
ZPI 2024

PoP
Project of Projects

2024

Autors: Zuzanna Aszkiełowicz • Nouran Elmenshawy • Yimeng Liu • Weronika
Wójcik
Supervisor: Krystian Wojtkiewicz

Abstract

The project is titled Project of Projects (acronym PoP), as it is a project designed to serve as a management
tool for the assessment of Team Projects (Zespołowe Przedsięwzięcie Inżynierskie—ZPI), which is undoubtedly a
critical aspect of engineering education at the Wroclaw University of Science and Technology. The platform ad-
dresses inconveniences of current practices (such as file uploading and transparency in feedback) by automating
workflows and enhancing collaboration among students, supervisors, reviewers, and event chairs. Key features
include role-based access, project management workflows, weighted evaluations, edition-based filtering, and a
comprehensive statistics dashboard.

The platform improves efficiency, saves time, and ensures project evaluation and feedback transparency.
With modern technologies, PoP delivers a purpose-built solution. Enhancing organization and communication
ensures a collaborative environment for a more effective and transparent ZPI management process. Future
improvements include a mobile app, a Polish version, and offline access.

1 INTRODUCTION
The Team Project is a pillar of engineering education, encouraging cooperation among stakeholders–
students, supervisors, reviewers, event chairs, and spectators. Despite its importance, the existing pro-
cess of organizing, managing and evaluating ZPI projects often involves significant manual effort and
inefficiency. These difficulties include disjointed communication, time-consuming project management,
and a lack of transparency in feedback and assessment.

To address these issues, our team developed an integrated platform that would simplify ZPI manage-
ment and organization. This system focuses on essential activities that allow students to form teams,
submit project files, and receive feedback. Supervisors and reviewers will benefit from automated work-
flows for project evaluation, while event chairs and spectators will have easy access to view relevant
information about the team projects.

The platform uses JWT [9] for state-free secure authentication and authorization. Additionally, the
integration of OAuth2 [7] with Google and OAuth1.0 [2] with USOS [3] ensures access for different types of
user, e.g., spectators (the former) and university-related users (the latter, through university credentials).
We used Granted Authority [1] to secure API call access.

The primary objectives of our projects are to:
Improve Efficiency through task automatization such as project submission, invitation management,

and enhanced stakeholder collaboration to reduce administrative burden.
Save Time Organize all project-related information in a single platform to minimize the time spent

searching and managing files.
Enhance Collaboration by providing better interaction with features such as messaging and real-time

project status updates.
Provide Transparency , i.e., ensure stakeholders have straightforward and easy access to view relevant

information about the team projects, so everything is handled openly and fairly, reducing biases
and misunderstandings.

2 RELATED WORK

2.1 Existing Solutions and Technologies
When developing PoP, we began by exploring existing tools that might address similar challenges. While
platforms such as EasyChair [4], Google Scholar [5], and ResearchGate [12] offer valuable functionali-
ties in their respective domains, none adequately meet the specific needs of our faculty, particularly

https://orcid.org/0009-0005-3003-4038
https://orcid.org/0009-0000-8441-5753
https://orcid.org/0009-0009-1924-0083
https://orcid.org/0009-0005-8749-5257
https://orcid.org/0000-0002-7851-4330


ZPI 2024

in managing student projects. Let’s consider EasyChair which is widely used for managing academic
conferences, offering features like paper submissions, peer reviews, and feedback coordination. How-
ever, its design is tailored to conference workflows, making it unsuitable for the detailed and iterative
processes involved in supervising and evaluating student projects.

Google Scholar and ResearchGate serve as essential platforms for researchers to share their work
and build professional profiles. However, they lack the tools necessary for submission management,
role-based workflows, and feedback coordination, which are crucial in an educational context.

PoP was built from the ground up to address these gaps, focusing exclusively on our faculty’s needs.
Designed with input from all stakeholders—students, supervisors, reviewers, and chairs—it integrates all
necessary functionalities into a single platform. Unlike general-purpose academic tools, POP is tailored
to manage student projects comprehensively, from submissions and evaluations to feedback and role
assignments.

Key features of PoP include role-based permissions that ensure users—such as students, supervisors,
and reviewers—access only the information relevant to their roles. The system also supports structured
workflows for evaluations and detailed feedback mechanisms, enabling transparency and efficiency.
While platforms like EasyChair or ResearchGate excel in their domains, POP’s specialized design provides
the targeted solutions our faculty requires for managing team projects.

2.2 Technology Choices
Technologies have been thoroughly researched and selected based on their technological advancement
and potential. They will be presented according to specific application layers.

