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Abstract

Continual Learning (CL) aims to enable models to continuously acquire new
knowledge from a sequence of tasks with avoiding the forgetting of learned infor-
mation. However, existing CL methods only rely on the parameters of the most
recent task for inference, which makes them susceptible to catastrophic forgetting.
Inspired by the recent success of model merging techniques, we propose Perturb-
and-Merge (P&M), a novel continual learning framework that integrates model
merging into the CL paradigm to mitigate forgetting. Specifically, after training
on each task, P&M constructs a new model by forming a convex combination
of the previous model and the newly trained task-specific model. Through theo-
retical analysis, We minimize the total loss increase across all tasks and derive a
closed-form solution for the merging coefficient under mild assumptions. To further
improve the performance of the merged model, we observe that the degradation
introduced during merging can be alleviated by a regularization term composed
of the task vector and the Hessian matrix of the loss function. Interestingly, we
show that this term can be efficiently approximated using second-order symmet-
ric finite differences, and a stochastic perturbation strategy along the task vector
direction is accordingly devised which incurs no additional forward or backward
passes while providing an effective approximation of the regularization term. Fi-
nally, we combine P&M with LoRA, a parameter-efficient fine-tuning method, to
reduce memory overhead. Our proposed approach achieves state-of-the-art perfor-
mance on several continual learning benchmark datasets. The code is available at
https://github.com/ghmiao/P-M-for-Continual-Learning,.

1 Introduction

Continual Learning (CL) aims to enable models to continuously acquire new knowledge from a
sequence of tasks while retaining previously learned information [1]. In many real-world applications,
data arrives in a streaming fashion, and due to constraints such as privacy, storage, or computational
resources, models are typically unable to retain or revisit earlier task data. This setting poses a
fundamental challenge: how can a model continually adapt to new tasks while maintaining good
performance on previous ones? Although considerable progress has been made through methods
such as parameter isolation [2, 3 4], regularization [5} 16, [7, 18], and experience replay [9, 10, [11} [12]],
catastrophic forgetting remains a core issue in CL.

In parallel, the rise of large-scale pretrained models has spurred interest in model merging as a simple
yet effective strategy for post-training enhancement. Prior studies have shown that independently
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trained models, initialized from the same pretrained weights and optimized on different tasks, can
be effectively merged—through parameter interpolation or more structured methods—into a single
unified model that performs well across tasks [13} 14} [15 16} 17, 18,19 20]. Model merging offers
a practical mechanism for consolidating task-specific models without requiring shared training data.

Although CL and model merging differ significantly in their procedures, they share a common
goal: to learn a single model that performs well across multiple tasks. The key distinction lies in
the assumptions and timing of parameter updates: CL follows a sequential paradigm, where only
current-task data is accessible and previous task parameters are reused for initialization; whereas
model merging assumes that tasks are trained independently from the same pretrained model, without
any data sharing. Both paradigms operate under task-isolated settings but differ in how and when
task integration occurs.

A major advantage of CL is that all tasks are trained along a shared optimization trajectory, which
increases the likelihood that the resulting parameters reside near a joint optimum [21},22]. In contrast,
model merging offers a stable post-training integration mechanism, particularly attractive in scenarios
where previous data cannot be revisited. Notably, most CL methods use the model parameters
obtained after task ¢ to perform inference on all tasks 1 to ¢, even though these parameters are mainly
optimized for the current task [23} 21} 124].

Motivated by this observation, we propose a novel method, Perturb-and-Merge (P&M), which
unifies the training dynamics of CL with the inference principle of model merging.

Infer after Merging. Specifically, for task ¢, we initialize training with the inference parameters
0,_ from previous tasks, and after training, obtain the task-specific optimum 6;. We then merge
the two using the convex combination: 0, = (1- a)ét,l + af;. This process can be viewed as
scaling the task vector A9} = 6} — 6,1 to reduce interference with previously learned knowledge.
To determine the optimal merging coefficient a,, we analyze its influence on the total loss across
all tasks and derive a closed-form solution that minimizes overall performance degradation. This
solution depends on the Hessian matrix at the optimum of each task, which we approximate using the
empirical Fisher information matrix.

Train with Perturbation. Furthermore, because model merging can introduce parameter con-
flicts—causing the merged model to underperform compared to task-specific models—we find that
this degradation can be mitigated by introducing a regularization loss term composed of the task
vector and the Hessian matrix during training. However, computing the Hessian matrix on a per-batch
basis is computationally expensive. Interestingly, we show that this regularization term can be
efficiently approximated using second-order symmetric finite differences. More importantly, injecting
task-vector-aligned parameter perturbations during training provides a stochastic approximation of
the regularizer, requiring no additional forward or backward passes. Our experiments demonstrate
that such perturbations can effectively reduce parameter conflicts during model merging and enhance
the performance of the merged model.

Finally, we combine P&M with LoRA (Low-Rank Adaptation) [25]], a parameter-efficient fine-tuning
strategy, to reduce memory overhead for model storage. Our overall approach achieves state-of-the-art
performance on multiple CL benchmark datasets.

2 Related Work

2.1 Continual Learning

CL aims to enable models to learn new tasks sequentially without forgetting previously acquired
knowledge. Regularization-based methods preserve important parameters by applying constraints to
prevent forgetting [5, 16} 7, |8]], while memory-based approaches use external buffers to store historical
data for rehearsal or sampling [} 10 [11}[12]]. Architecture-based methods dynamically expand model
capacity to accommodate new tasks [2 13| 4]]. Another direction focuses on constraining gradient
directions to reduce task interference. Examples include Orthogonal Weight Modulation (OWM)[26]],
Orthogonal Gradient Descent (OGD)[27]], and Gradient Projection Memory (GPM) [28]], which
project gradients into task-specific subspaces to retain prior knowledge.

