
LeCA: In-Sensor Learned Compressive Acquisition for Efficient
Machine Vision on the Edge

Tianrui Ma∗
tianrui.ma@wustl.edu

Washington University in St. Louis
St. Louis, MO, USA

Adith Jagadish Boloor∗
adith@wustl.edu

Washington University in St. Louis
St. Louis, MO, USA

Xiangxing Yang
yangxx@utexas.edu

University of Texas at Austin
Austin, TX, USA

Weidong Cao
weidong.cao@wustl.edu

Washington University in St. Louis
St. Louis, MO, USA

Patrick Williams
patrickwilliams@wustl.edu

Washington University in St. Louis
St. Louis, MO, USA

Nan Sun
nansun@tsinghua.edu.cn

Tsinghua University
Beijing, China

Ayan Chakrabarti
ayan@email.wustl.edu

Washington University in St. Louis
St. Louis, MO, USA

Xuan Zhang
xuan.zhang@wustl.edu

Washington University in St. Louis
St. Louis, MO, USA

ABSTRACT
With the rapid advances of deep learning-based computer vision
(CV) technology, digital images are increasingly consumed, not
by humans, but by downstream CV algorithms. However, captur-
ing high-fidelity and high-resolution images is energy-intensive.
It not only dominates the energy consumption of the sensor itself
(i.e. in low-power edge devices), but also contributes to significant
memory burdens and performance bottlenecks in the later storage,
processing, and communication stages. In this paper, we system-
atically explore a new paradigm of in-sensor processing, termed
“learned compressive acquisition” (LeCA). Targeting machine vi-
sion applications on the edge, the LeCA framework exploits the
joint learning of a sensor autoencoder structure with the down-
stream CV algorithms to effectively compress the original image
into low-dimensional features with adaptive bit depth. We employ
column-parallel analog-domain processing directly inside the im-
age sensor to perform the compressive encoding of the raw image,
resulting in meaningful hardware savings, and energy efficiency im-
provements. Evaluated within a modern machine vision processing
pipeline, LeCA achieves 4×, 6×, and 8× compression ratios prior
to any digital compression, with minimal accuracy loss of 0.97%,
0.98%, and 2.01% on ImageNet, outperforming existing methods.
Compared with the conventional full-resolution image sensor and
the state-of-the-art compressive sensing sensor, our LeCA sensor
is 6.3× and 2.2× more energy-efficient while reaching a 2× higher
compression ratio.

∗Both authors contributed equally to this research.

This work is licensed under a Creative Commons Attribution
International 4.0 License.

ISCA ’23, June 17–21, 2023, Orlando, FL, USA
© 2023 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-0095-8/23/06.
https://doi.org/10.1145/3579371.3589089

CCS CONCEPTS
•Computer systems organization→Neural networks; •Hard-
ware → Sensor devices and platforms.

KEYWORDS
CMOS image sensor; image compression; autoencoder
ACM Reference Format:
Tianrui Ma, Adith Jagadish Boloor, Xiangxing Yang, Weidong Cao, Patrick
Williams, Nan Sun, Ayan Chakrabarti, and Xuan Zhang. 2023. LeCA: In-
Sensor Learned Compressive Acquisition for Efficient Machine Vision on
the Edge. In Proceedings of the 50th Annual International Symposium on
Computer Architecture (ISCA ’23), June 17–21, 2023, Orlando, FL, USA. ACM,
New York, NY, USA, 14 pages. https://doi.org/10.1145/3579371.3589089

1 INTRODUCTION
Motivation. The modern world craves for rich contextual infor-
mation, much of which is driven by diverse vision applications,
thanks to the expansion of various consumer camera devices and
image sensors in the past decades. Apart from serving the growing
demand of social networks, image sensors also play vital roles in
many industrial and scientific applications, such as security moni-
toring [22], environmental sensing [46], and medical imaging [77].
In these first-generation vision applications, humans are often the
end-consumers of the images, therefore faithful capture and recon-
struction of the original light scene become an important quality
measure. Nonetheless, recent accelerated advancements of deep
learning (DL)-based computer vision have unleashed the second
wave of machine vision. In this second wave, voluminous vision
data are increasingly generated by intelligent edge devices and
consumed, not by humans, but by downstream computer vision
(CV) algorithms to perform sophisticated tasks such as classifica-
tion, recognition, and machine perception [13, 20, 53], as shown in
Fig. 1. It presents a unique opportunity for innovative image sensor
systems— Given that images are destined for the downstream vision
algorithms without the need for high-fidelity reconstruction, it is now
possible to compress and preserve the “task-specific” information to
reduce energy consumption and save hardware costs.

https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1145/3579371.3589089
https://doi.org/10.1145/3579371.3589089
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3579371.3589089&domain=pdf&date_stamp=2023-06-17

ISCA ’23, June 17–21, 2023, Orlando, FL, USA Ma and Boloor, et al.