Database
PostgreSQL [6] In our project, we identified several entities, such as users, projects,
edits, evaluations, invitations, etc., along with relationships among them. Therefore, we
needed a relational database management system that could sufficiently deal with com-
plex queries, joins, and foreign key constraints while ensuring data integrity – PostgreSQL
meets all these requirements.

Backend
Spring Boot [14] Spring Boot was our choice not only because of our Java knowledge
but also because of the features it offers. We wanted to create a secure application, and
Spring Boot makes it easy to implement authentication using OAuth2 and OAuth 1.0 and
authorization management. Additionally, we appreciated its excellent integration with
various data sources, including PostgreSQL. Thanks to the “convention over configuration
approach”, we could focus on the simple configuration of RESTful APIs, which accelerated
our work on the project.
Maven [11] To improve dependency management, we chose Maven, which enables effi-
cient and seamless integration of various libraries and frameworks–in our case, Spring
Boot, MyBatis (for database communication), PostgreSQL, and many others. Maven al-
lowed us to easily manage dependencies such as OAuth2 client support, security config-
urations, database integration, and overall project consistency. Additionally, using the
Spring Boot Maven plugin simplifies the application packaging and deployment process.

Frontend
Svelte [13] While new to most team members, Svelte quickly proved to be an excellent
choice for the front end [10]. Its lightweight nature and intuitive approach to reactivity
enabled us to build a dynamic and responsive user interface with ease.
Tailwind CSS [8] Tailwind CSS streamlined the design process by providing a comprehen-
sive set of utility classes. This eliminated the need for writing custom CSS from scratch,
ensuring a cohesive and consistent visual design while saving development time.

2.3 Time Constraints
Weeks 1–2 Project setup, repository configuration, and defining technical requirements.
Weeks 3–5 Core functionalities like authentication, invitation flow, and project upload.
Weeks 7–8 Advanced features such as evaluation systems and search functionalities.
Final Weeks Testing, debugging, and preparing documentation.



ZPI 2024

2.4 Resources
Human Resources – Our team had four members, each with their own focus. We divided responsibilities

among frontend, backend, and database development (Tab. 1).

Technical Resources – We relied on Git for version control and collaboration, and our stack—Svelte,
Tailwind CSS, Spring Boot, and PostgreSQL—handled the development side.

Team Member Role and Contributions

Yimeng Liu Database, backend

Weronika Wójcik Backend

Zuzanna Aszkiełowicz Backend

Nouran Elmenshawy Frontend

Table 1: Project Team and Their Contributions

3 RESULTS
The development of the PoP application has been successfully completed, resulting in a tailored solu-
tion designed specifically to address the unique needs of our faculty in managing student projects. The
platform integrates various functionalities to streamline workflows, enhance collaboration, and provide
comprehensive tools for submissions, evaluations, and feedback.

In the upcoming subsections, we will delve into the key components of the PoP system, highlighting
its core features, architecture, and the design decisions that make it uniquely suited to our requirements.
Each component will be discussed in detail, providing insights into how PoP facilitates efficient project
management and improves the overall user experience for all stakeholders involved.

3.1 Role-Based Functionalities and Data Access

Role Key Features Access Level

Student Submit project, receive feedback Limit to their team

Supervisor Evaluate projects, manage team members Full project access

Chair Assigned supervisors and reviewers Admin Access

Reviewer Provide Evaluations Full project access

Spectator Browse projects Limited view and evalua-
tion

Table 2: Roles and their access levels

It is worth noting that role settings have significant flexibility and scalability in our project, primarily
reflected in:

Edition-role concept – User roles can change according to edition changes.

Concept of multiple roles – The same user can have one or multiple roles, aligning the application with
actual needs.

3.2 Project Management
In PoP’s project management process, we use a series of workflows to ensure each project has relevant
personnel involved at different stages. The specific process is as follows:

• The Chair creates a project and sends an invitation to the relevant supervisor.



ZPI 2024

• The Supervisor accepts the invitation, joins the project and invites the students who are involved
in the project development to join the project.

• Students accept the invitation, join the project, fill in the basic information of the project and
upload the attachments required by the project.

Figure 1: Workflow presentation

3.2.1 Evaluation and Review

During the project review and evaluation phase, we are committed to the design concept of "openness
and professionalism" coexisting, and also allow specific evaluation weights to be defined according to
different roles to ensure the scientificity and objectivity of the evaluation results.

• In terms of openness, the system allows all users to participate in comments and ratings within
their authority to encourage extensive communication and interaction.

