0 --temperature 0

MANIFEST.yaml (excerpt)

corpus:
file: ProtocolBench_scenarios.jsonl
sha256: <TBD>
commit: <TBD>

prompts:
router_prompt: PROTOCOL_SELECTION_PROMPT.txt
sha256: <TBD>

runs:
- id: run_001
seed: 0
temperature: 0

ProtocolRouterBench JSON schema (abridged)

{
"scenario_id": "RB-L3-07",
"difficulty": "L3",
"modules": [
{"module_id":"RB-L3-07-M1","role":"retriever","gt":"ACP"},
{"module_id":"RB-L3-07-M2","role":"coordinator","gt":"A2A"},
{"module_id":"RB-L3-07-M3","role":"auditor","gt":"Agora"}

],
"text": "<scenario description with lock/exclude cues>"

}
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ProtocolRouterBench Data Structure

{
"$schema": "http://json-schema.org/draft-07/schema#",
"title": "ProtocolBenchScenario",
"type": "object",
"required": ["scenario_id", "modules"],
"properties": {
"scenario_id": {"type": "string"},
"level": {"type": "integer", "minimum": 1, "maximum": 5},
"modules": {
"type": "array",
"items": {
"type": "object",
"required": ["module_id", "text", "label"],
"properties": {
"module_id": {"type": "string"},
"text": {"type": "string"},
"label": {"type": "string", "enum":

["A2A","ACP","Agora","ANP"]},↪→
"locks": {"type": "array", "items": {"type": "string"}},
"excludes": {"type": "array", "items": {"type":

"string"}}↪→
}

}
}

}
}

C.4 THREATS TO VALIDITY, ABLATIONS, AND STATISTICAL PROCEDURES

C.4.1 CONSTRUCT VALIDITY AND MULTI-IMPLEMENTATION CHECK

We separate protocol design from implementation artifacts. A planned multi-implementation com-
parison (production-optimized vs. minimal references) is run under identical adapters; we expect
relative orderings to remain stable.

C.4.2 ABLATIONS

1. Envelope-only vs. full-feature paths: disable advanced features and compare against full
stacks.

2. Topology substitution: freeze Gaia’s dynamic star and compare to the default dynamic
configuration.

3. Planner freezing: fix planner outputs to isolate protocol effects.

4. ProtocolBench-specific: remove lock/exclude phrases to quantify A2A↔ACP confusions;
disable priority decide() to observe tie instability.

C.4.3 STATISTICAL PROCEDURES

For continuous metrics we compute BCa bootstrap 95% CIs with B=10,000 resamples. Protocol-
Bench accuracies use exact binomial or Wilson intervals. Pairwise comparisons report Cliff’s δ and
Hodges–Lehmann median differences (point estimate with 95% CI). Multiple comparisons are cor-
rected via Holm–Bonferroni. We separate in-run jitter (per-request coefficient of variation) from
run-to-run variability (across-run coefficient of variation) when repeated runs are available.

D SCENARIO PROMPT DESIGN

FS Shard Worker System Prompt is used by fail-storm shard workers to maximize answer dis-
covery under cyclic faults.
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FS Shard Worker System Prompt

def _get_system_prompt(self) -> str:
"""Get system prompt for the shard worker - Enhanced for

distributed search"""↪→
max_ttl = self.global_config.get('tool_schema',

{}).get('max_ttl', 15)↪→
return f"""You are agent {self.shard_id} in an intelligent

distributed document search system.↪→

NETWORK TOPOLOGY:
- Your neighbors: {self.neighbors['prev_id']} YOU

{self.neighbors['next_id']}↪→
- You process document shard {self.agent_idx}

CURRENT SEARCH TASK:
Question: {self.current_question}

YOUR LOCAL DOCUMENT FRAGMENT:
{self.current_snippet}

AVAILABLE TOOLS:
1. lookup_fragment: Analyze your local document fragment
2. send_message: Communicate with coordinator and neighbors

DISTRIBUTED SEARCH PROTOCOL:

STEP 1 - LOCAL SEARCH:
Call lookup_fragment(question="{self.current_question}",

found=<true/false>, answer="<extracted_info>")↪→
→ Be GENEROUS with found=true - partial information is valuable!

STEP 2 - ACTION BASED ON RESULT:
If found=true:
send_message(destination="coordinator", content="ANSWER_FOUND:

<detailed_answer>")↪→

If found=false:
→ The system will automatically handle neighbor search
→ No need to manually send neighbor requests

ULTRA-LIBERAL SEARCH CRITERIA (MAXIMIZE DISCOVERY):
SET found=true if your fragment contains ANY of these:

- Direct answers or partial answers
- Names, entities, dates, numbers mentioned in the question
- Related context, background information, or topic-relevant content
- Keywords or concepts that connect to the question
- Similar or related entities (e.g., same type of person, place,

thing)↪→
- Historical context or background about the topic
- Even tangentially related information
- ANY word or phrase that appears in both question and fragment
- Information that could help answer the question when combined with

other sources↪→

SET found=false ONLY if:
- Fragment is about completely different, unrelated topics with ZERO

overlap↪→
- Absolutely no shared words, concepts, or themes with the question

CRITICAL: When in doubt, ALWAYS choose found=true! It's better to
be overly generous than to miss relevant information.↪→
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ANSWER EXTRACTION:
When found=true, extract the most relevant information:
- Include specific facts, names, dates, numbers
- Provide context that helps answer the question
- Be specific and detailed rather than vague

LIBERAL DETECTION EXAMPLES:
..."""

FS Local Search Prompt guides generous local matching to maximize discovery before neigh-
bor/ring forwarding.

FS Local Search Prompt

def _get_local_search_prompt(self, question: str) -> str:
"""Get optimized prompt for local document search."""
return f"""You are a specialized document search agent analyzing

a document fragment.↪→

SEARCH QUESTION: {question}

YOUR DOCUMENT FRAGMENT:
{self.current_snippet}

TASK: Determine if your document fragment contains ANY information
that helps answer the question.↪→

SEARCH CRITERIA (Be ULTRA-LIBERAL - MAXIMIZE DISCOVERY):
FOUND (set found=true) if the fragment contains ANY of:

- Direct answers to the question
- Names, entities, or keywords mentioned in the question
- Related facts or context that partially answers the question
- Background information about the topic
- Similar entities or concepts (same category/type)
- Historical context or time period mentioned in question
- ANY shared words or phrases between question and fragment
- Information that could contribute to answering when combined with

other sources↪→
- Even tangentially related information

NOT FOUND (set found=false) ONLY if:
- Fragment is about completely different, unrelated topics with ZERO

overlap↪→
- Absolutely no shared concepts, words, or themes

CRITICAL: When in doubt, choose found=true! Better to include
potentially relevant info than miss it.↪→

RESPONSE FORMAT: Use the lookup_fragment function with:
- found: true/false (be generous with true)
- answer: extract the relevant information if found
- confidence: 0.0-1.0 (how confident you are)

EXAMPLES:
Question: "What nationality were Scott Derrickson and Ed Wood?"
Fragment: "Scott Derrickson is an American filmmaker..."

found=true, answer="Scott Derrickson is American"↪→
Fragment: "Ed Wood was born in New York..." found=true, answer="Ed

Wood was American (born in New York)"↪→
Fragment: "The Laleli Mosque in Turkey..." found=false (completely

unrelated)↪→
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Remember: It's better to find partial information than to miss
relevant content. The collaborative system will combine partial
answers from multiple agents."""

↪→
↪→

SQ QA Worker System Prompt is designed for high-throughput QA workers under star topology.

SQ QA Worker System Prompt

# Location: agent_network/script/streaming_queue/core/qa_worker_bas ⌋
e.py:117-120↪→

system_prompt = (
"You are a helpful assistant. Provide concise, accurate answers

to questions. "↪→
"Keep responses under 150 words."

)

SQ Meta Coordinator Task Prompt describs the streaming pressure test objective and constraints.

