CLEAR: Command Level Annotated Dataset for
Ransomware Detection

Barak Bringoltz
Samsung Semiconductor Israel Research and Development Center
Tel Aviv, Israel
barak.b@samsung.com

Elisha Halperin
Samsung Semiconductor Israel Research and Development Center
Tel Aviv, Israel
elisha.h@samsung.com

Ran Feraru
Samsung Semiconductor Israel Research and Development Center
Tel Aviv, Israel
ran. feraru@samsung.com

Evgeny Blaichman
Samsung Semiconductor Israel Research and Development Center
Tel Aviv, Israel
evgeny.bl@samsung. com

Amit Berman
Samsung Semiconductor Israel Research and Development Center
Tel Aviv, Israel
amit.berman@samsung.com

Abstract

Over the last decade, ransomware detection has become a central topic in cyber-
security research. Due to ransomware’s direct interaction with storage devices,
analyzing I/O streams has become an effective detection method and represents
a vital area of focus for research. A major challenge in this field is the lack of
publicly accessible data featuring individual command labeling. To address this
problem, we introduce the Command LEvel Annotated Ransomware (CLEAR)
dataset, a large-scale collection of storage devices’ stream data. The dataset com-
prises 1,045 TiB of I/O traffic data, featuring malicious traffic from 137 ransomware
variants. It offers two orders of magnitude more I/O traffic data and one order of
magnitude more ransomware variants than any other publicly accessible dataset.
Importantly, it is the only dataset that individually labels each I/O command as
either ransomware or benign activity. This labeling enables the use of advanced
sequential models, which we show to outperform existing state-of-the-art models
by up to 82% in data loss prevention. Additionally, this allows us to create new
tasks, such as data recovery, by selectively reverting only the commands recognized
as ransomware while preserving benign activity. The CLEAR dataset also includes
supplementary auxiliary features derived from the data, which we demonstrate
to improve performance through feature ablation studies. Lastly, a critical aspect

39th Conference on Neural Information Processing Systems (NeurIPS 2025).

of any ransomware detection model is its robustness to new, unseen ransomware
variants, as new strains constantly emerge. Therefore, we offer a benchmark based
on our dataset to evaluate performance against unknown ransomware samples and
illustrate its application across different models.

1 Introduction

Ransomware is a cyber attack that encrypts a victim’s data until a ransom is paid. It is widespread,
affecting healthcare, government, law enforcement, and education institutions [1], making it a serious
threat to data privacy and national security. Ransomware detection is an active area of research
in cybersecurity, with detection techniques falling into one of two categories: ‘static’ methods,
which identify malicious software signatures, and ‘behavioral’ methods, which detect patterns in the
behavior of computing systems infected by ransomware. In recent years, machine learning techniques
have become widely used for ransomware detection, with features generated at different levels of the
software stack — from network activity traces down to low-level disk I/O commands [2].

While focusing on disk I/O data restricts the available features, it allows the detection process
to happen entirely on the disk hardware, which enjoys two major advantages. First, it would be
impossible for the ransomware to shut the detection process down as it may do with software-based
solutions. Second, the detection suite can lock the disk to avoid further damage and even reverse
the damage already done, e.g., by buffering destructive operations, and discarding them if they are
identified as malicious [3]]. This has led to a growing body of research focusing on ransomware
detection from I/O traces; however, most datasets in the field are closed, and publicly available
datasets are limited in both their size and the scope of their ransomware coverage. Furthermore, all
available datasets label the data only at the stream level — labeling streams containing any amount of
ransomware activity as entirely ransomware, potentially mislabeling any benign commands present
in the stream.

To address these issues, we introduce our Command LEvel Annotated Ransomware (CLEAR) dataset.
It is a large-scale dataset, containing over 100 times more I/O traffic than other publicly available
datasets, over 10 times more ransomware variants, and a variety of benign traffic patterns. All data
in CLEAR is labeled at the command level, denoting the source of each command as benign or
malicious. To demonstrate the effectiveness of our dataset, we train and evaluate different models
on it — representing the current state-of-the-art, as well as our own baseline models — and show that
models trained using command-based labeling outperform those trained without it. We then further
analyze the results to show that the improved performance of the command-based models represents
actual learning of individual command classification, and that this classification is not just a product
of the command’s features, but tied directly to the rich sequential structure of the data.

Finally, CLEAR’s large collection of ransomware samples enables us to construct a benchmark for
model performance on unseen ransomware. We measure a model’s out-of-distribution performance
by first clustering our ransomware samples and then training and evaluating on different clusters.
Since new ransomware variants emerge regularly, robustness to unseen ransomware is a valuable
metric. The CLEAR dataset can be found here [1_1 and the code and benchmark can be found here El

2 Storage I/O data

The literature on ransomware detection uses data acquired from different layers in the SW stack,
among them the storage device’s I/O data, which we define as the set of attributes associated with the
computer commands reading from and writing to the storage device.

2.1 Structure of Data

The basic I/O attributes appearing in the literature and that we primarily consider are the following
four: the floating point timestamp denotes the time of command initialization, opcode is a categorical
attribute denoting the command operation (read: R or write: W), the integer size is the number of

Thttps://www.kaggle.com/datasets/johndoenvme/clear-command-level-annotated-ransomware
Zhttps://github.com/ravensorioles/rwdetection

bytes the command refers to, and the ordinal of fset denotes the byte offset on disk (disk addresses
in the range [of fset, of f set + size) constitute the storage space referred to by the command). In our
case, this data comes from NVMe streams, but more generally, it can come from SATA streams as
well.

Because the very nature of ransomware is to read data, encrypt it, and then destroy the original data,
several works (e.g. [4]) calculate the overwritten byte volume to derive useful features. Inspired by
such ideas, we complement the fundamental NVMe attributes with additional derived features. In
particular, for each command ¢ with opcode(c) = W, we identify the command ¢’ that is the latest
of all earlier commands with opcode(c’) = R and that has overlap OV 4g with the bytes of ¢ (WAR
for “Write-After-Read’). We also calculate the time-lapse Atwar(c) = timestamp(c) — timestamp(c’)
between ¢ and ¢’. In the same vein, we calculate three additional overlaps and time lapses for
(opcode(c), opcode(c’)) = (R, R), (R, W), (W, W). Similar derived attributes were defined in [5]. We
pictorially demonstrate the way we calculate these derived properties in Table[5|of Appendix [A.T} We
also calculate the per-command time difference 6¢(c) = timestamp(c) — timestamp(c — 1) for each
command c to keep track of the I/O rate.

Finally, we note that it is often useful to have additional, higher level semantic attributes per command,
like the file system path that the I/O command’s of f set maps to, the name and ID of the computer
process that initiates the I/O command, the ID of the host initiating the command, and the name
space ID of the disk associated with the of f set. These quantities can be used for feature generation,
labeling, pre-processing, and data filtering.

To summarize, we use Table[6|and Table[7]of Appendix [A.T|to list the SW stack source and the types
of the different per-command attributes in our data.

2.2 Existing Storage I/O Datasets

Almost all ransomware detection research based on storage 1/O uses data from different combinations
of the attributes mentioned in Section For example, the authors of [7] collect data about the
number of bytes read or written and the distributions of type and path of accessed files. Derived
attributes like the overwrite volume are calculated in works such as [4, 8, 9, 10, 5] (with [4] also
reporting the use of file type data, directory information, and written bytes entropy). More recently, in
a series of papers by [L1]], [12]], and [13], the authors collect I/O attributes as well as memory access
attributes and entropy data.

In Table [T) we present the existing datasets from the last decade, including those mentioned above. As
the table shows, we found that out of 15 works that use I/O attributes for ransomware detection, only
3 make their data publicly available ([12} |5, [13]]). Unfortunately, none of them label the data at the
command level, making it impossible to develop high-granularity models. Inspecting these 3 sets, we
see that they contain the four fundamental attributes described in Section 2.1} the RanSAP dataset
also contains the write-bytes entropy, and the more recent RanSMAP dataset adds to that memory
access patterns (rather than just storage). None of them contain derived attributes of the OV and At
type mentioned in Section [2.1] which are computationally expensive to generate (see Section).

Calculating the number of commands and the total Byte traffic associated with the I/O streams, we
find that all 3 open datasets combined have ~ 5x 10° commands and a traffic of ~ 27 Tebibytes. These
are modest sizes, and in the next section, we show that our dataset has nearly X5 more commands and
a traffic that is nearly x40 larger. Finally, the ransomware coverage of all the 3 datasets together is also
modest (not greater than 20 samples), while the coverage of our set is nearly X7 more comprehensive.

3 The CLEAR dataset

Our dataset CLEAR — the Command LEvel Annotated Ransomware — is annotated as benign or
ransomware at the command level. CLEAR contains 6120 workloads of ransomware activity mixed
with up to 3 different benign applications running concurrently, and chosen out of a set of 17 benign
user applications like git, 7z, pip, secure deletion, and others that are very much adversarial to
ransomware classification (like the encrypting application AESCrypt.exe). The NVMe streams

3For a contemporary review we refer to [6]], and to a more general review on Machine-Learning for ran-
somware detection, using features at various levels of the SW stack we refer to [2].

Table 1: A comparison of the CLEAR dataset with existing datasets (published and unpublished).

. Total .
Dataset (year) ;/1;?]1;%111 Variants traffic (0N Cl(; I;lenllsand W(l)\fl?l(sg ds
[TiB]
CLEAR (ours, 2025) 137 1045 Win v v
RanSMAP [13]] (2025) Y 6 8 Win X v
Win,
DeftPunk [3] (2024) 13 11 Linux X v
RanSAP [111[12] (2022) 7 8 Win X X
Reategui et al. [6] (2024) 16 Win, X X
gul ’ Linux
Zhu et al.[14] (2024) 10 Linux X v
Higuchi et al. [15] (2023) 5 Linux X X
Ma et al. [16] (2022) 32 on, - x X
X NA

MimosaFTL [10] (2019) 14 Win X X
SSD-insider [9}[17] .

(2018) 8 Win X v
Amoeba [[18]], 2018 1 Linux X X
Paik et al. [8], 2018 1 Win X X
Redemption [4]], 2017 29 Win X X
Shukla et al. [7]], 2016 3 Win X X

also unavoidably involve other OS processes that are benign — like disk indexing and Windows
updates. The parameters of all these benign applications also vary in the dataset (for example, the git
application cloned different repositories, the archiving/encryption applications processed different
directories, and we have turned on or off the disk indexing utility). The ransomware activity in
these workloads was generated by choosing and detonating a single strand per workload out of 137
ransomware variants that represent 49 ransomware families. An additional variability was introduced
by initiating the ransomware processes after 4 different time delays of 0, 25, 50, and 75 seconds post
the workload start.