• In terms of professionalism, we ensure that key roles (such as supervisors and reviewers) play a
leading role in the evaluation.

Following the technical implementation of the Dynamic weight adjustment based on roles stored in the
evaluation_weights configuration is presented with an example of evaluation_weights configuration:

Role Weight

evaluation.weights.ASSIGNED_TO_EVALUATE 0.35

evaluation.weights.SUPERVISOR 0.35

evaluation.weights.GENARAL_TEACHING_MEMBER 0.2

evaluation.weights.STUDENT 0.075

evaluation.weights.SPECTATOR 0.025

Table 3: Example of Role-Based Evaluation Weights Configutation

3.2.2 Edition-Based Filtering

In order to adapt to version changes, we have added edition to many concepts such as "project, role,
deadline". It makes possible for the system to clearly record and distinguish different editions of project
data during multi-semester or multi-year use, thereby supporting more flexible management and ex-
pansion.

• In terms of "project", edition is marked with each project, ensure that the project’s contents accu-
rately correspond to a specific time.



ZPI 2024

• In terms of "role", the concept of version allows the same user to play different roles in different
semesters or project editions.

• In terms of "deadline", based on edition, each element type can set independent soft and hard
deadlines according to different semesters or years.

Figure 2: Database design related to Editions

Below, we outline the specific functionalities and interfaces enabled by this design, referencing the
provided API endpoints for clarity:

Title API Endpoint Key Implementation
(Tables Involved)

Edition-Based Project
Filtering

GET /project/getByUserRole projects, editions,
user_role

Edition-Specific
Deadlines

GET
/deadlines/getDeadlineByProjectIdAndElementTypeId

deadlines,
element_types, projects,
editions

Edition Management POST /editions/add editions

Edition-Based
Statistics

GET /statistic/getCounts
GET /statistic/averageGrades

projects, editions,
evaluations, roles

Edition-Specific Role
Management

POST /userRole/removeStudentsFromProject user_role, projects,
editions

Edition-Based
Element Management

POST /projectElements/uploadElement
GET /projectElements/retrieve

project_elements,
element_types, projects,
editions

Edition-Specific
Evaluations

POST /evaluations/add
GET /evaluations/assignedEvaluateList

evaluations, projects,
editions, user_role

Edition-Specific
Comments

POST /comments/add
GET /comments/getByElementId

comments,
project_elements,
projects, editions

Table 4: API Endpoints and Key Implementations



ZPI 2024

3.2.3 Statistics Dashboard

To provide users of various roles with a more intuitive visual presentation, we introduced the "Dash-
board" page to show users what they may care about most.

The following features are introduced to the dashboard page:

• Dynamic filters: Users can customize the data display range based on semester, project type, role,
etc.

• Data visualization: Intuitively present key indicators and trends through various chart forms.

• Quick entry for operation: Users can jump directly from the dashboard to a specific operation
page, e.g., “view my teams” or “view evaluations for all projects”.

Figure 3: Dashboard View

Figure 4: Projects View



ZPI 2024

Figure 5: Project Details View

4 CONCLUSION
The Project of Projects system addresses the challenges of managing student Team Projects in an aca-
demic environment by providing a platform that enhances organization, management, and evaluation.
Explicitly designed for ZPI, the system supports collaboration between students, supervisors, review-
ers, and chairs through various features that improve efficiency and coordination. It offers flexible and
scalable role management, allowing for dynamic roles based on project editions and multiple-role user
assignments. The project management workflow is streamlined, with transparent processes for project
creation, role assignments, and collaboration.

The evaluation and review process is structured to ensure scientific and objective assessments, with
weighted evaluations tailored to different roles. The system encourages interaction among users while
maintaining professionalism to guarantee reliable results. PoP also allows seamless project data man-
agement across multiple semesters or academic years, making it adaptable and organized. A statistics
dashboard provides visualized data trends, dynamic filtering, and quick access to key operations, en-
suring that users are informed and empowered.

From a business perspective, the system reduces administrative overhead and improves transparency
and collaboration, enabling faculty and staff to focus more on academic value rather than logistical
tasks. From a technical perspective, PoP highlights the integration of advanced technologies such as
Spring Boot, PostgreSQL, Svelte, and Tailwind CSS, resulting in a solid, maintainable, and scalable solu-
tion.

4.1 Future Directions
Mobile App It might be a good idea to eventually add a mobile app. This could make it easier for
students and supervisors to handle things like submissions and feedback from their phones, especially
when they’re not at their computers.