In-Sensor Processing

Off-Sensor
Communication

Off-Sensor Processing

Scene

Downstream
CV tasks

…… ……… …

Machine-centric vision

Human-centric vision

Task-specific
information

Task-agnostic
information

Figure 1: Human-centric vision processing pipeline and LeCA-
adopted machine-centric vision processing pipeline.

Generally, image sensors perform the fundamental utility of
converting light to electrical signals for later storage, processing,
communication and consumption. In conventional image sensors,
all pixels are indiscriminately converted to a pre-defined digital
format with a fixed bit depth (e.g., 8-bit). Considerable energy and
resources of the overall sensor system are dedicated to the read-
out peripheral and analog-to-digital conversion (ADC) circuits, as
well as the on-chip storage and off-chip transmission of the raw
image frame after its capture and digitization. These components
significantly contribute to the silicon area, power, and latency of
the image sensor, which grows proportionally to image resolution.
For example, a survey on state-of-the-art image sensors [12, 15–
17, 34, 37, 41, 42, 51, 65, 72, 73] shows that the ADC and output
buffer circuits alone consume 69% of the sensor’s power, 34% of the
pixel row’s readout time, and more than 60% of pixel array area.
Current limitations. Image compression has been studied exten-
sively in the past, and there exists a body of research on efficient
compression/encoding methods that range from classic discrete
cosine transform (DCT)/wavelet-based algorithms (i.e. JPEG) to
emerging end-to-end learned image compression [1, 33, 62]. How-
ever, current compression schemes, by and large, are performed
in the digital domain. It demands the same amount of sensor re-
sources and energy to convert the raw pixels to their digital bit
representations during initial image acquisition before applying
any compression, while requiring dedicated power-hungry digital
compression engines in its image processing pipeline. Therefore,
the reduced image size from digital compression does not directly
benefit the image sensor itself and cannot be readily translated to
meaningful resource and energy savings. Alternatively, the concept
of compressive sensing [20] and compressive acquisition [87] have
been explored to relieve the image capture and digitization cost at
the sensor front-end. However, existing schemes of compressive
sensing and compressive acquisition are task-agnostic, resulting in
a modest compression ratio with limited task accuracy. They often
also require compute-intensive iterative optimization at the decod-
ing stage to reconstruct the image [85] and thus are unsuitable for
latency-sensitive machine vision applications.
Our work. In this paper, we seek to systematically explore a new
paradigm of image sensor design which we term LeCA – it em-
ploys a Learning-basedCompressiveAcquisition method to extract
condensed task-relevant features instead of defaulting to the fixed
quantization scheme universally adopted by existing compressive
sensing/acquisition solutions[49, 50, 63]. LeCA exploits the oppor-
tunity in the modern machine vision pipeline where the image data
are consumed by the deep neural network (DNN) based downstream
CV algorithms, obviating the need to reconstruct the original im-
age based on human-centric visual quality metrics. The proposed

LeCA framework is a hardware/algorithm co-design approach that
is made feasible by the combination of three key techniques: 1
LeCA stacks an autoencoder before the downstream CV algorithm
that allows the joint learning of the task-specific features in an end-
to-end manner. The autoencoder comprises a single encoding layer
with lightweight decoder layers, facilitating an in-sensor implemen-
tation of the compressive encoding layer. 2 A hardware-aware
noise-tolerant training process that incorporates the analytical be-
havioral and noise models of the analog-domain multiplier and
buffer circuits to properly account for their circuit-level nonideali-
ties, leading to more precise hardware instantiation and superior
accuracy of the trained LeCA models. 3 Our LeCA sensor system
employs a column-parallel processing element (PE) array using
switched-capacitor multipliers (SCMs) to enable compressive fea-
ture extraction and variable low-resolution quantization directly at
the sensor front end. In addition to improving the energy efficiency
of the image sensor itself, LeCA reduces the image size right off its
source, which can be translated to memory storage and computing
power savings for later-stage processing. With column-parallel PE
arrays and programmable encoder weights and channel dimensions,
the proposed LeCA system can flexibly scale with the image resolu-
tion and adapt to varying compression ratios, making it a practical
solution for energy-efficient machine vision applications.
Contributions. Our main contributions are:

• We propose LeCA, a hardware/algorithm co-design frame-
work that exploits the joint learning of a sensor autoencoder
with the downstream CV algorithms to compress the origi-
nal pixel-wise image data into task-specific low-dimensional
features with adaptable bit depth and minimal task accuracy
loss.

• A hardware-aware and noise-tolerant training process is de-
veloped and tailored for the LeCA framework where we fully
account for the circuit-level behaviors and non-idealities of
LeCA’s analog-domain hardware.

• We design an efficient implementation in standard CMOS
65nm technology employing column-parallel analog-domain
PE arrays with variable-resolution ADCs to perform the
single-layer LeCA encoder.

• We validate LeCA’s superior compression-accuracy tradeoffs
against alternative compression methods using comprehen-
sive benchmark datasets (ResNet-50 on ImageNet).