SQ Meta Coordinator Task Prompt

# Location: agent_network/script/streaming_queue/runner/run_meta_ne ⌋
twork.py:232-241↪→

pressure_test_task = {
"question": "Streaming queue pressure test: process maximum

questions in minimum time",↪→
"context": "High-throughput QA processing with diverse question

types",↪→
"metadata": {

"type": "pressure_test",
"volume": 50, # batch_size
"priority": "maximum_speed",
"target_qps": 20

}
}

GAIA Planner Prompt defines a task analysis system that classifies a task, assesses complexity,
selects tools, and configures specialized agents with roles. It enforces rules and provides a few-shot
JSON example to guide structured multi-agent planning.

GAIA Planner Prompt

TASK_ANALYSIS_SYSTEM = """You are an expert multi-agent system
architect. Analyze the given task with deep understanding and
provide a comprehensive analysis.

↪→
↪→

Consider these aspects:
1. TASK TYPE - Classify precisely:

- qa_with_reasoning: Question-answering requiring logical
reasoning↪→

- multi_step_analysis: Complex analysis requiring multiple
processing stages↪→

- content_generation: Creating new content, documents, reports
- computational_task: Mathematical calculations, data processing
- research_task: In-depth information gathering and synthesis
- general_qa: Simple question-answering

2. COMPLEXITY ASSESSMENT:
- low: Simple, straightforward tasks requiring 1-2 steps
- medium: Moderate complexity requiring 3-5 processing steps
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- high: Complex tasks requiring 6+ steps, domain expertise, or
sophisticated reasoning↪→

3. REQUIRED TOOLS - Select from available tools:
Available tools: {available_tools}

4. AGENT CONFIGURATION - For each required tool, specify:
- name: Descriptive agent name (e.g., "WebResearcher",

"DataAnalyst", "CodeExecutor")↪→
- role: Create meaningful, task-specific roles (e.g.,

"information_gatherer", "computational_specialist",
"data_processor", "final_synthesizer", "document_analyzer",
"web_navigator", etc.)

↪→
↪→
↪→
- Be creative with roles - they should reflect the agent's

specific function in solving the task↪→

Example role types you can use as inspiration:
* information_gatherer: Searches for and collects relevant

information from various sources↪→

* computational_specialist: Executes calculations, data
processing, and analytical tasks↪→

* document_analyzer: Processes and extracts information from
documents and files↪→

* evidence_synthesizer: Integrates information from multiple
sources into coherent conclusions↪→

* task_coordinator: Breaks down complex tasks and manages
workflow execution↪→

* content_creator: Generates reports, summaries, and structured
outputs↪→

* domain_expert: Provides specialized knowledge in specific
fields↪→

* data_processor: Handles data transformation, cleaning, and
formatting↪→

* web_navigator: Specializes in web search and online information
retrieval↪→

* final_synthesizer: Provides comprehensive final answers and
conclusions↪→

5. DOMAIN EXPERTISE needed (technology, science, business, finance,
healthcare, etc.)↪→

6. PROCESSING REQUIREMENTS:
- Sequential vs parallel processing needs
- Validation/verification requirements
- Error handling complexity

IMPORTANT HARD RULES:
- The tool 'create_chat_completion' is reserved for the FINAL agent

only. Include it exactly once and position it as the LAST step
in the workflow. Do NOT assign or call it in intermediate steps
or by non-final agents.

↪→
↪→
↪→

IMPORTANT: Based on the GAIA task level {level}, we recommend using
approximately {recommended_agents} agents for optimal
performance. However, you can adjust this number based on task
complexity:

↪→
↪→
↪→
- Use fewer agents (1-2) for very simple, single-step tasks
- Use the recommended number ({recommended_agents}) for typical

level {level} tasks↪→
- Use more agents (up to {max_agents}) only if the task genuinely

requires complex multi-step processing↪→
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You must limit your agent recommendations to a maximum of
{max_agents} agents total. Plan efficiently within this
constraint.

↪→
↪→
Respond with detailed JSON analysis including your reasoning.

Analyze the task and respond with a JSON object containing:
{{
"task_type":

"general_qa|research_task|computational_task|multi_step_analysis",↪→
"complexity": "low|medium|high",
"required_tools": ["tool1", "tool2"],
"agents": [
{{
"tool": "tool_name",
"name": "AgentName",
"role": "specific_role_based_on_function",

}}
],
"estimated_steps": number,
"domain_areas": ["domain1", "domain2"]

}}

Example:
{{

"task_type": "research_task",
"complexity": "medium",
"required_tools": ["browser_use", "create_chat_completion"],
"agents": [
{{
"tool": "browser_use",
"name": "WebResearcher",
"role": "academic_information_gatherer",

}},
{{
"tool": "create_chat_completion",
"name": "ReasoningSynthesizer",
"role": "evidence_synthesizer",

}}
],
"estimated_steps": 3,
"domain_areas": ["general_knowledge"]

}}
"""

Agent Role template instantiates agent expertise, responsibilities, and collaboration, ensuring struc-
tured coordination and quality outcomes in multi-agent systems.

Agent Role template

AGENT_ROLE_TEMPLATE = """You are {agent_name}, a
{role_words.lower()} specialist. Your primary responsibilities
include:

↪→
↪→

1. EXECUTE tasks related to your {role_words.lower()} expertise
2. PROVIDE expert-level insights and analysis within your domain
3. PROCESS information efficiently and accurately according to your

role↪→
4. COLLABORATE effectively with other agents in the workflow
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5. DELIVER high-quality results that contribute to the overall task
completion↪→

Your expertise in {role_words.lower()} makes you an essential part
of the multi-agent system."""↪→

LLM Judge Prompt provides the LLM with a process-oriented evaluation framework emphasizing
a consistent, rubric-based assessment to ensure transparent and reproducible scoring. To thoroughly
evaluate the MAS’s communication process as well as the final answer, full execution logs are
prioritized over summaries as they provide the necessary unabridged evidence.

LLM Judge Prompt

LLM_JUDGE_PROMPT = """You are an expert judge evaluating AI system
responses for the GAIA benchmark. Your evaluation must consider
both the final answer's correctness and the quality of the
process taken by the AI.

↪→
↪→
↪→

**TASK DETAILS:**
- **ORIGINAL QUESTION:** {question}
- **GROUND TRUTH ANSWER:** {ground_truth}

- **EXTRACTED FINAL ANSWER:** {final_answer}

- **FULL AI SYSTEM RESPONSE (TRACE) (Brief summary / final
output):**↪→

{predicted_answer}

---
IMPORTANT: When assessing the agent, PRIORITIZE the FULL NETWORK

EXECUTION LOG (JSON) below if provided. This log contains all
inter-agent messages, tool calls, and intermediate data
exchanges. Your process-quality judgment MUST be based primarily
on the content, clarity, correctness, and completeness of
inter-agent communication and tool interactions recorded in the
network execution log. Do NOT rely only on any short summary or
the extracted final answer.

↪→
↪→
↪→
↪→
↪→
↪→
↪→

**FULL NETWORK EXECUTION LOG (JSON):**
{network_log_content}

If the network log is unavailable, fall back to using the FULL AI
SYSTEM RESPONSE (TRACE) above.↪→

**EVALUATION INSTRUCTIONS:**

Your task is to perform a two-part evaluation:
1. **Correctness (`is_correct`):** First, determine if the

`EXTRACTED FINAL ANSWER` is correct when compared to the `GROUND
TRUTH ANSWER`. Consider semantic equivalence and allow for minor
formatting differences.

↪→
↪→
↪→
2. **Process Quality (`quality_score`):** Second, and just as

importantly, evaluate the agent's problem-solving process based
on the FULL NETWORK EXECUTION LOG (preferred) or the `FULL AI
SYSTEM RESPONSE (TRACE)` when the log is unavailable. Use the
detailed rubric below to assign a score from 1 to 5.

↪→
↪→
↪→
↪→

---
**QUALITY SCORE RUBRIC (1-5):**
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Your primary focus for the `quality_score` is the agent's methodology
and the quality of inter-agent communication. A high score can
be given for a good process even if the final answer is
incorrect.

