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ABSTRACT

User-generated content (UGC) on social media platforms is vulnerable
to incitements and manipulations, necessitating effective regulations. To
address these challenges, those platforms often deploy automated content
moderators tasked with evaluating the harmfulness of UGC and filtering
out content that violates established guidelines. However, such moderation
inevitably gives rise to strategic responses from users, who strive to express
themselves within the confines of guidelines. Such phenomenons call for a
careful balance between: 1. ensuring freedom of speech — by minimizing the
restriction of expression; and 2. reducing social distortion — measured by the
total amount of content manipulation. We tackle the problem of optimizing
this balance through the lens of mechanism design, aiming at optimizing the
trade-off between minimizing social distortion and maximizing free speech.
Although determining the optimal trade-off is NP-hard, we propose practical
methods to approximate the optimal solution. Additionally, we provide
generalization guarantees that determine the amount of finite offline data
required to effectively approximate the optimal moderator.

1 INTRODUCTION

The internet supports a global ecosystem of social interaction. Many people use social
media to connect with others, engage with news content, share information, and entertain
themselves. However, in recent years, the nature of this content and these interactions has
raised concerns among policymakers. Social media can be exploited for extremist causes,
as well as to spread misinformation and fake news. For example, social bots were used to
disrupt the 2016 U.S. presidential election. Another troubling issue is cyberbullying, which
especially targets well-known individuals. Some European governments have been trying
to curb fake news and hate speech by regulating social media platforms. However, these
measures risk suppressing free speech. In this work, we explore the challenge of balancing
free speech with the regulation of social media.

More specifically, we consider scenarios where users engage with a harmful social trend to
gain more attention on the platform. In these instances, misleading or problematic topics
or hashtags gain traction, and the challenge for platforms is to prevent the spread of such
rumors. We study a setting where the principal’s goal is to design guidelines to minimize
users’ engagement with such harmful social trends. Our objective is to develop content
moderators' so that users are discouraged from following harmful social trends as much
as possible. Simultaneously, we aim to protect individuals’ freedom of speech as much as
possible by avoiding unnecessary content removal.

Inspired by the recent literature on designing machine learning algorithms in the presence
of strategic behavior (e.g. ( )), we formulate this problem as follows. In a
distributional setting, first, the principal commits to a content moderator f. Users observe
the deployed content moderator and a social trend e and best-respond by changing their
original content from « to z so that their utility is maximized. We define the users’ utility
function as their reward at the manipulated state z minus the cost of manipulation from a
to z. Their reward function depends on two factors, first, the manipulated state z is marked

!Throughout the text, we use the words content-moderator, principal and filter interchangeably.



as benign by the moderator; otherwise, their content gets removed by the moderator and
the user receives zero utility. Second, assuming their manipulated content z remains on the
platform, how well it aligns with the trend e. However, unlike the strategic classification
problem where the goal is to design classifiers that have high accuracy considering the
strategic response of the users, our goal is to first discourage the users from manipulating
their content since we assume that the social trend that they try to follow is harmful, and
second, protect the users’ freedom of speech as much as possible.

1.1 OUR RESULTS AND TECHNIQUES:

Optimization problem. We model this problem as a constrained optimization problem,
where the objective is to minimize the average social distortion which is the average distance
between the original and manipulated contents of the users. We argue that this is equivalent
to maximizing another objective which we call social distortion mitigation. For each user,
social distortion mitigation captures the distance between their ideal manipulation state 2’
assuming there are no moderators in place, and their final manipulated state z*. The key
idea here is that the user decides to move to z* instead of 2’ when 2’ gets removed by the
moderator. The overall constrained optimization problem is to maximize the average social
distortion mitigation subject to removing a bounded number of manipulated contents had
the users manipulated to their ideal location z’.

Sample complexity results. For any filter class H, we derive sample complexity results that
guarantee if a sufficiently large set of samples S are drawn from an underlying distribution D,
then for any filter h € H, the average social distortion and the fraction of filtered-out examples
on S and D are approximately the same. Our sample complexity results are in terms of the
VC-dimension of the filter class H, and the Pseduo-dimension of their corresponding social
distortion mitigation function class (Theorem 1). Furthermore, we bound the VC-dimension
of the filter class H, and the Pseduo-dimension of their corresponding social distortion
mitigation function class for some specific classes of filters, i.e. linear filters, classes of
piece-wise linear functions, and some specific kernels (Proposition 3).

Computational hardness results. We demonstrate that even for a class of linear filters,
given a set of agents, finding a linear filter that minimizes average social distortion while
filtering out at most k contents is NP-hard (Theorem 2). To establish the NP-hardness
result, we show that another closely related combinatorial problem is NP-hard: Given a set
of points, finding a hyperplane that maximizes the number of points on it while allowing at
most & points on the positive side of the hyperplane is NP-hard. By allowing the maximum
number of points on the hyperplane, intuitively, we are minimizing the social distortion since
social distortion for each content only decreases as it approaches the boundary of the filter.

Experiments. We consider the computation of the optimal linear filter in the offline
setting, where the platform has access to a set of clean data®. Despite the computational
hardness established earlier, we propose an empirical approach to approximately compute
the optimal filter by introducing a soft version of the freedom of speech violation constraint.
By reformulating the constrained optimization problem as an empirical loss minimization
under a smoothed, quasi-convex surrogate loss, we show that the platform can achieve any
desired trade-off between minimizing social distortion and preserving freedom of speech.

1.2 RELATED WORK

Strategic ML. Our work is related to the growing line of research on btrateglc ML that
studles learning from data provided by strategic agents (

). ( ) introduced the problem of stmtegzc
classzﬁcatzon as a repeated game between a mechanism designer that deploys a classifier and
an agent that best responds to the classifier by modlfylng their features at a cost. Follow-
up work studied different variations of this model in a PAC- learmng setting (

, ), online learning ( , ),
incentivizing agents to take 1mprovement actlons rather than gamlng actions (

2Clean (un-poisoned) data can be obtained by removing content that violates the guidelines,
such as misinformation or slurs.



) ; , ), causal
learning ( , ; , ), fairness ( , ), etc.

In the setting of strategic classification, the agents’ goal is to receive a positive classification
which can be interpreted as getting admitted into college or getting approved for a loan
in a real-world setting. In order to receive such a classification, the agents best-respond
to a deployed classifier and modify their features at a cost, and sometimes such strategic
modification does not change the true qualification of the agents. Consequently, the goal
of strategic classification is to design classifiers that have high accuracy while considering
such strategic behaviors. However, unlike strategic classification, in our model, the goal is to
design a filter that minimizes average social distortion, i.e. average manipulation, by agents
while filtering out a bounded fraction of the agents.

Content moderation in social media platforms. To detect abusive content and behavior,
social media platforms deploy a combination of human moderators and automated algorithms.
In their early days, social media platforms mainly used human review teams to govern their
content ( , ). Later on, they started developing automated systems to help
with their content moderation. Many platforms now have automated filters that remove
some overtly inappropriate content ( , ). However, relying solely on algorithms
to moderate also has some limitations, e.g., decreased performance for out-of-distribution
examplesand therefore, platforms usually keep humans in the loop. In this work, we assume
that a harmful social trend is known, e.g., spreading misinformation during elections, and
we focus on designing mechanisms that discourage users from engaging with harmful trends
while protecting their freedom of speech as much as possible.

2 PROBLEM SETTING

Let X C R? denote the feature space of each user’s generated content (UGC). Throughout
the paper we assume that X is convex and compact. Our problem formulation is built upon
the interplay between a set of of n users on a social media platform and an automated
content moderator M, which we elaborate on in the following.

User Representation: A user indexed by i is represented by a tuple u; = (x;, ¢;), where
x; € X is the feature vector of u;’s generated content representing her original intention of
expression and ¢; denotes the manipulation cost. We consider the case when the user wants
to tweak the original message x; to z; to better align with a global ongoing social trend e,
at a marginal cost ¢;. We outline our model in detail as follows.

