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ABSTRACT

Non-exemplar class-incremental learning aims to recognize both the old and new
classes without access to old class samples. The conflict between old and new
class optimization is exacerbated since the shared neural pathways can only be
differentiated by the incremental samples. To address this problem, we propose a
novel self-organizing pathway expansion scheme. Our scheme consists of a class-
specific pathway organization strategy that decouples the optimization pathway of
different classes to enhance the independence of the feature representation, and a
pathway-guided feature optimization mechanism to mitigate the update interfer-
ence between the old and new classes. Extensive experiments on four datasets
demonstrate superior incremental performance, outperforming the state-of-the-art
methods by a margin of 1%, 3%, 2% and 2%, respectively.

1 INTRODUCTION

Since deep neural networks have achieved good performance in fully supervised scenarios, how to
extend this learning capability to open environment has attracted great attention. Particularly, it is
essential to ensure that the network can continuously learn new knowledge while maintaining the
abilities to identify old tasks (i.e., incremental learning (Rebuffi et al., 2017; Douillard et al., 2020)).
Fine-tuning the network directly with new data can lead to a serious bias of the representation and
classifier, which is often referred to as catastrophic forgetting. Due to privacy and hardware limits,
old samples are usually unavailable for joint training, making it more difficult to maintain the old
class performance in the subsequent optimization process. In this paper, we focus on this ability to
continuously learn new tasks without any old samples or exemplars, which is called non-exemplar
class-incremental learning (NECIL) (Zhu et al., 2021b;a; 2022; Yu et al., 2020b; Yin et al., 2020).

Most methods maintain the feature representation of old classes by means of various distillation loss
functions (Douillard et al., 2020; Hu et al., 2021). Although catastrophic forgetting is somewhat
mitigated, incremental performance still suffers from the confusion between the old and new class
in the feature space. Furthermore, in the absence of old class samples, the degree of forgetting is
only related to the initial model and incremental samples (Zhu et al., 2021b). Existing NECIL works
(Zhu et al., 2021a; Yin et al., 2020) mainly focus on enhancing the overall performance by improving
the discrimination and generalization of the initial model, which brings a significant improvement
on the incremental performance.

Instead, we focus on the impact of incremental samples on the optimization process. Intuitively,
since different incremental classes cause disparate feature confusion, the interference on the old
class performance is also different even if initialized from the same model (Zhu et al., 2022; 2021b).
To further explore the association, we estimate the inter-class confusion by measuring the status of
feature activation (Zhou et al., 2016) in existing incremental model. As shown in Fig. 1 (b), we
filter out the positions of strongly activated modules as the class-specific pathways, and find that the
pathway of incremental class is commonly confused with the previous ones in the baseline. Further-
more, it can be seen in Fig. 1 (a) that the degree of pathway overlap (i.e., similarity) between the old
class and incremental class is positively correlated with the forgetting degree, which motivates us to
address the interference problem from the perspective of pathway optimization.

Based on the above observation, we propose a self-organizing pathway expansion scheme to learn a
pathway-aware representation, mitigating the feature interference during the subsequent incremental
process. The scheme is mainly manifested in two aspect. Firstly, during the initial phase, we adopt
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(a) Correlation statistics. (b) The t-SNE visualization of filtered pathways.

Figure 1: Motivation of our method. (a) The accuracy degradation of old classes (i.e. forgetting rates
in the horizontal coordinate) is positively correlated to the corresponding pathway similarity with
incremental classes. The concept of pathway is formed from the aggregation of important modules,
which are filtered out by the contribution to the final recognition performance. (b) Compared to the
standard classification method (i.e., baseline in Sec. 3.2), the discriminative pathway in our method
brings out lower inter-class overlap, which benefits the mitigation of feature confusion.

the class-specific pathway organization strategy to enhance the independence of feature representa-
tion by forcing the optimization pathways specific to different classes. A global pathway planner
is utilized to explicitly select the most relevant modules, facilitating the pathway identification. It
is noted that we do not modify the network structure, but only divide the output channels of each
convolution module to match the output of the pathway planner. Secondly, during the incremen-
tal phases, we introduce a pathway-guided feature update mechanism to promote the effectiveness
of new classes involved in incremental optimization by adjusting the classification weight with the
pathway similarity. Since the pathway value is either 0 or 1, we calculate the intersection of union
(i.e., IoU) value to better measure the class relevance, reducing the interference of vector normaliza-
tion. Furthermore, an incremental pathway update mechanism is proposed to ensure the long-term
effect by alternating the optimization of the pathway planner and feature representation. To summa-
rize, our main contributions are as follows:

1) A self-organizing pathway expansion scheme is proposed for non-exemplar incremental learn-
ing, in which a progressive decoupling optimization is accomplished by a class-specific pathway
organization strategy, resulting in a pathway-aware representation.

2) A pathway-guided feature update mechanism is proposed, which utilizes the similarity of path-
ways to guide the optimization of incremental samples.

3) Extensive experiments are performed on benchmark including CIFAR-100, TinyImageNet,
ImageNet-Subset and ImageNet-Full datasets, and the results demonstrate the superiority of our
method over the state-of-the-art.

2 RELATED WORK

2.1 INCREMENTAL LEARNING

As deep learning research advances, there is a growing demand for continual learning (Kirkpatrick
et al., 2017; Zenke et al., 2017; Aljundi et al., 2018), which requires the network to learn new tasks
without forgetting the old knowledge to achieve the stability-plasticity trade-off. Class-incremental
learning (CIL (Rebuffi et al., 2017; Wu et al., 2019; Hou et al., 2019; Douillard et al., 2020; Yan et al.,
2021)), a difficult type in continual learning, has attracted much attention due to the agnosticism to
task identity (van de Ven & Tolias, 2019).