2 BACKGROUND
We first provide an introduction to CMOS image sensors and high-
light the hardware overheads that are directly associatedwith image
size (Sec. 2.1). Next, various image compression/encoding schemes
are reviewed (Sec. 2.2). Finally, we present previously-proposed
in-sensor processing architectures and the associated circuit-level
techniques (Sec. 2.3).

2.1 CMOS Image Sensor Primer
CMOS image sensor (CIS) is one of the most popular vision fron-
tends. It typically consists of a pixel plane, column-parallel readout
and ADC circuits, output buffers, and a serial communication inter-
face to transmit the image data off-chip, as shown in Fig. 2(a). The
2D pixel plane extends vertically and horizontally with𝑉 ×𝐻 pixels.

LeCA: In-Sensor Learned Compressive Acquisition for Efficient Machine Vision on the Edge ISCA ’23, June 17–21, 2023, Orlando, FL, USA

Power Area Latency

V×H

R
ow

 S
ca

nn
er

B G B G

G R G R

B G B G

G R G R Bayer’s
Pattern

…

…

(a)

(b)

M
IP

I C
SI

-2

Pixel
Readout

Pixel
PD

RS

RSTTX
VRST

VDDG

(c)

Off-chip
Transmission

ADC + Output Buffer
ADC

Output Buffer

Column Readout Circuit

Figure 2: (a) Conventional CIS floorplan. (b) 4-T pixel structure. (c)
Overhead of ADC and output buffer based on CIS survey.

A typical active pixel sensor (APS) design employs a 4-T pixel cell
structure (Fig. 2(b)). In color image sensors, the color filter array
is placed on top of the pixel plane to multiplex visible light with
different wavelengths. The filter array is usually placed in a Bayer
pattern [25] as shown in Fig. 2(a): a 2×2 pixel block (two green, one
red, and one blue) is grouped together, where the number of green
filters is as twice as the others to emulate human vision sensitivity.
This Bayer pattern of the raw image is later processed digitally by
demosaicing through color interpolation to recover the full-color
image for display.

Under regular frame rate operations, CIS commonly adopts a
rolling shutter by exposing the pixel plane row by row. It allows the
pixels in the same column to share one set of readout circuit and
ADC. The number of ADCs is thus determined by the image width
(𝐻) in a rolling-shutter CIS. After the ADC, the digitized image is
stored in the output buffer and streamed out through a serial inter-
face (e.g. MIPI CSI-2). We survey 37 CIS papers published between
2010 and 2022 and find that the ADC and output buffer account
for a significant proportion of the sensor’s power, latency, and area
(Fig. 2(c)) and the energy consumed by the serial communication
link can be significant.

2.2 Sensor-side Image Compression
Compression is an effective method to alleviate the large image
storage and transmission overheads caused by high-resolution im-
age data. Standard compression techniques such as lossy predictive
coding [71], variable length-coding [79], and JPEG encoding [78]
exploit abundant spatial redundancy in natural images for compres-
sion. Apart from these classic methods, learned image compression
has recently been explored, which learns only the most important
features to aggressively compress the images, and recover the im-
ages with minimal perceptual loss, such as probability methods [60],
generative adversarial networks [1], and autoencoders [14, 90]. Gen-
eral techniques that compress neural network feature maps such as
sparsity[2, 24] and quantization[8, 91] can also be applied to reduce
the input image size. However, all these schemes are exclusively
performed in the digital domain after acquiring the digital images,
hence they provide no resource or power-saving opportunity to
the sensor chip. Moreover, digital compression requires dedicated
processing engines whose power consumption often dwarfs that
of the image sensor itself. For example, efficient JPEG engines con-
sume on the order of nJ/pixel to compress the image[3, 67], several
times the power of the conventional image sensor.

Table 1: Comparison of Image Compression Methods

Compression
Method

Encoding
Domain

Objective
Function

Quality
Metric

Hardware
Overhead

Standard
[71, 78, 79] Digital Task

Agnostic PSNR High

Learned
[1, 14, 60, 90] Digital Task

Agnostic PSNR Medium

Heuristic
Acquisition
[39, 84, 87]

Mixed Task
Agnostic PSNR Medium

Compressive
Sensing [64] Analog Task

Agnostic PSNR Low

Ours - LeCA Analog Task
Specific Accuracy Low

Alternatively, image compression can be achieved during the ac-
quisition process, often using heuristic algorithms. Constrained by
the limited computation that can be implemented inside the sensor
chip, these heuristic algorithms tend to include simple operations
such as encoding the neighboring pixel’s intensities [88], encoding
a block of pixels based on its mean, gradient, and bitmap [11], per-
turbing pixels to achieve low-resolution quantization [84], encoding
pixel gradient to logarithmic representation [82] and skipping pix-
els with small accumulated gradients [39].