Convex Content Moderator:

The role of a content moderator M is to regulate published content, ensuring it adheres to
platform guidelines. Without loss of generality, M can be regarded as an indicator function
I[f(x; w) < 0], where 0 indicates that the content is flagged as problematic and should be
filtered, while 1 indicates it is benign. For simplicity, we define the content moderator as the
function f(z;w) : R? — R, parameterized by w, and refer to the set € X : f(x;w) <0 as
the benign region associated with f. The output of f can be interpreted as a harmfulness
score for each content. In this work, we focus on moderators f that induce convex benign
regions®. This assumption is justified by the natural property that if two pieces of content,
@1 and @9, are both benign, their linear combination Ax; 4+ (1 — A)x2 should also be benign
in the feature space. This property directly translates into the convexity of the benign region.

User’s Strategic Response: With the components outlined above, we can formulate a
utility function to capture the potential strategic behavior of a user and predict her response
when facing a moderator f(z;w), given her profile u = (x,c). * The following Eq. (1)
characterizes the user’s utility when modifying her published content from « to z:

u(z; (z,c),e, f) =1[f(z) <0] - z"e —cl|lz — 2| (1)

3Such functions do exist: since X is a convex set, any f with a convex hypograph guarantees a
convex benign region.
4Our utility model is closely related to the classic strategic classification model ( ,
). Specifically, if we replace the term z " e with a user-dependent preference parameter r, our
model reduces to the agent utility proposed in ( ,




Proposition 1. Denote the best response of user u = (x,c) against a convezr content
moderator f(z;w) by

2 = A, e, f) = argmasu(z: (#,0) e, ), )
zE
and let 2" = x + 5. Then z* always exists and has the following characterizations:

1if f(2') <0, z*=2".

2. if f(2') >0 and f(x) <0, 2* =P;(2'), where Ps(x) denotes the ly projection of
x on to the hyperplane {x € R?: f(x) = 0}.

3.4f f(2') >0 and f(x) >0, 2* =a or Py (2'), depending on the location of x.

Figure 1: Illustration of best response z*. Left: if 2/ = x + - is benign, 2* = 2’. Middle:
if & is benign but 2’ is problematic, £ moves to the projection of 2’ on f. Right: if x is
already problematic, 2* = x, or the projection of z’ on f, depending on which one yields a
higher utility.

Proposition 1 reveals a two-level response pattern. In the first level, each content @ tends to
shift towards an idealized location 2z’ = « + 3, manipulating its features in the trending
direction e by an amount determined by the cost. Such 2’ is also the user’s preferred
manipulation result in the absence of any moderation. The second level can be viewed as a
self-correction process starting from z’: if 2’ is accepted by the moderator f, it becomes the
user’s final response; however, if 2z’ is flagged as problematic by f, the user would adjust it to
the closest point on f’s decision boundary, ensuring minimal alteration while still complying
with the platform’s guidelines.

If both  and 2’ fall on the problematic side of the moderator f, the projection Py(2’) is
still the point on the benign side that yields the highest possible utility for x, but could be
negative. Since staying at x always guarantees at least zero utility, the best response in this
case could be either Py (z’) or @, depending on which offers a higher utility. We do not focus
on distinguishing between these two outcomes, as our analysis regarding social distortion
in the next section concerns on content x that is already on the benign side. The proof of
Proposition 1 is deferred to Appendix A.

Proposition 1 highlights the role of content moderation in reducing distortions introduced by
the trending direction e, which may deviate from users’ true expressive intent, represented
by x. For UGC near the filter boundary, moderation can mitigate distortion by incentivizing
users to align their content with platform guidelines. Thus, the platform can intuitively
reduce overall social distortion by encouraging more UGC to move closer to this boundary.
However, this strategy comes with a trade-off: the risk of filtering out certain UGC, potentially
infringing on users’ freedom of expression. This presents a key challenge for the platform—how
to balance reducing social distortion with preserving free speech. In the following section,
we formalize this problem and explore its complexity and possible solutions.

3 THE SOCIAL DISTORTION, FREEDOM OF SPEECH, AND THEIR
TRADE-OFF

In this section, we formally introduce the concept of social distortion and explain why content
moderation can reduce social distortion but at the potential cost of infringing on freedom of
speech, thereby creating a concrete challenge of balancing these two considerations. From
Proposition 1, we observe two significant effects of deploying a content moderator f: first, it



discourages users from excessively following social trends e, which is beneficial; second, it
may flag some UGC as harmful, potentially leading to user churn. The first effect can be
quantified using the social distortion metric, which measures the displacement of users who
were initially on the benign side, under the strategic environment shaped by the moderator
f. The second effect can be assessed by the proportion of users who remain on the platform,
serving as an index for freedom of speech, as users who leave the platform due to their
content being flagged harmful experience a form of expression suppression.

The following Definition 1 formally introduces the concept of social distortion (SD):

Definition 1. The social distortion (SD) of a content moderator f induced on a user (x,c)

1s defined as
||$—A($,C;6,f)”§, Zf f(:E) SO,
0, otherwise.

Dm@mmz{ 3)

The social distortion function D, defined in Eq. (3), quantifies the manipulation effort of a
user’s content x as the squared Lo distance between the original feature & and the user’s
best response under a moderator f. This measures how much the user’s strategic adaptation
diverges from her true expressive intent . Importantly, our definition of social distortion
applies only to users whose initial features « are not filtered by f (i.e., f(x) <0). This is
because the strategic behavior of users with f(z) > 0 does not contribute to the distortion
negatively. As Proposition 1 suggests, users with f(x) > 0 are either filtered out—meaning
their content is not distorted—or they adjust x to align with platform guidelines, which
is considered a beneficial manipulation and thus should not be counted as distortion. In
contrast, for users with f(x) < 0, their strategic behavior often reflects a shift toward
following a harmful social trend e, diverging from their original expressive ideas, which
constitutes social distortion.

Following Definition 1, an immediate observation is that for any user (x,c), deploying a
moderator f does not increase social distortion relative to an unmoderated environment, as
substantiated by the following Proposition 2.

Proposition 2. Let 1 denote a trivial moderator who does nothing but marks every @ € X
as benign. Then, it always holds that

D(f;(z,c),e) < D(L;(z,c),e), (4)
and the inequality holds strictly if and only if f(x) <0 < f(x + 5).

Proposition 2 illustrates how a moderator f can potentially reduce a user’s distortion in
her expression. Let ’s response vector be the direction from @ to @ + 5=, which represents
the distortion introduced by the trend e in the absence of moderation. The user will only
move back toward the decision boundary of f if and only if this boundary intersects with her
response vector. In doing so, the user’s distortion is mitigated by adjusting her content to
remain viable on the platform. Based on this, we propose a natural optimization objective
that evaluates the expected social distortion mitigated by f across a population of users:

Definition 2. The social Distortion Mitigation (DM) induced by a moderator f over a
user u = (x,¢) is the difference between the average social distortion induced by a trivial
moderator L and f on wu, i.e.,

h(f;e,a:,c):D(J_;(sc,c),e)—D(f; (m,c),e), (5)

and the total social distortion mitigation induced by f on a population of users U = {u =
(xi,¢;) Py is thus defined as

DM(f;U) = h(f,u), (6)

uclU
where A(zx, c; f, e) is defined in Eq. (2).

Given a class of candidate moderator functions F = f and a user distribution U, the problem
of optimizing expected social distortion over U can be formulated as finding an f € F that
maximizes DM (f;U). However, there is no guarantee on how much freedom of speech the
optimal moderator f will sacrifice—that is, how many users may need to be filtered out.



The trivial moderator f =1, which does not filter out any users, cannot mitigate any social
distortion. This suggests that any moderator aiming to reduce a reasonable amount of social
distortion must inevitably sacrifice some degree of freedom of speech.