Recently, some works (Yu et al., 2020b; Zhu et al., 2021b;a; Yin et al., 2020) focus on a challenging
but practical non-exemplar class-incremental learning (NECIL) problem, where no past data can
be stored due to equipment limits or privacy security. Yu et al. (2020b) estimates the semantic
drift of the initial model inherited from the base phase, and compensates the prototypes in each
test phase. Yin et al. (2020) inverts the old samples from the initial model for the joint distillation
process. Zhu et al. (2021b;a) consider to enhance the generalization of the representation to learn
more transferable features for future tasks. We follow their NECIL settings. However, different from
their work focusing on the utilization and enhancement of the initial model, we mainly consider the
rectification of the incremental samples on joint classification and distillation process.
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Figure 2: Our proposed self-organized pathway expansion scheme for NECIL. (A) Overall pipeline.
(B) During the base phase, a CPO strategy is proposed to mitigate the incremental interference, in
which the pathway feature extracted by a pathway planner is utilized to organize the class-specific
learning in feature extractor (e.g., ResNet18). (C) During the incremental phase, the similarity
scores (i.e. IoU) between the pathway feature and saved pathway prototypes are assigned to the
optimization process as loss weights, facilitating the pathway-guided feature update (PFU).

2.2 NEURAL PATHWAYS

Recently, large language models have been scaled up with pipelining rather than pure data-
parallelism (Zhang et al., 2022), demonstrating the potential of pathways. To enhance the adaptation
of the network to new tasks, several continual learning methods (Chen et al., 2020; Rajasegaran et al.,
2019) have been proposed to decouple the learning process from the perspective of pathway. How-
ever, the targeted models are continuously expanded with the update of pathway, which is difficult
to adapt to the standard classification network (e.g., ResNet (He et al., 2016)). The expansion direc-
tion of pathway tends to be selected randomly, making it hard to search for an explanation. In this
paper, we target on the pathway learning on the standard network without changing the structure,
and guiding the incremental optimization based on the pathway relationship.

3 METHODOLOGY

3.1 PROBLEM DESCRIPTION

The NECIL problem is defined as follows. Here we denote Dt as the training set at the current
phase t, which consists of the sample set Xt and label set Yt. Our task is to train the model from a
continuous data stream, i.e., training sets D0, D1, · · ·DT , where labels of a set Xi (0 ≤ i ≤ T ) are
from the set Yi, and T represents the number of incremental phases. It should be mentioned that all
the incremental classes are disjoint, that is, Yi ∩ Yj = ∅(i ̸= j). At the current phase t, there are no
old training sets (i.e., D0:t−1) in memory, but incremental samples (i.e., Dt) for the current phase.
To measure the performance of models at current phase t, we calculate the classification accuracy
on the test set Zt, in which the classes are from all the seen label sets Y0 ∪ Y1 · · · ∪ Yt.
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3.2 BASELINE FOR NECIL

Following the paradigm of existing NECIL works (Zhu et al., 2021b;a; 2022; Yin et al., 2020), we
adapt the distillation-based CIL methods (Rebuffi et al., 2017) to the NECIL setting as the baseline.
Specifically, at the incremental phase (i.e., t > 0), a standard classification model that consists of the
feature extractor fθt

and classifier gϕt
should be optimized under the full supervision (i.e., D0:t),

min
θt,ϕt

Lt = Lcls(θt,ϕt;D0:t) = Lcls(θt,ϕt;D0:t−1) + Lcls(θt,ϕt;Dt), (1)

Lcls(θt,ϕt;Dt) =
∑
x∈Xt

∑
y∈Yt

y · log(gϕt
(fθt

(x))), (2)

where Lt represents the overall loss function for feature optimization. However in the NECIL set-
ting, since the previous training sets are unavailable, the corresponding loss Lcls(θt,ϕt;D0:t−1)
for both the feature extractor and classifier is missing, leading to a serious bias to current classes.
To solve the problem, existing methods (Hou et al., 2019; Douillard et al., 2020) replace the old
classification supervision with the feature distillation and classifier correction. Specifically, the pa-
rameters θt−1 of the old feature extractor from previous phase t− 1 is frozen and saved during each
incremental phase t. To maintain the old informative feature, the knowledge distillation Lkd is used
to ensure the similarity between the current representation fθt

(x) and the previous one fθt−1
(x):

min
θt

Lkd(θt;θt−1, Dt) =
∑
x∈Xt

∥∥fθt
(x)− fθt−1

(x)
∥∥
2
, (3)

where ∥·∥2 denotes Euclidean Norm. As there are no exemplars for balanced classifier optimization
in NECIL, we turn to consider the class-representative prototypes P0:t−1 (Zhu et al., 2021b) in the
deep feature space. Specifically, we compute and memorize one prototype pc ∈ P0:t−1 for each
class c as:

pc = E(x,y)∼D0:t−1
[fθt

(x) | y = c] . (4)
In each training iteration, we choose to oversample (Chawla et al., 2002) memorized prototypes
P0:t−1 as training prototypes P̃0:t−1 by the ratio of batch size. Training prototypes are directly
involved in the standard classification optimization, achieving the augmentation of the classifier,
which is consistent with the baseline in PASS (Zhu et al., 2021b) and IL2A (Zhu et al., 2021a):

min
ϕt

Laug(ϕt; P̃0:t−1) =
∑

pc∈P̃0:t−1

∑
y∈Y0:t−1

y · log(gϕt(p
c)). (5)

In conclusion, the overall feature optimization problem for the baseline method can be written as
follows,

min
θt,ϕt

Lt = Lcls(θt,ϕt;Dt) + Lkd(θt;θt−1, Dt) + Laug(ϕt; P̃0:t−1). (6)

3.3 SELF-ORGANIZING PATHWAY EXPANSION

Our proposed self-organizing pathway expansion scheme consists of a class-specific pathway or-
ganization strategy that reduces the pathway overlap during the base phase to mitigate the overall
feature confusion, and a pathway-guided feature optimization mechanism to refine the incremental
optimization guided by the inter-class pathway correlation. The main procedures are summarized in
Algorithms 1 and 2 respectively, and the specific implementation is described below.