↪→
↪→
↪→

- **Score 5 (Excellent):**
- The final answer is correct.
- Inter-agent communication is clear, complete, and correct. Tools

are used correctly and efficiently. Intermediate results are
validated and shared appropriately.

↪→
↪→

- **Score 4 (Good):**
- The final answer is correct, but communication may have minor

inefficiencies or small omissions.↪→

- **Score 3 (Fair / Good Process):**
- Solid reasoning and reasonable communication, but a late error

or omission causes the final answer to be incorrect.↪→

- **Score 2 (Poor):**
- Communication is incomplete or incorrect, tools are misused, or

agents fail to share necessary details.↪→

- **Score 1 (Very Poor):**
- No meaningful communication, hallucinated tool use, or

completely irrelevant traces.↪→

---
**RESPONSE FORMAT:**

Respond with a single JSON object. Do not include any other text or
explanations outside the JSON.↪→

{{
"is_correct": true/false,
"quality_score": 1-5,
"reasoning": "Detailed explanation for your judgment. Justify BOTH

the correctness of the final answer and the quality score
based on the process trace and the rubric.",

↪→
↪→
"answer_quality": "excellent/good/fair/poor",
"final_answer_present": true/false,
"partial_credit": 0.0-1.0

}}

Be thorough but fair in your evaluation. Provide specific reasoning
for your judgment.↪→

"""

E PROTOCOLROUTER TECHNICAL DETAILS

This section specifies the ProtocolRouterin full detail, covering the unified API, field alignment,
transport and interaction semantics, reliability and ordering guarantees, identity and security, con-
formance testing, and known limitations. The description corresponds 1:1 to the implementa-
tion of BaseAgent, BaseProtocolAdapter and its concrete subclasses (A2AAdapter,
ACPAdapter, ANPAdapter, AgoraClientAdapter). The final subsection replaces the pre-
vious router notes with a complete, self-contained router specification that sits above PAL and uses
the same universal message envelope.

E.1 UNIFIED INTERFACE SPECIFICATION

Roles and objects.

• BaseAgent (dual role): Acts as a server (receives messages) and as a multi-client
(sends to multiple destinations via multiple protocols). Server responsibilities are
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provided by BaseServerAdapter implementations (e.g., A2AServerAdapter,
AgentProtocolServerAdapter, ACPServerAdapter, ANPServerAdapter).
The execution entry point is SDK-native, e.g., async def execute(context,
event queue).

• BaseProtocolAdapter (egress abstraction): One adapter instance per egress edge (destina-
tion/URL/credentials) for isolation and precise metering. Each adapter encapsulates encoding/de-
coding, transport, auth, and feature negotiation for a single protocol and destination.

Unified send/receive API and lifecycle.

async def send_message(self, dst_id: str, payload: Dict[str, Any])
-> Any↪→

async def send_message_streaming(self, dst_id: str, payload:
Dict[str, Any]↪→

) -> AsyncIterator[Dict[str, Any]]
async def receive_message(self) -> Dict[str, Any]
async def initialize(self) -> None
async def health_check(self) -> bool
async def cleanup(self) -> None

• send message: Sends a protocol-specific payload and returns the protocol response. PAL unifies
encoding/decoding via the UTE (Unified Transport Envelope).

• send message streaming (optional): Yields protocol events/chunks as a stream (e.g., SSE).

• receive message: Typically a no-op for client adapters; ANP can poll an inbound session queue.

• initialize/health check/cleanup: Capability discovery/priming (cards/manifests), readiness
checks, and resource teardown.

Unified Transport Envelope (UTE).

{
"id": "uuid-v4",
"ts": 1730000000.123,
"src": "agent_A",
"dst": "agent_B",
"intent": "qa/search",
"content": { "question": "..." },
"context": {
"trace_id": "uuid-v4",
"parent_id": "uuid-v4",
"idempotency_key": "uuid-v4",
"session_id": "s-123",
"priority": 0,
"ttl_ms": 30000,
"stream": false,
"artifact_refs": ["uri://..."],
"tags": ["gaia", "docqa"]

},
"meta": { "protocol_hint": "a2a|acp|anp|agora", "retry_count": 0

}↪→
}

Minimal required fields: src, dst, content, context. In BaseAgent.send(),
UTE.new(...) produces the envelope that ENCODE TABLE[protocol name] transforms
into protocol payload; responses are converted back via DECODE TABLE into a UTE, and upper
layers consume ute response.content.
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Table 12: UTE to protocol field alignment (send path).

UTE Field A2A (/message) ACP (/acp/mes-
sage)

ANP (/anp/message
/ WS)

AGORA (task)

Shorthand: In the ANP column, leading ”payload.” is omitted. In the ACP/AGORA columns, leading ”meta-
data.” is omitted when applicable.

id request.id id request id request id
src params.-

routing.-
source

sender source id /
session DID

source

dst params.-
routing.-
destination

receiver target did /
session

target (URL)

content params.message payload payload message /
parameters

trace id params.-
context.-
trace id

trace id trace id trace id

idempotency params.-
context.-
idempotency key

correlation id
or
idempotency key

-
idempotency key

idempotency key

stream HTTP Accept:
event-stream

stream=true
/ SSE

WS persistent
stream

by type /
task

session id params.-
context.-
session id

session id connection /
session

session

meta.protoc passthrough passthrough enables
meta-protocol

influences
task

Async event model and hooks (recommended).

• before encode / after encode: UTE → protocol payload, pre/post.

• before transport / after transport: Network send/receive, pre/post.

• on stream event: Streaming fragment/event callback.

• on retry / on backoff : Retry and backoff callbacks.

• on decode / on error: Protocol response decoding and normalized error handling.

Unified metrics (e.g., REQUEST LATENCY, REQUEST FAILURES, MSG BYTES) are labeled by
(src agent, dst id, protocol). MSG BYTES reports the byte length of the serialized
protocol payload.

Unified error taxonomy.Adapter exceptions are normalized by PAL into: E TIMEOUT, E HTTP,
E CONN, E PROTOCOL, E ENCODE/DECODE, E UNSUPPORTED. PAL increments failure coun-
ters and re-raises so routing/network layers can decide on retries or failover.

E.2 MESSAGE/EVENT FIELD ALIGNMENT (A2A/ACP/ANP/AGORA → UTE)

Table 12 aligns key fields on the send path (UTE→protocol). Paths use an English JSONPath-like
notation.

Reserved/extension notes. A2A exposes authenticated cards; ACP provides
/acp/capabilities and /acp/status; ANP carries protocol type (META/AP-
PLICATION/NATURAL) and DID/WS semantics; AGORA registers routines via task decorators.

E.3 TRANSPORT AND INTERACTION SEMANTICS

Sync/async and streaming.

• A2A: HTTP sync POST /message; obtain SSE via Accept: text/event-stream.
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• ACP: HTTP sync POST /acp/message; SSE supported; long-running jobs via
/acp/status polling.

• ANP: WebSocket persistent sessions (SimpleNodeSession); HTTP fallback POST
/anp/message for local/testing.

• AGORA: Official SDK task model or simplified POST /agora for single-round conversations
and POST /conversations/conversationId for multi-round conversations.

Long-running job state. Native support priority: ACP (status endpoint) > A2A (SSE increments/-
custom heartbeats) ≈ ANP (session heartbeats/app-level receipts) > AGORA (task-level receipts).
PAL recommends context.session id and idempotency key as anchors for idempotency
and resumption.

Artifact handling. Inline artifacts if <1 MB in content; otherwise reference via
context.artifact refs (e.g., s3:// or pre-signed URLs). ANP/WS can send binary
frames; for HTTP, prefer chunking or external links to avoid max message size limits.

E.4 RELIABILITY AND ORDERING GUARANTEES

Retry/backoff and deduplication. PAL does not implicitly retry; routing/network layers decide
based on error category. Idempotency is propagated via context.idempotency key and
mapped to protocol fields. Servers/business logic should implement deduplication on arrival.

Ordering and replay.