To illustrate this trade-off, consider the toy model in Figure 2, where @ is uniform distributed
in a unit ball centered at the origin, and the social trend is e = (1,0). Clearly, any reasonable
moderator f that maximizes DM would have a decision boundary perpendicular to e, as this
direction maximizes the deterrent effect of f on users’ strategic responses. For each moderator
f of the form = = 0,0 € [—1, 1], we can plot the induced social distortion mitigation and a
freedom of speech preservation index, which is the fraction of content still allowed on the
platform, as shown in the right panel of Figure 2. As f moves from the left margin of X to
the right margin, the social distortion mitigation exhibits an inverted U-shape, while the
freedom of speech index consistently increases. This illustrates the trade-off between the two
measures. The tension arises because the maximum social distortion mitigation is intuitively
achieved when f is positioned where the content distribution is most concentrated, whereas
freedom of speech preservation pushes the optimal f toward the margins of the distribution,
making it difficult to achieve a doubly optimal moderator.

. Trade-off between Social Distortion and Freedom of Speech

—— Social distortion mitigation
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Figure 2: An illustration of the trade-off between social distortion and freedom of speech in
a toy model. Left: The original UGC distribution is uniformly random within a unit ball in
R?, with a social trend e = (1,0). Right: The optimal function f under varying freedom of
speech constraints and the resulting induced social distortion.

As we can learn from the toy example, the key challenge is determining how to strike a
balance between the social distortion and freedom of speech objectives, for any possible
distribution . A straightforward approach to is to introduce a hard constraint to the social
distortion minimization (or DM maximization) problem, ensuring that at most a certain
fraction of users are filtered out had they manipulated their content as much as they wished.
More specifically, if a user  would like to follow a social trend e and move to the location
T + 5, but by doing so their content gets filtered out, then their freedom of speech is violated.
ThlS leads to the following formalized problem:

find g max E(,e)~ulh(f;,c)
Mt o i Yo Lo ™

In reality, the platform usually only has access to an offline dataset U = {u = (x;,¢;) 1
sampled from some distribution /. Therefore, a practical way to estimate the solution of OP
(7) is to solve the following empirical social distortion optimization problem. During training,
we assume that we have access to un-manipulated examples. We can retrieve a set of clean
examples by removing part of the content that violates the guidelines, e.g. misinformation.

find arg maxjfer {Z(whci)es[h(f;m,c)]} (8)
subject to Y1 [I[f(x: + &) > 0] < K.

In the following discussion, we will first examine how well the empirical solution to OP (8)
approximates the solution to OP (7) using tools from standard statistical learning theory.
We will then explore the computational aspects of solving OP (8).



4  ON THE LEARNABILITY OF CONTENT MODERATORS

In this section we establish generalization guarantees for OP (7), that is, how many samples we
need from the true distribution D to solve OP (8) in order to approximate the solution of OP
(7). In Theorem 1 we show sample complexity results in terms of the Vapnik-Chervonenkis
dimension (VCDim) of the hypothesis moderator function class F and Pseudo-Dimension
(PDim) of its corresponding distortion mitigation function class H .

Theorem 1. For any moderator function class F = {f : RY — {0,1}} and its induced DM
function class Hr = {h(f)|f € F} defined by Eq. (5), and any distribution U on X x C, a

training sample U of size (Q(Ei2 (H2 (PDim(Hr) + In(1/4)) + VCDim(]-'))) is sufficient to

ensure that with probability at least 1 — 6, for every f € F, the distortion mitigation of f on
U and U and the fraction of filtered points on U and U each differ by at most €.

Intuitively, Pseudo-dimension is a generalization of VC-dimension to real-valued function
classes, capturing the capacity of a hypothesis class to fit continuous outputs rather than
binary labels. Similar to VC-dimension, which measures the complexity of a class in terms
of shattering points in binary classification, pseudo-dimension evaluates the ability of a
function class to fit arbitrary real values over a set of points. The formal definition of
Pseudo-dimension can be found in Appendix C.

Theorem 1 provides a general yet abstract characterization of the sample complexity required
to approximate the solution to OP (7). More concretely, it suggests that problem (7) is
statistically learnable if we focus on moderator function classes F with a finite VC-dimension
and ensure that the corresponding class H has a finite Pseudo-Dimension. Fortunately, many
natural function classes F satisfy these conditions, as some explicit structure of F allows us
to upper bound its PDim by merely leveraging its definition. These classes include linear
functions, kernel-based linear functions, and piece-wise linear functions, as presented in the
following Proposition .

Proposition 3. There exists function classes F such that VCDim(F) and Pdim(Hr) are
both bounded. For example:

1. When F is the linear class defined by F = {f(z) = l[w 'z + b < 0]|(w,b) € R},
we have
VCDim(F) <d+1, PDim(Hz) < O(d?), (9)

where O is the big O notation omitting the log terms.

2. When F is a piece-wise linear function class with each instance constitutes m linear
functions, i.e., F = {f(z) = l[w{ x +b; < 0]V --- VI[w,) z+ b, < 0]|(w;,b;) €
R 1 <i < m}, we have

VCDim(F) < O(d-3™), PDim(Hzr) < O(d™!.3%"). (10)

3. When F is the linear class defined on some feature transformation mapping ¢, i.e.,
F ={f(z) =Tw'¢(x) +b < 0]|(w,b) € R} as long as ¢ is invertible and
order-preserving, it also holds that

VCODim(F) <d+1, PDim(Hr) < O(d?). (11)

Theorem 1, together with Proposition 3, demonstrates that finding the optimal linear
moderator over an offline dataset for Eq. (8) is statistically efficient for many natural and
practical function classes, including those discussed in Proposition 3. The linear class is
arguably one of the simplest and most effective tools for moderation, capable of representing
linear scoring rules that aggregate user-generated content (UGC) scores based on relevant
features. When combined with feature transformation mappings, linear models can represent
techniques like dimensionality reduction followed by linear scoring. Many transformation
techniques, such as invertible autoencoders, satisfy the invertibility requirement, ensuring
statistical learnability. Additionally, piecewise linear function classes correspond to scenarios
where multiple scoring rules are applied simultaneously. However, for such classes, the
VCDim and PDim grow exponentially with the number of linear functions. Nevertheless, if
the number of functions m remains small, sample-efficient learning is still achievable.



Proof of Theorem 1(Appendix E) first applies standard learning theory for real-valued
functions ( ) ) to establish a generalization bound for OP (8) without the freedom
of speech constraint, relying on the PDim of ‘H . Then, a union bound is used to account
for the additional constraint, which depends on the VCDim of F. The proof of Proposition 3
involves a detailed analysis of the closed-form best response mapping for a user facmg linear
moderators. The core of the proof leverages the Sauer-Shelah Lemma ( , ,

) to establish an upper bound on the PDim for a composition of two functlon classes.
Next, we study the computational complexity of empirically identifying a moderator that
optimizes social distortion subject to freedom of speech constraints.

5 COMPUTATION OF THE OPTIMAL LINEAR MODERATOR

We discuss the computational complexity of OP (8) in this section. To illustrate the idea, we
focus on the class of linear moderator functions (i.e., F = {f(z) = w'z + blw € R4, b € R})
as it yields a closed-form objective function, which makes the problem more tractable. And
in order to also derive a closed-form for the constraint, we use the true feature x to filter
content®, but not the manipulated feature. Such an easier version of OP (8) is formulated
by the following Lemma 1. And perhaps surprisingly, we show that this problem is NP-hard.

Lemma 1. When F = {f(z) = w'z + bjlw € R4 b € R} is the linear function class, OP
(8) is equivalent to the following constrained optimization problem:

2
find arg miny, p {E{iel} [(w—'—wi +b)2 — (ué;e) } }
subject to > i Tw'x; +b<0] >n— K,

7

I<w;<1,1<j<d

(12)

where the index set I = {i € [n] : —%-*° ; +b < 0}.

Since OP (12) i ; +b, we follow a standard practice

by introducing a slack variable € > 0 and cons1der a relaxed problem, replacing the strict

w'e
2¢c;

whether we can efficiently solve this relaxed version of OP (12). However, despite the nice
quadratic form of the objective function in (12), the combinatorial nature of the constraint
and the indefiniteness of the quadratic objective make the problem challenging to solve. In
fact, in Theorem 2 we show that any e-relaxation of OP (12) is NP-hard.