With the rise of large-scale pre-trained models [29, 30, 31]], continual fine-tuning has become
increasingly popular. However, full fine-tuning is computationally expensive, and more parameter-



efficient tuning strategies—such as prompt-based learning [32, |33} 34]], LoRA, and modular tuning
methods [35]—have been proposed to improve the scalability and practicality of CL. In this work,
we integrate our method with LoRA to reduce both training and storage costs.

2.2 Model Merging

Model merging has gained traction in both multi-task and CL scenarios. Generally, it can be
categorized into two directions: one line of work merges models fine-tuned on the same task to
improve generalization [36, 37, 138, |39]; the other merges models trained on different tasks to form a
single, unified model that can handle all constituent tasks. Model merging aims to integrate knowledge
from different tasks without retraining from scratch [40, 41, 42]]. Simple strategies use fixed merging
weights based on the number of tasks [43], while more advanced methods such as IMM [44]] and
CoMA [22] empirically tune coefficients to improve performance.

Some approaches [45)139]] go further by assigning parameter-wise merging coefficients to reflect the
heterogeneous impact of different weights, but such methods often require extensive hyperparameter
tuning. In contrast, our method provides a closed-form, theoretically optimal merging strategy
without the need for manual tuning.

3 Method

3.1 Infer after Merging

In continual learning, there are T tasks 77, ..., 77 that each task includes data: Dy = {(x!, y!)} 1,
where x! € R? is the input, y! € R is the label, and fy, () is a pretrain model with parameters 6.

When receiving the ¢-th task, the goal of CL is to achieve an overall optimal performance across
all T tasks. Since we currently only have access to data from task ¢, we can only update 6;

by training on D;. Given an input x with ground-truth label y from D; and a model prediction
p = softmax(fy(x)) € RY, the cross-entropy loss is defined as:

L0 ZH (y = ¢)logp. = —logpy, €y

where p,, is the predicted probability for the correct class y and I(-) is the indicator function. At this

point, we have the model ét—l used for inference on tasks 1 to t—1, which we take as the starting
point for training. After training with Eq. [I} we obtain the optimal parameters 6; on the dataset D;:

07 = 0,1 + A0 = 0,1 + argmin L(0,—1 + Ab,). )
Aby

Traditional CL methods directly use 0 as the inference parameter for the ¢-th task, i.e., ét = 0;.
However, since 6/* is trained on D, it may not fully guarantee the performance on Dy, ..., D;_ ;.

A natural idea is to combine models trained on different tasks. Specifically, 6;_1, which be used
as the inference parameter for these tasks, performs well on tasks 1 to ¢ — 1, while 8}, which is
optimized for task ¢, serves as the inference parameter for task ¢. Therefore, we can merge the two
models. Here we use a simple convex combination:

0; = (1- at)ét—l + o0y, 3)

where 0 < oy < 1 is the merging coefficient used to balance the welghts of the two parameters, and

0, is used for inference on tasks 1 to ¢. Since 07 is trained based on 0;_1,1ie., 0; = =01+ Af;, then
the Eq. [3]can be rewritten as:

0: = 0,1 + a, A0}, 4)

which means that taking the weighted average of 6,_1 and 0 is equivalent to scaling Af;. This
scaling strategy means that it will not harm the parameters 6;_, for tasks 1 to t — 1, but only by
adjusting the task vector for task ¢ to reduce forgetting of old tasks. In our experiments[4.3] we found
that this scaling has a slight impact on the knowledge of the new task.



Table 1: Training and Inference Strategies

Task t Training: 0} = argming,£:(0;) Inference: 0,
Continual Learning 6} = 6,1 + A0} 0, = 07

Model Merging 07 =0 + A 0 =S, a0
Ours (P&M) 0F =0, 1 + A0} O, = 0,1 + 0y O

Infer after Merging unifies the benefits of model merging and continual learning, as demonstrated in
Tab.[T] In contrast to conventional CL, it mitigates interference with previously acquired knowledge
while encouraging more compact task-specific optima through continued adaptation—ultimately
promoting better generalization [21,146]. Unlike momentum updates or exponential moving averages
(EMA) [47] [48]] that perform step-wise smoothing, our method merges the full task vector after
completing each task. Instead of relying on historical gradients or parameter trajectories, it directly
combines the current task’s optimal solution with the previous model, better preserving task semantics
and overall structure.

3.2 A Closed-form Solution for Optimal Merge Coefficient

Next, we aim to obtain an optimal ;. We are concerned with the performance degradation of the

merged model 0, compared to each task-specific optimal model 8}, where ¢ < ¢. For task 7, we define
the performance drop d; as:

8i = Li(6:) — L£4(67). ®)
0; evaluates the impact of the merged model 6, on the loss of task i compared to its optimal parameter
07. We expand it into Taylor series, then we have
A * 1. * *\ /N * A *
6; = VL (07)(6: — 07) + 5(‘91& —0;7) "HL(67)(6: — 07) + O(]|6; — 67 %), (6)

where H; (6}) represents the corresponding Hessian matrix. We can consider that for task i, 6 is the
optimal parameter for task i, so V.£;(6}) tends to 0. And We can assume that ||6; — 67> tends to 0,

so we only need to consider the second-order term %(ét — 0X)TH,(67)(A; — 07). Then we consider
the change in the loss for all tasks, i.e.,

t t
1 . R

o =argmin ¥ ; ~ argmin > — (6, — 67) TH(0})(0, — 67), 7
¢ = angmin 8, ~ argmin 3 (00— 07)THE(E7) (00 = ) ™

which has the closed-form solution:

. R T
Sic (ea—07) Hion)20;
Sim1 AGFH;(07)A0;

Please refer to the Appendix [A.T|for the detailed derivation. To avoid the prohibitive cost of computing
the full Hessian, we approximate it with the diagonal of the empirical Fisher information matrix
[49,150]. Given a model with parameters 6, the empirical Fisher matrix is defined as:

F(0) = E(xy)~p [Vologpa(y | x)Vologpe(y | x)']. )

In practice, we approximate F(6) using the average over the whole training dataset:

) (®)

ap = —

N

- 1

F(0) = N Z;VG log po(y: | x:)Vologpa(ys | x:) 7, (10)
and use only the diagonal entries of f‘(&) After completing the training of task ¢, we first compute
the diagonal empirical Fisher matrix F,(6;) ~ —H,(67), then obtain o using Eq. |8} and finally
compute the merged model 6, = 0;_1 + a; Af} as the inference parameters for tasks 1 to ¢. Note

that for each previous task ¢ < ¢, the corresponding Fisher matrix FZ(Q;‘) is computed and stored at
the time of training task .