Compressive sensing (CS) is another notable approach to re-
duce the sensor cost associated with image capture. It exploits the
sparsity of natural images and allows the raw images to be progres-
sively reconstructed with a small number of linear measurements.
When CS is applied to image sensors, these measurements are often
obtained by multiplying the image with a random binary/ternary
matrix and use the weighted sum of one or more blocks of pixel val-
ues to encode and represent the acquired images [64]. A downside
of CS is its use of an iterative optimization method for image recon-
struction that converges slowly, making it unsuitable for real-time
machine vision tasks.

What existing compressive acquisition and CS solutions share in
common is that they are all task-agnostic methods optimized and
evaluated not by specific vision task performance, but by general
image quality factors such as peak signal-to-noise ratio (PSNR) and
structural similarity index measure (SSIM) [30]. Table 1 summarizes
the characteristics of different approaches to image compression.
We propose LeCA that not only translates effective compression to
meaningful hardware resource and energy savings but also delivers
superior end-to-end task accuracy and performance.

2.3 In-Sensor Processing
In conventional image processing pipeline, the digitized image cap-
tured by the sensor is fed to a digital image signal processor (ISP)
chip for post-processing to improve the image quality[29]. However,
our reviews on image compression methods (Sec 2.2) suggest that if
compression or lower-dimensional feature extraction of the image
can be performed directly inside the sensor, preferably in the analog
domain, then fewer data have to be explicitly digitized and trans-
mitted off-chip for later processing. Such in-senor architectures
have recently been explored with several possible implementations
– pixel-level, column-level, and chip-level processing according to

ISCA ’23, June 17–21, 2023, Orlando, FL, USA Ma and Boloor, et al.

the location of the processing elements (PEs) [61]. Due to the strin-
gent pixel size, pixel-level PE can only employ a few transistors and
perform limited computations to avoid severe degradation of the fill
factor[57, 59, 68, 81]. Chip-level PE is placed next to the pixel array
and processes the pixel readouts sequentially, resulting in low com-
putational parallelism [83]. A variant of chip-level processing is to
stack the sensor chip onto the processing chip with through-silicon-
vias[45, 75] or hybrid bonds[54], which incurs higher fabrication
and packaging cost in exchange for smaller pixel size and higher
frame rate[40, 76]. In column-level processing, the PE resides with
the column readout circuit that is shared by the pixels in one or
multiple adjacent columns[5, 6]. It provides a middle ground for
trading off between the area/complexity of the in-sensor circuitry
and the processing parallelism.

A number of in-sensor processing circuits have been proposed
to perform various pixel-weight operations such as max/min, log-
arithm, multiplication, and summation with current-[13, 35, 56,
70], voltage-[82], or charge-domain [48] implementations. These
analog-domain circuits allow in-sensor pre-processing before sig-
nal digitization. In particular, vector multiplication is one of the
atomic arithmetic operations that are commonly used in many pre-
processing tasks. Our LeCA sensor adopts column-level processing
with charge-domain multipliers to perform the learned compressive
encoding on the raw pixel values.

3 LECA CO-DESIGN FRAMEWORK
We follow two central tenets in the development of the LeCA frame-
work. First, LeCA is designed for resource-constrained image sen-
sors. In such sensors, it is critical to reduce energy consumption
and limit the area overhead of the sensor chip by itself, prompting
the need to perform image encoding/compression in the analog
domain before digitization. Second, LeCA targets the modern ma-
chine vision processing pipeline, where images are consumed by
downstream CV algorithms rather than human visual inspection,
allowing us to adopt an end-to-end measure of success instead of
the traditional image quality metrics.

An overview of the proposed LeCA framework (Sec. 3.1) is first
provided, followed by introducing the image processing pipeline
(Sec. 3.2) and the encoder design (Sec. 3.3). We then elaborate
on LeCA’s customized training methodology that accounts for its
unique combination of analog-domain encoder and digital-domain
decoder with a pre-trained CV model as the backbone for the down-
stream tasks (Sec. 3.4).

3.1 LeCA Overview
As illustrated in Fig. 3, LeCA is a hardware/algorithm co-design
framework consisting of two synergistically-optimized components
– an encoder/decoder model that is jointly trained with a back-
bone DNN (i.e. ResNet50) for the downstream CV tasks; and an
in-sensor processing architecture that efficiently implements the
LeCA encoder layer directly inside the sensor chip. On the algo-
rithmic side, LeCA adopts an encoder-decoder structure commonly
seen in variational autoencoder literature [44] and stacks it before
the downstream DNN model. The encoder performs a single-layer
convolution between the raw RGB image and the LeCA encoder’s
learned kernels. The convolution output is then quantized to a

(a)

(b)

LeCA Encoder LeCA Decoder

Jointly-Trained

Q-bit
Quantization

Downstream
CV AlgorithmIfmap ⨂

…

×Nch Trans.
CONV

Simplified
DnCNN

Denoiser

ADCPixel
Array …

Global SRAMDigital Controller

PEData
Buffer

Switch-cap
Multiplier ADC…PE ADCPixel

Array …

Global SRAMDigital Controller

PEData
Buffer

Switch-cap
Multiplier ADC…PE

Figure 3: (a) LeCA vision processing pipeline. (b) LeCA sensor system
diagram. LeCA encoding is implemented by PE and quantization is
implemented by ADC.

low-resolution feature map. And we allow the bit depths to vary
between 1.5-bit (ternary) and 4-bit. The decoder reconstructs task
specific features from the encoded feature map to the same size of
original image. Both the LeCA encoder take the form of convolution
layers and are jointly-trained with the downstream DNN so that
all design parameters are aware of the downstream task accuracy.