Theorem 2. For any given input € > 0,n, K € N, and offline dataset X = {(x;,¢;)}1 4,
finding the optimal solution to the e-relazation of OP (12) in the following form is NP-hard
with respect to (n, K,1/¢):

constraint with a non-strict one: € — < w'x; +b. A natural question that follows is

. Te 2
find arg ming, p {Zm«%;e<w7mi+b<0 [(w x; +b)? — ( 7 ) ] }

subject to > i Tw'x; +b<0]>n— K,
Hlw <1< <d

(13)

Theorem 2 demonstrates that minimizing social distortion under a hard constraint—limiting
the number of users whose content can be filtered—is computationally intractable. This
complexity arises because finding a linear moderator f that minimizes social distortion is
analogous to finding a hyperplane that maximizes the number of points near its boundary,
as the amount of social distortion for each content @ only increases as & approaches the
boundary of f. With the additional constraint, the problem becomes a combinatorial
geometric challenge: given a set of n points, find a hyperplane that maximizes the number of
points lying on it while ensuring that at least K points remain on each side of the hyperplane.

°In the formulation of OP (12), we use a stricter filtering criterion based on the original feature
(i.e., f(x) > 0) rather than the manipulated feature A(x), for two key reasons. First, the constraint
> (ms) > 0]] < K is stricter than > [I[f(A(x:)) > 0]] < K, since f(x) < 0 implies
I

(
1

(z)) <0, as established in Proposition 1. Second, the constraint based on x is computationally
more tractable than one based on A(z), as the latter does not necessarily have a closed-form solution.



This turns out to be hard. The formal proof, provided in Appendix D, contains two core
reductions. First, we reduce the original OP (13) from a combinatorial optimization problem
called Maximum Feasible Linear Subsystems (MAX-FLS) with mandatory constraints, and
then we show that the problem of MAX-FLS with mandatory constraints is NP-hard by
showing a reduction from the Exact 3-Set Cover problem, which is known to be NP-hard.

6 EMPIRICAL METHOD FOR BALANCING SOCIAL DISTORTION AND
FREEDOM OF SPEECH

Since minimizing the social distortion with a hard freedom of speech constraint is NP-hard
even for linear function class, we resort to an approximation approach for solving this problem.
Still focusing on linear moderators, a straightforward way is to replace the hard constraint
with a soft one. That is, for any (x;, ¢;) that violates the moderator, we introduce a penalty
function P;(w,b) in the objective, as formulated in the following OP:

. wTe)2
find arg ming, p {Z{i:w73<mei+b<o} |:('wT3'3i +b)? — ( o ) } + Z{i:w—rmi+b>0} Pi('w,b)}

2¢;
subject to —1<w; <1,1 <5 <d.
(14)

In the formulation of OP (14), the penalty function can be an arbitrary one that increases
w.r.t. the signed distance from ; to the hyperplane w "z +b = 0. For example, one tentative
choice of such a penalty function could be a quadratic function imposing on the positive side
of f: Pi(w,b) =T[w' 'z +b> 0] AMw'x; +b)?, where A > 0 is a parameter balancing the
social distortion objective and freedom of speech penalty term. Under such a formulation,
we can re-formulate OP (14) as the following cleaner form

find arg ming, p {ZKKn I(w, b; wi,ci,e)}

subject to  (w, b; x;, ¢;, e) = max {0, y;} - (yi — 2a;) + Pi(w, b)
yi=w' @ +b+a;,1<i<n, (15)
a; =% 1<i<n,

—1<w; <1,1<j<d

The objective function in OP (15) can be understood as the aggregation of the social good loss
I induced by each user 4, consisting of two components. The first part, max {0, y; } - (v; — 2a;),
measures the social distortion incurred by the linear moderator (w,b), and the second part
reflects the calibrated infringement on freedom of speech: the larger penalty term P; is, the
farther user 4’s content is from the decision boundary on the positive side of f, making it
more likely that user i’s content & will be filtered.

The structure of OP (15) resembles the empirical loss minimization problem commonly seen
in standard machine learning problems, and we can employ a stochastic gradient descent
approach to tackle it, given any specific penalty functions and trade-off parameter A. To
ensure the social good loss [ is differentiable so that we can apply gradient-based approach,
we need to further introduce a surrogate loss [ to smooth the non-differentiable point at
y; = 0 of max {0, y;} - (y; — 2a;) while selecting a differentiable penalty function. The details
of this treatment are outlined in the optimization solver setup in the next section. In the
following experiments, we apply this approach to solve (15) using a synthetic dataset and
report the approximate optimal linear moderator for different trade-off parameters .

6.1 EXPERIMENTS

Synthetic data generation: We generate synthetic dataset from mixed Gaussian dis-
tribution in R¢ to mimic the distribution of x. Specifically, we first sample k centers c;
from N(0, I;) and then for each c; generate m = n/k samples from N (c;, 071,), where o; is
sampled uniformly at random from [0.3,0.5]. Without loss of generality we set e as the unit
vector (1,0,---,0), and sample ¢; independently from uniform distribution ¢[0.5,1.5]. In
the experiments we choose d = 5,n = 500, k = 5, and additional result under different data
scales can be found in Appendix F.



Optimization solver setup: we solve OP (15) by setting Pi(w,b) = I[y; > a;] -
(A(yi —a;)* - af), where a; = %,yi = w'x; + b+ a; as defined in the constraints
of OP (15). The reason we choose such a form is because the resultant social good loss
function [ can preserve continuity and first-order differentiable property, paving the way
for gradient-based method. To further make [ differentiable at y; = 0, we apply spline
interpolation at y; = 0.1 to round the corner at y; = 0 while ensuring that | — 0 as y; — —o0.
The surrogate loss function [ for each user (x;, ¢;) after such regularizations compared with
the true loss [ is illustrated in the leftmost panel of Figure 3, and we can observe that the
minimum of [ is achieved when y; = a;, i.e., when the original feature x is on the decision
boundary of filter f. In addition, for a larger penalty A\, moving acrossing the boundary (i.e.,
y; moving to the right side of a;) would incur a larger and more rapidly increasing loss. The
objective is thus the summation of such surrogate losses over all points (x;, ¢;). To account
for the boundary constraint —1 < w; < 1, we employ standard projected gradient descent.

Result: A 2-dimensional visualization in Figure 3 illustrates the optimal linear moderators
for both a small A (A = 0.1) and a larger value (A = 10.0). Each user’s original content
feature x is represented by a blue dot, while its strategic response to the moderator is shown
in red. The social trend is e = (1,0). As the figure shows, a larger A shifts the moderator
boundary toward the margin of the content distribution, as desired. This results in fewer
pieces of content being filtered, while still achieving a reasonable degree of social distortion
mitigation. When A is small, the computed optimal moderator minimizes social distortion
but at the expense of infringing on more users’ freedom of speech. The right panel displays
both the social distortion mitigation (i.e., the negative of the optimal objective value of OP
(15)) and a freedom of speech preservation index, measured by the fraction of content that
remains on the platform under the regulation of the computed moderators with varying .
As shown, the freedom of speech index increases as A grows, while social distortion mitigation
follows an inverted U-shape. This suggests a trade-off between these two objectives, similar
to the one observed in the toy model 2. Our result indicates that, although computing the
optimal linear moderator is computationally challenging, our proposed empirical optimization
technique can effectively approximate a solution that allows the platform to flexibly balance
social distortion and freedom of speech.

surrogate loss | for (x;, ¢;) surrogate loss | for (x;, ¢;)

Trade-off between Social Distortion and Freedom of Speech

optimat
0.00 *\ 0.00 *\ —
|
o hev-}
-0.05 i £0.05 i 'ﬁ . '#n’
4
| — Socialdistortion mitigation
-0.10 0.10 $‘ )| Fraction of remaining content (%)
2 3 b1
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- »rﬁ.a_.“é
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Figure 3: Left: the constructed quasi-convex single point surrogate loss function. Middle:
the compupted moderator obtained under A = 0.1 and 10.0. Arrows represent users’ strategic
manipulations against the optimal linear moderator. Right: social distortion mitigation (blue)
and the fraction of remaining content on the platform (yellow) incurred by the computed
moderator obtained under different A € [0.1,100]. Error bars obtained from results with
20 independently generated dataset. Error bars are 1o region based on results from 20
independently generated datasets.