3.3 Train with Perturbation

Further, we can also reduce Zle 0;(af) to make the merged model optimal on all ¢ tasks by
optimizing 6;. Next, we abbreviate H;(0}) as H;, then we have

2
. N (Ef (ét—l - 9f)T HZ-AH*)
;&er) = ;; (9t-1 - Gr)T H; (9t-1 - 9?) - 212:_1 AOTTHLAG t an
t

23 (0 07) B (0 —07) (12)
i=1

For the details, please refer to the Appendix [A.2] To enhance the performance of the merged
model, we aim to minimize the upper bound of Y!_, ;(a;). Among all the terms in this ex-
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A~ T A
pression, only the last term d;(c}) involving 8] —specifically, (0,5,1 — 0;*) H, (9,5,1 — 9;‘) =
A} TH,; AO;—depends on the current task ¢ and can be optimized during training.

During training, this term can be added as a regularizer to reduce d; (), but it requires real-time
Hessian computation. While the Fisher Information Matrix is commonly used as a surrogate, it only
approximates the Hessian near the optimum under certain conditions (e.g., the number of data samples
N — o0). Since training parameters are far from optimal and the Fisher can only be estimated from
a single batch during training, it fails to capture the true curvature and is thus unreliable in this setting.
Fortunately, we can approximate the quadratic form using symmetric finite differences as follows:

1, . ,
AGH A, ~ = (LS°(0; + eABy) + LSE(0; — eAy) — 2L5(6y)) (13)

where e < 1is a small constant, Af; denotes the task vector during training and 6; = ét—l +AB;. This
approximation is derived via a second-order Taylor expansion of the loss around #. We incorporate
the right-hand side of Eq.[I3]as a regularization term during training, and define the total training loss
as:

Li(04) = L55(0;) + N\LTE(0,)

2\ A
= (]_ — 62) Eie(ﬁt) + 672 (Cie(et + GAgt) -+ Ege(Gt - eAQt)) 5 (14)
where \ control the strength of the regularization term. Eq. [I4]requires two additional forward passes
of the cross-entropy loss with parameter perturbations along the task vector direction in each training
step. While this avoids computing the full Hessian, it results in a threefold increase in memory and
computation cost. To improve efficiency, we propose a stochastic approximation.

We observe that Eq. [T4]is effectively equivalent to applying a random perturbation to the model
parameters during training, where the perturbation direction aligns with the task vector of task ¢.
Specifically, the loss is evaluated under one of three perturbations: eA#;, —eAd;, or 0. Specifically,
at each training step, we sample one of the three versions of the loss:

) L55(6;) with probability po,
L:(0:) = < L5(0; + eAdf)  with probability p, (15)
L0, — eAd;) with probability p_.

We define the sampling probabilities for the three perturbation terms as follows: the original point is

sampled with probability pg = 1 — i—;\, and the two perturbed points are each sampled with probability
Py =p_ = % In the experiments, we treat pg as a hyperparameter, and set p; = p_ = %(1 —po)-

These probabilities are designed to ensure that the expected loss remains consistent with the original
definition, resulting in an unbiased estimate of the total loss:

E[L,(0)] = poLE(0) + py LL(O + eAO}) 4+ p_LE(O — eAOF) = L,(6). (16)

This sampling strategy reduces the forward cost per batch from 3x to 1x, without introducing bias
into the gradient estimation. While variance may increase slightly, this technique enables us to scale
P&M to large models and datasets efficiently.



Algorithm 1 LoRA-P&M
1: Input: Datasets D; = {(x},y!)},, for T tasks Ti,..., Tr, a pre-trained model fy(-) with

i) i=1»
parameters 6, 6y = 0p, hyper-parameters ¢, pg and py = p_ = %(1 —Ppo)-
2: Output: 6 for all tasks.
3: fort =1to 7 do
4: Fix 0;_; and initialize a new task-specific LoRA set for task t: LoRA;

5 repeat
6: for each example (x!,y!) € D; do
7 > Train with Perturbation:
8 Sample perturbation € € {—e¢, 0, +€} according to probabilities {p~, po, p™ }
9: Compute loss £(0; 1 + (1 + é)LoRA; x!, y!)
10: Update LoRA; via AdamW
11: end for
12: until convergence
13: > Infer after Merging:

14: 60F =0,_; +LoRA,
15: Estimate the Fisher Information Matrix F, (07) on task T; using Eq.|10/and Alg.

16: ét = ét_l + afLoRA; where o is from Eq.
17: end for

3.4 LoRA-P&M

Note that computing Eq. requires storing the optimal parameters 0 of all previous tasks. As the
number of tasks grows, this results in increased memory demands. To address this issue, we integrate
LoRA [235]], a low-rank parameter-efficient fine-tuning method, to reduce storage overhead.

For task ¢, the linear layer becomes W; = W;_; + A;B;, where only A; and B, are updated. LoORA
reduces trainable parameters by decomposing the weight update into low-rank matrices: AW = AB.
In CL, new LoRA module will be added for new task ¢, while other modules are kept fixed and
participate jointly in the forward pass [23}51].