In extreme low-power edge machine vision applications (e.g.
always-on surveillance [16], wellness monitoring [52]), it is para-
mount to reduce the sensor energy beyond the conventional CIS
implementation. We design a novel sensor architecture (Fig. 3(b))
to embed the computation of LeCA encoder into the sensor, and im-
plement the computation with analog-domain PE arrays to achieve
significant image data compression with high energy efficiency.
The sensor architecture comprises five parts: The pixel array con-
tains column-parallel analog pixel readout circuits with row-wise
rolling shutter exposure. The PE array receives analog pixel values
from the pixel array as input feature maps (ifmap), fetches digital
LeCA encoder kernels from the global SRAM as weights, and gen-
erates analog output feature maps (ofmap) through charge-domain
multiply-accumulate (MAC) operations. The ADC array performs
digital quantization on the analog ofmap and its resolution is vari-
able from 1.5-bit to 4-bit. The quantized ofmap is stored back into
the global SRAM to be transmitted off-chip. The digital controller
cooperates with the row scanner, to control data scheduling and
operation timing from the start of the exposure to the final readout
of the quantized ofmap.

3.2 LeCA Machine Vision Processing Pipeline
We intentionally choose the encoder-decoder structure, as it enables
simple plug-and-play of LeCA on top of a learning-based machine
vision pipeline without modifying the backbone DNN structures or
retraining the entire pipeline. Although LeCA could further reduce
the energy/latency benefits of the downstream CV models due to
image compression [19], we set the scope of our evaluation only to
the sensor chip energy and performance.

The LeCA encoder is deliberately simplified: it has only one con-
volution layer with non-overlapping kernels and a limited number
of output channels (𝑁ch) as shown in TABLE 2. In this way, each
LeCA kernel condenses a 𝐾 × 𝐾 ×𝐶 pixel block in the ifmap into a

LeCA: In-Sensor Learned Compressive Acquisition for Efficient Machine Vision on the Edge ISCA ’23, June 17–21, 2023, Orlando, FL, USA

Table 2: Network Structure of LeCA Encoder and Decoder

Layer
Ifmap

Dimensions
Weight

Dimensions
OfMap

Dimensions
LeCA Encoder

CONV 𝑊 × 𝐻 × 𝐶 𝐾 × 𝐾 × 𝐶 × 𝑁ch
𝑊
𝐾

× 𝐻
𝐾

× 𝑁ch
LeCA Decoder

CONV
Transpose

𝑊
𝐾
×𝐻
𝐾
×𝑁ch 𝐾 × 𝐾 × 𝑁ch × 𝐶 𝑊 × 𝐻 × 𝐶

CONV
+ReLU 𝑊 × 𝐻 × 𝐶 𝐾 × 𝐾 × 𝑁ch × 𝐶 𝑊 × 𝐻 × 𝐶

(M layers)
CONV

+ BatchNorm
+ ReLU

𝑊 × 𝐻 × 𝐹 𝐾𝑑 × 𝐾𝑑 × 𝐶 × 𝐹 𝑊 × 𝐻 × 𝐹

CONV 𝑊 × 𝐻 × 𝐹 𝐾𝑑 × 𝐾𝑑 × 𝐹 × 𝐶 𝑊 × 𝐻 × 𝐶

single element in the ofmap, thereby achieving 𝐾2× and 𝐶× com-
pression in the ifmap’s spatial domain and input-channel domain,
respectively. Here, 𝐾 is both the kernel size and stride length, and
𝐶 is the number of input channels (𝐶 = 3 for RGB colorspace).
After the encoder, the ofmap is hard-truncated and uniformly quan-
tized to its low-resolution (𝑄bit) representation, thereby achieving
𝑄full
𝑄bit

× compression in the ofmap’s bit depth domain where𝑄full = 8
represents the full resolution of typical images. Therefore, the com-
pression ratio (CR) achieved by the LeCA encoder is:

𝐶𝑅 =
𝐾 × 𝐾 ×𝐶 ×𝑄full

𝑁ch ×𝑄bit
(1)

By intentionally choosing a small 𝑁ch, we ensure that the compres-
sion gained through ifmap down-sampling and quantization is not
offset by a large number of ofmaps. The simplicity of the LeCA
encoder and the low-resolution quantization also enables energy-
efficient hardware implementation (discussed later in Sec. 4).