7 CONCLUSION

We addressed the challenge of designing content moderators that reduce engagement with
harmful social trends while preserving freedom of speech. By modeling the problem as a
constrained optimization task, we introduced the concept of social distortion mitigation and
provided generalization guarantees based on the VC-dimension and Pseudo-dimension of the
filter function class. While we established the computational hardness of finding optimal
linear filters, we provide an empirically efficient approximation approach that enables the
platform to achieve any desirable trade-offs. Our findings highlight the need for efficient
algorithms and further exploration of more flexible filtering mechanisms.
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A  PROOF OF PROPOSITION 1

Proof. Let D ={z: f(z;w) < 0}. According to the definition of convex moderator, D is a
convex set in R%.

If € D, under the formulation of Eq. (1), each user’s best response is the solution to the
following convex optimization problem (OP)

find z* = argmin,{—2 e+ ||z — z|3} (16)
subject to z € D.

Observe that the objective function

e\|2 e'e
~letelz—ali=c|s - (a4 5 )], - 5
OP (16) is thus equivalent to
. e 12
find z* :argmlnz{Hz— (m—l—%)HQ} (17)

subject to =z € D.

Let 2’ = x + 5. If 2/ is feasible, i.e., f(2') <0, we have 2* = 2’. Otherwise, by definition
z* is the /5 projection of z’ on to the decision boundary of f.

If ¢ D, staying at « yield 0 utility for u. As a result, z* = P;(z’) only when 2z’ yields a
negative objective value in OP (16). Otherwise, z* = .

O

B PROOF OF LEMMA 1

Proof. Plugin the expression of x* = A(z,c;e, f) given by Proposition 1 and note that

A(z;,cize, L) = x; + 55, we get a closed form of DM(f;X) as shown below:

DM((w7 b)7 X) = Z {D(J- (miv Ci) e) - D(wa b; (mia Ci)7 6)}

2

>

e

e w'(e+2cz;)w

Ci C;

2 dely(w,b)

Z - >
w,b) 2 i€l (w,b)
1 1 1 1 1 wle\”
D e El)

G i€ly
T N2
Z l (wz; +b)? + (“’ e” (18)
QCi
€l
Here the set Iy = {i € [n] : w'z; + b < 0} contains the indices of all users who are marked
as non-problematic and I} = {i € [n] : w' - (:L'i + 3. ) +b<0tNIy, Iy = {i € [n] :
wl - (@452 ) +b>0kn o,

Since a re-scaling of the vector (w, b) does not change the value of the RHS of Eq. (18), we
may without loss of generality assume ||w|2 = 1 and the DM function becomes

wTe 2
DM ((w,b); X) = [—(mei+b)2+ ( 5o ) ] : (19)

i€ly

Next, we argue that maximizing Eq. (19) under the constraint ||wl|s = 1 is equivalent to
maximizing it under the constraint ||wl||. = 1. This is because, for any solution (w*,b*)

13
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that yields the optimal value of Eq. (19) with ||w*||2 = 1, re-scaling (tw*,tb*) such that
[[fw*||oc = 1 would also yield the largest value of the RHS of Eq. (18). And on the other
hand, any solution (w*,b*) that yields the optimal value of Eq. (19) with ||w*|. = 1, we
can also re-scale it such that ||w*||2 = 1. This suggests that we can equivalently consider the
objective function given in Eq. (19) and replacing the original constraint ||w*|s = 1 with
[w oo = 1.

O

C DEFINITION OF PSEUDO-DIMENSION

Definition 3. (Pollard’s Pseudo-Dimension) A class F of real-valued functions P-shatters
a set of points X = {x1,xa, - ,xn} if there exists a set of thresholds v1,72,+ -+ ,yn such that
for every subset T C X, there exists a function fr € F such that fr(xz;) > 7 if and only
if x; € T. In other words, all 2™ possible above/below patterns are achievable for targets
Y1, ,Yn- The pseudo-dimension of F, denoted by PDim(F), is the size of the largest set
of points that it P-shatters.

D PROOF OF THEOREM 2

Proof. For arbitrary n points y1,--- ,y, € R? and K < n, construct an OP (13) instance
by letting e =+ =ea, = (0,---,0,1), ¢c1 =+ =cap, = i > 0, and

o = JWir o 0ia,0), 1<i<n,
TTU0,-,0,0),  nt1<i<on

Then solving OP (13) is equivalent to

2
find arg MaXqy,p {Z{ISiSZn:e(lfwTe)SwTwierSO} [—(w—rwi +0)2 + €2 (wTe) } }
subject to 32" Tfw @ +b < 0] > 2n — K,
—1<w; <LVI<j<d+1,
w # 0.
(20)

We argue that that the optimal w* for OP (20) must satisfy w},, = 1, because for any
w with wgy1 < 1, increasing wg41 to 1 would strictly increase the objective value of OP
(20) while maintaining all the constraints. Therefore, we can without loss of generality let
w' e =1 and then solving OP (20) is equivalent to

find arg maXqy,p {Z{lgngn:meier:O} [62] }
subject to  S7" Tw @; +b < 0] >2n — K, (21)
—1<w; <1 VI<j<d+1,
w # 0.
Let w = (w1, -+ ,wq) be the first d dimensions of w, then solving OP (21) is equivalent to
solving the following
find arg masg,y {n 10 = 0]+ X1 cicp 1 [®Tyi + b= 0] }
subject to Y I[w'y; +b<0] >n— K, (22)
< <1,¥1<j<d,
w # 0.

We argue that the optimal solution of OP (22) must satisfy b* = 0. This is because when
b =0, any w that satisfies w " y; + b = 0 for some i yields an objective value at least n + 1.
However, if b # 0, any w in the feasible region would yield an objective value at most n. As
a result, solving OP (22) is equivalent to solving the following

find arg maxqy {Z{1§z‘§n} [w'y; = 0]}

subject to Y Iw'y; <0] >n— K, (23)
d<w<1LVi<j<d,
w # 0.
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Next, we show that optimizing Equation (23) is an NP-hard problem by showing the
following decision problem that we call mazimum feasible linear subsystem (MAX-FLS) with
mandatory constraints is NP-hard. Given a system of linear equations, with a mandatory set
of constraints Az > 0 and an optional set of constraints Az = 0 where A is of size d x n and
integers 1 < p < d and 0 < g < d, does there exist a solution x € R" satisfying at least p
optional constraints while violating at most ¢ mandatory constraints? Our proof is inspired
by ( ) that showed MAX-FLS is NP-hard, and we show that even
when adding a set of mandatory constraints, it remains NP-hard.

In order to prove NP-hardness, we show a polynomial-time reduction from the known NP-
complete Ezact 3-Sets Cover that is defined as follows. Given a set S with |S| = 3n elements
and a collection C' = {C1,---,Cp,} of subsets C; C S with |C;| =3 for 1 < j <m, does C
contain an exact cover, i.e. C’ C C such that each element s; of S belongs to exactly one
element of C'?

Let (S,C) be an arbitrary instance of Fzact 3-Sets Cover. We will construct a particular
instance of mazimum feasible linear subsystems (MAX-FLS) with mandatory constraints
denoted by (A, p, q) such that there exists an Exact 3-Sets Cover if and only if the answer
to the MAX-FLS with mandatory constraints instance is affirmative.

We construct an instance of MAX-FLS with mandatory constraints as follows. There exists
one variable z; for each subset C; € C, 1 < j < m. Equations (24) to (26) are optional
and Equations (27) to (29) are mandatory constraints. Equations (24) and (27) are coverage
constraints to make sure each element in S is covered. Constant a; ; is equal to 1 if s; € C;
and is equal to 0 otherwise. Here, we are not interested in trivial solutions where all variables
in the system are set to O.