All data was collected on emulated SSDs. The SSD emulations attacked by the ransomware contained
different types of victim data comprising up to 44 different file types and chosen from an in-house
curation of victim files and from the large-scale NapierOne mixed file benchmark — especially
designed for ransomware research [19]. The SSDs were of disk sizes 100GB and 512GB with
occupancy disk levels in the range 10% — 97%. In total, we had 10 compute environments, all using
Windows 10 Home Edition 22h, with 16GB RAM, and an NTFS file system, emulated with and
without a disk indexing process, as it was seen to significantly change the NVMe stream. CLEAR also
contains pure benign workloads: 6079 of these are in-house generated using the same infrastructure
mentioned in the previous paragraph, only without detonating a ransomware payload. Additionally,
CLEAR has 686 workloads downloaded from 3 subsets of the data curated by the Storage Networking
Industry Association (SNIA) [20} 211, 22].

All the data in CLEAR contains the four fundamental I/O storage attributes described at the beginning
of Section [2.1] and all in-house data also contains the path, process name, and process ID associated
with each command. In total, CLEAR contains over 23 x 10° /O commands in 12,885 workloads,
which reflect the processing of more than 1,045 Tebibytes of data traffic. This is a significantly larger

Normalized histogram Normalized histogram

Benign Benign
Ransomware 20 Ransomware

10

0.0 02 0.6 08 10 0.0 0.2 0.4 0.6 0.8 1.0

Reaul‘jl1 Volume Fraction Write aﬂér Read Vclum‘e Fraction
Figure 1: Normalized histograms for the fracg and fracy g across 5,809 benign chunks and 21,243
ransomware chunks. All chunks have the same traffic volume equal to 0.5GiB.

dataset than any other in the literature (open or closed), both in size and in malware coverage. For a
more detailed description of our data and its variability, see Appendix[A.2]

To briefly visualize the data, we aggregate subsets of commands into chunks of traffic volume 0.5
GiB each. We do so for a subset of the data containing 185 workloads with ransomware. Per such
chunk we calculate the fraction of traffic volume generated by read commands, fracg, and the fraction
of traffic volume contained in Write-after-Read byte overlaps, fracyag. We plot the results in Figure|T]
for benign chunks (containing no ransomware commands) and for ransomware chunks (those with
at least one ransomware command). From the histograms, it is easy to see that these fractional
features contain very useful information that can be used to classify the chunks; especially, we see
that ransomware activity, which encrypts and writes the same volume it reads, has fracg =~ 1/2. We
also see that much of this data is overwritten so that fracyag =~ 1/2.

4 Collection Method

Our data collection setup is based on emulating the ransomware attacks on a virtual machine (VM).
The VM was set up using QEMU version 4.2.1 system emulator running on a host machine with
Ubuntu 20.04 and CPUs Intel(R) Core(TM) i9-10900F and i9-11900K. The guest OS is a Windows
10h22 Home edition. The CPUs emulated were either the QEMU default or the host CPUs. The
emulation software running on the host was Python-based and initiated the ransomware externally,
allowing us to know the identity of the parent ransomware process on the VM. To avoid situations
where the ransomware fails to connect to its command and control center and stops operating, the
VM was connected to the internet. Ransomware samples were obtained from MalwareBazaar [23]].

To capture the I/O stream logs, we use the Xperf component of the Microsoft Windows Performance
Toolkit, providing us with an NVMe command log for each emulated workload, and use it to generate
the basic I/O attributes. The per-command log also contains two semantic attributes — the command’s
file path and the name and ID of the process initiating the command. An additional useful Xperf
output is the process tree of all processes in the log. This semantic data was critical in our ability
to label the data at the command level (see below). We validated the robustness of the Xperf log by
comparing it to the low-level output of the QEMU SSD tracer and found that the fundamental I/O
attributes were identical for an absolute majority of commands. In certain rare situations, however,
we observed that Xperf integrated sets of NVMe commands of the same type (e.g., a sequential set of
read commands) into large artificial commands whose volume is the associated sum of the volumes
in the set. We identified all such sets as having a command with size > 2MiB. This allowed us to
deconstruct the artificial integrated commands into individual commands of size < 2MiB by aligning
them linearly along the of f set and timestamp axes.

Researching Xperf logs, we identified two patterns that we used to develop CLEAR’s per-command
labeling. First, we observed that most data read by the ransomware parent process (or any of its
descendant sub-processes) is written to disk post-encryption by one of the following processes:

(1) the ransomware parent process itself or (2) any of that process’s descendants or (3) the main
Windows OS ‘System’ process. The second observation involves the way file system paths change
upon encryption. In many cases, all post-encrypted files are the same as pre-encrypted, except for a
ransomware-generated extension. Other changes include lower-casing, and some paths not changing
at all. These observations allowed us to label all commands in a stream using the following algorithm
applied per workload.

1. Label all commands whose process is equal to, or that descends from, the parent ransomware
process as ransomware.

2. Calculate the set of pre-to-post encryption path changes, and normalize all post-encryption
paths to their pre-encrypted form.

3. Scan through all unique normalized paths and mark all those accessed in step 1 as ‘black-
listed’. Then add all commands whose normalized path is blacklisted into a ‘potentially
ransomware’ list.

4. Mark all commands in the ‘potentially ransomware’ list which were initiated with the
‘System’ process as ransomware

To make sure we do not contaminate the dataset with workloads where ransomware failed to operate,
we discard all workloads whose total traffic volume V encrypted by ransomware obeys V < 0.5GB.
We also monitor a set of Honeypot files and discard workloads for which these honeypots were not
encrypted.

Finally, we calculate the 8 derived OV and At quantities mentioned in Section [2.1] by finding, per
command c, the latest of all read or write commands that are in the history of ¢ and that have byte
overlap with those of ¢. Since each log may have up to O(107) commands, this is by far the most
expensive processing of the raw logs. We implement the calculation of these overlaps with two
dynamically updated causal databases that rely on cuckoo hash tables, and keep a record of all the
read and write intervals in the workload. Because these auxiliary command attributes generation can
be computationally expensive we have already precomputed them for the entire dataset and provide
them as part of the published dataset for the benefit of the community.

5 Experiments

To demonstrate the usefulness of our dataset, we train and evaluate several models on it. Full
implementation details of the models can be found in Appendix [B]

5.1 Aggregative Models

The two SotA ransomware detection algorithms we compare to are aggregative tabular models -
extracting dozens of statistical features from large chunks (e.g. tens of thousands) of I/O commands,
and using those to classify the entire chunk. Due to the lack of published code, we developed a
Random Forest (RF) model to represent a typical tabular approach in the literature, inspired by [9].
The second model is DeftPunk [3]] - a Decision Tree combined with XGBoost [24]]. We also train two
more baseline models - a convolutional UNET architecture and a Patch Level Transformer (PLT),
representing our best effort with aggregative models. Both partition each chunk into 100 consecutive
patches, generate 181 statistical features from each patch, and concatenate them to form the input
sequence. The PLT, especially, is already a powerful sequential model that outperforms all other
aggregative models. However, it still falls short of our command-based models described in the next
section.

5.2 Command Based Models

To fully utilize our dataset’s per-command labeling, we evaluate two classes of sequential models,
both of which work directly on the command stream without aggregation and predict a label for each
command. The first is Command Level Transformer (CLT) architecture, with 3 self-attention encoder

“Excluding from these the System commands that access the blacklisted files after any commands by
processes known to be benign (e.g., processes in Table [I0]initiated by the emulation). This exclusion is done
since we know a benign process accesses data only if the malicious System process has already ‘released’ it.

layers, each following the architecture presented in [25], and a final classification layer comprised
of a fully connected projection layer followed by a sigmoid function. The output is a vector of
label predictions - one for each input, and the training loss is binary cross-entropy, applied to each
of the predictions. The second model class is an LSTM architecture, mirroring the Transformer
but replacing each self-attention layer with an LSTM layer. We trained two variants, one biLSTM
following the architecture presented in [26]], with a first bidirectional layer, and one uLSTM where all
layers are unidirectional. Hidden dimensions of all models are 128, and all models were trained with
an input length of 1000 commands. The CLT and biLSTM were also evaluated on the same input
length, while the uLSTM was run continuously on the input stream without resetting its internal state.

5.3 Command Tokenization

Each I/O command contains 7 numerical features of different types, altogether containing up to 40
digits per command. Common tokenization methods (e.g., those presented in [27]) would thus result
in dozens of tokens per command and prohibitively long sequences. Instead, we first compress the
commands by quantizing each feature into a few bits, and then tokenize the compressed representation
by concatenating those bits into integer tokens. The quantization process uses domain knowledgeﬂ to
preserve as much information as possible, and is described in detail in Appendix [C] Table 2] specifies
the quantization method and the bit output for each feature. To avoid a large vocabulary size, we split
the resulting 18-bit tokens into two 9-bit tokens and trade effective context length, which is reduced
by a factor of 2, for a smaller vocabulary size. To make sure the learning algorithm treats the two
tokens differently we add a 10" “index” bit to each token in the pair — index; = 0 for the first and
index, = 1 for the second — thus fully separating the tokens in the embedding space, at the cost of
increasing the vocabulary size to 1024.

Table 2: Quantization and tokenization of an I/O command. The bits are concatenated into a pair of
9-bit tokens, and an additional 10" bit is added to each token as its index in the pair.

Feature | Operation | Bits Feature Operation | Bits
ot log N 4 of fset take MSB 4
size log N 4 of fset take LSB 2
opcode None 1 Auxilliary | binarize 3
index; always 0 1 index, always 1 1

5.4 Results

The common metrics used in the literature such as Precision, Recall, and F1 score (for example see
[L3]), are all heavily dependent on the aggregation methods used to chunk the I/O stream, and thus
difficult to compare between different models, using different aggregation methods (or none at all).
We instead use metrics that are agnostic to aggregation and directly measure the rate of mislabeled
I/O traffic. Since our data is labeled for each command, we can accurately measure these metrics. We
opt to use the following metrics:

1. Missed Detection Rate (MDR): Measures the percent of missed ransomware traffic out
of the total ransomware traffic volume, calibrated for a specified False Alarm Rate (FAR)
workpoint. We use the FAR work point of 1 false alarm per 50 GiB of data traffic.

2. MegaBytes to Detection (MBD): The volume of traffic corrupted by the ransomware before
detection, as a measurement of the severity of the damage caused by the ransomware. In
particular, we measure the cumulative distribution function (CDF) of the MBD across all
ransomware streams and quote its third upper quantile as MBDj3. This is done under the
same work point as the MDR.