After the image data are transmitted off-chip, the quantized
ofmap is first upsampled to the size of the original ifmap through
a transposed convolution block, as shown in TABLE 2; then it is
denoised through a simple DnCNN denoiser [86] consisting of𝑀
stacked convolutional blocks. We find that complicated decoder de-
signs used for image quality enhancement (e.g. PSNR, SSIM) are not
necessary, as the LeCA decoder aims to retrieve the salient informa-
tion from the quantized ofmap that contributes to the downstream
task accuracy. Quantitatively, our evaluation suggests that sufficient
accuracy is achieved when the number of DnCNN layers is𝑀 = 15
and the number of convolutional filters is 𝐹 = 64, which takes only
a fraction of the parameter sizes used in the state-of-the-art DNN
backbone models (e.g., ResNet18/50).

3.3 LeCA Encoder Design
According to Eq. (1), the level of compression in LeCA is deter-
mined by three key parameters associated with the encoder: (1) the
encoder’s convolution kernel size 𝐾 , (2) the number of encoded
features 𝑁ch, and (3) the bit depth of the encoded features 𝑄bit.
These parameters participate in the tradeoff between compression
ratio, hardware complexity, and downstream task accuracy. Here,
we investigate this tradeoff and identify an optimal setting of the
encoder parameters using a proxy machine vision pipeline: the
TinyImageNet [47] dataset on a ResNet18 [28] downstream model.

4× 6× 8×
Compression Ratio

(a)

50.0

55.0

60.0

65.0
66.8

70.0

Ac
cu

ra
cy

(%
)

K=2 K=3 K=4

3 4 6 8 12 16
Nch
(b)

50.0

55.0

60.0

65.0
66.8

70.0
4x 6x 8x 12x

Qbit 8 4 3 2 1.5 1

4|4

4|3
4|2

8|3

Figure 4: Proxy pipeline (a) accuracy under various kernel size 𝐾 ; (b)
accuracy for 𝑁ch and 𝑄bit (markers) parameter sweep across com-
pression ratios of {4, 6, 8, 12} (colors) for K = 2. Best accuracies are
marked in 𝑁ch |𝑄bit notation for each compression ratio.

In Fig. 4(a), the effect of 𝐾 is explored under three different
compression ratios on the proxy pipeline. It shows that while high
compression leads to some accuracy degradation, choosing𝐾 ∈{2, 3,
4} gives similar inference accuracy. From a hardware perspective, a
smaller𝐾 means that fewer consecutiveMAC operations are needed
and a smaller portion of the ofmap is to be buffered, resulting in
lower hardware complexity. 𝐾 = 1, which does not perform spatial
downsampling is not included because it require aggressive𝑄bit and
𝑁ch to achieve adequate compression, which leads to poor accuracy.
Therefore, we fix 𝐾 = 2 out of hardware efficiency consideration.

The remaining design space of the LeCA encoder is completely
characterized by 𝑁ch and 𝑄bit and there exists a clear and critical
tradeoff between LeCA encoder’s compression ratio (CR) and the
downstream task accuracy. We investigate the inference accuracy
by sweeping over 𝑁ch and 𝑄bit combinations under different CRs.
In Fig. 4(b), it shows that increasing the CR with lower 𝑁ch and
𝑄bit values leads to degradation in end-to-end task accuracy. For a
fixed CR of 4×, as 𝑁ch increases and𝑄bit decreases, the best perfor-
mance is observed at the middle, suggesting that too few 𝑁chs or
too aggressive 𝑄bits leads to poor accuracy. The optimal 𝑁ch and
𝑄bit combination that gives the highest inference accuracy varies
for different CRs. Empirically, we observe in Fig. 4(b) that for CRs
of 4×, 6×, 8×, 𝑁ch|𝑄bit of 8|3, 4|4 and 4|3 are the optimal configura-
tions, which are used as starting points for later full evaluation in
Sec. 6. The LeCA hardware is designed to support programmable
𝑁ch|𝑄bit configurations.

3.4 Training Methodology
Given the analog-domain implementation of the encoding layer and
the stacked nature of the LeCAmachine vision pipeline, we develop
a customized training methodology to tackle a number of unique
challenges that differentiate LeCA from the typical DNN-based CV
model training process.
Joint training with backbone DNN. All parameters in the LeCA
encoder-decoder are learned simultaneously with the downstream
CV model (e.g., ResNet in this work) to maximize its end-to-end
task accuracy. We train the entire pipeline with a cross-entropy
loss that is typical for image classification tasks, in contrast to prior
works that train to minimize the reconstruction loss between the
raw and decoded images [58]. Particularly, the training is performed
by freezing the backbone DNN with its pre-trained weights. This
means that during backpropagation, the gradients are calculated

ISCA ’23, June 17–21, 2023, Orlando, FL, USA Ma and Boloor, et al.