IC|
> i — T =0 V1<i<3n (24)
j=1
Tj— Tpt1 =0 Vi<j<m (25)
z; =0 Vi<j<m (26)
|C]
j=1
Tj— Tmi1 >0 Vi<j<m (28)
z; >0 Vi<ji<m (29)

We set p = 3n +m and ¢ = max(m —n,n). Now, in any nontrivial solution x, we must have
Tm41 7 0, since 41 = 0 implies that z; = 0 for all 1 < j < m.

Now, given any exact cover C' C C of (S, C), the vector x defined by:

- 1 ifC;jeC’ orj=m+1
7710 otherwise

satisfies all equations of type Equation (24) and exactly m of Equations (25) and (26).
Therefore, x satisfies 3n + m optional constraints in total. Furthermore, all constraints of
type Equation (27) are satisfied. When z; = 1, both constraints z; — ,,4+1 > 0,2z; > 0 are
satisfied. However, when z; = 0, the mandatory constraint x; — x,,41 > 0 is violated. Since
|C’| = n, the total number of mandatory constraints violated equals m — n.

Conversely, suppose that we have a solution x that satisfies at least 3n + m optional
constraints and violates at most max(m — n,n) mandatory constraints. By construction,
since x satisfies 3n + m optional constraints, it satisfies all constraints of type Equation (24)
and exactly m constraints among Equations (25) and (26) (recall that we are interested in
non-trivial solutions, therefore a,,, 11 # 0). This implies each z; is either equal to z,,41 or 0.
Now, consider the subset C’ C C' defined by C; € C" if and only if 2; = @y,41. This gives
an exact cover of (S,C). Since there are 3n elements and each element is covered exactly
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once, then for exactly n variables it is the case that x; = x,,11, and for the remaining m —n
variables, their value is 0. Now, all mandatory constraints of type Equation (27) are satisfied.

Now, we do a case analysis for when x,,11 < 0 or x,,41 > 0. First, suppose x,,+1 > 0.
If ; = %y,41, then both mandatory constraints x; — 41 > 0 and x; > 0 are satisfied.
However, if z; = 0, then x; > 0 is satisfied, but z; — ;41 > 0 gets violated. Since for m —n
variables z; it is the case that z; = 0, the set of mandatory constraints is violated exactly
m — n times.

For the second case, suppose Z,+1 < 0. If ; = 0, then both mandatory constraints
ZTj — Tmy1 > 0 and x; > 0 are satisfied. However, if ; = T4, then 25 — 241 > 0 is
satisfied but x; > 0 is violated. Since for n variables x; it is the case that x; = x,41, the
set of mandatory constraints is violated exactly n times.

Finally, we can conclude that given solution x that satisfies at least 3n 4+ m optional
constraints and violates at most max(m — n,n) mandatory constraints, the subset C’ C C
defined by C; € C’ if and only if x; = x,,41 is an exact cover of (S, C).

O

E OMITTED PROOFS IN SECTION 4

E.1 PROOF OF SECTION 4

In this section we present the proof of Proposition 4, which upper bounds the PDim of the
distortion mitigation (DM) function class Hz given some example moderator function class
F.

Proof. In this proof we derive Pseudo-dimension upper bounds for the three cases listed.

Case-1: When F = {f(z) = [[w 'z + b < 0]|(w,b) € R} is the linear functions class,
we can without loss of generality let ||w||2 = 1 since a simultaneous rescaling of w, b does
not change the nature of the moderator function and its induced strategic responses. Next,
we derive the DM class Hr as follows. First of all, plugging in the expression of f into the
result of Proposition 1, we obtain a user (z,¢)’s best response as the following:

1. ifwT~(a3+i)+b§0,z*:w+i.

2. iffw" (x+£)+b>0and w'x+b <0, 2" = Pp(x+ £) which has the following
closed-form expression

. e w (z+L)w  bw
zi=x+ — — —
2¢ wlw wlw
_ € w7 £y —
=x+ e~ W (x+ 2c)'w bw. (30)

By Definition 1 and 2, we can compute each function h € Hr as
h(f7 e x, C) :D(J-v (.’1}, C)7 6) - D(f7 (.’B, C)7 e)

e

2c

e D]

2 ‘

2c

.
=Tw' 'z +b<0]-T wzt+b>-——C|. ‘
2c 2c

2

—lw z+b<0]-1 [uﬁm tb> —“’;Ce} : [—('wT:c T b)2 4+ (“’;Ceﬂ . (31)

For the ease of notation, let’s define & = (=, i) € RI*! be the extended feature vector
for any user data (x,c). By the definition of Pseudo-dimension, for any function class
F ={f(&;w,b)|w, b}, the PDim(F) can be reduced to the VC dimension of the epigraph

of F, i.e.,
PDim(F) = VCdim({h(Z,y) =sgu(f(&) —y)|f € F,y € [-1,1]}). (32)
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Let’s define the following three function classes
(w'e)?
4¢?

_ {hl(:i; w,b) = —(w &1, + )2 + (wTe)Zirle‘aE e R (w,b) € Rd+1} ,

Hi(d) = {hl(w,c;w,b) = —(w'z+b)?>+ ‘(w,c) € R (w,b) € Rd'“}

Ha(d) = {hg(w,c;w,b) =1 ['wT (:B + 23) +b> 0} ‘(a:,c) € R (w,b) € R‘Hl}
c
— {hg(:i; w,b) =1 [w &1.q+ (w' €)igs1+b>0] ‘a: € R (w,b) € Rd“} :
Hs(d) = {hs(x;w,b) =1 [w 'z +b <0 EXS RY, (w,b) € R},
where x.q4 denotes the vector that contains the first d-dimension of x.

Since h(w,b; &) = hy * ha * hg(Z; w, b), the Pseudo-dimension of Hz can be upper bounded
by the following

3
PDim(Hr) < VCdim ({h(:i',y) = sgn (H hi(&) — y)
i=1

hi € Hi,ye[-1,1],1 <i < 3}) ,
(33)

where the inequality holds because

3
{sgn (hy * hy * h3(T;w,b) — y) |(w,b) € ]R‘“‘l} c {sgn ( hi(&) — y)

2

hiEHi,1§i§3}.

For any function classes F,G, define F @ G = {f xg|f € F,g € G}. Then Eq. (33) suggests
that in order to upper bound PDim(Hx), it suffices to upper bound PDim(H; ® Ha @ Hs).
Thanks to Lemma 2 which establishes the PDim of the product of two function classes,
this can be done by upper bounding PDim(H,), PDim(Hz), PDim(H3) separately. In the
following we derive the PDim for each function class H;,i = 1,2,3 and then use Lemma 2
to conclude the proof.

Deriving PDim(H3): First of all, since the Pseudo-Dimension for a binary value function
class is exactly the VC dimension of the corresponding real-valued function class inside the
indicator function, we immediately obtain

PDim(H3) <d+1, (34)
which is the VC dimension for a d dimensional linear function class.

Deriving PDim(Hz): For Ha, it holds that
Hy(d) = {hg(a};w, b) =T [w &1+ (w' e)ias+b> 0] ’w € R4 (w,b) € Rd“}
c {hg(:f:;w,wd+1, b) =1 [w' &1+ was1Fais +b > 0] ’w € R (w,way1,b) € Rd+2}
(35)
_ {hg(i;ﬁz,b) —T[® &+b> 0] ‘w e R (w,b) € Rd+2} :

where the subset relationship (35) holds because we relax the parameter w e correlated
with w to an additional independent parameter wg1; € R. This implies that Ha(d) is a
subclass of indicator functions induced by the d + 1 dimensional linear class. As a result, the

Pseudo-Dimension of Hs must be upper bounded by d + 2.