• HTTP (A2A/ACP): Transport is unordered; applications should reorder using seq/trace id.
• ANP (WS): Within a single session, ordering is approximately sequential; across sessions/links,

merge at the application layer. For SSE, Last-Event-ID enables replay if supported by the
server.

Normalized error mapping (examples).

• httpx.TimeoutException→ E TIMEOUT

• httpx.HTTPStatusError→ E HTTP (status code and summary included)
• WS handshake/DID resolution failure → E CONN

• json.JSONDecodeError→ E DECODE

• Missing/unsupported capability → E UNSUPPORTED

E.5 IDENTITY AND SECURITY

Authentication/authorization.

• HTTP (A2A/ACP/AGORA): Authorization: Bearer <token>; recommend mTLS
at gateway/reverse proxy; /.well-known/agent.json may expose capabilities and end-
points; A2A supports authenticated cards.

• ANP (DID): did:wba identities; local/remote DID creation and resolution. Test setups may en-
able verification bypass for interoperability; production must enforce strict public-key validation
and DID document checks.

End-to-end confidentiality (E2E).ANP uses ECDHE + AES-GCM for transparent per-session en-
cryption. For HTTP protocols, use TLS/mTLS; optionally add application-layer encryption for
content when regulatory or cross-tenant constraints apply.

Trust anchors and certificate chains.HTTP relies on public or private root CAs. DID trust anchors
are the method and resolver service; cache DID documents (TTL/expiry policy) and support key
rotation/revocation.

E.6 ADAPTER CONFORMANCE TESTING

Per-protocol test suite (capability × protocol).

1. Basic connectivity: initialize() fetches cards/capabilities (A2A/ACP/AGORA), ANP es-
tablishes DID/session; health check() returns true.
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2. Single round trip: UTE↔protocol encode/decode consistency (field fidelity, null-handling pol-
icy, case conventions).

3. Streaming: SSE/WS event ordering, boundaries, termination (including empty lines and data:
prefix); interruption/resume behavior.

4. Long-running: ACP /acp/status vs. A2A/ANP heartbeats/progress; resumption keyed by
session id.

5. Security/auth: Rejection on missing/invalid credentials; card access control; DID failures and
certificate expiry.

6. Edge cases: Large messages (near max message size), high concurrency, network jitter,
server 4xx/5xx/malformed JSON.

Regression corpus and coverage.

• Maintain stable wire-contract fixtures per protocol (request/response/event fragments) as base-
lines.

• Achieve coverage across encode/decode, error, and streaming branches.

• Fix load-test baselines and concurrency; report P50/P95/P99 and jitter coefficient (std/mean).

Known limitations and notes.

• A2AAdapter: /inbox is not universally implemented (PAL keeps a negative cache);
receive message() is a compatibility stub.

• ACPAdapter: Streaming depends on server SSE; long-running flows require /acp/status.

• ANPAdapter: Test configs may enable DID verification bypass; if no DID service is available,
use HTTP fallback POST /anp/message; the local resolver caches target DIDs and is not a
general-purpose resolver.

• AgoraClientAdapter: Without official toolformer, uses simplified HTTP with keyword
classification; semantics and performance are limited.

• Local loopback: IntelligentAgentNetwork. execute single agent task()
may use agent.send(agent id, ...) for self-delivery; the network must bind an ex-
plicit default adapter for that agent id or provide a loopback route.

• Ordering: HTTP is not ordered; ANP is near-ordered per session; cross-session requires merge
logic.

• Idempotency/dedup: Client adapters do not persist deduplication; implement on the server or
one layer up.

E.7 COMMON ENDPOINTS AND SAMPLE REQUESTS (CAPTURE REFERENCE)

A2A.

• GET /.well-known/agent.json

• GET /health

• POST /message

{"id":"<uuid>","params":{"message":{"text":"..."},
"context":{"trace_id":"..."},
"routing":{"destination":"agent_B","source":"agent_A"}}}

ACP.

• GET /.well-known/agent.json

• GET /acp/capabilities

• GET /acp/status

• POST /acp/message
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{"id":"<uuid>","type":"request","sender":"agent_A",
"receiver":"agent_B", "payload":{"text":"..."},
"timestamp":1730000000.0,"correlation_id":"<uuid>",
"metadata":{"trace_id":"..."}}

ANP.

• WS: ws(s)://<host>:<port>/ws

• HTTP fallback: POST /anp/message

{"type":"anp_message","request_id":"<uuid>",
"payload":{"text":"...","context":{"trace_id":"..."}},
"timestamp":1730000000.0, "source_id":"anp_client"}

AGORA.

• Official SDK tasks

• Single round Conversation: POST /agora

• Multi-round Conversation: /conversations/conversationId

{"status":"...", "body":"...}

E.8 IMPLEMENTATION GUIDANCE AND VERSIONING

• Protocol name convention: protocol name is lowercase
"a2a"|"acp"|"anp"|"agora" and must match ENCODE TABLE/DECODE TABLE
keys.

• Version negotiation: Expose protocolVersion in cards; optionally include
min version/max version in context for soft negotiation.

• Observability and label cardinality: Restrict metric labels to (src agent, dst id,
protocol) to avoid high cardinality (e.g., dynamic URLs/tenants).

• Rollback and canarying: Keep old codecs and switch using meta.protocol hint or ad-
vertised capabilities.

• Production essentials: Implement idempotency/dedup on the server (id/idempotency key);
for ANP, disable test bypasses and enforce strict DID/key governance.

E.9 ROUTER LAYER TECHNICAL DETAILS

This subsection replaces the previous router notes with a complete, self-contained specification. The
Router sits above PAL and decides where and how to send a UTE-based request. It implements desti-
nation selection, policy enforcement, resilience primitives (retry/backoff/circuit breaking/hedging),
ordering semantics, and observability. It preserves PAL’s security posture and never alters business
semantics.

Goal and scope. Given (i) a Canonical Feature Model (protocol features) of protocol capabilities
and (ii) a natural-language scenario, the router deterministically selects exactly one protocol per
module from {A2A, ACP, ANP, AGORA} and emits a structured decision record. A network builder
then assembles homogeneous or heterogeneous links accordingly. When links are heterogeneous,
messages are bridged through the same UTE using stateless encode/decode only, preserving business
semantics and security attributes. By default the router runs in a spec-only regime (no historical
numbers or hidden heuristics).

Inputs, outputs, and determinism. Inputs: scenario text S; module set M; the protocol features
(boolean/enumerated facets with compatibility constraints). Output (fixed JSON):
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{
"module_id": "retriever",
"selected_protocol": "A2A|ACP|ANP|AGORA",
"evidence_spans": ["REST", "idempotent", "no E2E"],
"rationale": "Chosen by capability match; no numeric claims."

}

The router runs with temperature = 0; identical inputs yield identical outputs. Rationales cite only
extracted evidence spans; no numeric claims or invented capabilities.

protocol features. Capabilities are organized into six facets: (1) transport & interaction (sync/async,
streaming, persistent session, back-pressure); (2) long-running & artifacts (run lifecycle, status/re-
sume, artifact refs/transfer); (3) identity & confidentiality (enterprise authN/Z, DID, E2E, mTLS);
(4) delivery & replay (ordering, idempotency keys, replay/offset, dedup); (5) operation semantics
(REST/idempotent/batch/resource-oriented vs. conversational/NL routines); (6) cross-org trust &
governance (interop, routine governance/versioning). Hard constraints remove incompatible proto-
cols upfront (e.g., strict E2E excludes protocols without confidentiality).

Spec-only selection pipeline. Three stages: evidence extraction → semantic mapping → candidate
reduction and priority. Fixed priority for tie-breaking: (i) identity/confidentiality → (ii) operation
semantics (REST/idempotent vs. conversational) → (iii) interaction preferences (streaming/long-
job).