3. Area Under the Curve (AUC): Measuring the tradeoff between FAR and MDR, and is
agnostic to any specific choice of workpoint.

Se.g., typical command size and 6t distributions, typical file sizes and OS behavior for of fset bits, etc.

We optimized all models and Table [3] summarizes the best results for each model. The details of the
hyper-parameter optimization appear in Appendix |D| As expected, the more powerful aggregative
models, especially the sequential PLT, outperform the SotA tabular models on aggregated data and
represent our best effort for a fair comparison with the command-based models. However, we see
that all command-based models outperform the aggregated models (or for MDR - the differences are
within the STD range), despite being much smaller in size. Among the command-based models, both
the biLSTM and the Transformer show similar results, with the clear winner being the continuous
uLSTM, which retains infinite history. This suggests that once we move to a command-based
approach, the main difference is not the specific architecture but the context it uses to classify a
command. In the next sections, we show that such models do not simply revert to being aggregative
or only use the predicted command’s features, but rather rely on context for their predictions.

Table 3: Measurements of MDR, MBDs, and AUC for our models, with standard deviation (STD).

MobEL MDR MBD; AUC ComMAND LEVEL ~ PARAMETERS
RF 9.07+1.8 286+33 0.995843+0.000502 X 10K
DerrPunk 6.74+1.2 282+34 0.990172+0.000759 X 260K
UNET 1.34+0.4 195+41 0.998994+0.000093 X 153M
PLT 1.16+0.2 15718 0.998845+0.000116 X 17M
CLT 1.42+0.4 77x10 0.999276+0.000112 v 430K
BILSTM 1.24+0.3 7607 0.999322+0.000106 v 400K
uLSTM 0.36+0.1 50+03 0.999664 + 0.000065 v 530K

5.5 The Importance of Context

We trained a series of biLSTMs with increasing context lengths and plotted the results in Figure[2] We
see that performance steadily improves with more context. Since they predict labels per command, this
means that the more context each command “sees”, the better the model’s prediction on it becomes,
suggesting a rich sequential structure of the command stream that the command-based models can
exploit, rather than simply predicting based on the command’s features alone. Furthermore, if we
consider the continuous uLSTM model as having "infinite history", we can see that it performs
significantly better than models with a limited context window.

5.6 Command Accuracy

Next, we want to show that command-based models do indeed learn low-level patterns in the data, and
not simply revert to some global aggregative function applied equally to all of their outputs. To demon-
strate this, we slice the data into 1000 command slices and calculate the prediction accuracy per slice.

Model and Context 7 1.0 . ULSTM
biLSTM - 62
biLSTM - 125 5
biLSTM - 250 ==+ Random e
biLSTM - 500 0.9 o DRl
biLSTM - 1000
uLSTM - Continuous

160 — Aggregative With Oracle

140

120 : Q2 - 08
Q e
2 T 3
100 s <07
B
80 "
i L 0.6
60
® 0.5
1 2 3 4 0.0 0.2 0.4 0.6 0.8 1.0
MDR [%] Fraction of ransomware commands in slice

Figure 2: The dependence of MBD3; and MDR Figure 3: Mean accuracy of the uLSTM on data
on context length for command-based models. slices (1000 commands) plotted against the frac-
tion of ransomware commands in each slice.

We group the slices by the fraction of ransomware commands they contain, measure the model’s
average accuracy on each such group, and plot the results in Figure 3| The solid line represents the

best an aggregative (single output) model can do with an oracle — always predicting the majority in
the slice. We see that the model’s accuracy is > 85%, even on the most challenging slices whose
ransomware content is ~ 50%. The model can still separate the mix into ransomware and benign
commands with significantly better than the best aggregate accuracy, showing command-level pattern
recognition capabilities.

This demonstrates that the data is rich enough to support individual command predictions, as well
as the usefulness of our per-command labeling, as it opens possibilities for learning tasks at the
individual command level. Such tasks can be, for example, recovering only the data corrupted by
the ransomware, or simply faster detection, as it is no longer necessary to aggregate thousands of
commands before a prediction can be made.

5.7 Feature Ablation

To measure the contribution of our features and tokenization to the overall performance of our models,
we measure it for ablated versions of our models’ token space. We do so by training a new set of CLT
models while dropping sub-spaces of the embedding space as per their description in Section[5.3]
The results of this study are presented in Table 4} In particular, we see that the auxiliary features we
provide with our dataset positively contribute to the overall performance of the model.

6 Unseen Ransomware Benchmark

Due to the large number of ransomware variants in the wild and new variants that regularly emerge,
an important consideration for any detection model is its ability to generalize to ransomware types it
has not seen during training. To evaluate this, we created an ‘unseen’ ransomware benchmark.

Since differently named ransomware may, in actuality, be similar in their behavioﬂ we aim to ensure
that we do not have data leaks due to similar ransomware misclassified as unseen. To achieve this, we
first perform a clustering analysis of the 137 ransomware variants we have in CLEAR. As a distance
metric, we use TLSH [28]] with a similarity score of 100 [29] (£40 scores produced the same clusters).
The analysis shows that the number of independent ransomware families in CLEAR is 47, with the
full list of clusters in Appendix [A.3] We now divide the ransomware variants into 3 roughly equal
groups and perform 3 test runs. For each run, we mix two groups and evenly split them into train
and in-distribution test sets. The third group is the out-of-distribution test set. The benign streams
used for the train and test data remain the same throughout the splits, to provide the same negative
samples to the different id and ood tests. Finally, we average the results of all three runs to get an
evaluation of the difference in performance between the in- and out-of-distribution sets. The running
code, including the group splits, is available in our code repo. Here we provide an example run for
several of our models, in Figure [d] We can see that all models degrade to some degree over unseen
ransomware, with tabular models degrading more than the sequential models.

Table 4: Feature ablation for the command-based sk ,
models. Each feature subset was ablated together. 500 e
The numbers represent the ratio by which the w0 Test:
corresponding metric increased. % o
Feature Performance Degradation £ :ﬁ;—
Subset MDR | MBD; [1-AUC e
of fset x2.1 x1.6 x2.1 0 |
ot x1.7 x1.3 x1.5 "
opcode x14 | x1.2 x1.4 +
size X13 X]l X17 0 5 10 15 20 25
Auxilliary | x1.3 x1.1 x1.3 HER T
index x1.1 x1.1 x1.0 Figure 4: In and out of distribution MBD; and

M DR results. Error bars represent both run vari-
ability and individual run uncertainty.

®Due to sample mislabeling, code or algorithm copying between ransomware groups, etc.

7 Limitations

The first limitation is the absence of traffic-based features, such as traffic data entropy. These can
further enrich our data, and we are currently working on expanding the CLEAR dataset to include
recordings with such features as well. A second limitation is the lack of data generated under the
Linux OS. While most ransomware attacks target Windows systems, There are also Linux-based
attacks, and we intend to expand the CLEAR dataset to include Linux data in the future. The
third limitation is that our data was collected under a controlled environment, and not "in the wild".
However, due to the damaging effects of ransomware attacks, collecting such data from real systems
is infeasible.

8 Conclusion

We introduce the CLEAR dataset, the largest publicly available collection of ransomware activity
traces, containing over 100 times more traffic data and over 10 times more ransomware variants. This
is also the only publicly available dataset with per-command labeling, allowing for the identification
of low-level command-based ransomware patterns lost under aggregation, and thus enabling new
possible tasks. We supplement the data with generated auxiliary features and, through feature ablation,
show them to improve model performance.

We train several baseline command-based algorithms and demonstrate that they outperform the SotA
tabular models as well as "best effort” aggregative models. We further show that their strength comes
from recognizing command-level patterns in the data, and not simply from better aggregation or
individual command features. Finally, we provide the code for the new models and the pipeline, as
well as a benchmark for evaluating a model’s robustness to previously unseen ransomware variants.

10

References

(1]

(2]

(3]

(4]

(5]

(6]

(7]

(8]

(9]

[10]

[11]

[12]

[13]

Harun Oz, Ahmet Aris, Albert Levi, and A. Selcuk Uluagac. A survey on ransomware:
Evolution, taxonomy, and defense solutions. ACM Comput. Surv., 54(11s), September 2022.
ISSN 0360-0300. doi: 10.1145/3514229. URL https://doi.org/10.1145/3514229.

Jamil Ispahany, Md. Rafiqul Islam, Md. Zahidul Islam, and M. Arif Khan. Ransomware
detection using machine learning: A review, research limitations and future directions. IEEE
Access, 12:68785-68813, 2024. doi: 10.1109/ACCESS.2024.3397921.

Junhong Yin and Kyungtae Kang. Defense and recovery strategies for flash-based storage under
ransomware attacks: A survey. In 2025 International Conference on Electronics, Information,
and Communication (ICEIC), pages 1-4, 2025. doi: 10.1109/ICEIC64972.2025.10879685.

Amin Kharraz and Engin Kirda. Redemption: Real-time protection against ransomware at end-
hosts. pages 98-119, 10 2017. ISBN 978-3-319-66331-9. doi: 10.1007/978-3-319-66332-6_5.

Zhongyu Wang, Yaheng Song, Erci Xu, Haonan Wu, Guangxun Tong, Shizhuo Sun, Haoran Li,
Jincheng Liu, Lijun Ding, Rong Liu, Jiaji Zhu, and Jiesheng Wu. Ransom access memories:
Achieving practical ransomware protection in cloud with DeftPunk. In /8th USENIX Symposium
on Operating Systems Design and Implementation (OSDI 24), pages 687-702, Santa Clara, CA,
July 2024. USENIX Association. ISBN 978-1-939133-40-3. URL https://www.usenix|
org/conference/osdi24/presentation/wang-zhongyu.

Nicolas Reategui, Roman Pletka, and Dionysios Diamantopoulos. On the generalizability of
machine learning-based ransomware detection in block storage, 2024. URL https://arxiv|
org/abs/2412.21084.

Manish Shukla, Sutapa Mondal, and Sachin Lodha. Poster: Locally virtualized environment
for mitigating ransomware threat. In Proceedings of the 2016 ACM SIGSAC Conference on
Computer and Communications Security, CCS * 16, page 1784—-1786, New York, NY, USA, 2016.
Association for Computing Machinery. ISBN 9781450341394. doi: 10.1145/2976749.2989051.
URL https://doi.org/10.1145/2976749.2989051

Joon-Young Paik, Joong-Hyun Choi, Rize Jin, Jianming Wang, and Eun-Sun Cho. A storage-
level detection mechanism against crypto-ransomware. In Proceedings of the 2018 ACM
SIGSAC Conference on Computer and Communications Security, CCS *18, page 2258-2260,
New York, NY, USA, 2018. Association for Computing Machinery. ISBN 9781450356930. doi:
10.1145/3243734.3278491. URL https://doi.org/10.1145/3243734.3278491.