Deriving PDim(H;): To derive PDim(H;), we first apply the same trick to relax w ' e to
an independent parameter wgy1:

Hi(d) = {hl("i§ w,b) = (w' &1.q +b)* - (U’Te)zi’?iﬂ’i e R (w,b) € Rd“}
c {hl(a”c; ,0) = (w &g+ b)? — w§+1§:§+ljﬁ; e R, (w,b) € Rd+2} 2y (d),

(36)
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where @ = (w,wg11). Note that each instance in H;(d) can be rewritten as

d+1d+1

h(@50,0) = i (0,0)6i;(&) + vo(w, b)do(&), (37)

i=1 j=1
where

Yij = wiwj, ¢y = xiwy, 1 < 0,5 < d,
Yay1,; = bwj, ¥; ap1 = bwy, pag1,5 = T4, Piay1 = 24,1 < 0,5 < d,

2 2 ~2
Yay1,de1 =07, Gar1,a41 = 1,00 = —wg, 1, 00 = T, 1.

Let ¢(&) = (¢i;(€), 9o(T))1<i<dt1,1<j<d+1,i+j<2d+2 € RE@+1D*  Consider the linear class
2
Ligrye = {l(x;w,b) = 252—1) wiz; + b|(w,b) € REFD*F1Y Then for any X,, =
(1, - ,&m),y € [—1,1], the label patterns of (sgn(hi(x;) — y))", that fi can achieve
En X can also be achieved by L(g41)2 on (¢(x1),- -+, ¢(Tm)). Therefore, by definition we
ave

PDim(H,) = VCOdim({h(z,y) = sgu(hi(x) — y)|h1 € Hi(d),y € [-1,1]})
< VCdim({h(w.y) = sgn(l(@) — Il € Liasiyp.y € [11]})
= PDim (L(g11)2) < (d+1)* +1, (38)

where inequality (38) holds by Theorem 11.6 (The Pseudo-Dimension of linear class) from
(1999).

Finally, from Lemma 2 we conclude that

PDim(H1 ® Hsa) < 3(1 +log PDim(H1) + log PDim(Hsz))(PDim(H1) + PDim(Hsz))
< 3(1 + 3log(d +2))(d + 2)(d + 3) < 12(d + 3)* log(d + 2),

and therefore

PDim(Hz) < PDim(H, @ Ha @ Hs)
< 3(1 + log PDim(H1 ® Ha) + log PDim(Hs))(PDim(H1 ® Ha) + PDim(H3))
= 3(1 + log(12(d + 3)?log(d + 2)) + log(d + 1)) (12(d + 3)?log(d + 2) + d + 1)
< 3(1 + 6log(d + 3))(13(d + 3)*log(d + 3))
< 273(d + 3)? log?(d + 3).

Case-2: When F is a piece-wise linear function class with each instance constitutes m linear
functions, i.e.,

F={f(x)=Tw] x+b <0|V---VIw,) x+b, <0|(w;,b;) € R 1<i<m},

We first upper bound the VC-dimension of F. If we take F, F’ to be binary function classes
in (45) from Lemma 2, the Pdim of F coincides with the VCDim of F. Hence, for the
composition of m linear functions with each VCDim bounded by d + 1, the VCDim of the
new function is bounded by

OBBBA+d) +d) +d)+..) <OB™-md) <O(d-3™),

where O denotes the big O notation omitting the log terms.
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By Definition 1 and 2, we can compute each function h € Hr as

h(f,e;x,c)
:D(J- (.’I} C) e) - D(f, (m7c)ﬂe)

T ) 2
—H]Iw x; <0]- H H —min< min <1 w;rac—&—bi>—M -HP(Z) (w—i—i)—wH ,
2¢ 1<i<m 2c 2c 2

w, e
min Ilw x+b; L -1 w-Ta:+bj H’P(”J) (a:+ ) H
1<i,j<m v 2c J

To
i, TL afwrans 5] [peon (on 2) ol ).
te{i,j,k}

where operator P(7) denotes the La-projection onto the intersection of hyperplanes I; :
w,z +b; <0 and I : ’ijIE +b; <0, and Pdk) denotes the Lo-projection onto the
intersection of hyperplanes [;,1;,lx, and so on. This is because there are in total 2™
possibilities in terms of the location of  + 5-’s Ly projection to the convex region denoted
by f(x) =1, as Ps(x + 5) can be on each hyperplane /;, or on the intersections of any two
l;,1;, or on the intersections of any three ;, 5, ), and so on.

Note that each Pj(f) (i.e., the projection onto the intersection of r hyperplanes) has a
closed-form which is a rational function with polynomial at most r. As a result, the Pseudo-
dimension of the function class containing all functions like HP(T) (:c + i) — a:Hi is at most
O((rd)"), since rd is the number of parameters each function has. Apply Eq. (44) in Lemma

2, we know the Pdim of the class I ['wt T + by } Hp r) (x+£) - ;c”2 is at most

O(3(d + (rd)")). Continue to apply Eq. (45), we can upper bound the min of at most
Cr functions with a Pdim of each at most O(3(d + (rd)")) as 3%m - C - O(3(d + (rd)")),
and the Pdim upper bound for the min of (m + 1) functions with a Pdim of each at most
3% . Cr - OB(d+ (rd)")),1 <r <mis

Pdim(Hz) < O(d-3™)- <3MZ3C cr -0 (d+(rd)r))>
<O(d-3™)-O(3%") - O((dm)™) < O(d™* - 3%").

Case-3: When F = {f(z) = [[w' ¢(x) + b < 0]|(w,b) € R4*+1} is the linear functions class
with some feature transformation mapping ¢, the best response of (x, ¢) is the solution of
the following OP

find z* :argminz{Hz— (a:—|—2%)||z}
subject to w ' ¢(z) +b < 0.
Since ¢ is invertible, it is equivalent to

find 2 =argmin {[|67 () — 67 (& (= + £))) [} 2)
subject to w 'y +b < 0.

(41)

And also because ¢ preserves the order of pair-wise Ly distance of any set of points, the
solution of OP (42) is equivalent to the solution of

find z* :argminz{Hy*qi)((ﬂ?sz%))Hz} (43)
subject to w 'y +b<0.

As a result, we can compute z* the same way as in Case-1 and the VCDim, PDim upper
bounds in Case-1 still applies.

O
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E.2 LEMMAS USED IN THE PROOF OF SECTION 4 AND THEIR PROOFS

Lemma 2. For any class of real valued functions F,F' C {f : R? — [~1,1]} and binary
valued functions G C {g: R? — {0,1}}, define F @ G = {h(x) = f(x) x g(x)|f € F,g € G},
and F & F' = {h(x) = min{f(x), f'(x)}|f € F, f' € F'}. Then, it holds that
PDim(F ®G) < 3(1+logdrdg)(dr + dg), (44)
PDim(f@f/) <3(1+10gd]:d_7:/)(d]:+d_7:/), (45)

where dy = PDim(F),dz = PDim(F'),dg = PDim(G).

Proof. By definition, PDim(F) can be reduced to the VC dimension of the epigraph of F,
ie.,

PDim(F) = VCdim({h(z,y) = sgn(f(z) —y)|f € F,y € [-1,1]}). (46)
Let X = R? x [~1,1], consider an arbitrary set of points X,,, = {(z;,y;) € X}, with
cardinality m and any binary hypothesis class H C {h : X — {0,1}}. Define the maximum
shattering number

H(m’ H) glea;{(m {Card{(h(mla yl)v T h(wmv ym)) € {07 1}m‘h € H}}

T x

as the total number of label patterns that H can possibly achieve on X. Next we upper
bound the II(m, {f * g|f € F,g € G}). For any fixed X,,, = {(z;,y;) € X}, € X™, we
claim that the binary variable sgn(f(x;)g(x;) — y;) is determined by three binary variables
segn(f(x;) — y;) and g(«;). This is because:

1. when y; >0, f(x;)g(x;) > y; holds if and only if f(x;) > y; and g(x;) = 1.
2. when y; < 0, f(x;)g9(x;) > y; holds if and only if f(x;) > y; and g(x;) = 1, or

g(xi) =0

Therefore, any possible label pattern (sgn(f(x1)g(z1) — 1), ,s8n(f(xm)g(®m) — ym)) €
{0,1}™ is completely determined by the label patterns (sgn(f(x1)—y1), - ,sgn(f(Tm)—Ym))
and (g(x1), -+ ,9(xm)). As a result, it holds that

Card{(sgn(f(x1)g(x1) —y1),- - ,5gn(f(Tm)g(Tm) — ym))|If € F,9 € G}
<Card{(sgn(f(®1) —y1),- -+ ,sgn(f(@n) — ym))|f € F} x Card{(g(x1), - ,g9(xm))|g € G},

which implies
II(m, F ® G) < II(m, F) x II(m, G). (47)

Using the same argument, we can similarly show that
(m, F © F') < I(m, F) x M(m, F). (48)
Therefore, to show Eq. (44) and (45), it suffices to show Eq. (44) starting from Eq. (47).