Class-Specific Pathway Organization. To mitigate the interference during the feature optimization
process, we perform a structural decomposition on the feature extractor and organize the class-
specific pathway adaptively. As shown in Fig. 2, each standard convolution module consists of a
3×3 convolution layer and a BatchNorm layer. We firstly reorganize K convolution modules, each
of which is equally divided into L groups along the output channels. We define θk

t ∈ RCin×Cout

as the parameters of kth convolution module Convθk
t

of the feature extractor fθt
, in which θk,l

t ∈
RCin×Cout/L denotes the parameters of lth group Convθk,l

t
. Cin and Cout represent the number of

input and output channels. Let zk−1
t be the input feature of Convθk

t
, the convolution operation is

organized as follows,

zk
t = Convθk

t
(zk−1

t ) = Concat[Convθk,1
t

(zk−1
t ) . . .Convθk,L

t
(zk−1

t )], (1 < k ≤ K), (7)
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Algorithm 1 Class-Specific Pathway Organization

1: Input: Feature extractor fθt , pathway planner
fαt , base set D0 and maximum sparse rate ζmax,

2: Initialize: Reorganize the structure fθt by Eq. (7);
3: for all (x, y) ∈ D0 do
4: Extract the pathway score S = fαt(x);
5: Compute the specific sparse rate ζ (≤ ζmax) in

each epoch by Eq. (10);
6: Confirm the position (l, k) of filtered pathway

with the soft threshold ε by Eq. (8);
Ŝ ←

{
sl,k | sl,k > ε, sl,k ∈ S

}
7: Guide the forward feature optimization with fil-

tered pathway by Eq. (11);
8: Update θt and αt by taking a SGD step on the

image and pathway loss (Eqs. (13) and (14));
9: end for

10: Output: Calculated feature prototypes P0 and
pathway prototypes A0 by Eqs. (4) and (15).

Algorithm 2 Pathway-Guided Feature Update

1: Input: Old fθt−1 and new feature extractor fθt ,
old fαt−1 and new pathway planner fαt , incre-
mental set Dt(t > 0), feature prototypes P0:t−1

and pathway prototypes A0:t−1.
2: Initialize: Freeze the parameters of fαt ;
3: for all (x, y) ∈ Dt do
4: Filter the pathway with ζmax by Eq. (9);
5: Compute feature classification and distillation

loss weighted with pathway similarity by Eq. (17);
6: Compute the augmentation loss by Eq. (5);
7: Update θt and αt based on above losses;
8: end for
9: Freeze the parameters of fθt , and unfreeze fαt ;

10: for all (x, y) ∈ Dt do
11: Update incremental pathway planner with path-

way update loss Lpath
t by Eq. (18)

12: end for

where Concat denotes the concatenation along the output channels. The output feature zk
t is the

same as the that of standard convolution module before reorganization.

Then, we introduce a pathway planner fαt
, which consists of several standard convolution blocks.

It receives the image x as input, and output a probability score S ∈ RK×L = fαt
, representing the

pathway importance of K modules and L groups in the feature extractor. According to the obtained
score, a gradually decreasing sparse rate is adopted to filter the most adequate components of the
global pathway to guide the feature optimization. Specifically, given a target sparse rate ζ, we solve
the minimum pathway threshold ε from the equation,

1− ζ =

∣∣{sk,l | sk,l > ε, sk,l ∈ S
}∣∣

|{sk,l, sk,l ∈ S}|
, (8)

where |·| means the element number. The pathway score can be filtered by the calculated threshold:

Ŝ = Filter(S, ζ) = S ∗ Bool(S − ε > 0), (9)

where ∗ represents the element-wise multiplication, and Bool denotes the element-wise boolean
operation. As the threshold ε is not a given hard value (Csordás et al., 2020) but a filtered soft one
in Eq. (8), no special gradient correction is required. To stabilize the optimization process with the
threshold, we use a three-step strategy to jointly optimize features and pathways in which different
values of sparse rate are adopted at different epoch e:

ζ =


0, e < e1

e−e1
e2−e1

ζmax, e1 ≤ e < e2
ζmax, e ≥ e2,

(10)

where e1 and e2 are two hyper-parameters. ζmax is another hyper-parameter that defines the max-
imum value of sparse rate. According to the filtered scores Ŝ, we reorganize the pathway of the
network, and Eq. (7) can be rewritten as follows,

zk
t = Convθk

t
(zk−1

t , Ŝ) = Concat[ŝk,1 ∗ Convθk,0
t

(zk−1
t ) . . . ŝk,L ∗ Convθk,L

t
(zk−1

t )], (11)

zK
t = fθt(z

0
t , Ŝ) = fθt(x; Ŝ) = fθt(x; fαt(x)) = fθt,αt(x), x ∈ Xt, (12)

where ŝk,l denotes the element in Ŝ at the (k, l) position. Eq. (2) can be be rewritten as follows,

Lcls(θt,ϕt,αt;Dt) =
∑
x∈Xt

∑
y∈Yt

y · log(gϕt
(fθt,αt

(x))). (13)

Finally, we binarize the filtered pathway and improve inter-class discriminability with a learnable
pathway classifier gβt

:

min
αt,βt

Lpath
cls (αt,βt;Dt) =

∑
x∈Xt

∑
y∈Yt

y · log(gβt
(δ(fαt

(x))), (14)
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where δ, αt and Lpath
cls denotes the gate function (Serra et al., 2018), the learnable parameters in the

pathway planner fαt
and the overall pathway classification loss, respectively.