SungHa Baek, Youngdon Jung, Aziz Mohaisen, Sungjin Lee, and DacHun Nyang. Ssd-insider:
Internal defense of solid-state drive against ransomware with perfect data recovery. In 2018 IEEE
38th International Conference on Distributed Computing Systems (ICDCS), pages 875-884,
2018. doi: 10.1109/ICDCS.2018.00089.

Peiying Wang, Shijie Jia, Bo Chen, Luning Xia, and Peng Liu. Mimosaftl: Adding secure and
practical ransomware defense strategy to flash translation layer. In Proceedings of the Ninth
ACM Conference on Data and Application Security and Privacy, CODASPY ’19, page 327-338,
New York, NY, USA, 2019. Association for Computing Machinery. ISBN 9781450360999. doi:
10.1145/3292006.3300041. URL https://doi.org/10.1145/3292006.3300041,

Manabu Hirano and Ryotaro Kobayashi. Machine learning-based ransomware detection using
low-level memory access patterns obtained from live-forensic hypervisor. In 2022 IEEE
International Conference on Cyber Security and Resilience (CSR), pages 323-330, 2022. doi:
10.1109/CSR54599.2022.9850340.

Manabu Hirano, Ryo Hodota, and Ryotaro Kobayashi. Ransap: An open dataset of ran-
somware storage access patterns for training machine learning models. Forensic Science
International: Digital Investigation, 40:301314, 2022. ISSN 2666-2817. doi: https:
//doi.org/10.1016/j.f5idi.2021.301314. URL https://www.sciencedirect.com/science/
article/pii/S2666281721002390.

Manabu Hirano and Ryotaro Kobayashi. Ransmap: Open dataset of ransomware storage
and memory access patterns for creating deep learning based ransomware detectors. Comput.
Secur., 150(C), March 2025. ISSN 0167-4048. doi: 10.1016/j.cose.2024.104202. URL
https://doi.org/10.1016/j.cose.2024.104202.

11

https://doi.org/10.1145/3514229
https://www.usenix.org/conference/osdi24/presentation/wang-zhongyu
https://www.usenix.org/conference/osdi24/presentation/wang-zhongyu
https://arxiv.org/abs/2412.21084
https://arxiv.org/abs/2412.21084
https://doi.org/10.1145/2976749.2989051
https://doi.org/10.1145/3243734.3278491
https://doi.org/10.1145/3292006.3300041
https://www.sciencedirect.com/science/article/pii/S2666281721002390
https://www.sciencedirect.com/science/article/pii/S2666281721002390
https://doi.org/10.1016/j.cose.2024.104202

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

Weidong Zhu, Grant Hernandez, Tian Dave (Jing) Garcia, Washington, Sara Rampazzi, and
Kevin Butler. Minding the semantic gap for effective storage-based ransomware defense. In
International Conference on Massive Storage Systems and Technology, 2024.

Kosuke Higuchi and Ryotaro Kobayashi. Real-time defense system using ebpf for machine
learning-based ransomware detection method. In 2023 Eleventh International Symposium on
Computing and Networking Workshops (CANDARW), pages 213-219, 2023. doi: 10.1109/
CANDARW60564.2023.00043.

Boyang Ma, Yilin Yang, Jinku Li, Fengwei Zhang, Wenbo Shen, Yajin Zhou, and Jianfeng
Ma. Travelling the hypervisor and ssd: A tag-based approach against crypto ransomware
with fine-grained data recovery. In Proceedings of the 2023 ACM SIGSAC Conference on
Computer and Communications Security, CCS 23, page 341-355, New York, NY, USA, 2023.
Association for Computing Machinery. ISBN 9798400700507. doi: 10.1145/3576915.3616665.
URL https://doi.org/10.1145/3576915.3616665!/

Sungha Baek, Youngdon Jung, David Mohaisen, Sungjin Lee, and DaeHun Nyang. Ssd-assisted
ransomware detection and data recovery techniques. IEEE Transactions on Computers, 70(10):
1762-1776, 2021. doi: 10.1109/TC.2020.3011214.

Donghyun Min, Donggyu Park, Jinwoo Ahn, Ryan Walker, Junghee Lee, Sungyong Park, and
Youngjae Kim. Amoeba: An autonomous backup and recovery ssd for ransomware attack
defense. IEEE Computer Architecture Letters, 17(2):245-248, 2018. doi: 10.1109/LCA.2018.
2883431.

Simon R. Davies, Richard Macfarlane, and William J. Buchanan. Napierone: A modern mixed
file data set alternative to govdocsl. Forensic Science International: Digital Investigation,
40:301330, 2022. ISSN 2666-2817. doi: https://doi.org/10.1016/j.fsidi.2021.301330. URL
https://www.sciencedirect.com/science/article/pii/S2666281721002560.

Chunghan Lee, Tatsuo Kumano, Tatsuma Matsuki, Hiroshi Endo, Naoto Fukumoto, and Mariko
Sugawara. Systor *17 traces (SNIA IOTTA trace set 4928). In Geoff Kuenning, editor,
SNIA IOTTA Trace Repository. Storage Networking Industry Association, March 2016. URL
http://iotta.snia.org/traces/block-io?only=4928.

Dushyanth Narayanan, Austin Donnelly, and Antony Rowstron. MSR Cambridge traces (SNIA
IOTTA trace set 388). In Geoff Kuenning, editor, SNIA IOTTA Trace Repository. Storage
Networking Industry Association, March 2007. URL http://iotta.snia.org/traces/
block-io?only=388.

Vishal Sharda, Swaroop Kavalanekar, and Bruce Worthington. Microsoft production server
traces (SNIA IOTTA trace set 158). In Geoff Kuenning, editor, SNIA IOTTA Trace Repository.
Storage Networking Industry Association, March 2008. URL http://iotta.snia.org/
traces/block-io?only=158.

abuse.ch. MalwareBazaar: A Project to Share Malware Samples with the Security Community.
https://bazaar.abuse.ch/, 2025. Accessed: 2025-05-16.

Tianqgi Chen and Carlos Guestrin. Xgboost: A scalable tree boosting system. In Proceedings of
the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining,
KDD 16, page 785-794, New York, NY, USA, 2016. Association for Computing Machinery.
ISBN 9781450342322. doi: 10.1145/2939672.2939785. URL https://doi.org/10.1145/
2939672.2939785.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N. Gomez,
Lukasz Kaiser, and Illia Polosukhin. Attention is all you need. In Proceedings of the 31st
International Conference on Neural Information Processing Systems, NIPS’17, page 6000-6010,
Red Hook, NY, USA, 2017. Curran Associates Inc. ISBN 9781510860964.

Yonghui Wu, Mike Schuster, Zhifeng Chen, Quoc V Le, Mohammad Norouzi, Wolfgang
Macherey, Maxim Krikun, Yuan Cao, Qin Gao, Klaus Macherey, et al. Google’s neural machine

translation system: Bridging the gap between human and machine translation. arXiv preprint
arXiv:1609.08144, 2016.

Aaditya K Singh and DJ Strouse. Tokenization counts: the impact of tokenization on arithmetic
in frontier llms. arXiv preprint arXiv:2402.14903, 2024.

12

https://doi.org/10.1145/3576915.3616665
https://www.sciencedirect.com/science/article/pii/S2666281721002560
http://iotta.snia.org/traces/block-io?only=4928
http://iotta.snia.org/traces/block-io?only=388
http://iotta.snia.org/traces/block-io?only=388
http://iotta.snia.org/traces/block-io?only=158
http://iotta.snia.org/traces/block-io?only=158
https://bazaar.abuse.ch/
https://doi.org/10.1145/2939672.2939785
https://doi.org/10.1145/2939672.2939785

[28] Jonathan Oliver, Chun Cheng, and Yanggui Chen. Tlsh — a locality sensitive hash. In 2013
Fourth Cybercrime and Trustworthy Computing Workshop, pages 7-13, 2013. doi: 10.1109/
CTC.2013.9.

[29] Haoping Liu, Josiah Hagen, Mugeet Ali, and Jonathan Oliver. An evaluation of malware triage
similarity hashes. In ICEIS (1), pages 431-435, 2023.

[30] Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai,
Thomas Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly,
Jakob Uszkoreit, and Neil Houlsby. An image is worth 16x16 words: Transformers for image
recognition at scale. CoRR, abs/2010.11929, 2020. URL https://arxiv.org/abs/2010.
11929.

[31] Esmeralda A. Ramalho, Joaquim J.S. Ramalho, and José M.R. Murteira. Alternative estimating
and testing empirical strategies for fractional regression models. Journal of Economic Surveys,
25(1):19-68, 2011. doi: https://doi.org/10.1111/j.1467-6419.2009.00602.x. URL https:
//onlinelibrary.wiley.com/doi/abs/10.1111/j.1467-6419.2009.00602.x.

13

https://arxiv.org/abs/2010.11929
https://arxiv.org/abs/2010.11929
https://onlinelibrary.wiley.com/doi/abs/10.1111/j.1467-6419.2009.00602.x
https://onlinelibrary.wiley.com/doi/abs/10.1111/j.1467-6419.2009.00602.x

NeurlIPS Paper Checklist

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: All claims in the abstract and introduction are substantiated in the paper. In
particular sections: Section[2.2] Appendix[A.2] Section[5] Section [6]

Guidelines:

e The answer NA means that the abstract and introduction do not include the claims
made in the paper.

e The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

e The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

e [tis fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: Section [7]Clearly deliniates several limitaitons our work has.
Guidelines:

e The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

o The authors are encouraged to create a separate "Limitations" section in their paper.

e The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

e The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

e The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

e The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

e If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

e While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [NA]

14

Justification: Our paper does not contain any theoretical claims
Guidelines:

e The answer NA means that the paper does not include theoretical results.

e All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

e All assumptions should be clearly stated or referenced in the statement of any theorems.

e The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

o Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

e Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: We provide full implementation details of our algorithms, full description
of our data and collection methods (Appendix [B] Section[6] Appendix[A.2] Appendix [Al
Appendix [B} Appendix [C)), and all the code used for processing the data, training and
evaluating the models, and producing the result metrics. We include full train-test split
specifications in the code for all train and test work we performed, including the benchmark
we provide. We, of course, also provide all the data the experiments in this paper were
performed on. When relying on external sources (such as sources for the ransomware
variants we used to generate data), we clearly specify them.