Complete function: deterministic spec-only router.

def route_spec_only(spec_text: str,
modules: list,
cfm: dict) -> dict:

"""
Deterministic spec-only router: select one protocol per module.
Returns: dict module_id -> selection_record.
"""
spans = extract_evidence_spans(spec_text) # ["REST",

"idempotent", "E2E", "streaming"]↪→
required_caps = map_spans_to_cfm(spans, cfm) # normalized set

of capability flags↪→

decisions = {}
for m in modules:

candidates = [p for p in ["A2A", "ACP", "ANP", "AGORA"] if
is_protocol_compatible(p, required_caps, cfm)]↪→

chosen = priority_decide(candidates, required_caps)

if isinstance(chosen, list) and len(chosen) > 1:
chosen = pick_by_narrative(spec_text, chosen) #

deterministic tie↪→

record = {
"module_id": m["id"],
"selected_protocol": chosen,
"evidence_spans": spans,
"rationale": "Chosen by capability match and priority

order."↪→
}
decisions[m["id"]] = record

return decisions

Where to modify: adjust priority decide(...) for a different priority order; extend the
candidate set and is protocol compatible for new protocols.

Helper interfaces.
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• extract evidence spans(text) → List[str]: rule/regex phrase extractor (tem-
perature = 0).

• map spans to cfm(spans, cfm) → Set[cap]: phrase → capability alignment.

• is protocol compatible(proto, caps, cfm) → bool: hard-constraint check.

• priority decide(candidates, caps) → str|List[str]: fixed-priority
chooser.

• pick by narrative(text, candidates) → str: deterministic tie-break by narra-
tive consistency.

Communication semantics for cross-protocol links. We enforce “change transport, not seman-
tics or security.” Homogeneous links use the chosen protocol natively. Heterogeneous links install
stateless bridges around the UTE:

• Envelope (illustrative JSON).

{ "id":"uuid-v4", "ts":1730000000.1, "src":"A", "dst":"B",
"intent":"qa/search",
"content":{ "question":"..." },
"context":{
"trace_id":"uuid-v4", "parent_id":"uuid-v4",
"idempotency_key":"uuid-v4", "session_id":"s-1",
"priority":0, "ttl_ms":30000, "stream":false,
"artifact_refs":["uri://..."], "tags":["gaia","docqa"]

},
"meta":{ "protocol_hint":"a2a|acp|anp|agora", "retry_count":0 }

}↪→

• Bridging policy: install encode(Envelope, proto) and decode(ProtoMsg) →
Envelope per heterogeneous edge; bridges perform only field re-mapping and semantic align-
ment, never altering business content or security markers.

• Feature toggles: if selections imply streaming/long-job/artifact/state-sync/identity/E2E, the link
activates native protocol primitives (e.g., SSE/WS, status endpoints, DID+E2E).

• Causality & errors: messages carry unified trace id/parent id; errors map to a common
taxonomy (timeout/HTTP/connection/codec/unsupported).

Router base interface.

class BaseRouter(Protocol):
async def route(self, ute: Dict[str, Any]) -> Dict[str, Any]:

...↪→
async def route_streaming(self, ute: Dict[str, Any]
) -> AsyncIterator[Dict[str, Any]]: ...
async def health(self) -> Dict[str, Any]: ...

Policies and resilience. Selection policies: static first-match; weighted; latency-aware
(EWMA/percentile-aware); consistent hashing by session id/trace id. Resilience prim-
itives: jittered exponential backoff; hedging with cancel-on-first-success; circuit break-
ing (open/half-open/close); bulkheading via per-slot concurrency caps. Ordering can be
enforced with per-trace id/session id work queues; idempotency is preserved via
context.idempotency key and an optional client-side request cache.

Deterministic tie-break with a protocol-level prior (optional).
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def tie_break_with_prior(candidates: list, prior_table: dict) ->
str:↪→
"""
Deterministic tie-break with a protocol-level prior.
No numeric values are surfaced in the rationale.
"""
ranking = prior_table.get("ranking",

["A2A","ACP","ANP","AGORA"])↪→
ranked = sorted(candidates, key=lambda p: ranking.index(p)

if p in ranking else len(ranking))
return ranked[0]

Online bandit overlay (optional). After hard-constraint pruning, a contextual bandit (e.g., Thomp-
son sampling) may choose among feasible protocols using runtime feedback while respecting all
security/semantic invariants.

def bandit_select(feasible: list, context: dict, posterior: dict,
rng) -> str:↪→
"""
Thompson sampling over feasible protocols.
Security/semantic constraints are enforced upstream.
"""
draws = {}
for p in feasible:

a, b = posterior.get(p, (1.0, 1.0)) # Beta prior
draws[p] = rng.beta(a, b)

best = sorted(draws.items(), key=lambda kv: (-kv[1],
kv[0]))[0][0]↪→

return best

From decisions to network (complete function).

34



1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889

Under review as a conference paper at ICLR 2026

def apply_router_decisions(decisions: dict,
modules: list) -> dict:

"""
Build a protocol-consistent topology and link configs
from router decisions. Stateless bridging is toggled
for heterogeneous links; native features are enabled
per-link according to the chosen protocol.
Returns: { "nodes": [...], "links": [...], "bridges": [...] }.
"""
nodes, links, bridges = [], [], []
proto_of = {d["module_id"]: d["selected_protocol"]

for d in decisions.values()} if
isinstance(decisions, dict) \↪→

else {k: v["selected_protocol"] for k, v in
decisions.items()}↪→

for m in modules:
nodes.append({

"id": m["id"],
"protocol": proto_of[m["id"]],
"features": decide_native_features(proto_of[m["id"]],

m)↪→
})

# create links according to scenario-defined topology
for m in modules:

for nbr in m.get("neighbors", []):
src_p, dst_p = proto_of[m["id"]], proto_of[nbr]
links.append({"src": m["id"], "dst": nbr, "protocol":

(src_p, dst_p)})↪→
if src_p != dst_p:

bridges.append({
"src": m["id"], "dst": nbr,
"encode": f"encode_to_{dst_p.lower()}",
"decode": f"decode_from_{src_p.lower()}",
"stateless": True

})
return {"nodes": nodes, "links": links, "bridges": bridges}

Security posture and observability. Routers must not downgrade PAL security: preserve
Authorization headers, mTLS bindings, and ANP DID constraints. Observability ex-
ports ROUTER DECISIONS, HEDGE FIRES, CIRCUIT STATE, QUEUE DEPTH, end-to-end
REQUEST LATENCY; all correlated via trace id.

Testing matrix.

• Policy conformance: selection, sticky sessions, hedging, retry categories.

• Failure drills: open circuit, half-open probes, bulkhead saturation.

• Ordering: monotonic sequence under enforced queues.

• Streaming: hedged streams deduplicated; cancellation correctness.

E.10 ROUTER PROMPTS

E.10.1 FAIL STORM ROUTER PROMPT
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Fail Storm Router Prompt

You are "ProtoRouter", a deterministic and evaluation-friendly
protocol selector for multi-agent systems.↪→

Your job: For each agent in a scenario, pick exactly ONE protocol
from {A2A, ACP, Agora, ANP} that best matches the agent's
requirements.