Pathway-Guided Feature Update. To promote the efficiency of incremental learning, we adopt a
pathway-guided feature update mechanism in the incremental phase. Specifically, we involve new
samples into the classification process according to the pathway overlap with old ones. We preserve
the class-specific pathway prototype ac ∈ A0:t−1 for class c at the phase end,

ac = Filter(E(x,y)∼D0:t−1
[fαt(x) | y = c] , ζ), (15)

where Filter is the same as that in Eq. (9). The binarized pathway score δ(fαt
(x)) is compared to

the saved pathway prototype with intersection over union (IoU (Long et al., 2015)), thus measuring
the relevance λ of the corresponding samples to the previous parameter space:

λ(x) =
1

C

C∑
c=1

(IoU(δ(fαt(x)),a
c)), (16)

where C represents the number of pathway prototypes. To ensure the stability of the incremental
representation optimization, we freeze the parameters of the pathway planner (i.e., αt). More rele-
vant samples are assigned smaller weights to optimize the novel classes, thus the classification loss
in Eq. (6) (i.e., Lt) can be rewritten as follows,

min
θt,ϕt

Lcls(θt,ϕt;αt, Dt,A0:t−1) =
∑
x∈Xt

λ(x)
∑
y∈Yt

y · log(gϕt
(fθt,αt

(x))). (17)

Incremental Pathway Update. To enhance the effectiveness of the pathway planner, we then
freeze the parameters of feature extractor θt, and adopt the incremental pathway update mechanism,
which is similar to the optimization process of incremental feature in Eq. (6),

min
αt,βt

Lpath
t = Lpath

cls (αt,βt;Dt) + Lpath
kd (αt;αt−1, Dt) + Lpath

aug (βt,A0:t−1). (18)

The old pathway planner with frozen parameters αt−1 is utilized to distill with the current planner,
and the pathway prototypes are oversampled to correct the pathway classifier bias to the old class.
Overall, the loss functions Lt and Lpath

t are utilized sequentially in the incremental phase t.

4 EXPERIMENTS

4.1 DATASETS AND SETTINGS

Datasets. Following the setting in Zhu et al. (2021b), we conduct comprehensive experiments on
four datasets CIFAR-100 (Krizhevsky, 2009), TinyImageNet (Le & Yang, 2015), ImageNet-Subset
and ImageNet-Full. CIFAR-100 contains 60,000 images of 32 × 32 size from 100 classes, and each
class includes 500 training images and 100 test images. TinyImageNet contains 200 classes, and
each class contains 500 training images, 50 validation images and 50 test images. It provides more
incremental phases and classes for the sensitivity analysis on different methods. ImageNet-Subset
is a 100-class subset of ImageNet-Full (Deng et al., 2009), which provides a large-scale evaluation
scenery. Except for 40 base classes in 20 incremental phases setting of CIFAR-100, we train the
model on half of classes for the base phase, and equal classes in the rest incremental phases. We
conduct different incremental settings (5, 10 and 20 phases) for both CIFAR-100 and TinyImageNet,
and 10 incremental phases setting for the rest datasets, which is consistent with Zhu et al. (2021b).

Settings and Metric. For a fair comparison with (Zhu et al., 2021b), we adopt the same backbone
network (i.e., ResNet-18), and maintain the same accuracy at the first phase for all datasets. We
report average incremental accuracy and average forgetting (Zhu et al., 2021b). Average incremental
accuracy AT is computed as the average accuracy of all incremental phases at (including the first
phase), which compares the overall performance of different methods fairly,

AT =
1

T

T∑
t=0

at. (19)

6
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Average forgetting is computed as the average forgetting throughout the incremental process, which
directly measures the ability of different methods to resist catastrophic forgetting. The forgetting at
phase t (t > 0) is calculated as Ft =

1
t

∑t−1
j=1 f

t
j , where f t

j denotes the performance drop of classes:

f t
j = max

i∈{j,···t−1}
ai,j − at,j , (20)

where ai,j represents the accuracy of classes first encountered in phase j after the model has been
incrementally trained up to phase i (i > j). Other implementation details on the settings are available
in the Appendix (i.e., Appendix A.1.2).

+CPO +PFU +IPU 5 10 20
48.51 46.66 40.29√
51.55 49.87 48.60√ √
52.61 51.97 51.17√ √ √
53.69 52.88 51.94

Table 1: Ablation study of our method on TinyImageNet.
CPO, PFU and IPU represent the proposed components in
Sec. 3.3. 5, 10 and 20 represents the number of incremental
phases (i.e., P).

Method 5 10 20
Rps 63.74 62.71 59.06
Hat 59.44 57.69 55.68
Iap 56.00 55.11 52.79

Piggy 55.79 54.36 38.78
Ours 66.64 65.84 61.83

Table 2: The impact of the pathway
structure on CIFAR-100. Rps, Hat, Iap
and Piggy are detailed in Sec. 4.3.

4.2 ABLATION STUDY

To prove the effectiveness of our proposed method, we conduct several ablation experiments on
TinyImageNet. The performance of our scheme is mainly attributed to three prominent components:
the class-specific pathway organization strategy (CPO), the pathway-guided feature update (PFU)
and the incremental pathway update (IPU) mechanism. Since the three components are sequential,
we add them gradually for comparison. As can be seen in Tab. 1, CPO bring a 3.04%, 3.21% and
8.31% improvement in overall performance. It demonstrates that the initial pathway decoupling
plays an important role in mitigating the interference during the incremental process, especially in
the case of longer phases. IPU and PFU also achieves average improvement of 1 and 2 points,
facilitating the rectification of features and pathways during the subsequent incremental processes.

4.3 ANALYSIS

The impact of the pathway optimization strategy. To explore the impact of pathway optimiza-
tion strategy on the incremental representation learning, we compare our methods to some classical
pathway-related ones. Since most of methods are not designed for class-incremental learning, we
adapt their core strategies in our settings. As shown in Tab. 2, our method is obviously superior to
other ones in three settings. Piggy (Mallya et al., 2018) simply optimizes the mask of parameters
on the basis of the initial model, which is not sufficient to handle the complex incremental process.
The hard threshold adopted in Hat (Serra et al., 2018) and Iap (Chen et al., 2020) brings great opti-
mization difficulty. Although the RPS (Rajasegaran et al., 2019) achieves good results, its complex
network structure and random path search strategy are not efficient.