Guidelines:

e The answer NA means that the paper does not include experiments.

o If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

o If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

e Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

e While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.

15

In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: We provide the full dataset we worked with (linked in the paper to an
anonymized repository on Kaggle). We also provide all the code used in the experiments
in this paper, including processing the data we provide and generating the result metrics
(linked in the paper to an anonymized repository on GitHub). The data collection system is
not our code (e.g., relying on external tools such as Microsoft’s Xperf toolkit). In this case,
we provide full details on what we used and how, allowing anyone else using these tools to
produce the same data (up to the inherent randomness of the systems themselves, such as
the ransomware variants). The code we provide includes a README guide to run the code
from scratch, and it requires no external dependencies beyond publicly available Python
packages. Section|[I]

Guidelines:

e The answer NA means that paper does not include experiments requiring code.

e Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

e While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

e The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

e The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

e The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

e At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

e Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.
6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: We provide full implementation details in the appendices, and publish the full
code used in the experiments in this paper, including train-test splits, etc. (Appendix

Appendix [B] Appendix[C)
Guidelines:

e The answer NA means that the paper does not include experiments.

o The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

o The full details can be provided either with the code, in appendix, or as supplemental
material.

7. Experiment statistical significance

16

https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: We provide error bars where applicable and suitably describe them (e.g., as
standard deviation, etc.) Section[3]

Guidelines:

e The answer NA means that the paper does not include experiments.

e The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

e The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

e The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

e The assumptions made should be given (e.g., Normally distributed errors).

e It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

e It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

e For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

o If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.
8. Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]
Justification: We provide details on the hardware our models were trained on Appendix [B]
Guidelines:

e The answer NA means that the paper does not include experiments.

e The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

e The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

e The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines]?

Answer: [Yes]
Justification: Our experiments and data did not conflict with the NeurIPS code of ethics
Guidelines:

e The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

o If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

e The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).

17

https://neurips.cc/public/EthicsGuidelines

10.

11.

12.

Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: Our work aims to improve ransomware detection and thus reduce the damage
to society from this malicious activity. We discuss this briefly in the introduction Section [I]

Guidelines:

e The answer NA means that there is no societal impact of the work performed.

o If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

e Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

e The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

e The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

o If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: We do not release any of our ransomware samples, and the data and code are
harmless

Guidelines:

e The answer NA means that the paper poses no such risks.

e Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

e Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

e We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

18

13.

14.

15.

Justification: Our data is provided under the CC BY-NC-SA 4.0 license. Usage of external
data (SNIA data) is properly attributed Appendix [A]

Guidelines:

o The answer NA means that the paper does not use existing assets.
e The authors should cite the original paper that produced the code package or dataset.

e The authors should state which version of the asset is used and, if possible, include a
URL.

e The name of the license (e.g., CC-BY 4.0) should be included for each asset.

e For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

o If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

o For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

o If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.
New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [Yes]

Justification: We provide a thorough documentation of our dataset with it, and provide full
README of our code with our code

Guidelines:

e The answer NA means that the paper does not release new assets.

e Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

e The paper should discuss whether and how consent was obtained from people whose
asset is used.

e At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.
Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA|
Justification: We did not use human subjects for this paper
Guidelines:
e The answer NA means that the paper does not involve crowdsourcing nor research with

human subjects.

o Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

e According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

19

paperswithcode.com/datasets

16.

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA|
Justification: We did not use human subjects for this paper
Guidelines:
e The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

e Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

e We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

o For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
Declaration of LLLM usage

Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [NA]
Justification: We did not use LLMs for this paper
Guidelines:

e The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

e Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.

20

https://neurips.cc/Conferences/2025/LLM

Table 5: A pictorial representation of the overlaps. Here we denote a read command by an empty
circle, O, and a write command by the full circle, ® . We denote the timestamp by t, and note that the
horizontal axis in the NVMe stream column represents the o f f set attribute.

NVMe Stream Attributes Derived Properties

t=2: 0000 t=2, of fset=0, size=4, opcode=R | -

t=3: 00000 | (=3, 0ffset=1, size=5, opcode=W | WAR: OV=3, Ar=1

t=5: 000 t=5, of fset=2, size=3, opcode=R | RAR: OV=2, Ar=3, RAW: OV=3, At=2

Table 6: A description of the SW stack levels used to generate the different data attributes, demon-
strating the way we generate the derived properties and the labels.

SW stack Attributes — Derived Properties = Labf?l (see
Sect10nE[)
High Level | process, PID, path, ... — file name, parent PID, ... Ransomware or
Low Level | opcode, of fset, size, ... —> OVywag, Atwag, ... Benign

A Data Specifications

A.1 Details of the I/O Data Structure

We use this section to add more details to the discussion in Section 2.1} Especially, in Table[5] we
pictorially show how we calculate the derived overlap features OV and A, Table [6]describes the data
generation flow (from raw data obtained in various levels of the SW stack to the derived per-command
attributes and the per command label), and finally in Table[7| we list the per-command data attributes
contained in our data.

A.2 Specification of the CLEAR data set

CLEAR was collected with a data collection, verification, and labeling system, that we developed
in-house. Additional information on the data set is brought in Table [8| In particular, we ran 137
ransomware variants list in Table[9] We also ran 17 types of benign software that are presented in
Table[T0] These ran on virtualization of stand-alone PCs with either a 100GB SSD whose disk usage

Table 7: A list of the per command attributes, their types, source, and ranges. We note in passing that
the range noted in the table for the size attribute is for the data recorded internally; for the SNIA data
that range goes up to 32MiB.

Attribute Type Source Example Range
offsset ordinal NVMe 25245132 [0, disk size]
size integer NVMe 32 [1, 2MiB]
opcode categorical NVMe R/W

timestamp float NVMe 76.214 sec -

all four OV’s integer derived from NVMe 32 -

all four Af’s float derived from NVMe 0.15 sec -
Process Name string process manager TiWorker.exe -

PID integer process manager 4963 -

Path string file system C:\Desktop\001.jpg -

21

Table 8: CLEAR Data set Overview

Label Number of Recordings | Volume [TiB] | Days | No. of Commands
Ransomware 6,120 709.3 71 16,272,162,036
Benign 6,765 335.7 114 6,860,594,885
Total 12,885 1,045 185 23,132,756,921

Table 9: Ransomware families in our data set

No. of Variant

Ransomware Families Streams per
Family

Sodinokibi 14
LockBit 9
BlackMatter 8
Hive, Thanos 7
AvosLocker 6
Maze, BlackBasta, TimeTime, Babuk 5
Mespinoza, RagnarLocker, GlobeImposter 4
Play, Karma, Lorenz, Diavol 3

Sugar, WannaCry, MedusaLocker, Royal,
ViceSociety, Stop, Cuba, Rook, 2

Conti, BianLian

Neshta, CryLock, Zeppelin, Ransomware.Makop,
Alkhal, Clop, LIKEAHORSE, Teslarvng,
ATOMSILO, Ransomware.Koxic, Phobos, RansomEXX,
RanzyLocker, Nefilim, MRAC, Intercobros,
HelloXD, DECAF, MountLocker, BlackOut,
Cerber, DarkSide

was up to 95%, or a 512GB SSD disk with a disk usage of 49%-60%. The OS was a Windows 10h22
Home edition, with two CPUs: Intel(R) Core(TM) 19-10900F and 19-11900K, and with 16GB RAM.
In addition, we placed different types of victim files on the virtual disk, including the Napier-Small
repository (157GB) and the Napier-tiny repository (17.8GB) [19], some from an in-house generic user
files repository, and 57GB stored in ~ 65K png files from the DiffusionBM-2M data set repository.
Finally, because we saw that disk indexing can be a CPU-heavy process and can significantly change
the NVMe sequence, the data was generated in two configurations: where the indexing processes are
either turned on or off. In total, we collected data from 10 such configurations. Each of our traces
reflects up to approximately 1000 seconds of operation time, with additional variability introduced
via varying the launch time of ransomware. Specific information regarding the data acquired from
SNIA can be found on our published data se{’| The description of the images on which we ran the
workloads is brought in Table[T1]

"https://www.kaggle.com/datasets/johndoenvme/clear-command-level-annotated-ransomware

22

https://www.kaggle.com/datasets/johndoenvme/clear-command-level-annotated-ransomware

Table 10: Benign SW workload types. Additional variability was introduced by using more than
a single parameter for certain SWs. For example, the files read, written, deleted, archived, and
encrypted were varied.

Workload Type Specific Application
Archiving 7z, winRAR
Encryption AESCrypt

Deletion SDelete, fsutil

download and install apps from the internet
git clone
read and write files from disk
conda install, pip install
. Windows update
Other disk accesses
Compilation

Document editing

Web surfing

Application downloading and installing

Disk populating

Table 11: Disk images

SSD Volume [GB] Victim File Sources Disk Occupancy
100 ngier_, 65K png files from the ' 10% - 95%
DiffusionBM-2M data set repository, a
512 user file collection 50% - 60%

A.3 Details for Clustering and the Unseen Ransomware Benchmark

For each experiment of the leave-one-out cross-validation, the dataset was partitioned into three folds.
Each fold represents the data used for an out-of-distribution test set and is presented in Table [T2]
Each ransomware variant is named in the format FAMILY_ABCD, stating the ransomware family name
and the first four characters of the SHA-256 hash commonly used as the ransomware signifier.

The TLSH distance chosen for the clustering process was 100 (every distance between 50 to 100
yielded the same clusters). In rows where more than one cluster (of the same size) appears, the
different clusters are distinguished and separated from one another with round brackets.

23

Table 12: Ransomware variant divided into clusters per fold.