Let Prora = {(A®) B(®) | p € T} denote the set of LoRA modules inserted at various locations p
in the network, where 7 indexes the parameter subsets affected. The overall model parameters 6, can

then be written as:
0 = 01 + P (4B, (17)
pEP

& denotes location-wise module insertion, not element-wise addition.

In our experiments, we apply LoRA modules to the key and value projections, so that only the
Fisher Information Matrices of these parameters need to be stored. The experiments comparing the
memory and time overhead of our method with LoRA are provided in the Appendix [B.3] The overall
procedure of the algorithm is presented in Algorithm [T}

4 Experiments

In this section, we first present the experimental setups, and then compare P&M with state-of-the-art
CL methods and model merging methods across multiple benchmarks.

4.1 Experimental Setups

Evaluation Benchmarks and Metrics. Following the evaluation protocols in [35] 23]], we assess
LoRA-P&M on five standard CL benchmarks: ImageNet-R [52], ImageNet-A [53], DomainNet [54],
CIFAR100 [55], and CUB200 [56]]. As in prior work [23 21], we split ImageNet-R into 5, 10, and



Table 2: Performance comparison with CL methods on ImageNet-R across different task lengths.

Method ImageNet-R 5 tasks ImageNet-R 10 tasks ImageNet-R 20 tasks
Acc T AAAT Acc T AAAT Acc T AAAT

Full Fine-Tuning 64.92+0.87 75.57£0.50 | 60.57+£1.06 7231£1.09 | 49.95+1.31 6532+ 0.84

L2P [33] 73.04£0.71 76.94+0.41 | 71.26+0.44 76.13£0.46 | 68.97+0.51 74.16+ 0.32

DualPrompt [58] 69.99+ 0.57 72.24£ 041 | 68.22+0.20 73.81+0.39 | 65.23+£0.45 71.30£0.16
CODA-Prompt [32] | 76.63+=0.27 80.30£0.28 | 74.05£0.41 78.14+=0.39 | 69.38+=0.33  73.95+ 0.63
HiDe-Prompt [62] 74.77+£0.25  78.15+0.24 | 74.65+0.14  78.46+0.18 | 73.59+0.19  77.93+0.19

InfLoRA [23] 76.95+0.23  81.81+0.14 | 74.75+0.64  80.67+0.55 | 69.89+0.56  76.68+ 0.57
SD-LoRA [21] 79.15+£0.20 83.01£0.42 | 77.34+0.35 82.04+0.24 | 75.26+0.37 80.22+ 0.72
LoRA 7122+ 147 78.15£1.08 | 65.72+0.75 76.14+£0.96 | 56.35£0.80 71.08+ 1.04
LoRA-P&M 81.47 £0.56 85.96 £ 0.52 | 79.95 £ 0.18 85.29 +0.93 | 76.37 = 0.09 82.77 £+ 0.71

Table 3: Performance comparison with model merging methods on 5 datasets.

Method INR-10 INR-20 INA-10 DN*-5 C100-10 CUB-10
Acc T Acc T Acc 1 Acc T Acc T Acc T
LoRA 65.72 56.35 4441 71.81 72.58 64.82
w/ Model Averaging | 76.90 74.64 54.54 81.84 87.52 74.87
w/ DARE [39] 75.09 66.03 55.87 80.58 87.28 76.57
w/ CoMA [63] 79.34 75.60 53.24 83.98 86.95 74.65
w/ CoFIMA [63]] 79.06 75.09 54.09 83.85 86.58 74.43
w/ P&M 79.95 76.37 56.57 84.71 88.45 78.29

20 tasks; ImageNet-A into 10 tasks; DomainNet into 5 tasks; and both CIFAR100 and CUB200 into
10 tasks. Specifically, DomainNet refers to the full version with all 345 classes, while DN* denotes a
variant where we select the top 200 most populous classes, following [57,154].

Following [21], we report two widely used CL metrics: average accuracy (Acc) and average anytime
accuracy (AAA). Acc computes the mean accuracy over all N tasks after all tasks is completed.
AAA further captures learning dynamics by averaging accuracy on all seen tasks after training on
each new task.

Competing Methods and Implementation Details. We compare LoRA-P&M against state-of-
the-art ViT-based CL methods, including L2P [33]], DualPrompt [58]], CODA-Prompt [32]], HiDe-
Prompt [59]], InfLoRA [23] and SD-LoRA [21]], while full fine-tuning as a form of performance lower
bound. We also compare against model merging methods, including model averaging, DARE [39],
CoMA [22]] and CoFIMA [22]]. Following prior work [35], we employ ViT-B/16 [30]], pre-trained
on ImageNet-21K and fine-tuned on ImageNet-1K as the foundation model for classification. Fol-
lowing [23]], we insert LORA (rank=10) modules into the key and value projections in multi-head
attention. We set ¢ = 0.5 in Eq.|15| with uniform sampling py = p; = p_ = 3. Our method is
optimized using AdamW [60] with an initial learning rate of 1e—3 for LoRA and le—2 for the
classification head following [61]]. We use a batch size of 256 across all datasets. Each task is trained
for 10 epochs, except for DomainNet, which is trained for 5 epochs. We report the mean and standard
deviation over three runs to reflect the stability of the results. All results are obtained by running on a
single NVIDIA L40s GPU.

4.2 Main Results

Comparison with State-of-the-Art CL Methods. As shown in Tab. 2} LoORA-P&M consistently
outperforms both the original LoRA baseline and recent CL methods, including SD-LoRA [21],
across all evaluated settings. On ImageNet-R with 5, 10, and 20 tasks, our method yields significant
gains over LoRA (e.g., +14.23% in the 10-task setting) and surpasses SD-LoRA by up to +2.61%. For
additional results on DomainNet, ImageNet-A, CIFAR100, and CUB200, please refer to Appendix E}

Comparison with Model Merging Methods. Tab. [3] compares LoRA-P&M with LoRA and
several representative model merging methods across six benchmarks. P&M delivers substantial
improvements over LORA—up to +13.6% on INR-20 and +11.1% on C100-10—highlighting the
benefits of post-training merging in preserving task knowledge. While methods such as DARE and
CoFIMA offer moderate improvements over LoRA, they consistently underperform compared to
P&M. Notably, P&M exceeds CoFIMA by +3.86% on CUB-10 and +2.48% on INA-10.
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Figure 1: P&M reduces forgetting with minimal impact on plasticity. Comparison of LoRA and
LoRA-P&M across four benchmarks. P&M achieves similar plasticity (current task performance)
while significantly mitigating forgetting (average performance drop on previous tasks), resulting in
higher overall ACC.

