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Abstract

In this paper we present a multi-adapter retrieval augmented gen-
eration system (MARAGS) for Meta’s Comprehensive RAG (CRAG)
competition for KDD CUP 2024. CRAG is a question answering
dataset contains 3 different subtasks aimed at realistic question and
answering RAG related tasks, with a diverse set of question topics,
question types, time dynamic answers, and questions featuring
entities of varying popularity.

Our system follows a standard setup for web based RAG, which
uses processed web pages to provide context for an LLM to pro-
duce generations, while also querying API endpoints for additional
information. MARAGS also utilizes multiple different adapters to
solve the various requirements for these tasks with a standard
cross-encoder model for ranking candidate passages relevant for
answering the question. Our system achieved 2nd place for Task 1
as well as 3rd place on Task 2.

CCS Concepts

« Computing methodologies — Information extraction; Multi-
task learning; Natural language generation.

Keywords

Natural Language Processing, Large Language Models, Information
Retrieval

1 Introduction

Retrieval augmented generation (RAG) has been a popular approach
for question answering systems for some time [6], although recently
has become a very popular approach for a wide range of tasks due
to the zero-shot capabilities of large language models (LLMs) with
an appropriate prompt and access to the relevant context for the
task. Despite the existence of numerous question answering bench-
marks, many do accurately reflect the diverse usage of current RAG
systems. Thus, tracking both the efficacy of certain RAG architec-
tures as well as tracking process remains difficult. The CRAG [14]
benchmark aims to resolve this with 3 different subtasks represent-
ing realistic RAG usage scenarios. The final key element of the
CRAG benchmark is its scoring metric which explicitly punishes
hallucinations. With the rising capabilities of LLMs, increasingly
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their outputs are taken at face value, despite the known issue of hal-
lucinations. This has led to high profile incidents causing concern
with their use [1]. The CRAG score aims to punish hallucinated
answers and encourages returning missing answers, equivalent to
returning "i don’t know" from the model, by giving scores of 1, 0,
and -1 to correct, missing, and hallucinated answers respectively.
To address these various tasks, we train individual adapters for
each of the various tasks, as well as API call generation required for
accessing information in the mock API. This approach allows us to
use a single LLama 3 [2] in memory while swapping out adapters
based on the current needs.

2 Related Works

The initial approach of Lewis et al. [6] showed the benefits of pro-
viding additional text context for seq2seq models for NLP tasks that
are knowledge intensive. Using BART, they were able to improve
question answering tasks using dual biencoders for retrieval and
training the model jointly, without the need for knowing which
documents were relevant.

Adapters have become increasingly used since introduced by
Houlsby et al. [4]. LoRa [5] has become a popular adapter approach,
particularly for LLMs as they have grown substantially larger in
recent years. The use of adapters allows modifying a model’s out-
put without training the entire network, which substantially saves
on VRAM memory when training. Hu et al. [5] discovered that
when replacing a dot product between large vectors with an in-
termediate dot product of a much lower rank vector, the impacts
on performance were minimal while further reducing the training
parameters required.

Finally, Stickland and Murray [11] produced a multi-adapter
model based on BERT, an approach that our system follows. In
particular for the GLUE [12] benchmark, which is comprised of
multiple datasets, they showed that simply training a task specific
adapter per dataset, they could improve the average performance by
0.5 points for BERT, while only introducing 10% more parameters.

3 CRAG Dataset

CRAG is a question answering dataset aimed at providing a realistic
task to benchmark RAG systems as they are used in practice with
a diverse set of questions, including 8 distinct question types and
5 distinct domains. Additionally, two sources of diversity which
pose difficulty for LLMs are how dynamic a question’s answer
is and the popularity of the topic of the question. As shown in
the baseline systems, real-time answers pose a challenge for RAG
systems and they similarly struggle when the topic of the question
is less common (referred to as "torso" and "tail" questions).
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Figure 1: Pipeline for MARAGS. Each Llama in the figure represents a distinct LoRa model that can be rapidly swapped out
during inference and is trained for its specific task. These tasks include the API call generation and the final question answering,
for each task. Note, Task 1 does not include API documents in its final prompt.