Polish Version We’ve thought about making a Polish version of the system. It could help local users
who are more comfortable working in Polish and make things simpler for them.

Offline Access Adding offline access could be useful too. It would let people check details, submit files,
or review things even without internet. Once they’re back online, everything could sync up automatically.
The project was developed under the supervision of Krystian Wojtkiewicz, Ph.D.

ACKNOWLEDGMENTS
We extend our heartfelt gratitude to our supervisor, Krystian Wojtkiewicz, Ph.D., for his invaluable guid-
ance and insightful suggestions throughout the development of the Project of Projects. His support was
instrumental in helping us elevate the project to its current level of excellence.



ZPI 2024

REFERENCES
[1] Baeldung. Granted authority versus role in spring security. https://www.baeldung.com/

spring-security-granted-authority-vs-role, 2024. Accessed: 2024-11-30.

[2] GitHub Contributors. Scribejava documentation, 2024. Accessed: 2024-11-30.

[3] USOS Developers. Usos api documentation. https://apps.usos.edu.pl/developers/api/
services/, 2024. Accessed: 2024-11-30.

[4] EasyChair. Easychair. https://easychair.org. Accessed: 2024-11-30.

[5] Google. Google scholar. https://scholar.google.com. Accessed: 2024-11-30.

[6] The PostgreSQL Global Development Group. Postgresql documentation. https://www.postgresql.
org/docs/current, 2024. Accessed: 2024-11-30.

[7] Dick Hardt. The oauth 2.0 authorization framework. https://datatracker.ietf.org/doc/html/
rfc6749, 2012. Accessed: 2024-11-30.

[8] Tailwind Labs Inc. Tailwind css documentation. https://tailwindcss.com/docs/, 2024. Accessed:
2024-11-30.

[9] Michael B. Jones, John Bradley, and Nat Sakimura. Rfc 7519: Json web token (jwt). https://tools.
ietf.org/html/rfc7519, 2015. Accessed: 2024-11-30.

[10] Ovidiu Constantin Novac, Mihaela Cornelia Novac, Mihai Oproescu, Adrian-Cristian Mlinarcic, Cor-
nelia Emilia Gordan, and Camelia Maria Dindelegan. Employing comparative study between fron-
tend frameworks. react vs ember vs svelte. In 2024 16th International Conference on Electronics,
Computers and Artificial Intelligence (ECAI), pages 1–5. IEEE, 2024.

[11] Apache Maven Project. Maven documentation. https://maven.apache.org/guides/index.html,
2024. Accessed: 2024-11-30.

[12] ResearchGate. Researchgate. https://www.researchgate.net. Accessed: 2024-11-30.

[13] The Svelte Team. Svelte documentation. https://svelte.dev/docs/svelte/overview, 2024. Ac-
cessed: 2024-11-30.

[14] Phillip Webb, Dave Syer, Josh Long, Stéphane Nicoll, Rob Winch, Andy Wilkinson, Marcel Overdijk,
Christian Dupuis, Sébastien Deleuze, Michael Simons, Vedran Pavić, Jay Bryant, Madhura Bhave,
Eddú Meléndez, Scott Frederick, and Moritz Halbritter. Spring boot documentation. https://docs.
spring.io/spring-boot/docs/3.2.5/reference/html/, 2023. Accessed: 2024-11-30.

https://www.baeldung.com/spring-security-granted-authority-vs-role
https://www.baeldung.com/spring-security-granted-authority-vs-role
https://apps.usos.edu.pl/developers/api/services/
https://apps.usos.edu.pl/developers/api/services/
https://easychair.org
https://scholar.google.com
https://www.postgresql.org/docs/current
https://www.postgresql.org/docs/current
https://datatracker.ietf.org/doc/html/rfc6749
https://datatracker.ietf.org/doc/html/rfc6749
https://tailwindcss.com/docs/
https://tools.ietf.org/html/rfc7519
https://tools.ietf.org/html/rfc7519
https://maven.apache.org/guides/index.html
https://www.researchgate.net
https://svelte.dev/docs/svelte/overview
https://docs.spring.io/spring-boot/docs/3.2.5/reference/html/
https://docs.spring.io/spring-boot/docs/3.2.5/reference/html/

	Introduction
	Related Work
	Existing Solutions and Technologies
	Technology Choices
	Time Constraints
	Resources

	Results
	Role-Based Functionalities and Data Access
	Project Management
	Evaluation and Review
	Edition-Based Filtering
	Statistics Dashboard


	Conclusion
	Future Directions