for each layer of the DNN, but its weights are not updated. Instead,
those gradients are propagated back to update the weights in the
LeCA encoder and decoder. This joint training allows LeCA to ex-
tract task-specific information in its encoding layer that emphasizes
end-to-end task accuracy over the conventional visual reconstruc-
tion quality. Freezing the backbone weights is a deliberate choice as
it enables us to easily swap the backbone for other models without
retraining the entire end-to-end network.
Hardware-aware and noise-tolerant training. Although we
can obtain learned weights from the digital training, transferring
them to the hardware model is not trivial due to various hard-
ware non-idealities. In order to minimize the accuracy degrada-
tion after the software-to-hardware mapping, we must consider
comprehensive hardware non-idealities in the training forward
path, including hardware constraints (e.g. limited signal range, lim-
ited precision, and constrained polarity), hardware offsets, and
hardware noise and variations. Specifically, the convolution of the
LeCA encoder layer is implemented by the analog PE consisting
of three circuit stages – a PMOS source follower (PSF) buffer, a
switched-capacitor multiplier (SCM), and a flipped voltage follower
(FVF) buffer (Sec. 4).

Unlike ideal buffers and multipliers, PSF and FVF cause linear
scaling and offsets, and SCM performs precision-limited multiplica-
tion with gain error. To deal with hardware constraints, we clamp
the numerical values of the data in the encoder to be consistent with
the real signal range in the PE circuit, and we quantize the encoder’s
weight to the hardware precision. We model the hardware offsets
in two different ways. First, for the circuits with fixed transfer
functions (PSF and FVF), we approximate them with analytical re-
gression functions and insert them in the training forward path.
Specifically, both transfer functions in PSF and FVF are modeled
as linear functions. Second, for the circuits with programmable
transfer functions (SCM and ADC), we innovatively incorporate
the programmble circuit parameters in the training loop by insert-
ing the exact circuit behavior models in the training forward path.
Specifically, SCM takes both ifmap and weight for MAC operations.
Instead of finding a mapping between the weight and the real cir-
cuit parameter in the SCM that represents the weight after training,
we directly train that circuit parameter during backpropagation.
Similarly, we directly train the ADC’s quantization boundary.

To deal with hardware noise and variations, we specificallymodel
the noise at each circuit stage from pixel acquisition to the end of
ofmap digitization, and insert them into the training forward path
stage by stage. Direct training on the full noise model leads to poor
convergence. Instead, we first pre-train a noise-free pipeline, and
then finetune it by incorporating the various noise models. The
detailed modeling is discussed in Sec. 5.3. A key aspect in our
training method is how to deal with hardware offsets and noises
in an iterative manner due to the temporally-multiplexed weights
unique to LeCA operation, unlike prior hardware-aware training
that solely applies to spatially-multiplexed weights[9, 38, 89].

To summarize, there are three training modalities: 1 soft train-
ing – training a convolutional layer without any hardware non-
idealities, 2 hard training – replace the software computation by
the circuit analytical models with hardware constraints and off-
sets, and 3 noisy training – replace the software computation by
the actual circuit behaviors with hardware constraints, offset, and

noise/variations. In Sec. 6, we show the performance of these dif-
ferent training modalities.
Differentiable backpropagation and incremental training.
In the training pipeline, we model the ADC as an uniform quan-
tizer, however, it prevents gradients from flowing during backprop-
agation due to the non-differentiable quantization function. To
solve this, we employ the well-studied straight through estimator
(STE) [4] technique. Specifically, during training we use Eq. (2) to
ensure proper gradient flow:

𝑓 (𝑥) = 𝑞(𝑥) + 𝑥 − stop-gradient(𝑥). (2)

where 𝑞(·) denotes the quantization function, and stop-gradient(·)
means that the variable is included in the forward path but excluded
from the gradient calculation. Eq. (2) ensures that in the forward
path only the quantized values are propagated while during back-
propagation, the actual value of 𝑥 is used for gradient calculation.

In addition to non-differentiable quantizer, we observe that di-
rectly training with aggressive quantization (e.g.,𝑄bit ≤4) generally
leads to sub-optimal convergence. To alleviate this issue, we first
train a LeCA model with more lenient quantization (e.g., 𝑄bit=8),
and then use these weights to initialize the model that is trained
with lower𝑄bit. This strategy helps the model converge faster. Note
that since the decoder comes after the ADC, we use full-precision
for its weights and activations.

4 LECA SENSOR ARCHITECTURE AND
CIRCUITS

In this section, we present the energy-efficient hardware implemen-
tation of the LeCA sensor system by embedding the computation
of the encoder layer directly inside a CIS. We first describe the
processing dataflow with a simplified example of a 4×4 pixel block
(Sec. 4.1) and then present the timing sequence of the system op-
erations (Sec. 4.2). We build the full sensor system with detailed
circuit-level implementation (Sec. 4.3) and perform the transistor-
level simulation using SPICE (Sec. 4.4).