↪→
↪→
You must justify choices with transparent, metric-level reasoning

and produce machine-checkable JSON only.↪→

--------------------------------------------
1) Canonical Feature Model (authoritative; use this only)
--------------------------------------------
A2A (Agent-to-Agent Protocol)
- Transport/Model: HTTP + JSON-RPC + SSE; first-class long-running

tasks; task/artifact lifecycle.↪→
- Performance: avg 3.42-7.39s response, 6.0s recovery time

(fastest), 59.6% success rate↪→
- Capability/UX: Multimodal messages (text/audio/video) and explicit

UI capability negotiation.↪→
- Discovery: Agent Card (capability advertisement) with ability

endpoint linkage.↪→
- Security/Trust: Enterprise-style authN/Z; NOT end-to-end

encryption by default (E2E optional via outer layers).↪→
- Integration: Complements MCP (tools/data); broad vendor ecosystem;

high feature richness.↪→
- Typical Strengths: enterprise integration, complex workflows,

multimodal streaming, UI handshakes, long jobs, fast recovery.↪→
- Typical Costs: spec breadth higher learning/ops complexity;

cross-org privacy needs extra layers.↪→
- Primary orientation: sustained agent-to-agent interaction and

lightweight turn-taking.↪→
- Less suited: scenarios dominated by resource/state-machine style

operations and bulk archival/ingestion pipelines.↪→

ACP (Agent Communication Protocol)
- Transport/Model: REST-first over HTTP; MIME-based multimodality;

async-first with streaming support.↪→
- Performance: avg 4.00-7.83s response, 8.0s recovery time, 59.0%

success rate↪→
- Discovery: Agent Manifest & offline discovery options; clear

single/multi-server topologies.↪→
- Security/Trust: Relies on web auth patterns; E2E not native.
- Integration: Minimal SDK expectations; straightforward REST

exposure.↪→
- Typical Strengths: simplicity, REST familiarity, deployment

flexibility, easy wrapping of existing services.↪→
- Typical Costs: less emphasis on UI capability negotiation;

moderate recovery performance.↪→
- Primary orientation: structured, addressable operations with clear

progress semantics and repeatable handling at scale.↪→
- Less suited: ultra-light conversational micro-turns where

resource/state semantics are explicitly avoided.↪→

Agora (Meta-Protocol)
- Positioning: Minimal "meta" wrapper; sessions carry a protocolHash

binding to a plain-text protocol doc.↪→
- Performance: avg 7.10-9.00s response, 6.1s recovery time, 60.0%

success rate↪→
- Discovery: /.wellknown returns supported protocol hashes; natural

language is a fallback channel.↪→
- Evolution: Encourages reusable "routines"; fast protocol evolution

and heterogeneity tolerance.↪→
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- Security/Trust: No strong identity/E2E built-in; depends on
deployment or upper layers.↪→

- Typical Strengths: lightweight, negotiation-friendly, highly
adaptable for research/decentralized experiments, balanced
recovery.

↪→
↪→
- Typical Costs: governance/audit features not built-in;

production-grade security must be composed.↪→
- Primary orientation: explicit procedure governance selecting and

following a concrete routine/version that must be auditable.↪→
- Less suited: when no concrete procedure/version needs to be fixed

or referenced.↪→

ANP (Agent Network Protocol)
- Positioning: Network & trust substrate for agents; three layers:

identity+E2E, meta-protocol, application protocols.↪→
- Performance: avg 4.78-6.76s response, 10.0s recovery time

(slowest), 61.0% success rate (highest), 22.0% answer discovery
rate (highest)

↪→
↪→
- Security/Trust: W3C DID-based identities; ECDHE-based end-to-end

encryption; cross-org/verifiable comms.↪→
- Discovery/Semantics: Descriptions for capabilities & protocols;

supports multi-topology communications.↪→
- Typical Strengths: strong identity, E2E privacy,

cross-organization trust, highest answer discovery rate.↪→
- Typical Costs: DID/keys lifecycle adds integration/ops complexity;

ecosystem still maturing; UI/multimodal not first-class; slowest
recovery.

↪→
↪→
- Primary orientation: relationship assurance and information

protection across boundaries (identity, confidentiality,
non-repudiation).

↪→
↪→
- Less suited: purely local/benign traffic where verifiable identity

and confidentiality are not primary concerns.↪→

--------------------------------------------
3) Protocol Selection Task
--------------------------------------------

**Scenario Description:**
Multi-agent distributed document search system operating under

cyclic fault injection conditions. The system must maintain high
answer discovery rates while minimizing recovery time during
agent failures. Agents are organized in a mesh topology where 3
out of 8 agents are killed every 120 seconds, requiring rapid
fault detection, recovery, and service restoration.

↪→
↪→
↪→
↪→
↪→

**Module Details:**
**Module 1: Fault-Tolerant Document Search Network**
- Agents: Agent-1, Agent-2, Agent-3, Agent-4, Agent-5, Agent-6,

Agent-7, Agent-8↪→
- Protocol Selection: Choose 1 protocol(s) from A2A, ACP, Agora, ANP

**Tasks:**
- Perform distributed document fragment search across 8 agents in

mesh topology.↪→
- Maintain collaborative retrieval with TTL-based message forwarding

and ring communication.↪→
- Detect agent failures through heartbeat monitoring (10s intervals,

30s timeout).↪→
- Execute rapid reconnection and service restoration after fault

injection.↪→
- Preserve answer discovery capability during 3-agent simultaneous

failures.↪→
- Support coordinator-worker communication for result aggregation.
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- Handle cyclic fault patterns with 120s intervals over extended
runtime (1800s).↪→

**Potential Issues:**
- Simultaneous failure of 37.5% of agents (3/8) every 120 seconds.
- Network partitions during fault injection causing message loss.
- Recovery time bottlenecks affecting overall system availability.
- Duplicate work during recovery phases reducing efficiency.
- Answer quality degradation under reduced agent availability.
- Heartbeat timeout false positives during network jitter.
- Reconnection storms when multiple agents recover simultaneously.
- TTL exhaustion in message forwarding during network instability.

**Your Task:**
For each module in this scenario, you must select exactly ONE

protocol from {A2A, ACP, Agora, ANP} that best matches the
module's requirements.

↪→
↪→

You must respond using the protocol_selection function call with
your analysis and selections.↪→

E.10.2 STREAMING QUEUE ROUTER PROMPT

Streaming Queue Router Prompt

You are "ProtoRouter", a deterministic and evaluation-friendly
protocol selector for multi-agent systems.↪→

Your job: For each agent in a scenario, pick exactly ONE protocol
from {A2A, ACP, Agora, ANP} that best matches the agent's
requirements.

↪→
↪→
You must justify choices with transparent, metric-level reasoning

and produce machine-checkable JSON only.↪→

--------------------------------------------
1) Canonical Feature Model (authoritative; use this only)
--------------------------------------------
A2A (Agent-to-Agent Protocol)
- Transport/Model: HTTP + JSON-RPC + SSE; first-class long-running

tasks; task/artifact lifecycle.↪→
- Performance: avg 3.42-7.39s response, 6.0s recovery time

(fastest), 59.6% success rate↪→
- Capability/UX: Multimodal messages (text/audio/video) and explicit

UI capability negotiation.↪→
- Discovery: Agent Card (capability advertisement) with ability

endpoint linkage.↪→
- Security/Trust: Enterprise-style authN/Z; NOT end-to-end

encryption by default (E2E optional via outer layers).↪→
- Integration: Complements MCP (tools/data); broad vendor ecosystem;

high feature richness.↪→
- Typical Strengths: enterprise integration, complex workflows,

multimodal streaming, UI handshakes, long jobs, fast recovery.↪→
- Typical Costs: spec breadth higher learning/ops complexity;

cross-org privacy needs extra layers.↪→
- Primary orientation: sustained agent-to-agent interaction and

lightweight turn-taking.↪→
- Less suited: scenarios dominated by resource/state-machine style

operations and bulk archival/ingestion pipelines.↪→

ACP (Agent Communication Protocol)
- Transport/Model: REST-first over HTTP; MIME-based multimodality;

async-first with streaming support.↪→
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- Performance: avg 4.00-7.83s response, 8.0s recovery time, 59.0%
success rate↪→

- Discovery: Agent Manifest & offline discovery options; clear
single/multi-server topologies.↪→

- Security/Trust: Relies on web auth patterns; E2E not native.
- Integration: Minimal SDK expectations; straightforward REST

exposure.↪→
- Typical Strengths: simplicity, REST familiarity, deployment

flexibility, easy wrapping of existing services.↪→
- Typical Costs: less emphasis on UI capability negotiation;

moderate recovery performance.↪→
- Primary orientation: structured, addressable operations with clear

progress semantics and repeatable handling at scale.↪→
- Less suited: ultra-light conversational micro-turns where

resource/state semantics are explicitly avoided.↪→

Agora (Meta-Protocol)
- Positioning: Minimal "meta" wrapper; sessions carry a protocolHash

binding to a plain-text protocol doc.↪→
- Performance: avg 7.10-9.00s response, 6.1s recovery time, 60.0%

success rate↪→
- Discovery: /.wellknown returns supported protocol hashes; natural

language is a fallback channel.↪→
- Evolution: Encourages reusable "routines"; fast protocol evolution

and heterogeneity tolerance.↪→
- Security/Trust: No strong identity/E2E built-in; depends on

deployment or upper layers.↪→
- Typical Strengths: lightweight, negotiation-friendly, highly

adaptable for research/decentralized experiments, balanced
recovery.