The impact of the numbers of divided groups (i.e., L). To explore the sensitivity of divided
groups on the incremental performance, we design the following experiments. We divide the output
channels into different channels equally. If the channels are not divisible, we round down it. It can
be seen in Fig. 3 (a) that the performance fluctuates little except for exceptionally few divisions,
demonstrating the stability of our pathway learning. When the number of division is equal to 2, the
overall decoupling space for pathways is too small to promote sparse learning.

The impact of the maximum sparse rate (i.e., ζmax). To explore the effect of sparse rate on the in-
cremental performance, we conduct multiple experiments with different sparse rates on CIFAR-100.
As shown in Fig. 3 (b), the performance with high sparse rate is obviously worse than that with other
values. In this case, due to the increase of difficulty of pathway independence, the initial classifica-
tion accuracy is greatly disturbed. When the sparse rate is too low (e.g., 0.2), the initial accuracy is
obviously higher, bring the overall improvement of the incremental performance. When the sparsity
value is between 0.3 and 0.45, the initial accuracy is consistent and the incremental performance
gets better with heavier sparsity, demonstrating the effectiveness of the pathway decoupling.
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(a) The number of divided groups. (b) The value of maximum sparse rate.

Figure 3: The impact of the values of divided groups (i.e., L in Sec. 3.3) and the maximum sparse
rate (i.e., ζmax in Sec. 3.3) on the incremental performance.

IoU Value Base Class (shared) IC (shared) IC (unshared)

(a) Pathway Similarity (b) T-SNE results of the shared and unshared pathways

Figure 4: Effect of our scheme on the pathway learning. (a) CPO realizes the organization of dis-
tinguishable pathways, thus mitigating the overlap between the incremental classes (i.e., IC) and old
ones. (b) PFU promotes the pathway expansion of similar classes. The first two columns represent
the activated features of shared pathways, and the last represents the unshared ones.

4.4 VISUALIZATION

To better demonstrate the role of CPO and PFU during optimization, we show the corresponding
visualization results. In Fig. 4 (a), the center of the circle represents the incremental class, and the
surrounding represents the five different base classes. The middle values represent the intersection
of union (IoU) of pathways between the new and old classes. It can be seen the pathways are
class-specific, and the similarity is also positively related to the class relationship. For example,
the pathway of white sharp is closer to the one of tiger sharp. As shown in Fig. 4 (b), for the
incremental class, the features of shared and unshared pathways are visualized by t-SNE (Maaten &
Hinton, 2008). For example, the white sharp and tiger sharp are discriminatory to other classes due
to the features of teeth. To further distinguish between these two ones, the white shark expands new
pathways to learn the texture features on their bodies. Owing to our PFU, the incremental pathways
are promoted to differentiate from the old ones, thus improving the separation of novel clusters.

4.5 COMPARISON WITH SOTA

To better assess the overall performance, we compare it to the SOTA of NECIL (LwF_MC (Rebuffi
et al., 2017), MUC, SDC, PASS, IL2A, ABD and SSRE) and some classical exemplar-based CIL
methods (iCARL (Rebuffi et al., 2017), EEIL, UCIR and PODNet (Douillard et al., 2020)).

As shown in Tab. 3, compared to the SOTA of non-exemplar methods (i.e., E=0), our method
achieves average improvement of about 1 point and 2 points on the average accuracy and aver-
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Average Accuracy (↑) Average Forgetting (↓)Methods P=5 P=10 P=20 P=5 P=10 P=20
iCaRL-CNN∗ 51.07 48.66 44.43 42.13 45.69 43.54
iCaRL-NCM∗ 58.56 54.19 50.51 24.90 28.32 35.53
EEIL∗ (Castro et al., 2018) 60.37 56.05 52.34 23.36 26.65 32.40
UCIR∗(Hou et al., 2019) 63.78 62.39 59.07 21.00 25.12 28.65(1

)E
=

20

PODNet‡ 64.88 63.05 61.62 19.12 22.55 25.64
LwF_MC 45.93 27.43 20.07 44.23 50.47 55.46
MUC (Yu et al., 2020a) 49.42 30.19 21.27 40.28 47.56 52.65
SDC‡ (Yu et al., 2020b) 56.77 57.00 58.90 6.96 7.50 10.77
PASS (Zhu et al., 2021b) 63.47 61.84 58.09 25.20 30.25 30.61
IL2A‡ (Zhu et al., 2021a) 65.72 62.69 59.90 27.25 37.35 39.27
ABD‡ (Yin et al., 2020) 63.85 62.46 57.40 23.12 27.34 33.42
SSRE (Zhu et al., 2022) 65.88 65.04 61.70 18.37 19.48 19.00(2

)E
=

0

Ours 66.64+0.76 65.84+0.80 61.83+0.13 6.50+0.46 3.30+4.20 9.14+1.63

Table 3: Comparisons with other methods on CIFAR-100 dataset. P represents the number of phases
and E represents the number of exemplars. Models with an asterisk ∗ represent the reproduced results
in (Zhu et al., 2021b). Models with a marker ‡ represent the reproduced results by this paper. The
red footnotes in the last row represent the relative improvement compared with the results of SOTA.