Table 4: Performance comparison on ImageNet-A and DomainNet.

ImageNet-A 10 tasks DomainNet 5 tasks

Method Acc T AAA T Acc T AAA T

Full Fine-Tuning | 1631 £7.89 30,04 £ 13.18 | 5146 £ 047 67.08 £ 1.13
L2P [33] 4294+ 127 5140+ 195 | 7026 +025 75.83 + 0.98
DualPrompt [38] | 4549+ 0.96  54.68 + 124 | 6826+ 0.90 73.84 + 0.45
CODA-Prompt [32] | 45.36 +0.78  57.03+0.94 | 70.58 + 0.53 76.68 + 0.4
HiDe-Prompt [39] | 42.70 + 0.60 5632+ 0.40 | 72.20 = 0.08 77.01 + 0.04
InfLoRA [23] 4920+ 112 6092+ 061 | 71.59+023 78.29 + 0.50
SDLoRA [21] 5596 +0.73 6495+ 1.63 | 72.82+037 78.89 + 0.50
SD-LoRA-RR [21] | 55.59 + 1.08 6459+ 191 | 72.58 + 040 78.79 + 0.78
SD-LoRA-KD [21] | 5424+ 1.12 6389+ 058 | 72154050 78.44 + 0.66
LoRA 4441 £057 5676 £3.54 | 6482 £230 7528 £ 1.56
LoRA-P&M 56.57+0.78  65.35+ 1.81 | 76.91+ 0.53 85.27 + 0.07

More results on DomainNet, ImageNet-A, CIFAR100, and CUB200. As in shown in Tab.
and [5] Across all four benchmarks, LoRA-P&M consistently outperforms both standard LoRA and
the recent SD-LoRA. On challenging datasets such as ImageNet-A and DomainNet, it achieves
the highest accuracy and AAA, surpassing SD-LoRA by up to +0.61% and +6.38%, respectively.
Notably, on CIFAR100 and CUB200, LoRA-P&M matches or exceeds SD-LoRA’s accuracy while
maintaining lower variance. These results highlight the robustness and generalization advantage
of post-training task vector merging over both naive LoRA and structured dynamic variants like
SD-LoRA.

Ablation on the Merging Coefficient Strategy. A potential concern is that using a uniform merging
coefficient « across all parameters might be overly restrictive. To evaluate this, we compared our
global-« strategy with a more fine-grained variant that learns separate « values for each LoRA
module. The results on ImageNet-R are summarized in Table [f] The performance differences
are negligible. We further observed that the learned per-module « values were highly similar to
each other, suggesting that a single global coefficient is sufficient to capture the merging dynamics.
Therefore, we adopt the global-« strategy for its simplicity, efficiency, and theoretical tractability.
This finding aligns with prior research [[13l], where a unified coefficient was shown to preserve the
structural integrity of the task vector A#;, which represents a coherent direction in parameter space.
In contrast, a parameter-wise o may introduce inconsistent scaling and distort the internal correlations
of Afy, thereby complicating the derivation of closed-form solutions.

4.3 Analysis

This subsection investigates how P&M enhances CL performance.

Observation @: Scaling task vectors reduces forgetting with minimal impact on plasticity. We
define plasticity as the average accuracy on the new task and forgetting as the average accuracy drop
on previously learned tasks. As shown in Fig.[I] scaling the task vector during inference (P&M)



Table 5: Performance comparison on CIFAR100 and CUB200.

Method CIFAR100 10 tasks CUB200 10 tasks
AccT AAAT Acc T AAAT

Full Fine-Tuning | 69.49 £ 0.50 80.35 £ 0.87 | 5143 £ 141 69.74 £0.93
L2P [33] 83.18 £ 120 87.69 £ 1.05 | 65.18 £2.49 76.12 + 1.27
DualPrompt [58] 81.48 £ 0.86 86.41 +0.66 | 68.00 + 1.06 79.40 + 0.88
CODA-Prompt [32]] | 86.31 £0.12 90.67 £0.22 | 71.92 £ 0.33  78.76 = 0.65
InfLoRA [23] 86.75+£0.35 91.72+0.15 | 70.82+£0.23 81.39 +0.14
SD-LoRA [21] 88.01 £ 031 92.54+£0.18 | 77.48 £0.20 85.59 & 0.44
LoRA 7258 £ 1.57 80.64 £231 | 6482 £2.30 7528 £ 1.56
LoRA-P&M 88.45 1+ 0.35 92.89 = 1.13 | 7829 £ 0.50 83.39 + 0.61

Table 6: Acc comparison between global and per-module « strategies on ImageNet-R.

Method 5tasks 10 tasks 20 tasks
Per-module o 80.53 76.82 74.68
Global « (ours)  80.88 78.48 74.13

maintains plasticity comparable to that of the standard task vector, as also observed in prior work [64],
while significantly reducing forgetting and thus improving overall performance.

Then we analyze its behavior through loss landscape visualizations and directional perturbation

experiments. Specifically, the merged model is computed as: ;=801 +a- 07, where « is
derived from Eq.[8land § =1 — cv.