Ransomware Variant Clusters Clgster Number of Fold
Size Clusters
AvosLocker_43b7, Ransomare.Koxic_7a5e, Mespinoza_44f1,
AvosLocker_fb54, Mespinoza_7c77, Mespinoza_f602, Mespinoza_0433,
Neshta_9317, Cerber_078d, AvosLocker_{810, AvosLocker_6cc5, 20 1
AvosLocker_c0a4, AvosLocker_84d9, Conti_24ac, RansomEXX_fa28,
BlackBasta_2558, Lorenz_1264, Lorenz_a0Occ, Lorenz_edc2, Teslarvng_bb91
TimeTime_5ee8, TimeTime_972e, TimeTime_b599, TimeTime_b722, 6 1
Royal_44f5, Royal_d9be,
1
Babuk_eb18, Babuk_ca0d, Babuk_575c, Babuk_a522, Babuk_77¢c7 5 1
Karma_4dec, Karma_3462, Karma_84d2 3 1
Cuba_21lac, BlackBasta_723d 2 1
ViceSociety_HelloKitty_fa72, Alkhal_7a31, ATOMSILO_d9f7, Stop_0d50,
Sugar_09ad, Maze_4263, MRAC_768c, Phobos_265d, WannaCry_be22, 1 10
Play_952f
Sodinokibi_fd16, Sodinokibi_b992, Sodinokibi_0441, Sodinokibi_6834,
Sodinokibi_20d4, Sodinokibi_9df3, Sodinokibi_de20, Sodinokibi_9b11, 14 |
Sodinokibi_cb4a, Sodinokibi_2f00, Sodinokibi_9437, Sodinokibi_7c8c,
Sodinokibi_db59, Sodinokibi_3b0c
BlackOut_ee13, Diavol_b3da, Diavol_7945, Diavol_2723, Play_006a,] 1
ViceSociety_HelloKitty_c249, RanzyLocker_0db6, Play_dd10
Thanos_caf8, Thanos_8141, Thanos_66ed, Thanos_4852, Thanos_6e6b, 7 1 2
Thanos_cbdb, Thanos_d29a
MountLocker_00ed, MedusalLocker_f5fb, MedusalLocker_c2a0 3 1
(BlackBasta_dfSb, GlobeImposter_185f), (Rook_c2d4, LockBit_f2da) 2 2
WannaCry_d103, Cuba_521c, Zeppelin_824a, Sugar_1d4f, DECAF_a471,
Ransomare.Makop_a617, Stop_59d0, Conti_53b1, Intercobros_ade5, 1 10
HelloXD_903c
Hive_9¢e9f, Hive_0320, Hive_a45c, Nefilim_fb3f, Hive_460b, Hive_0302, 10 1
Hive_dfa5, BianLian_eaf5, Hive_45fe, BianLian_46d3
(BlackMatter_8ead, BlackMatter_22d7, BlackMatter_e4fd, BlackMatter_c6e2,
BlackMatter_730f, BlackMatter_b824, BlackMatter_2aad, BlackMatter_5da8), 3 2
(LockBit_bdc2, LockBit_e216, LockBit_4bbl1, LockBit_0545, LockBit_acad,
LockBit_7340, LockBit_dd8f, LockBit_786a)
(Maze_e8a0, Maze_3885, Maze_6a22), (Globelmposter_e6fa, 3 5 3
Globelmposter_39f5, Globelmposter_70fa)
(RagnarLocker_10f9, RagnarLocker_5469), (BlackBasta_e281, 2 5
BlackBasta_c4c8)
RagnarLocker_afab, CryLock_4a47, RagnarLocker_041f,
LIKEAHORSE_6d2e, DarkSide_f3f2, Rook_f87b, TimeTime_c535, Clop_bclf, 1 9

Maze_4e25

24

B Model Specifications

B.1 Random Forest Model

The first model we use as a baseline comparison for our approach is a Random Forest (RF) with
23 tabular features extending past works on decision trees and random forest approaches like [9].
Especially, to avoid over-fitting and being constrained by the hardware implementation, our model
is restricted to 20 trees with a maximum depth of 20. After training (using the Gini criterion) we
validated through a feature importance analysis the common wisdom, which suggests the read and
overwrite fractional volumes are the most important features (during a ransomware cyber attack, the
read, write, and overwrite volumes are nearly identical, making the fractional read and overwrite
volume very close to 1/2). We find that the space on the disk the trained model takes up is roughly
18 M B, corresponding to 260K nodes in the forest.

B.1.1 Features

The featurization process is preceded by slicing the data into slices of identical read and write
volume (option (iii) described in Appendix [C.I)) and that we choose the slice volume to be equal to
Vo = 0.5GiB. We extract the features we present in Table [I3]from each slice. In that table, we denote
by V the total number of logical blocks in the slice. The value of V obeys V < V| because there is
no guarantee that the cumulative sum of size along the trace will be evenly commensurate with V.
Finally, by oov,,, and uov,,, we denote the standard deviation and the mean of OVy g across the
commands of the slice. We choose 10 bins for the histograms Hg and Hy 4z described in Table@]
and so have 23 features per slice.

Table 13: RF Features.

Iz ‘l/ Z size(c)
opcode=R
Jwar ‘l/ Z OVyar(c)
CVwar ToViyar/HOVipar
Hr The histogram of read commands’ size
Hwar The histograms of OVy g values

B.2 DeftPunk Model

The second baseline model we use is the DeftPunk model [5]. It is a two-layer model: the authors
choose to apply a Decision Tree (DT) on a first set of features and pass the ransomware-suspicious
samples to a second layer chosen to be XGBoost, which is applied on a larger set of features. The
partition between features in the first and second layers is done by the computational effort made in
feature extraction and we follow the same choice described by the authors. The models we trained
have a maximum depth of 6 in both the DT and the XGBoost. We found that the model on disk takes
up 0.5M B, corresponding to its 10K nodes, and 100 trees in the XGBoost.

B.3 CLT and PLT Models

The structure of our problem requires us to identify the presence of malicious commands, often
interspersed with differing amounts of benign commands in between. Any single command or small
patch of commands in itself is very hard to model, and it is only when taken with other relevant
commands that we can attempt to classify it. Attention mechanism, with its ability to identify relevant
information at varying, and often long, distances, and ignore large amounts of irrelevant information
in between, is a natural choice for this problem. Thus, we need an architecture that is especially

25

suited to identify relevant information at varying, and often long, distances, and ignore large amounts
of irrelevant information in between. An attention mechanism is therefore a natural choice for model
architecture and we indeed apply it to our problem The architecture itself follows the encoder parts
of the architecture presented in [25]]. In the remainder of this section, we introduce two modeling
approaches: at the command level, using the Command Level Transformer (CLT), and at the level of
small command patches, using the Patch Level Transformer (PLT).

We note in passing that to train both models, we used an ADAM optimizer with a learning rate of
le~*. The CLT’s optimizer used an LRScheduler of 30 steps and y = 0.8. The CLT and PLT were
trained for 300 and 400 epochs, respectively. The models were trained on a single H100 GPU.

B.3.1 The Command Level Transformer (CLT)

The CLT works on frames of 250 commands, which the tokenization process turns into 500 tokens
(for tokenization details, see the next section). The transformer is made up of three self-attention
encoding layers, which follow the architecture presented in [25]. On top of the transformer, we then
compose a classification module, comprised of a fully connected projection layer — reducing the
output dimension back to 500 X 1 —and a 2 x 1 convolution with stride 2, producing 250 outputs.
These are fed through a softmax layer to predict a label (ransomware or benign) per input command.
Thus, the model predicts the label of each command individually, given its context in the frame.
Training loss is binary cross-entropy, applied to each of the 250 predictions. During inference, the
per-command predictions are averaged over a slice, and this average is then thresholded to produce a
final binary prediction for the entire slice. We describe the hyperparameters chosen for the CLT and
the PLT in Table[14]

Table 14: CLT Hyperparameters.

Hyperparameter Name Chosen Value
Vocabulary Size 1,024
Batch Size 64
Embedding Dimensions 128
Feedforward Dimensions 128
No. of Heads 4
No. of Layers 3
Context Length 1000
Convolution Kernel Size 2
Dropout 0.1

B.3.2 The Patch Level Transformer (PLT)

The PLT follows the idea of [30]] and instead of working on individual commands, works on 100 small
patches of the command stream — these are the tokens of the PLT described in the next section. The
transformer has six transformer encoding layers. It has a final regression and classification module
comprised of a linear projection to reduce the output dimension to 100 X 2 and a sigmoid, predicting
two fractions per token representing the read and write ransomware IO volumes in a patch. The
model is trained to perform per-token fractional regression [31] with a cross-entropy (CE) loss by
summing the CE terms of all 100 X 2 fractional volumes. To get a final prediction for an entire slice,
the fractions are summed per token, and the result is pooled by averaging across tokens to provide a
ransomware/benign prediction probability. We threshold this probability to obtain a binary class per
slice. We show the hyperparameters of the PLT in Table

26

Table 15: PLT Hyperparameters

Hyperparameter Name Chosen Value
Input Size 181
Batch Size 256
Embedding Dimensions 512
Feedforward Dimensions 2,048
No. of Heads 4
No. of Layers 6
Context Length 100
Dropout 0.1

B.4 biLSTM and uLSTM

Like the Transformer architecture, an LSTM is a natural choice for modeling long sequential data such
as the command streams in CLEAR. We attempted two variants - a bidirectional LSTM (biLSTM)
following the architecture presented in [26]] with a first bidirectional layer, and a fully unidirectional
(uLSTM) architecture. The first was trained on several different context lengths to measure the impact
of context on performance. The second was trained on a context length of 1000, but inference was
done continuously, never resetting the LSTM memory. Table|16|summarizes the hyperparameters
used in all cases. The models were trained on a single H100 GPU.

Table 16: LSTM Hyperparameters

Hyperparameter Chosen Value
Name biLSTM uLSTM
Vocabulary Size 1,024 1,024
Batch Size 64 64
Embedding Dimension 128 128
Hidden Dimension 128 128
No. of Layers 3 3
Context Length 62, 125, 250, 500, 1000 1000
Dropout 0.1 0.1

B.5 UNET

To test the importance and fit of the transformer architecture, we tested other architectures like fully
connected applied to a concatenation of the PLT features of all tokens, as well as 1D convolutional
networks. The best models of these architectures were of the UNET type with the architecture
Appendix input with the tokens of the PLT, hence T(0) = T(f) = 100 and F(0) = 181 and

F(f) =2.
B.5.1 UNET Architectures

We pictorially present the specific implementation of the architecture we use in Figure[5] By 7'(i), F(i)
we denote the number of tokens and the embedding size, respectively, of the UNET level i. The blue
arrows denote a max pooling with kernel size = 2, which means that 7(i + 1) = T'(i)//2. The green
arrow denotes transpose convolution with stride = 2 and with kernel size equal to max(3, k), where
k is a parameter of the encoder and decoder blocks E and D that we discuss below. This transpose

27

T(0), F(0) T(), F(f) T(), F(H)
22 5 B0 |— — — — — — > B(1) b D1) = C | |sigmoid| —>

=d

Unet depth

E(1) |— — — — »|B@) » D@

A
i
I
I
I
I
I
I
I
I
I
I
I
I
I
| L
I
. T(2), F2) l
I
I
I
I
|
|
I
I
I
I

v

T(d-1), F(d-1) l T
E(d1) |— —>» | B(@) H D(d)
T(d), Fe) l T

Figure 5: A pictorial representation of the UNET architecture that we use.

convolution also reduces the embedding dimension X2. The blocks B(i) denote the concatenation of
the UNET skip connection (the dashed arrow) and the result of the transposed convolution along the
feature dimension. Finally, the block C denotes a 1 X 1 convolution from an initial dimension (which
after D(1) is equal to 2F(0)) into a final dimension equal to 2, followed by a sigmoid. This provides
an output of dimension 7'(0) X 2 of elements, each bounded in the range [0, 1], that is then compared
to the read-and-write ransomware fractions series using a binary cross-entropy loss function.