3.1 Task1

For the first task the system must process 5 candidate HTML doc-
uments for generating answers, reflecting a standard web-based
RAG application. A caveat is that the 5 candidates are sampled from
the top-10 relevant documents retrieved from web search. Thus,
there is no guarantee that the relevant information for answering
the question is actually found within the top 5 documents. This
creates an interesting challenge for hallucinations, as in some cases
the answer should be easily generated by the model without the
context from retrieved documents.

3.2 Task2

Task 2 reflects a more sophisticated RAG scenario, where the system
is provided with the same 5 HTML documents from before, however
it now has access to a knowledge graph, accessible via a REST APL
The system must determine which API endpoint to call, with the
correct arguments, to retrieve additional relevant context from the
knowledge graph.

3.3 Task3

Finally, Task 3 represents an extension of Task 2, where the system
has access to both HTML and the knowledge graph API. However,
in this task, the number of HTML documents to be processed is 50.
This task is meant to measure both the computational efficiency
of the approach as well as its ability to filter large amounts of
potentially irrelevant information.

4 MARAGS Pipeline

4.1 Webpage Processing

Our webpage processing pipeline utilizes BeautifulSoup4 [10] for
generating candidate segments from the HTML documents pro-
vided to the system. A common difficulty with RAG systems is de-
termining a process for segmenting documents into smaller chunks
to narrow the candidates to relevant sections and also reducing the

length of the text sent to the model, given that a single document
could exceed the context window of a model.

In our case, we utilize the structure of the HTML to provide the
segmentation. We traverse the tree structure of the parse HTML
with breadth-first search. Any time the length of the text contained
within a node (which includes all of the text of its descendants)
is less than 2000 characters, we treat that as a segment. If a leaf
node is reached with greater than 2000 characters, the text is split
on the white space and into as many segments are needed such
that each segment is under the threshold. The segment length was
determined via inspection of HTML documents and their associated
segmentation, thus future work could treat this as a hyperparameter
and tune for performance.

4.2 API Call Generation

For Task 2 and 3, the knowledge graph mock API is available to be
used for gathering additional information. The difficulty, however,
is not only determining which API endpoint is the most appropriate,
but also the proper arguments and their formatting for getting valid
results from the APL

Each API endpoint was transformed to a Python function with
relevant documentation describing the purpose of the endpoint,
the arguments, and what the endpoint returned. Each function also
has an associated formatting function, which takes the returned
JSON and converts it into segmented strings. The doc strings for
each Python function are used to provide additional information to
help guide the model on which one is the most appropriate to use.

For training a model to generate API calls with associated argu-
ments, we use LoRa [5] to train one of the several adapters we use
with Llama 3 8B. For generating the target string for training, we
first use Llama 3 to generate an initial prediction for the API call.
Any initial prediction that successfully calls a function is retained as
a target, regardless of whether or not the relevant information for
the question is contained in the returned JSON. Initial predictions
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Table 1: A comparison of the retrieval approaches on a 500 set
sample of CRAG dev set against Accuracy and CRAG Score.

Retrieval Model Accuracy | CRAG
TF-IDF 0.2740 -0.110
Biencoder 0.310 -0.132
Cross-encoder 0.328 -0.116
Ensemble (mean rank) 0.308 -0.128

that fail to make a successful call are inspected and manually cor-
rected if the correct function call is clear from the initial prediction
and the question. Again, the manually modified targets are evalu-
ated only on successfully calling an endpoint, though not validating
that the relevant information is returned by the API. Any question
where the target cannot be quickly modified is changed to a target
of "None".

We acknowledge that this approach to annotation is not opti-
mal, as it likely results in successful, but incorrectly selected API
endpoint calls. However, manually annotating each question to
determine the correct API call and validating the returned infor-
mation were indeed relevant would have been too time consuming
given the size of the dataset.

4.3 Candidate Ranking

For candidate ranking, we attempted 4 different candidate rank-
ing approaches. We utilized TF-IDF, a biencoder, cross-encoder,
and an ensemble of the mentioned approaches (using mean rank
as the ranking metric). Our TF-IDF implementation is based on
Scikit-Learn [8]. The biencoder and cross-encoder are from the
SentenceTransformer [9] library, specifically the "multi-qa-MiniLM-
L6-cos-v1" ! and "ms-marco-MiniLM-L-6-v2" 2 respectively.