Figure 2] visualizes the average loss landscape on ImageNet-R (left) and CUB (right). we visualize
merging after Tasks 4 and 7. Each subplot spans a 2D convex space formed by 6,_1 and 6}, where the
horizontal axis indicates the task-specific model weight /3, and the vertical axis indicates the previous
model weight a. Each point corresponds to a merged model, colored by its average loss across all
learned tasks. M refers to only Infer after Merging without applying Train with perturbation.

Observation @: Convex Combination lies in Low-Loss Regions. Our method determines a
coefficient o and computes the merged parameter as a convex combination. This combination
represents a direct interpolation between the starting and ending points of task 4’s training. As the

loss contours in all eight plots reveal, the convex paths between 65 and 03, 6 and 07 consistently
lie in a low-loss region. This supports our design choice of convex combination over other merging
methods, such as task arithmetic [65]], which may move the merged model into unstable regions.

Observation ®: Optimal Coefficients Locate Low-Loss Interpolation Points. We next evaluate the
effectiveness of the coefficients computed by our method. In each left-hand plot (without parameter
perturbation), the merged point obtained using our optimal « consistently lies in a lower-loss region

compared to either endpoint 6, _; or #;. This indicates that our closed-form solution reliably identifies
favorable interpolation points on the loss surface, providing empirical support for the theoretical
foundation of our merging formulation.

Observation @: Task-Vector Perturbation Encourages Flat Minima and Better Generalization.
In each dataset’s visualization, the left plot corresponds to training with standard cross-entropy (CE)
loss, while the right plot depicts training with CE loss combined with parameter perturbation. The loss
contours indicate that the additional perturbation enlarges the flatness and width of the low-loss basin
around the merged model, making it more likely for the model to fall near an optimal region. This
suggests that parameter perturbation helps avoid sharp minima and reduces parameter interference
during model merging, thereby enhancing the generalization ability of the merged model. To further
evaluate the importance of perturbation direction, we compare task-vector-based perturbation with
random Gaussian noise that has the same Frobenius norm. As shown in Tab. [/, models perturbed
along the task vector consistently outperform those using random noise. This demonstrates that
applying perturbation in the direction of the task vector provides a reliable approximation to Eq. [T}
thereby improving the performance of model merging.



CUB 10 tasks

0.0 0.5 1.0 0.5 0.0 .
a a

(e) Tasks 1-4 (M) (f) Tasks 1-4 (P&M)

Loss

0.5 1.0 0.5 0.0 .
a a

(c) Tasks 1-7 (M) (d) Tasks 1-7 (P&M) (g) Tasks 1-7 (M) (h) Tasks 1-7 (P&M)

Figure 2: Loss landscape visualization on ImageNet-R and CUB. M denotes using only Infer
after Merging (no perturbation during training). Each subplot shows the average loss surface after
merging at Task 4 and Task 7, with axes representing weights « and /3 in the convex combination
ét = ﬂét_l + af; . The convex path lies in a low-loss region (Obs. @), and our optimal « consistently
locates near the minimum (Obs. ®). Task-vector perturbation further enlarges the flat region (Obs. @).

Table 7: The ablation study of the proposed P&M.

Method INR-10 INR-20 INA-10 DN#*-5 C100-10 CUB-10
Acc T Acc T Acc T Acc T Acc T Acc T
LoRA 65.72 56.35 4441 71.81 72.58 64.82
LoRA-M 78.35 74.26 56.16 81.28 86.57 74.98
LoRA-M w/ gauss noise | 78.48 74.13 49.51 83.00 85.83 74.09
LoRA-P&M 79.95 76.37 56.57 84.71 88.45 78.29

In summary, P&M improves CL through three key aspects: (1) Post-training scaling mitigates
forgetting; (2) The convex combination of models, along with a theoretically grounded optimal
coefficient, ensures that the merged model lies near an optimal region; (3) Task-vector perturbation
perturbations enhance generalization and reduce parameter interference.

5 Conclusion

We propose P&M, a novel CL framework that incorporates post-training model merging into the
learning paradigm. By combining a theoretically grounded merging strategy with task-vector-aligned
perturbations, P&M effectively mitigates catastrophic forgetting. Our approach merges models via a
convex combination of the current task optimum and the previous model, with the optimal coefficient
derived from a closed-form, loss-based objective. To further enhance robustness, we introduce a
lightweight regularization mechanism during training that applies stochastic perturbations along the
task vector direction to improve the performance of the merged model. Integrated with LoRA, P&M
offers a memory-efficient solution and achieves strong performance across various CL benchmarks.
Experimental results show that unifying training-time dynamics with post-training merging provides
a simple yet effective strategy for building continual learners with strong generalization and stability.

Limitation. Our method estimates the optimal merging coefficient using an analytical form based on
the diagonal empirical Fisher Information Matrix. However, this diagonal approximation may not
fully capture the true curvature of the loss landscape, and thus does not always guarantee optimality.
Exploring more accurate yet efficient curvature approximations, is a direction for future work.
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A Proof and Theoretical Details

A1 Proof of Eq.[§]

To determine the optimal o, we consider the following optimization problem:
t toq . T X
¢ =argmin Yoy ~argmind_ o (1 = 07) Hi(6]) (91 - 67), 18
a; argartnln; argartmn; 5 (0t-1—0; 07) (0,—1 — 6; (18)

where ét,l denotes the inference-time model parameters after learning on tasks 1 through ¢ — 1, and
07 represents the optimal parameters for task 7. The matrix H;(6}) denotes the Hessian of the loss
function for task ¢ evaluated at its optimum ;. Substituting ét = ét,l + oy AB}, into the objective,
we obtain:
tq1,. T R

S5 (Ooa+ une; —67) B (61 + i) — 7). (19)
i=1
Expanding the quadratic form inside the summation yields:

t

17,4 A .
S5 [ = 0 THL(07) 01y — 07) + 200 (011 — 07) THI(0)A0; + o (A6)) THL(67)A0; .