The padding and output_padding parameters of the transpose convolutions depend on the value of
T (i) (or more precisely on whether 7' (i), which is determined by applying pooling on the higher-level
series with size T(i — 1), obeys T(i— 1) = T({)) X2 or T(i — 1) = T(i) X 2 + 1). The main UNET
parameters are the depth d of the UNET and the kernel size & of the E and D blocks in Table [T7]
which we grid search for d = 0,1,2,3 and k = 3,5,7,9 (when the UNET depth is zero, d = 0,
the architecture represented by the set of gray rectangles in Figure [5|reduces to £(0)). The initial
dimensions 7'(0) and F(0) can also be considered as hyper-parameters, but 7(f), F(f) are not as we
fix them to obey T'(f) = T(0) and F(f) = 2. We attempted various types of encoder and decoder
blocks (the E and D blocks in Figure[3)), including ResNet blocks and simple convolutions, and found
that the best are those presented in Table

Table 17: The encoder block E and decoder block D.

ENcODER DECODER

TF Conv1d(k), T.F2 Conv1d(k), T.F2
ReLU ReLU

TF Convid(K) T.2F | convidi). | T.2F T.9F
ReLlU [7] Rew [7

28

C Tokenization and Embedding Specifications

C.1 Data Sampling

To generate samples for training and testing, we sample data by slicing each NVMe stream into
successive non-overlapping units of data slices. There are three natural options to define the slices:
by equal (i) time extent, (ii) number of commands, or (iii) byte volume. A common choice in the
literature is to use option (i) with a time extent of ~ 10 — 60 seconds (e.g. [9, 12} 15, 16]). Because the
SotA models, as well as some of our models, can perform detection only after at least one data slice is
complete, the earliest detection with option (i) at a typical I/O throughput of 130MB/sec can happen
after over a gigabyte of data has been read/overwritten by ransomware. To avoid this issue and the
potential lack of robustness to throughput variability, we choose to sample with option (ii) and a slice
size of 16500 commands or option (iii) with a slice size of 0.5GiB. For brevity, we term the models
that are based on slicing options (ii) and (iii) as ByCommand and ByVolume version models.

C.2 Command Level Tokenization
Each NVMe command, c, passes through the CLT tokenization scheme, as follows:

e The time lapse 6#(c) = min(round(log((timestamp(c) — timestamp(c — 1)) - 10° + 1)), 15).

e size = min(Llog(S%)J, 12). Where S is the size of the command in bytes. Since 4 bits are
assigned, the remaining 3 bins (13, 14, 15) are assigned to particularly common size values:
512K, 128K and 16K.

e The command’s opcode (R/W) is assigned with 1 bit.

e The three auxiliary attributes - WAR, RAR, and RAW - are assigned 1 bit each, denoting
whether their value for this command is greater than 0.

e The last (minor) 21 bits of the offset are dropped (this represents a 2MB resolution) and the
next 2 bits are taken as of f'set;g.

o The first (major) 4 bits of the offset are taken as of fset,;;sp-

In total, these attributes are spread across two tokens, where each token is composed of 9 bits: the first
token contains the 6#(c), size, and opcode attributes, and the second receives the two offset attributes
and the three auxiliary attributes. Then, an additional single-bit is added to each token (0 to the first,
1 to the second), denoting its index in the token pair, and creating a 210 = 1024 vocabulary size.

The finite number of bits that we allocate per each attribute cdetermines the overall quantization of
the NVMe command and the above choice is one of several that we explored (see Table 28)).

C.3 Patch Level Representation for the PLT and the UNET

To generate tokens, each slice is divided into 100 patches by sliding a window. When we model
slices with a uniform number of commands (ByCommand slicing), we choose each patch to contain
250 commands with a stride of 165. When we model slices with uniform byte volume (ByVolume
slicing) we choose each patch to have a total size of 50M B with stride ~ SMB.

C.3.1 Embedding

Distinct from the embedding method of [30]] and because each command comes with attributes of
different value types, we find that a natural way to embed the patch data is by quantizing attributes
into bins and histogramming each across commands of certain types (read/write/write-after-read/read-
after-read). Further details about this histogram embedding are in Table [I8 where we denote by
WAR and RAR commands with OVyag > 0 and OVgag > 0 respectively, and by Rest the commands
with no such overlaps. Some of the histograms are weighted by size or by OV. This weighting is
chosen to reflect the fact that most ransomware commands carry a high size because they aim to
read and write as fast as possible, thereby enhancing the impact of such commands. Finally, to avoid
over-fitting to patterns on certain disk locations, we normalize the of fset values in a slice to zero
mean and unit variance, and to increase robustness to throughput variability, we normalize ¢ and Az
by factors that represent their exponentially back averages across past slices.

29

In addition, to easily capture information about the total byte size and amount of commands in each
patch, we calculate these for read, write, WAR, and RAR commands, as well as for all command
types together. We normalize these additional 9 features to the range [0, 1], and concatenate them to
the rest, forming a d;y,,,, = 181-dimensional embedding space per token.

Table 18: Details of patch tokens embedding. The of fset and ot histograms are weighted by size
and the histograms for Atyag and Atgag by OViyag and OVgag respectively.

NVMe | Histogram .
attribute Weight Commands types Bins
log size - read/write/Rest 12
log OV - WAR, RAR 12

. read/write 14
of fset size
WAR, RAR, Rest 14
At oV WAR, RAR 14
ot size Any 14

C.3.2 Normalization of 6¢, Az, and the of fset

Starting with the timestamp related quantities, for each slice I and for a per-command attribute Q
(for example Q = 61 or Atyr) we denote by (Q);,, the average across all commands within a the slice
performed with the per-command weight w,

Q) = 2L, M
ZCE[We
and by ({(Q));, the exponentially back averaged of Q,, across slices, defined recursively by
LON1w = al{ONi-1w + (I — @) Q). In this work, we choose the diminish factor @ = 0.8,
which means the effective memory of the average is ~ 1/loga~! ~ 4.48 slices. For the purpose of
featurization, we define the following normalized quantities.

Offsetl = (Offset - <0ffset>l,size2) / \[<0ff56t2>1,siz62’ (2)
E‘I = 51/«61‘»1’3,‘232, (3)
Aty = A1/ (10480 0v2) - “

The purpose of the 6t normalization is to create an embedding that is invariant to CPU speed while
normalizing the size is aimed to achieve a disk size invariant embedding.

C.3.3 Normalization of per-token 10 size and 10 byte

As mentioned in Appendix [C.3.T| we concatenate to the histogram features of Table[I§]a set of 9
features associated with the number and volume of commands in a patch token. We describe their
normalization in Table @] and Table [213} Here, the normalization factors vy and ng are the designed
token width in the ByVolume and ByCommand version models and were chosen as vo = 50M B and
ny = 250.

30

Table 19: The details of the last 9 features participating in the token embedding for the ByVolume
slicing.

Feature Normalization factor Number of features
Patch volume Vo 1
Patch read and write volume Vo 2
Sum of OVy4g and OVgag in a patch Vo 2
Number of read/write commands in a patch Number of commands in a patch 2
Number of WAR and RAR commands in a patch | Number of commands in a patch 2

Table 20: The details of the last 9 features participating in the token embedding for the ByCommand
slicing.

Feature Normalization factor | Number of features
Patch number of commands no 1
Patch read and write number of commands no 2
Number of WAR and RAR commands in a patch I 2
Volume of read/write commands in a patch Patch volume 2
Sum of OV g and OVgag in a patch Patch volume 2

31

D Hyper-parameter optimizations

In the current section we describe the optimization that we performed across the hyper-parameters of
the models, the embeddings, and the tokenizations (all described in Appendix [B]and Appendix [C).

D.1 Random Forest (RF)
The RF parameters which we optimized include

e The way one samples the data — for aggregative models like the RF, one performs prediction
per data chunk; the latter is defined to have uniform traffic volume (‘ByVorLume’ chunks) or
to have a uniform number of commands (‘ByCommanp’ chunks). See results in Table

e The size of the chunks — see results in Table

e The number of trees N, the maximum tree depth D. See results in Table

o The type of feature sets — the nominal set was the 23-dimensional feature set described in
Appendix [B.T|and the second was the concatenation of all the UNET/PLT features described

in Appendix [C.3.T] (constituting — for 100 tokens — a 18,100 dimensional feature vector).
See Table 24]for the results.

All the results show that the best RF model is the one that we describe in Appendix

Table 21: Performance of the RF model in the nominal configuration of D = 20, N = 20 on
CLEAR with two chunk types. Since the chunks in both models are difference, we use a sampling
invariant property to compare them and here choose the M DB;. Both models were calibrated to have
approximately 1 false alarm per 50GiB.

Configuration ‘ MBD; ‘

ByVolume chunks of size 0.5GiB 286 + 33
ByCommanp chunks of size 16,500 | 335 + 53

Table 22: Performance of the RF model in the nominal configuration of D = 20, N = 20 on a subset
of CLEAR that contains 659 recordings, with two chunk sizes of the ByVoLuME chunk type — the
nominal and a chunk smaller by a factor of 10. Both models were calibrated to to have the same false
alarm rate (of 1 per 50GiB). Also, we present the 99%-precentile instead of the 3rd quartile.

Chunk size MBDyyq,

0.5GiB 749 + 63
51.2MiB 1316 + 996

D.2 DeftPunk

The DeftPunk model is described in [5] and we have established independently that its two-stage
structure is indeed required by benchmarking its performance with and without the second stage (the
XGBoost step) — see Table [25]

D.3 UNET

We optimized the UNET architecture across the following parameters: the UNET depth d, the
convolutional kernel k, the structure of the encoder and decoder blocks (with their own parameters),
the learning rate, the embedding dimension and the number of tokens (in addition to checking the
UNET applied to both ByVorLuMmE and ByCommanp chunks). In Table 26| we present a subset of the
tests leading us to choose the UNET configuration with k = 5, d = 3, a ByVoLuME chunk of size
0.5GiB, and standard convolutional encoder and decoder blocks.

32

Table 23: Performance of the RF model with the ByVoLuMmE chunk with a 0.5GiB chunk size across a
subset of CLEAR containing 280 recordings, all calibrated to an aggressive point of zero false alarms
on that data. Since all models were trained on the same type of chunks we show the 95% confidence
interval of the the false negative rate as calculated by Clopper-Pearson.