TinyImageNet ImageNet-SubsetMethods P=5 P=10 P=20 P=10
iCaRL-CNN∗ 34.64 31.15 27.90 50.53
iCaRL-NCM∗ (Rebuffi et al., 2017) 45.86 43.29 38.04 60.79
EEIL∗ (Castro et al., 2018) 47.12 45.01 40.50 63.34

(1
)E

=
20

UCIR∗ (Hou et al., 2019) 49.15 48.52 42.83 66.16
LwF_MC (Rebuffi et al., 2017) 29.12 23.10 17.43 31.18
MUC (Yu et al., 2020a) 32.58 26.61 21.95 35.07
MAS (Aljundi et al., 2018) 18.97 11.82 7.17 19.11
EWC (Kirkpatrick et al., 2017) 19.64 16.18 17.09 27.32
PASS (Zhu et al., 2021b) 49.55 47.29 42.07 61.80
SSRE (Zhu et al., 2022) 50.39 48.93 48.17 67.69(2

)E
=

0

Ours 53.69+3.30 52.88+3.95 51.94+3.77 69.22+1.53

Table 4: Comparisons of the average incremental accuracy (%) with other methods on TinyImageNet
and ImageNet-Subset. P represents the number of phases and E represents the number of exemplars.
Models with an asterisk ∗ represent the reproduced results in Zhu et al. (2021b).

age forgetting of CIFAR-100 dataset, respectively. The performance of our method is comparable
to the classical exemplar-based methods (i.e., E=20), which shows that our method further mitigate
the gap between the two settings. To provide further insight into the behaviors of different meth-
ods on larger benchmarks, we compare their average accuracy on TinyImageNet, ImageNet-Subset
and ImageNet-Full. As shown in Tabs. 4 and 5, our method achieves average improvement of 3
points. Due to the larger size images in these datasets, the pathway independence during the feature
optimization is clearer, bringing greater performance improvement.

Methods iCaRL-NCM‡ UCIR‡ PODNet‡ PASS‡ SSRE‡ Ours
E=0, P=10 32.43 53.27 50.67 55.90 58.12 60.20+2.08

Table 5: Comparisons of the average incremental accuracy (%) with other methods on ImageNet-
Full. Models with an asterisk ‡ represent the reproduced results by this paper.

5 CONCLUSION

In this paper, a novel self-organized pathway expansion scheme is presented for the NECIL task.
A class-specific pathway organization strategy is first proposed to mitigate the feature interference
during the optimization of pathway-aware representation. Based on the learnable pathway planner,
a pathway-guided feature update mechanism is introduced to adjust the involvement in joint training
of classification and distillation. Experimental results show that our method is superior in both
performance and adaptability to the state-of-the-art methods, especially on larger datasets.
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A APPENDIX

A.1 DETAILED EXPLANATION

A.1.1 STANDARD DEVIATION OF THE INCREMENTAL PERFORMANCE (ERROR BARS)

All results of the average incremental accuracy and average forgetting are evaluated on three differ-
ent runs. To show the stability of our method, we report its standard deviation on three runs. As
shown in Tabs. 6 and 7, random factors have little impact on our scheme.

Average Accuracy (↑) Average Forgetting (↓)Methods P=5 P=10 P=20 P=5 P=10 P=20
iCaRL-CNN∗ 51.07 48.66 44.43 42.13 45.69 43.54
iCaRL-NCM∗ 58.56 54.19 50.51 24.90 28.32 35.53
EEIL∗ 60.37 56.05 52.34 23.36 26.65 32.40
UCIR∗(Hou et al., 2019) 63.78 62.39 59.07 21.00 25.12 28.65(1

)E
=

20

PODNet‡ 64.88 63.05 61.62 19.12 22.55 25.64
LwF_MC 45.93 27.43 20.07 44.23 50.47 55.46
MUC (Yu et al., 2020a) 49.42 30.19 21.27 40.28 47.56 52.65
SDC‡ (Yu et al., 2020b) 56.77 57.00 58.90 6.96 7.50 10.77
PASS (Zhu et al., 2021b) 63.47 61.84 58.09 25.20 30.25 30.61
IL2A‡ (Zhu et al., 2021a) 65.72 62.69 59.90 27.25 37.35 39.27
ABD‡ (Yin et al., 2020) 63.85 62.46 57.40 23.12 27.34 33.42(2

)E
=

0

Ours 66.64±0.01 65.84±0.07 61.83±0.12 6.50±0.13 3.30±0.39 9.14±1.42

Table 6: Comparisons with other methods on CIFAR-100 dataset. P represents the number of phases
and E represents the number of exemplars. Models with an asterisk ∗ represent the reproduced results
in (Zhu et al., 2021b). Models with a marker ‡ represent the reproduced results by this paper. The
blue footnotes in the last row represent the values of error bars.

TinyImageNet ImageNet-SubsetMethods P=5 P=10 P=20 P=10
iCaRL-CNN∗ 34.64 31.15 27.90 50.53
iCaRL-NCM∗ 45.86 43.29 38.04 60.79
EEIL∗ (Castro et al., 2018) 47.12 45.01 40.50 63.34

(1
)E

=
20

UCIR∗ (Hou et al., 2019) 49.15 48.52 42.83 66.16
LwF_MC (Rebuffi et al., 2017) 29.12 23.10 17.43 31.18
MUC (Yu et al., 2020a) 32.58 26.61 21.95 35.07
MAS (Aljundi et al., 2018) 18.97 11.82 7.17 19.11
EWC (Kirkpatrick et al., 2017) 19.64 16.18 17.09 27.32
PASS (Zhu et al., 2021b) 49.55 47.29 42.07 61.80(2
)E

=
0

Ours 53.69±0.14 52.88±0.05 51.94±0.28 69.22±0.05

Table 7: Comparisons of the average incremental accuracy (%) with other methods on TinyImageNet
and ImageNet-Subset. P represents the number of phases and E represents the number of exemplars.
Models with an asterisk ∗ represent the reproduced results in (Zhu et al., 2021b). The blue footnotes
in the last row represent the values of error bars.
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A.1.2 DETAILED SETTING

We use an Adam optimizer, in which the initial learning rate is set to 0.001 and the attenuation rate is
set to 0.0002. The batch size is set to 128. The model stops training after 160 epochs and 60 epochs
during the initial phase and incremental phases, respectively. We adopt ResNet18 and 3 standard
convolution blocks as the backbone of feature extractor fθt

and pathway planner fαt
, respectively.