Evaluating candidate ranking in isolation is difficult, as relevant
information is not labeled, so using the system accuracy and CRAG
score is the most straight forward way to compare differences in
each system. However, to test the various systems, we use the base
Llama-3 8B model with no adapters for each retrieval approach and
use the accuracy metric to determine the best performing approach.
We use accuracy instead of CRAG at this stage for ranking, as
we think this is a better representation of how often the relevant
information retrieved. For a test set, we randomly select 500 samples
from the Task 1 dataset.

The results of this experiment are shown in Table 1. From the
results, the cross-encoder is the best performing system, thus we
used it for our retriever. We suspect that with proper tuning TF-
IDF and ensembling would be much more performant overall, but
as mentioned running extensive experimentation is difficult as it
requires LLM generation to get an overall accuracy score. Using an
LLM to label passages as relevant or not is a possible approach to
allow for tuning of just the retriever, however we did not explore
this.

Despite the cross-encoder being the most computationally ex-
pensive approach, we found it to be fast enough for processing the
candidates in the required 30 seconds per sample. In the case of

Uhttps://huggingface.co/sentence-transformers/multi-qa-MiniLM-L6-cos-v1
Zhttps://huggingface.co/cross-encoder/ms-marco-MiniLM-L-6-v2
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Table 2: A comparison across inference models test. Training
on relabeled "hittable" targets hurts accuracy, but provides
the best CRAG Score overall.

Model Accuracy | Hallucination | CRAG
Llama 3 8B 0.328 0.4440 -0.1160
- LoRa 0.398 0.602 -0.204
- LoRa (relabeled) 0.242 0.056 0.186

Task 3, it was necessary to use Python’s multiprocessing library
to process multiple HTMLs simultaneously to meet the runtime
requirement.

4.4 Retrieval Augmented Generation

Finally, with ranked candidates, we use Llama 3 8B to augment
generation with the relevant context for the question. We ran ex-
periments with 2 different prompt structures, the primary difference
between them being the ordering of the question and context.

Our initial prompt structure started with the question first, then
all of the retrieved candidates prior to the Llama model response,
however we noticed that often due to how much context would
be provided, the model would occasionally forget the question
being asked. For example a question like "What is the elevation
of Honolulu?" would result in an answer of "Honolulu population
is 343,421", indicating the model remembered the subject of the
question, but incorrectly answered with the population, rather than
elevation. Our subsequent prompt structure placed the question
after the context, which resolved the issue.

For training Llama 3, we trained LoRa models for each task
individually. Given the penalization of hallucinations in the scoring
metric, we try to take steps to mitigate further hallucinations due
to fine-tuning, as it has been observed that fine-tuning LLMs can
be a source of further hallucinations [3]. This likely applies to RAG
systems in cases where the expected answer is not answerable given
the context provided, i.e. no relevant information is given and the
question is not answerable without further context, yet the model is
trained to output the target answer regardless. Thus for our training
setup, we first relabel the target for training samples in cases where
our candidate retrieval system likely does not provide the correct
information and Llama does not know the answer without that
information. We use the provided dev set for training, with the 500
set sample used for retrieval comparison treated as our holdout set.

Our initial approach for determining which training samples
need relabeling has been explored previously [13]. A common and
simple approach to filter/relabel incorrectly® labeled samples is to
use a particular sample’s training loss after training to the point
of over-fitting. High loss examples after over-fitting likely indicate
examples that are incorrectly labeled and thus can be filtered out.
Not all samples with high loss will be incorrect labels, instead
simply being hard examples, yet typically the benefit of disposing
of incorrectly labeled samples outweighs ignoring difficult ones.

Initial experiments, however, indicated that this method did not
work well on finance based questions. Further analysis would be
required for a more definitive answer, though we suspect that this

3"Incorrectly” here simply means in the context of our retrieval system, not that the
provided answer is not true.
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Figure 2: CRAG Score results on the test dataset calculated via manual assessment.

is due to the fact that the loss in hallucinated answers when deal-
ing with numeric outputs is likely less than typical string outputs.
For example, with a question "What was Apple’s closing price to-
day?", with a hypothetical correct answer "$203.51", a prediction of
"$204.52" would likely not result in filtering via this method. Com-
pare that with a question such as "Which movie won Best Picture in
1990?" with an answer of "Driving Miss Daisy" and a prediction of
"Dancing with Wolves", the loss will be comparatively much higher.