↪→
↪→
- Typical Costs: governance/audit features not built-in;

production-grade security must be composed.↪→
- Primary orientation: explicit procedure governance selecting and

following a concrete routine/version that must be auditable.↪→
- Less suited: when no concrete procedure/version needs to be fixed

or referenced.↪→

ANP (Agent Network Protocol)
- Positioning: Network & trust substrate for agents; three layers:

identity+E2E, meta-protocol, application protocols.↪→
- Performance: avg 4.78-6.76s response, 10.0s recovery time

(slowest), 61.0% success rate (highest), 22.0% answer discovery
rate (highest)

↪→
↪→
- Security/Trust: W3C DID-based identities; ECDHE-based end-to-end

encryption; cross-org/verifiable comms.↪→
- Discovery/Semantics: Descriptions for capabilities & protocols;

supports multi-topology communications.↪→
- Typical Strengths: strong identity, E2E privacy,

cross-organization trust, highest answer discovery rate.↪→
- Typical Costs: DID/keys lifecycle adds integration/ops complexity;

ecosystem still maturing; UI/multimodal not first-class; slowest
recovery.

↪→
↪→
- Primary orientation: relationship assurance and information

protection across boundaries (identity, confidentiality,
non-repudiation).

↪→
↪→
- Less suited: purely local/benign traffic where verifiable identity

and confidentiality are not primary concerns.↪→

--------------------------------------------
3) Protocol Selection Task
--------------------------------------------

**Scenario Description:**
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High-throughput question-answering system designed for streaming
queue pressure testing. The system processes batches of
questions (50 per batch) across multiple worker agents
coordinated by a central coordinator in star topology. Primary
focus is minimizing end-to-end latency while maintaining
acceptable reliability under concurrent load.

↪→
↪→
↪→
↪→
↪→

**Module Details:**
**Module 1: High-Throughput QA Processing Pipeline**
- Agents: Coordinator-1, Worker-1, Worker-2, Worker-3, Worker-4
- Protocol Selection: Choose 1 protocol(s) from A2A, ACP, Agora, ANP

**Tasks:**
- Coordinator loads question batches from JSONL dataset

(top1000_simplified.jsonl).↪→
- Dynamic load balancing across 4 worker agents using queue-based

task distribution.↪→
- Workers process questions with LLM inference and return structured

responses.↪→
- Maintain response time constraints (60s timeout) with retry

mechanisms (max 3 retries).↪→
- Collect and aggregate results with comprehensive performance

metrics.↪→
- Support concurrent processing with batch sizes of 5 questions per

worker.↪→
- Generate detailed performance reports including latency

distribution and success rates.↪→

**Potential Issues:**
- High concurrent load causing worker saturation and queue backups.
- Network timeout errors under sustained throughput pressure.
- Load imbalance between workers leading to processing bottlenecks.
- Connection retry storms during network instability.
- Response time variance affecting P95/P99 latency targets.
- Worker failure during batch processing causing partial results

loss.↪→
- Memory pressure from large question batches and response

buffering.↪→
- Protocol overhead impacting raw throughput under high QPS

scenarios.↪→

**Your Task:**
For each module in this scenario, you must select exactly ONE

protocol from {A2A, ACP, Agora, ANP} that best matches the
module's requirements.

↪→
↪→

You must respond using the protocol_selection function call with
your analysis and selections.↪→

E.10.3 PROTOCOLROUTERBENCH INSTRUCTION PROMPT

ProtocolRouterBench Instruction

You are "ProtoRouter", a deterministic and evaluation-friendly
protocol selector for multi-agent systems.↪→

Your job: For each agent in a scenario, pick exactly ONE protocol
from {A2A, ACP, Agora, ANP} that best matches the agent's
requirements.

↪→
↪→
You must justify choices with transparent, metric-level reasoning

and produce machine-checkable JSON only.↪→

--------------------------------------------
1) Canonical Feature Model (authoritative; use this only)
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--------------------------------------------
A2A (Agent-to-Agent Protocol)
- Transport/Model: HTTP + JSON-RPC + SSE; first-class long-running

tasks; task/artifact lifecycle.↪→
- Capability/UX: Multimodal messages (text/audio/video) and explicit

UI capability negotiation.↪→
- Discovery: Agent Card (capability advertisement) with ability

endpoint linkage.↪→
- Security/Trust: Enterprise-style authN/Z; NOT end-to-end

encryption by default (E2E optional via outer layers).↪→
- Integration: Complements MCP (tools/data); broad vendor ecosystem;

high feature richness.↪→
- Primary orientation: sustained agent-to-agent interaction and

lightweight turn-taking.↪→
- Less suited: resource/state-machine heavy pipelines and bulk

archival ingestion.↪→

ACP (Agent Communication Protocol)
- Transport/Model: REST-first over HTTP; MIME-based multimodality;

async-first with streaming support.↪→
- Discovery: Agent Manifest & offline discovery options; clear

single/multi-server topologies.↪→
- Security/Trust: Web auth patterns; E2E not native.
- Integration: Minimal SDK expectations; straightforward REST

exposure.↪→
- Primary orientation: structured, addressable operations with clear

progress semantics at scale.↪→
- Less suited: ultra-light conversational micro-turns that avoid

resource/state semantics.↪→

Agora (Meta-Protocol)
- Positioning: Minimal meta wrapper; sessions carry a protocolHash

bound to a plain-text protocol document.↪→
- Discovery: /.well-known returns supported protocol hashes; natural

language as fallback.↪→
- Evolution: Reusable routines; fast protocol evolution and

heterogeneity tolerance.↪→
- Security/Trust: No strong identity/E2E built-in; depends on

deployment or upper layers.↪→
- Primary orientation: explicit procedure governance (choose and

follow a concrete routine/version).↪→
- Less suited: when no procedure/version needs to be fixed or

referenced.↪→

ANP (Agent Network Protocol)
- Positioning: Network & trust substrate; three layers:

identity+E2E, meta-protocol, application protocols.↪→
- Security/Trust: W3C DID identities; ECDHE-based end-to-end

encryption; cross-org/verifiable comms.↪→
- Discovery/Semantics: Descriptions for capabilities & protocols;

supports multi-topology communications.↪→
- Primary orientation: relationship assurance across boundaries

(identity, confidentiality, non-repudiation).↪→
- Less suited: benign/local traffic where verifiable identity and

confidentiality are not primary concerns.↪→

--------------------------------------------
2) Protocol Selection Task
--------------------------------------------
**Scenario Description:** {scenario_description}
**Module Details:** {module_details}
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**Your Task:** For each module in this scenario, you must select
exactly ONE protocol from {A2A, ACP, Agora, ANP} that best
matches the module's requirements.

↪→
↪→
You must respond using the protocol_selection function call with

your analysis and selections (machine-checkable JSON only).↪→

E.10.4 PROTOCOLROUTERBENCH INSTRUCTION PROMPT(SPEC + PERF)

ProtocolRouterBench Instruction (Spec + Perf)

You are "ProtoRouter", a deterministic and evaluation-friendly
protocol selector for multi-agent systems.↪→

Your job: For each agent in a scenario, pick exactly ONE protocol
from {A2A, ACP, Agora, ANP} that best matches the agent's
requirements.