According to Sauer-Shelah Lemma ( , ; , we have
vewr
Om, F) < 3 () < max{m +1,m"7}, (49)
i
i=0

where VC(F) denotes the VC dimension of class {sgn(f(z) — y)|f € F}, which is also the
Pseudo dimension of F (i.e., dr). And the second inequality of Eq. (49) holds because

1. when d > 3, we have

(A S S(2) ()5 (2) ()= () <

and therefore 7 (™) < (22)? < md.



2. when d = 2, we have

< /m m(m — 1)
E (Z> =14+m+ ———~=<m? ¥Ym > 2.
=0

3. when d =1, Wehavez o(M=1+m.

From Eq. (47) we know F ® G has bounded Pseudo dimension. Suppose PDim(F ® G) =
then by definition, there exists a set ) with cardinality d such that II(d, F ® G) = 29,
Therefore, from Eq (49) and (47) we have when d > 2,

=M(d, F®G) <(d,F) x 1(d,G) < max{d + 1,d} -max{d + 1,d%}.  (50)

For simplicity of notations we denote d; = dr, ds = dg and without loss of generality assume
d1 > ds. To complete our proof we need the following auxiliary technical Lemma 3, whose
proof can be found in Appendix.

Lemma 3. For any a > 2 and m > £2%¢(Ina — Inln2), it holds that 2™ > m®.

Now we are ready to prove our claim. Consider the following situations:

1. if dy > 2,dy > 2, from Eq (50) we obtain
2 < itz

However, from Lemma 3 we know that when d > 122 (dy + d2)(In(d; + d2) — Inln2),
24 > d%+d2 always holds. Hence, in this case we conclude d < 12 (dy + do)(In(dy +
d2) —Inln 2) < 23(d1 + dg)(hl(dl + d2) + 037)

2. if dy > 2,ds = 1, from Eq (50) we obtain
d<(d+1)d" < dht2,

From Lemma 3 we know that when d > 12 (d; +2)(In(d; +2) — Inln2), 2¢ > ¢4 +2
always holds. Hence, in this case we conclude d < 322 (di +2)(In(dy +2) —Inln2) <
2.3(dy + 2)(In(dy + 2) + 0.37).

3. if dy =dy =1, from Eq (50) we obtain
2% < (d+1)2
Since 2™ > (m + 1)? holds for any m > 6, we conclude that d < 5 < $22(2 +
2)(In(2 + 2) — Inln 2).

Combining the three cases, we conclude that
PDim(F ® G) < 2.3(max{2,d;} + max{2,d2})(log(max{2, d1 } + max{2,d2}) + 0.37)
< 3(1 + logdldg)(dl + d2)

Now we are ready to prove Theorem 1.

Proof of Theorem 1. Classic results from learning theory ( ) show the following
generalization guarantees: Suppose [0, H] is the range of functions in hypothesis class H.
For any 6 € (0,1), and any distribution D over X', with probability 1 — § over the draw of
S ~ D", for all functions h € H, the difference between the average value of h over S and
its expected value gets bounded as follows:

Z h(z UPD h(y)]| = O <H\/i <PDim(H) +1In G)))

a:ES
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Substituting H with the class of social distortion mitigation functions Hx = {h(f;x,c)|f €
F} induced by some moderator function class F = f gives:

% S hfimici) = Ewo~xxclh(fiz, )] = O <H\/,1L <PDim(HF) +1n <<15>>>

(xi,ci)ES

Therefore, for a training set S of size O (g—;[PDim(H}-) + 1n(1/5)]>7 the empirical average

social distortion and the average social distortion on the distribution are within an additive
factor of €.

Next, we show for any class F, distribution D over X x C, if a large enough training set
S is drawn from D, then with high probability, every f € F, filters out approximately the
same fraction of examples from the training set and the underlying distribution D had these
examples manipulated to their ideal location(z’). In order to prove this, we use uniform
convergence guarantees.

Given X ~ Dy, let X' = {z+ 5> | x € A'}. There exists a distribution Dy where X" ~ Dx.
Since X" is achieved by shifting all the points in & in the direction of &, then instead of
sampling directly from Dy:, we can sample from Dy (since we have access to it), and then
shift all the sampled examples by =. This is equivalent to shifting all the points in the
training set S by 5= to get S’. Let D’ be a joint distribution on X’ x ) where X’ ~ Dx»
and Y = {0}. A hypothesis f € F incurs a mistake on an example (x + 5, y) if it labels it
as positive or equivalently if it filters it out. By uniform convergence guarantees, given a
training sample S’ of size O (% [VCDim(F) + log(1/6)]), with probability at least 1 — & for
every f € F, |errp/(f) —errg/(f)| < e. This is equivalent to saying the fraction of points
filtered out by f from D’ and S’ are within an additive factor of e.

Here, F is the class of moderator functions, and H # is the class of social distortion mitigation
functions induced by F. Now, given a training set S of size O(% [H?(PDim(H ) +In(1/6)) +
VCDim(F)]), by an application of union bound, for every f € F, the probability that the
average social distortion of f on S and D differ by more than e or the fraction of filtered
points differ by more than € is at most 25. This completes the proof. O

F  ADDITIONAL EXPERIMENTS

F.1 ADDITIONAL DETAILS OF EXPERIMENT

The surrogate loss I(y, a; €) for a single point (x,c) we use in the experiment is given by the
following explicit form:

1—€2)243

- 2ey—4a(l—e)+3a(l—e)?? y < (1 B 6)(1,

Uy,a;6,A) = y? —2ay, (1—-€a<y<a, (51)
)\(y_a)2_a2’ Yy > a,

where y = w' 'z + b+ a,a = “’TTC"‘, as shown in Figure 4. In our experiments we choose
€ = 0.9 and use different A ranging from 0.1 to 100.

Then we use projected gradient descent (PGD) to solve the following OP 52 with the exact

gradient of [ w.r.t. w and b. The learning rate of PGD is set to 0.1 and the maximum
iteration steps is set to 2000.

find arg ming, p {Zlgign l~(yi7ai)}
subject to y; =w ' x; +b+a;,1 <i<n, (52)
a; = “’Te,l <i<n,

2Ci
“1<w; <1,1<i<n.
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surrogate loss I(y, a; £,A) surrogate loss l(y, a; £, ) surrogate loss Ily, a; €,A) surrogate loss i(y, a; £,A)
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Figure 4: The constructed quasi-convex single point surrogate loss function with different
smoothing parameter € and soft freedom of speech penalty strength A. In this illustration we
set a = 0.5.

F.2 ADDITIONAL RESULT UNDER DIFFERENT DIMENSION d

We also plot the trade-offs achieved by the computed optimal linear moderators across
different dimensions d, with the results shown in Figure 5. As the figure illustrates, higher
dimensions introduce more noise into the results, but the same underlying insights remain
observable.

Trade-off between Social Distortion and Freedom of Speech Trade-off between Social Distortion and Freedom of Speech
25
80
20
—— Social distortion mitigation —— Social distortion mitigation
Fraction of remaining content (%) Fraction of remaining content (%)

60

Figure 5: Social distortion mitigation (blue) and the fraction of remaining content on the
platform (yellow) incurred by the computed moderator obtained under different A € [0.1, 100].
Left: d = 2, Right: d = 10. Error bars are 1o region based on results from 20 independently
generated datasets.
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