i=1
(20)
Define the objective function J (o) as:
t
11,4 R
To) =325 (601 = 07) THL(07) (0,1 — 6) @1
+200(Bu-1 — 07) THI(0;)A0; + aF(A0;) THL(6;)A0; (22)
Taking the derivative of J(«;) with respect to s, we get:
dJ : ) *\ T * * *\ T * *
= ; (61— 07) THL(8:) A0} + 0 (A07) THL(6) A0 . (23)
Setting ;T‘i = 0 leads to the first-order optimality condition:
t t
> (Or1 = 07) THL(07) 207 + ar > (AG)) TH(60])A0; = 0. (24)
i=1 i=1
Solving for o, we obtain the optimal a:
t N *\ T * *
‘ _1 =65 "TH;(6H)A
O‘r _ 7Zz:1(0t 1 01) 1(91) Ht ) (25)

311 (A7) THL(07)AG
A2 Details of Eq.[T]]

Further, we want to reduce 22:1 ¢; to make the combined model better. It is evident that 22:1 0; >
S 0i(a}) holds. We also have

(50 (i) man)

¢ ¢
;51'(04:) = ;; (ét—l - ef)T H; (ét—l - 91*) - S AGTTHLAG; (26)
i—1
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The inequality holds because the second term is negative. We next explain why it is reasonable to
ignore the second term and focus only on the first. The first term on the right-hand side dominates, as it
is typically larger in magnitude and easier to compute, while the second term involves nested quadratic
forms and is costly to evaluate. Therefore, we retain only the leading term as an approximation and
obtain the upper bound:

> i) <3 3 (0 1) 11 (3 =) @)

i=1

-~

We next show why the first term is the dominant one. We aim to show that for the decomposition:

(zz ) (9t 14*) HiA9;‘>2

t t
i:Zl %Z(thl—ef)THi (91&71—9;)_ 2Z§:1A9fTHiA9;k 5

i=1

the second term is always less than or equal to the first, i.e.,

2
(Zf 1 zTHU) ¢ T
TR T ~

Proof. LetA=>"'_ a Ha;and B=Y!_, v" H;v, and define:

111

t
C = ZaiTHw = (a,v)n, (30)
i=1
where (-, )11 denotes a generalized inner product defined via weighted Hessians.

Then by the Cauchy-Schwarz inequality in inner product spaces:

t 2 t t
c? = <Z aij) < (Z a;rHiai> . (Z ’UTHZ"U> =A-B. (€2))]
i=1 i=1 i=1
Therefore:

02
5 <A = Second term < First term. (32)

This proves that, in the decomposition where the objective is the first term minus the second, the
second term is always less than or equal to the first. As a result, the first term dominates. Therefore,
we focus on optimizing the first term through regularization, which is likely to reduce the overall
objective as well.

B More Experimental Results and Details

B.1 Details of Datasets

ImageNet-R contains 200 ImageNet [66] classes rendered in various artistic styles. ImageNet-A
comprises 200 classes featuring natural adversarial examples that are typically misclassified by
standard ImageNet-trained models. DomainNet covers 345 object categories across six distinct visual
domains. CIFAR100 is a classic image classification dataset with 60, 000 images equally distributed
across 100 classes. CUB200 is a fine-grained bird classification dataset containing 11, 788 images
over 200 categories.
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Figure 3: Hyperparameter ablation on ImageNet-A. Left: performance under varying p, values
(probability of zero perturbation). Right: performance under different e values (magnitude of
perturbation).

B.2 Hyperparameter ablation

We conduct ablation studies on the hyperparameters py (probability of zero perturbation) and e
(perturbation magnitude) on the ImageNet-A dataset. As shown in Figure[3] we observe that setting
po = 0.33 and € = 0.5 yields consistently good performance, though not necessarily optimal. To
reduce tuning overhead and maintain consistency, we use pp = 0.33 and € = 0.5 as default values for
all experiments. Interestingly, when py = 0.33, pg = p4+ = p_.

B.3 Memory and Training Time Analysis

We compare the memory footprint and training time of LORA and our proposed LORA-P&M on
ImageNet-R and CIFAR100. As shown in Tab. [§] LORA-P&M introduces only a modest increase in
memory usage—approximately 1.5 GB compared to standard LoRA—due to compute and store the
diagonal empirical Fisher Information Matrix, while the cost introduced by stochastic perturbation
is negligible. . Similarly, the training time increases by 0.2 to 0.4 hours per dataset. Despite this
overhead, LORA-P&M achieves substantial accuracy gains: +14.23% on ImageNet-R and +15.87%
on CIFAR100. These results demonstrate that our method offers a favorable trade-off between
performance and resource efficiency.

Table 8: Comparison of memory usage, training time, and accuracy between model merging methods
on ImageNet-R and CIFAR100.

Method ImageNet-R 10 tasks CIFARI00 10 tasks
Memory | Time| Acc? | Memory| Time] Acct

LoRA 22.80GB 1.6h 65.72 | 22.80GB 3.1h 7258
LoRA-P&M | 24.29GB 1.8h  79.95 | 24.29GB 3.5h 88.45

B.4 Comparison with Recent Continual Learning Methods

To further contextualize our approach, we compare against several recent and competitive continual
learning methods, including O-LoRA [67]], Prompt Gradient Projection (PGP) [68]], and Consistent
Prompting (C-Prompt) [69].

Our method consistently outperforms prior approaches across all datasets and task splits, demonstrat-
ing strong adaptability and effective knowledge retention under the rehearsal-free continual learning
setting.
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Table 9: Comparison with recent continual learning methods. Results are reported as Acc on three
standard benchmarks.