↪→
↪→
You must justify choices with transparent, metric-level reasoning

and produce machine-checkable JSON only.↪→

--------------------------------------------
1) Canonical Feature Model (authoritative; use this only)
--------------------------------------------
A2A (Agent-to-Agent Protocol)
- Transport/Model: HTTP + JSON-RPC + SSE; long-running tasks;

task/artifact lifecycle.↪→
- Capability/UX: Multimodal messages; explicit UI capability

negotiation.↪→
- Discovery: Agent Card with ability → endpoint linkage.
- Security/Trust: Enterprise authN/Z; E2E not default (optional via

outer layers).↪→
- Integration: Complements MCP; broad ecosystem.
- Orientation: sustained agent interaction and lightweight

turn-taking.↪→

ACP (Agent Communication Protocol)
- Transport/Model: REST-first; MIME multimodality; async-first with

streaming.↪→
- Discovery: Agent Manifest; single/multi-server topologies.
- Security/Trust: Web auth patterns; E2E not native.
- Integration: Minimal SDK; easy REST wrapping.
- Orientation: structured, addressable operations with clear

progress semantics.↪→

Agora (Meta-Protocol)
- Positioning: Meta wrapper; session binds to a protocolHash

referencing a routine document.↪→
- Discovery: /.well-known hashes; NL fallback.
- Security/Trust: Depends on deployment; no strong identity/E2E

built-in.↪→
- Orientation: explicit routine/version governance and auditability.

ANP (Agent Network Protocol)
- Positioning: Identity+E2E substrate; meta-protocol; application

protocols.↪→
- Security/Trust: W3C DID; ECDHE E2E; cross-org/verifiable

communications.↪→
- Orientation: boundary-crossing

identity/confidentiality/non-repudiation.↪→

--------------------------------------------
2) Protocol performance in some scenarios
--------------------------------------------
[
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{
"id": "G1-QA",
"description": "GAIA hierarchical DocQA with planning, explicit

workflow/message-flow, sandboxed tools, step memory, and LLM
judging.",

↪→
↪→
"modules_count": 1,
"module": [
{
"name": "Hierarchical DocQA Pipeline",
"agents": ["Planner","Reader/Extractor","Aggregator/Summari ⌋

zer","Judge"],↪→
"protocol_selection": {"choices":

["A2A","ANP","ACP","Agora"], "select_exactly": 1},↪→
"tasks": [
"Emit machine-readable manifest (roles, tools,

workflow).",↪→
"Run P2P serving with explicit message-flow.",
"Record step-based memory with timestamps and tool-call

traces.",↪→
"Summarize and judge quality; emit metrics."

],
"potential_issues": [
"Long-running tasks with streaming outputs/partials.",
"Out-of-order or retried deliveries under concurrency.",
"Auditability and replay of full execution log.",
"Cross-run fairness (identical seed/config)."

]
}

],
"experiment_results": {
"quality_avg": {"acp": 2.27, "a2a": 2.51, "anp": 2.14,

"agora": 2.33, "meta": 2.50},↪→
"success_avg": {"acp": 5.25, "a2a": 9.29, "anp": 7.28,

"agora": 6.27, "meta": 9.90},↪→
"single_task_comm_time@5_example": {
"a2a_ms": [25.38, 20.64, 28.19, 21.65, 21.36],
"acp_ms": [15.30, 13.64, 14.75, 16.22, 12.75],
"anp_ms": [39.01, 54.74, 27.60, 21.86, 34.48],
"agora_ms": [29.30, 21.83, 30.49, 22.41, 35.50]

}
}

},
{
"id": "S1-Queue",
"description": "Streaming Queue: centralized 5-agent network;

1000 items; pressure test for speed and stability.",↪→
"modules_count": 1,
"module": [
{
"name": "Coordinator-Workers Streaming Queue",
"agents": ["Coordinator","Worker-1","Worker-2","Worker-3"," ⌋

Worker-4"],↪→
"protocol_selection": {"choices":

["A2A","ANP","ACP","Agora"], "select_exactly": 1},↪→
"tasks": ["Load-balance tasks","Track per-task latency and

completion","Minimize worker variance","Measure
errors/retries/timeouts"]

↪→
↪→

}
],
"experiment_results": {
"performance": {
"A2A": {"total":1000,"duration_s":2427,"avg_ms":9698,"min_m ⌋

s":6938,"max_ms":15129,"std_ms":1127},↪→
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"ACP": {"total":1000,"duration_s":2417,"avg_ms":9663,"min_m ⌋
s":6881,"max_ms":14235,"std_ms":1077},↪→

"ANP": {"total":1000,"duration_s":2843,"avg_ms":11364,"min_ ⌋
ms":243,"max_ms":50104,"std_ms":5732},↪→

"Agora":{"total":1000,"duration_s":3298,"avg_ms":13135,"min ⌋
_ms":524,"max_ms":28213,"std_ms":5089}↪→

}
}

},
{
"id": "F1-Storm",
"description": "Fail Storm on ring-structured Shard QA; randomly

kill 3 agents every 2 minutes; measure recovery and pre/post
metrics.",

↪→
↪→
"modules_count": 1,
"module": [
{
"name": "Shard QA with Fault Injection",
"agents": ["QA-1","QA-2","QA-3","QA-4","QA-5","QA-6","QA-7" ⌋

,"QA-8"],↪→
"protocol_selection": {"choices":

["A2A","ANP","ACP","Agora"], "select_exactly": 1}↪→
}

],
"experiment_results": {
"performance": [
{"protocol":"ACP", "answer_found_pct_pre":14.76,"answer_fo ⌋

und_pct_post":13.64,"steady_latency_s_pre":4.3776,"stea ⌋
dy_latency_s_post":4.1851,"recovery_s":8.0482},

↪→
↪→
{"protocol":"A2A", "answer_found_pct_pre":14.74,"answer_fo ⌋

und_pct_post":14.57,"steady_latency_s_pre":4.3399,"stea ⌋
dy_latency_s_post":4.1855,"recovery_s":8.0027},

↪→
↪→
{"protocol":"ANP", "answer_found_pct_pre":14.88,"answer_fo ⌋

und_pct_post":12.94,"steady_latency_s_pre":4.3428,"stea ⌋
dy_latency_s_post":4.1826,"recovery_s":8.0033},{"protoc ⌋
ol":"AGORA","answer_found_pct_pre":14.91,"answer_found_ ⌋
pct_post":12.12,"steady_latency_s_pre":4.3311,"steady_l ⌋
atency_s_post":4.1799,"recovery_s":8.0026}

↪→
↪→
↪→
↪→
↪→

]
}

},
{
"id": "M1-Doctors",
"description": "Doctor-to-doctor dialogue system with two

legitimate LLM agents; multi-round consultations.",↪→
"modules_count": 1,
"module": [
{
"name": "Doctor-Doctor Dialogue System",
"agents": ["Doctor A","Doctor B"],
"protocol_selection": {"choices":

["A2A","ANP","ACP","Agora"], "select_exactly": 1}↪→
}

],
"experiment_results": {
"safety_matrix": [

{"protocol":"Agora","tls_transport":true,"session_hijack_ ⌋
protection":true,"e2e_detection":false,"packet_tunnel_pro ⌋
tection":true,"metadata_exposure_protection":true},

↪→
↪→
↪→
{"protocol":"ANP", "tls_transport":true,"session_hijack_pr ⌋

otection":true,"e2e_detection":true,
"packet_tunnel_protection":true,"metadata_exposure_prot ⌋
ection":true},

↪→
↪→
↪→
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{"protocol":"ACP", "tls_transport":false,"session_hijack_p ⌋
rotection":true,"e2e_detection":true,
"packet_tunnel_protection":false,"metadata_exposure_pro ⌋
tection":true},

↪→
↪→
↪→
{"protocol":"A2A", "tls_transport":false,"session_hijack_p ⌋

rotection":true,"e2e_detection":true,
"packet_tunnel_protection":false,"metadata_exposure_pro ⌋
tection":true}

↪→
↪→
↪→

]
}

}
]

--------------------------------------------
3) Protocol Selection Task
--------------------------------------------
**Scenario Description:** {scenario_description}
**Module Details:** {module_details}

IMPORTANT: Provide a selection for EVERY module. Use the
protocol_selection function call with analysis and selections
(machine-checkable JSON only).

↪→
↪→
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