In the main text, the maximum value of sparse rate in Eq. (8) is set to 0.4. The values of e1 and e2
in Eq. (10) are set to 0.08 and 0.75, respectively. The values of L and K in Section 3.3 are set to 4
and 16, respectively. One NVIDIA GTX2080Ti gpu is utilized for CIFAR-100 and TinyImageNet
datasets. Two NVIDIA GTX3090 and eight NVIDIA Tesla A100 gpu are utilized for ImageNet-Sub
and ImageNet-Full datasets, respectively. All datasets adopted in this paper are open to the public.

A.1.3 OPTIMIZATION EXPLANATION IN OUR SCHEME

The optimization of feature representation θt is mainly guided by the classification loss function
Lcls and feature distillation loss function Lkd. Assuming that the optimal solution at the incremental
phase t− 1 is taken when θt−1 = θ∗

t−1. As θt is initialized by the value of θ∗
t−1, it can be assumed

that θt is close to θ∗
t−1. Then the Taylor expansion on θt can be written as follows,

f(θt) = f(θ∗
t−1) + (

∂f(θ)

∂θ
|θ=θ∗

t−1
)(θt − θ∗

t−1)+

1

2
(θt − θ∗

t−1)
T (

∂2f(θ)

∂2θ
|θ=θ∗

t−1
)(θt − θ∗

t−1) + o(θ∗
t−1).

(21)

The first order component is constrained to zero by the gradient descent, and the ones higher than
second order can be ignored. The subscript t can be omitted for brevity, and Eq. (21) can be approx-
imated as follows:

f(θ) = f(θ∗) +
1

2
(θ − θ∗)2f ′′(θ∗) = f(θ∗) +

1

2
Ω(θ − θ∗)2 =

f(θ∗) +
1

2
(Ωcls +Ωkd)(θ − θ∗)2,

(22)

where Ωcls and Ωkd represents the importance of parameter space on the classification and dis-
tillation tasks, which is commonly estimated in different incremental methods (Kirkpatrick et al.,
2017; Aljundi et al., 2018). To mitigate the interference between the two objectives, we can improve
their respective weight sparsity (i.e., the sparsity of Ωcls and Ωkd), and reduce the shared space of
important parameters.

A.1.4 DETAILED VALUES OF THE CURVES

To facilitate the fair comparison of subsequent work, we report the detailed values of incremental
accuracy for each phase in Tabs. 8 to 10. The average accuracy is consistent with the one in Table 3
and 4 of the main text.

Dataset Phase
0 1 2 3 4 5 6 7 8 9

A 82.40 78.23 74.87 72.34 68.62 67.96 65.52 64.84 62.57 60.83
B 62.70 59.92 58.55 57.01 55.25 54.42 53.18 52.74 52.27 51.70

Dataset Phase
10 11 12 13 14 15 16 17 18 19

A 59.76 58.85 57.39 55.72 54.66 53.54 53.21 52.55 52.24 51.54
B 51.25 50.76 50.19 49.25 48.71 47.95 47.66 47.09 46.66 45.57

Dataset Phase
20

A 50.82
B 45.03

Table 8: Detailed values of classification accuracy under the setting of 20 incremental phases. A and
B represent the CIFAR-100 and TinyImageNet datasets, respectively.
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(a) IoU of the pathway (b) T-SNE results of the shared and unshared pathways

Figure 5: Effect of our scheme on the pathway learning. (a) CPO realizes the organization of
distinguishable pathways, thus mitigating the overlap between the incremental classes and the old
ones. NC represents the novel classes. (b) PFU promotes the pathway expansion of similar classes.
The first two columns represent the shared pathways, and the last represents the unshared ones.

Dataset Phase
0 1 2 3 4 5 6 7 8 9 10

CIFAR-100 80.90 76.15 73.13 69.58 66.73 64.59 63.01 60.81 58.68 56.16 54.50
TinyImageNet 62.70 59.05 56.00 54.25 53.03 52.37 51.21 50.13 48.73 47.81 46.41

ImageNet-Subset 83.40 77.29 73.93 71.75 69.64 68.56 67.61 65.07 63.01 61.22 59.91
ImageNet-Full 76.46 67.59 64.92 62.89 60.61 58.72 57.12 55.75 54.17 52.30 51.65

Table 9: Detailed values of classification accuracy under the setting of 10 incremental phases.

A.1.5 MORE RESULTS ON VISUALIZATION

To better demonstrate the role of CPO and PFU during optimization, we show more corresponding
visualization results. In Fig. 5 (a), the center of the circle represents the novel class, and the sur-
rounding represents the five different base classes. The middle values represent the intersection of
union (IoU) of pathways between the new and old classes. It can be seen the pathways are class-
specific, and the similarity is also positively related to the class relationship. As shown in Fig. 5 (b),
the features of shared and unshared pathways are visualized by Grad-CAM (Selvaraju et al., 2017).
To further distinguish between the old and novel class, the novel one expands new pathways to learn
representative features.

A.1.6 CONFUSION MATRIX

To evaluate performance of both old and new classes during training, we compare their accuracy on
two setting (i.e. 5 and 10 incremental phases). As shown in Fig. 6, our method achieves similar
performance between the old and new classes without favoring one side due to overfitting, which is
a prerequisite for a good incremental learning system.

A.1.7 RELATED WORK ON FILTER PRUNING METHODS

Network pruning (Liebenwein et al., 2019; Sui et al., 2021; Gao et al., 2018) is an important tech-
nology to reduce memory size and bandwidth. Recently, various network pruning techniques have
been proposed, which can be classified from the structural aspect, i.e., the structured and unstruc-
tured pruning. Specifically, structured methods remove parameters in groups by pruning neurons,
filters, or channels. Classical filter pruning methods (Sui et al., 2021; Gao et al., 2018) make up the
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Dataset Phase
0 1 2 3 4 5

CIFAR-100 80.90 72.63 65.87 62.94 60.76 56.76
TinyImageNet 62.70 57.35 54.30 52.04 48.96 46.79

Table 10: Detailed values of classification accuracy under the setting of 5 incremental phases.