We instead determine these samples by first running the system
with the base Llama 3 model, with a prompt indicating to always
produce a prediction for each of the 4 candidate retrieval approaches
mentioned previously. We use GPT-40 to evaluate whether any of
the generated answers are correct. If any are correct, the original
label is retained for the training, otherwise "i don’t know" is used
as the target label. In the case of false premise questions, we always
retain the original label as the target label. We repeat this process
for each task, given that each has access to different data sources,
to generate a training dataset for each LoRa adapter.

We use the llama-recipes repository [7] for training the LoRa
adapters, utilizing the default LoRa configuration. The only modifi-
cations were changing the LoRa rank from 8 to 256 and increasing
the weight decay from 0.01 to 1.0.

We demonstrate the effectiveness of relabeling in Table 2. We ran
3 different answer generation setups for the 500 sample Task 1 hold
out set we created. The first is an unmodified Llama 3 8B model,
the second is a LoRa model using the original targets, and the final
a LoRa model with relabeled targets. As shown, using the original
targets provides the best accuracy, but also worsens hallucinations

over the base model. While using the relabeled targets hurts accu-
racy, it also substantially reduces hallucinations, providing the best
CRAG Score among the three.

5 Results

As part of the competition, a manual evaluation was conducted
on user submissions. The automatic evaluation throughout was
dependent on scoring via GPT-3.5 Turbo, given that correct user
submissions may not have been exact matches to the expected an-
swer. However, issues such as prompt injection still pose problems
for automatic evaluation via LLMs. The results of our system across
the various aspects of the dataset are shown in Figure 2. As can be
seen by the results, our system suffers many of the problems the
dataset is meant to expose with most RAG systems.

Similar to the baseline systems for CRAG, finance was the most
challenging domain. The exact reason warrants further analysis,
though contributing factors likely include LLMs known issues with
number processing and simple mathematics and the fact that much
online finance data is often not stored in plain text, but rather
visualizations such as graphs.

Dynamism proves to be the most challenging question catego-
rization, with model performance steadily decreasing as a question
becomes more dynamic. Real-time questions prove to be the most
challenging question category of any of the breakouts. Our prompt
structure did not include any meta-data provided by the HTML
documents, such as publish data or access date, which likely would
have improved performance on dynamic questions, although likely
not significantly.

The performance difference between head, torso, and tail ques-
tions appeared less substantial than our original expectations, though
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clearly performance drops off as popularity falls. Interestingly, Task
3 underperforms the other tasks in head, torso, and tail. We sus-
pect that including substantially more search results includes over-
lapping entities / subjects, at which point conflicting information
would be difficult to resolve.

Finally, the most interesting results in the question type results
are the false premise category. Our system was able to achieve
scores similar to the SOTA systems featured in the CRAG paper,
despite obviously being a much smaller system overall. Interestingly,
the false premise questions were the only type where our training
setup always kept the original target label, rather than mapping
the target to "i don’t know".

6 Future Work

Observations we had during the competition were instances of
catastrophic forgetting due to our attempts to reduce hallucinations.
For instance, the question "Who has had a longer musical career,
Sharika or Machine Gun Kelly?" is answerable by Llama without
context, simply based on the knowledge it has of the two artists.
However, after LoRa training, questions like this and others were
often answered with "i don’t know" in cases where the answer was
not discoverable in the retrieved information. Methods to prevent
this is something we are interested in pursuing in future work.

Additionally, we hope to explore larger Llama models, 70B+,
in the future for this task. We were unable to get the 70B model
running in the competition compute environments, so did not spend
much time looking at larger models. However, it is very likely
moving to larger models would provide a substantial improvement
over the 8B model.

7 Conclusion

In this work we presented MARAGS, a multi-adapter solution to
the CRAG dataset. We demonstrated the effectiveness of training
individual LoRa adapters for the 4 tasks in the pipeline, specifically
API call generation and Task 1,2, and 3 answer generation. CRAG
presents a variety of different tasks and questions to allow the track-
ing the progress of various methods used to build RAG systems. The
penalization of hallucinations is a unique and important feature as
future Al systems become increasingly common throughout society,
as hallucinations hurt user trust in these systems. We discussed
our methods for reducing these hallucinations, but they are not
without cost, as in some cases the model fails to output previously
known knowledge. Clearly the importance of balancing these two
factors is a key to leveraging LLMs to their full potential, while also
improving user trust.
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