Method ImageNet-R 10 tasks CIFAR100 10 tasks CIFARI100 20 tasks
O-LoRA 79.15 85.69 83.22
DualP-PGP 69.34 86.92 83.74
C-Prompt 77.14 87.82 83.97
LoRA-P&M 81.47 88.45 85.45

B.5 Memory Efficiency and Online Fisher Approximation

One potential concern of our approach is that storing one Fisher information matrix per task leads to
linearly increasing memory usage with the number of tasks. We further introduce an online variant of
our method by maintaining a running average of the Fisher information across past tasks, resulting in
a fixed-size Fisher representation. We denote this variant as LoRA-online P&M, and compare it with
our standard LoRA-P&M framework.

Table 10: Comparison between LoRA-P&M and its online variant on ImageNet-R with different task
splits. Values denote Acc (%).

Method ImageNet-R 5 tasks  ImageNet-R 10 tasks ImageNet-R 20 tasks
LoRA-P&M 81.47 79.95 76.37
LoRA-online P&M 79.97 78.12 71.20

As shown in Table [I0] the online variant performs comparably to the original LORA-P&M in the
5-task and 10-task settings. However, as the task sequence becomes longer (e.g., 20 tasks), the
performance gradually degrades due to accumulated approximation error. Mitigating this trade-off
between memory efficiency and performance stability is an important direction for our future work.

B.6 Comparison with EWC

To further validate our approach, we additionally include experimental comparisons with Elastic
Weight Consolidation (EWC) [70]. Since our method also leverages Fisher-based curvature approx-
imations, EWC serves as a meaningful baseline. As shown in Table[TT] our LoORA-P&M framework
significantly outperforms LoRA-EWC across all benchmark settings.

Table 11: Comparison between LORA-EWC and our proposed LoRA-P&M on ImageNet-R under
different task splits. Results are reported as Acc (%).

Method ImageNet-R 5 tasks ImageNet-R 10 tasks ImageNet-R 20 tasks
LoRA-EWC 71.47 65.42 55.67
LoRA-P&M 81.47 79.95 76.37

Although both EWC and our framework utilize the Fisher Information Matrix, the conceptual
foundations and objectives of the two methods differ substantially. Our approach introduces a
model merging-based inference paradigm, where a closed-form merging coefficient o is derived
to minimize the total loss increase across all tasks. In contrast, EWC introduces a Fisher-weighted
regularization term during training to penalize deviations from parameters that were important in
previous tasks.

While EWC uses the Fisher matrix to estimate the importance of each parameter during sequential
training, our method treats the Fisher matrix as a tractable approximation of the Hessian, which
facilitates computing an optimal merging direction in the parameter space. Therefore, although we
share the use of Fisher-based curvature information, our formulation, objective, and application
context are fundamentally different.
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Algorithm 2 Diagonal Empirical Fisher

Require: Dataset D = {(z;,y;)}Y ;, model fy, loss £(-, ), parameter-selection mask m € {0, 1}4
(e.g., LoORA modules), optional mini-batch size B.

Ensure: Diagonal empirical Fisher Fe R‘éo.
1: Initialize F + 0y
2: for each mini-batch B C D of size |B| = B do
3 Lec g 2 Uy folo))

(z,y)eB
4 Compute gradient g < VgLp >g € R?
5: g—goOm > keep only selected parameters (e.g., LoRA), zero otherwise
6: F+ F+ gog > element-wise square-and-sum
7: end for
8 I+ % F > normalize by the number of samples
9: return F’
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NeurlIPS Paper Checklist

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: The introduction and abstract are aligned with the paper’s overall scope and
contributions.

Guidelines:

* The answer NA means that the abstract and introduction do not include the claims
made in the paper.

* The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]

Justification: The paper discusses potential limitations and assumptions that may affect
generalization or performance.

Guidelines:

* The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

 The authors are encouraged to create a separate "Limitations" section in their paper.

* The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

* The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

* The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

* If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
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Answer: [Yes]
Justification: All theoretical claims are supported with assumptions and proofs.
Guidelines:

* The answer NA means that the paper does not include theoretical results.

* All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

* All assumptions should be clearly stated or referenced in the statement of any theorems.

* The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

* Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

* Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: The paper includes sufficient details for others to reproduce the key experi-
mental results.

Guidelines:

* The answer NA means that the paper does not include experiments.

* If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.
Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all submis-

sions to provide some reasonable avenue for reproducibility, which may depend on the

nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
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Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]
Justification: Code are shared openly.
Guidelines:

* The answer NA means that paper does not include experiments requiring code.

* Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

* The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

* The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

* The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.
6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: The paper provides necessary training and evaluation settings such as hyperpa-
rameters and data splits.

Guidelines:

* The answer NA means that the paper does not include experiments.

* The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

* The full details can be provided either with the code, in appendix, or as supplemental
material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]
Justification: Error bars or variance measures are included for the main experimental results.
Guidelines:

* The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).
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8.

10.

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).

* It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

* It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

» For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

* If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: The paper specifies the compute resources used, including hardware type and
training time.

Guidelines:

» The answer NA means that the paper does not include experiments.

* The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: The research adheres to ethical standards as outlined in the NeurIPS Code of
Ethics.

Guidelines:

¢ The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).

Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [NA]

Justification: This paper is just a basic study on continual learning, and does not directly
address societal impacts to the best of our knowledge.

Guidelines:

* The answer NA means that there is no societal impact of the work performed.

* If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.
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» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

* The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

* If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: The work does not involve high-risk models or datasets that require usage
safeguards.

Guidelines:

* The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

 Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]
Justification: All external assets used are properly cited and comply with relevant licenses.
Guidelines:

* The answer NA means that the paper does not use existing assets.
 The authors should cite the original paper that produced the code package or dataset.

 The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

* For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.
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14.

15.

* If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

* If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.
New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]
Justification: No new datasets or models are released in this paper.
Guidelines:

» The answer NA means that the paper does not release new assets.

* Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.
Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]
Justification: The study does not involve experiments with human participants.
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]
Justification: No research involving human subjects was conducted.
Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.
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* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
16. Declaration of LLM usage

Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [NA]
Justification: LLMs were not used in the development of methods or results in this work.
Guidelines:

* The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

¢ Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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