Figure 6: Confusion matrices of different methods on CIFAR-100. 5 phases and 10 phases settings
are considered to evaluate the stability of our method on the old and novel classes.

prominent family of structured methods for CNNs. Different from the pruning methods designed
for the network efficiency, our scheme aims at the mitigation of update interference. The concept
of group in this paper is slightly different as only the output channels of features are divided for the
organization of pathway.

A.1.8 LIMITATION AND SOCIETAL IMPACT

The division way of the standard classification model in our method is too simple, which constrains
the adjustment of some factors. As shown in Fig. 3, the maximum sparsity can only be kept below
0.5, which deserves the further improvement. Our non-exemplar method avoids the issue of privacy
but an old model needs to be maintained during the training, which poses a risk of information leak.
This calls for future research that addresses this aspect.

A.2 ADDITIONAL RESULTS

A.2.1 PATHWAY VISUALIZATION

To better demonstrate the role of self-organizing pathway expansion scheme during optimization,
we show more visualization results on the pathways of different classes. For the simplicity of view-
ing, we plot the most important group (i.e., vertical coordinate) in each module (i.e., horizontal
coordinate). As shown in Fig. 7 (a), at the initial phase, two different classes (i.e., the classes in the
first and second columns) tend to utilize different pathways to extract the corresponding features. At
the incremental phase, the novel class (i.e., the class in the third column) tends to utilize the novel
pathway to optimize the incremental features, and the whole pathway is similar to the semantically
close class (i.e., the class in the second column). The observation is consistent with the one from
Fig. 4 in the main text.

A.2.2 THE IMPACT OF THE SET EPOCHS

To explore the effect of the set epochs on the incremental performance, we conduct multiple exper-
iments with different start epochs (i.e. e1 in Eq. (10) of the main text) and end epochs (i.e. e2 in
Eq. (10) of the main text) on CIFAR-100. As shown in Fig. 8 (b), the performance with larger start
epoch is obviously worse than those with other values. In this case, due to the increase of initial
classification accuracy with full pathways, it is more difficult to separate the class-specific pathway,
which influences the overall performance. At the same time, the values of the end epoch have almost
no effect on the incremental performance, which is more robust to the optimization process.
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Pathway IoU:0.28

Pathway IoU:0.68

Pathway IoU:0.45Pathway IoU:0.19

Old Class 1 Old Class 2 Incremental Class

Figure 7: More visualization results on the pathway. The first and second columns represent the
pathways of two old classes, which differ significantly in semantics. The third column represents
the pathway of the incremental class, which is semantically closer to the one in the second column.
For the simplicity of viewing, we plot the most important group (i.e., L) in each module (i.e., K).
Pathway IoU represents the overlap rate of corresponding class-specific pathways.
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(a) The value of start epoch (e1). (b) The value of end epoch (e2).

Figure 8: The impact of the values of the set epochs (i.e., e1 and e2 in Eq. (10) of the main text) on
the incremental performance in the three-step strategy.

A.2.3 FURTHER ANALYSIS OF MORE CIL METHODS

In the comparative experiments of the main text, we compare with some classical CIL methods at
two different settings, demonstrating that our method reduces the gap between the two settings. At
the same time, most of the classical methods are not applicable to the NECIL settings, let alone the
latest CIL methods. For example, we adapt the latest CIL method dynamic expandable network (Yan
et al., 2021) to the NECIL setting (i.e. NDER), and its performance is poor as shown in Tab. 11. Due
to the lack of old samples, it is difficult to perform effective optimization with such large expanding
parameters.
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CIFAR-100
Method 5 phases 10 phases 20 phases
NDER 29.08 21.13 13.10
Ours 66.64 65.84 61.83

Table 11: Further analysis on the CIL method.

A.2.4 GENERALIZATION TO THE CIL SETTING

To further prove the effectiveness and generalization of our method, we introduce it into the CIL
setting. As (Douillard et al., 2020) is one of the SOTA methods in CIL setting, we modify its
implementation with our self-organized pathway expansion scheme directly. As shown in Tab. 12,
our method achieves average improvement of 2 points. Even if the effect of incremental samples on
the overall performance is weakened by exemplars in CIL setting, our scheme still brings a boost to
the existing method (Douillard et al., 2020). It can be seen that our method has great potential for
the CIL setting, which will serve as our future work.

A.2.5 COMPARISON WITH SOTA ON IMAGENET-FULL DATASET

To better assess the overall performance of our scheme on larger dataset, we compare it to the SOTA
of NECIL (PASS) and some classical methods of exemplar-based CIL (iCARL, UCIR and PODNet)
on ImageNet-Full.

As shown in Tab. 13, compared to the SOTA of non-exemplar methods (i.e., E=0), our method
achieves average improvement of 2 points on the average accuracy. The performance of our method
is comparable to the classical exemplar-based methods (i.e., E=20), which shows that our method
further mitigate the gap between the two settings on larger dataset.

CIFAR-100 (B50)
Method 5 phases 10 phases
Podnet 64.88 63.05
Ours 66.64 65.84

Table 12: Comparisons of the average incremental accuracy (%) under the CIL setting.

ImageNet-FullMethods P=10
iCaRL (Rebuffi et al., 2017) 46.72
UCIR (Hou et al., 2019) 63.27

E
=

20

PODNet (Douillard et al., 2020) 64.17
iCaRL‡ (Rebuffi et al., 2017) 32.43
UCIR‡ (Hou et al., 2019) 53.27
PODNet‡ (Douillard et al., 2020) 50.67
PASS‡ (Douillard et al., 2020) 55.90
SSRE‡ (Zhu et al., 2022) 58.12E
=

0

Ours 60.20

Table 13: Comparisons of the average incremental accuracy (%) with other methods on ImageNet-
Full. P represents the number of phases and E represents the number of exemplars. Models with an
asterisk ‡ represent the reproduced results by this paper.
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