Maximum Tree depth D | Number of trees N | False Negative rate confidence interval

10 10 [0.052,0.107]
10 20 [0.059,0.116]
10 50 [0.05,0.105]
20 10 [0.036,0.084]
20 20 [0.033,0.081]
20 50 [0.036,0.084]
50 10 [0.036,0.084]
50 20 [0.033,0.081]
50 50 [0.036,0.084]

Table 24: Performance of the RF model in the nominal configuration of D = 20, N = 20 on CLEAR
with the nominal type of chunk with two different feauture sets: the nominal one with 23 features and
the PLT/UNET feature set of dimension 18,100 (see discussion in the text). Results were obtained
from a subset of CLEAR containing 2725 recordings.

Feature set ‘ MBD; ‘

RF nominal 23 features 264 + 33
The PLT/UNET tokens concatenated | 299 + 36

D4 PLT

The PLT transformer architecture was explored along the number of attention heads, the number of
encoder layers, the embedding dimension (the feedforward dimension was always x4 larger). The
results of this HPO are presented in Table[27] showing why we chose the parameters listed in Table[T5]

D.S The CLT and the LSTM models

The hyper parameter optimization we performed for the command-level models was across the
following axes:

1. Token quantization scheme: as per the description in Appendix [C] we tested several quanti-
zation schemes that we describe in Table 28]

2. Model size: we detail the model sizes tested for each model in Table

3. We trained each model on different context lengths.

4. We also tested a continuous version of the unidirectional LSTM where the inference was
done continuously without resetting the LSTM memory every slice; the two continuous
models in our tests differ by the context length used for training the models.

We present the HPO results for the MDR, the MBD3, and the AUC in Table [30]

33

Table 25: Performance of the DeftPunk model with or without the second step applied on the
ByVoLuME chunk of size 0.5GiB.

DeftPunk Architecture MBD;
Decision tree only 7878 +2122
Decision tree + XGBoost 282 + 34

Table 26: Performance of the UNET model as a function of the chunk type, UNET depth d, and
UNET convolutional kernel k. All results in this table were obtained for the nominal encoder and
decoder blocks that are described in Appendix [B.5]

Chunk type | d | k | MDR1%) | mBD; | AUC ROC Threshold
0] 3] 147¢0.16 | 219213 | 0.999133+0.000067 | 0.232454+0.014314
1] 3] 1.72£034 | 241425 | 0.998914+0.000085 | 0.257555+0.031964
2 [3| 1492027 | 211224 | 0.999059+0.000090 | 0.225127+0.028576

ByVoLume | 3 | 5 | 1.34£0.41 | 19541 | 0.998994+0.000093 | 0.191552+0.051176
307 - 199450 | 0.998965+0.000132 | 0.193606+0.070926
3]0 - 260+89 | 0.998861+0.000138 | 0.281482:0.125255

ByCommanp | 3 | 3 - 5874303 - 0.466428=0.072315

Table 27: Performance of the PLT model as a function of the number of attention heads 7y,.,4, number
of encoder layers 7y,y,s, embedding dimension d,,,4.;, number of tokens N; and chunk type. By * we
denote models that were trained with a learning rate schedule that decreases the learning rate by x0.8
every 75 epochs, and by ** we denote models applied onto 512 patch tokens (rather the nominal 100
patch tokens).

Chunk type \ dyoder | Mhoad \ Miyer | MBD; \ ROC Threshold
256 | 4 6 | 18323 | 0.17942+0.034166
512 | 4 6 | 177+25 | 0.16844=0.036366
512 | 4 3| 162422 | 0.150087+0.027717
512 | 4 6 | 157+18 | 0.12212+0.027323

ByVoome | 512 | 16 | 16 | 169422 | 0.145905+0.030539
512° 180423 | 0.159498+0.035502
256" 196436 | 0.17822+0.044973
512% | 16 | 16 | 217+39 | 0.215373+0.053777
5127 | 16 | 16 | 183430 | 0.156018+0.038017
512 | 4 6 | 353175 | 0.37189+0.079117

o |12 | 4 6 | 746+442 | 0.497779+0.099673
256 | 4 6 | 717+605 | 0.497168+0.134967
512 | 4 3| 2072100 | 0.254427+0.079234

34

Table 28: The token bit quantization schemes.

Quantization Number of Number of Bits used for each Attribute
h tokens per
scheme command ot | size | opcode | of fsetns, | Of fsetiy, | WAR | RAR | RAW
Nominal 2 4 4 1 4 2 1 1 1
1 2 4 4 1 5 4 1 0 0
2 1 3 4 1 4 2 1 0 0
3 1 4 4 1 4 2 1 1 1
Table 29: Model size.
Architecture Nominal size Large size
CLT embedding dim=128, FF dim=128, embedding dim=512, FF dim=512,
layers=3, heads=4 layers=6, heads=4
WLSTM embedding dim=128, FF dim=128, embedding dim=512, FF dim=512,
layers=3 layers=5
biLSTM embedding dim=128, FF dim=128, embedding dim=512, FF dim=512,
layers=3 layers=5

35

Table 30: The results of the hyper-parameter exploration for the command level models. In cases
where the quantization scheme or the model size were not nominal we denote them in the model
name: the i-th quantization schemes are marked as ‘quantization-i’ (see Table [28)), the large size
models are marked by a subscript L, and the continuous LSTM by a subscript C. We note in passing
that attempts to train a nominal sized CLT with context = 4000, and any models with context = 8000,

16500, and did not converge.

| Context | Model Name AUC MDR MBD;/1000 | ROC Threshold
CLT 0.998818+0.000168 | 0.03180.012 | 0.118+0.03 | 0.2399+0.04673
62 bILSTM 0.99874620.00018 | 0.031x0.0156 | 0.122+0.049 | 0.23132:£0.05483
uLSTM 0.98609+0.001364 | 0.1355:0.017 | 0.156x0.107 | 0.29042:0.05906
CLT 0.99918+0.00007 | 0.0144+0.0028 | 0.092+0.009 | 0.12703=0.01505
125 BILSTM | 0.999032+0.000156 | 0.0199£0.007 | 0.095:0.015 | 0.17432+0.03439
uLSTM 0.98609+0.001364 | 0.1355:0.017 | 0.156x0.107 | 0.29042:0.05906
CLT 0.999043+0.000152 | 0.020120.0065 | 0.097+0.012 | 0.172530.03187
- quant(i:zliion—l 0.998993+0.000159 | 0.012+0.0033 | 0.082+0.009 | 0.12496:0.020198
quant(ijzliion—?; 0.999184+0.000135 | 0.0146+0.0042 | 0.089+0.01 | 0.12543+0.02305
BILSTM | 0.999161+0.000142 | 0.0158+0.0057 | 0.088+0.012 | 0.14498+0.02899
uLSTM 0.998884+0.000175 | 0.0241£0.008 | 0.104+0.016 | 0.20845:0.03513
WLSTMc | 0.999492:0.000091 | 0.0062+0.0016 | 0.063=0.007 | 0.06051=0.01235
CLT 0.999148+0.000139 | 0.0163£0.0051 | 0.087+0.011 | 0.14868+0.02684
500 BILSTM | 0.999231+0.000128 | 0.0152+0.0051 | 0.088+0.012 | 0.13812+0.02645
uLSTM 0.999077+0.000148 | 0.0195:0.0069 | 0.094+0.013 | 0.1752+0.03362
CLT 0.999276+0.000112 | 0.0142£0.0043 | 0.077+0.01 | 0.12485+0.02379
1000 quantci:zI;Tion-Z 0.9992130.000127 | 0.0114£0.0025 | 0.072+0.007 | 0.100498+0.015934
BILSTM | 0.999322+0.000106 | 0.0124£0.0029 | 0.076£0.007 | 0.11677£0.01829
uLSTM 0.999167+0.000133 | 0.0163£0.0049 | 0.082:+0.009 | 0.15064:£0.02528
CLT 0.999237+0.000114 | 0.0172£0.0044 | 0.082£0.01 | 0.1438+0.0229
CLT, 0.999476:0.000082 | 0.0124+0.0031 | 0.075£0.008 | 0.11038£0.01885
2000 quangzliion-z 0.999271£0.000112 | 0.0127£0.0033 | 0.078+0.009 | 0.101097:£0.020642
BILSTM | 0.999307:0.000109 | 0.0123£0.0034 | 0.075£0.007 | 0.11696+0.02154
uLSTM 0.9992180.000128 | 0.0132+0.0031 | 0.078+0.007 | 0.12739+0.01696
uLSTM,. | 0.999664:0.000065 | 0.0036-0.0008 | 0.05:0.003 | 0.02615:0.00391
CLT, 0.99951428.2¢-05 | 0.009£0.0029 | 0.074=0.008 | 0.07487+0.02038
quangzliion_ , | 0.999033£0.000139 | 0.0164£0.0053 | 0.08450.011 | 0.13752320.032655
4000 biLSTM 0.99916+0.000128 | 0.0143:0.004 | 0.08£0.009 | 0.13622:£0.02303
BILSTM, | 0.999305:0.000101 | 0.01170.0032 | 0.072+0.007 | 0.11422:0.02062
uLSTM 0.9992140.000121 | 0.014+0.0035 | 0.082+0.009 | 0.14095+0.02149
uLSTM, 0.999359+9.8¢-05 | 0.0103+0.0024 | 0.069£0.007 | 0.1049+0.0142

36

	Introduction
	Storage I/O data
	Structure of Data
	Existing Storage I/O Datasets

	The CLEAR dataset
	Collection Method
	Experiments
	Aggregative Models
	Command Based Models
	Command Tokenization
	Results
	The Importance of Context
	Command Accuracy
	Feature Ablation

	Unseen Ransomware Benchmark
	Limitations
	Conclusion
	Data Specifications
	Details of the I/O Data Structure
	Specification of the CLEAR data set
	Details for Clustering and the Unseen Ransomware Benchmark

	Model Specifications
	Random Forest Model
	Features

	DeftPunk Model
	CLT and PLT Models
	The Command Level Transformer (CLT)
	The Patch Level Transformer (PLT)

	biLSTM and uLSTM
	UNET
	UNET Architectures

	Tokenization and Embedding Specifications
	Data Sampling
	Command Level Tokenization
	Patch Level Representation for the PLT and the UNET
	Embedding
	Normalization of t, t, and the offset
	Normalization of per-token IO size and IO byte

	Hyper-parameter optimizations
	Random Forest (RF)
	DeftPunk
	UNET
	PLT
	The CLT and the LSTM models