4.1 LeCA Processing Dataflow
The LeCA sensor is designed with a pixel array size of 448×448
with the Bayer pattern filter where the green pixel is duplicated
(Sec. 2.1). This means that LeCA sensor captures a full frame of
224×224×3 color image in which 3 stands for the RGB color chan-
nels. Note that the LeCA encoder is trained on RGB images. To map
each kernel (2×2×3) of the encoder to the kernel on raw images,
the trained weights of the green color channel is halved and dupli-
cated, effectively flattening the 2×2×3 convolutional kernel to 4×4,
as illustrated in Fig. 5(a). Thus the 448×448 pixel array requires
112 identical PEs to perform column-parallel processing, as each 4
columns sharing one exclusive PE to process the non-overlapping
4×4 pixel block, as shown in Fig. 5(b).

To illustrate the processing dataflow, Fig. 5(c) is a toy example
demonstrating how each PE processes a 4×4 pixel block. Here, 𝑁ch
is 4, thus 4 ofmap elements are generated. Bias in the convolution is
ignored here for simplicity. As mentioned in Sec. 3.1, in LeCA sen-
sor the ifmap and the partial sum (psum)/ofmap are in the analog
domain while the weight is in the digital domain. To reduce analog
data movement, LeCA sensor adopts an input-stationary dataflow:

LeCA: In-Sensor Learned Compressive Acquisition for Efficient Machine Vision on the Edge ISCA ’23, June 17–21, 2023, Orlando, FL, USA

(a)

trained weight
(2x2x3)

trained weight
(1x1x3)

wB

wR

mapped weight
(2x2)

mapped weight
(4x4)

ofmap

PE

ifmap weight

1 2 3 41 2 3 4

1 2 3 41 2 3 4 1 2 1 2 1 21 2 3 4 3 43 4 3 4

1 2 3 41 2 3 4 1 2 3 41 2 3 4 1 2 3 41 2 3 4 1 2 3 41 2 3 41 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4
Time

11 22 33 44

1

1
×
1

1
×

2

2
×
2

2
×

3

3
×
3

3
×

4

4
×
4

4
×

1

1
×
1

1
×

2

2
×
2

2
×

3

3
×
3

3
×

4

4
×
4

4
×

1

1
×
1

1
×

2

2
×
2

2
×

3

3
×
3

3
×

4

4
×
4

4
×

1

1
×
1

1
×

2

2
×
2

2
×

3

3
×
3

3
×

4

4
×
4

4
×

1

1
×

2

2
×

3

3
×

4

4
×

1

1
×

2

2
×

3

3
×

4

4
×

1

1
×

2

2
×

3

3
×

4

4
×

1

1
×

2

2
×

3

3
×

4

4
× Temporally reuse ifmap

Locally reduce psums

Operation

(c)

11 22 33 44

(b)

PE PE

…

…PE PE

…

…

time = 0 time = 1

PE PE

…

…PE PE

…

…

wG
2

wG
2

wB
wG

wR

Figure 5: (a) Kernel flattening. (b) Column-parallel PE in LeCA. (c) A
4×4 example showing processing dataflow inside one PE.

the ifmap is temporally reused and the psum is locally reduced. In
the beginning, the 1st row in the ifmap and each weight is buffered
in the PE. During the PE processing, 16 MAC operations are sequen-
tially performed by loading the ifmap1,2,3,4 cyclically and loading
the weight1,2,3,4 in kernel 1 to kernel 4 consecutively. The psum
generated from every MAC operation is reduced locally: during the
MAC operations with ifmap1,2,3,4 and weight1,2,3,4 in kernel 1, the
4 psums are reduced to psum1; the same process applies to psum2,3,4.
After 16 MAC operations, psum1,2,3,4 are generated and buffered.
Then, the 2nd row in the ifmap and each weight is buffered and
processed, and the newly generated psum1,2,3,4 are accumulated to
the previously buffered psum1,2,3,4. After processing the 4th row of
the ifmap and the weight, 64 MAC operations are totally performed
and the ofmap1,2,3,4 are generated and popped out of the buffer.

4.2 Sensor Operation Sequence
Fig. 6(a) shows how the toy example unfolds in hardware in the
first PE. All PEs share the same processing dataflow except each
of them receives different ifmap. For example, the first PE receives
ifmap1,2,3,4 and the second PE receives ifmap5,6,7,8. Each PE con-
tains 4 ifmap buffers (i-buffers) for ifmap storage, a 16×5-bit local
SRAM for weight storage, a SCM to perform consecutive MAC oper-
ations, and 4 ofmap buffers (o-buffers) for psum accumulation and
ofmap storage. Each PE can at most process 4 ofmap elements, cor-
responding to 4 kernels. When the number of kernels (𝑁ch) is larger
than 4, e.g., 𝑁ch=8, after popping out ofmap1,2,3,4, the ifmap1,2,3,4
is buffered to the PE again together with the weight1,2,3,4 in kernel
5 to kernel 8, generating ofmap5,6,7,8.

To take advantage of the SCM’s fast operation without imposing
high network-on-chip (NoC) bandwidth requirements, a hybrid
strategy is applied where the timing of the LeCA sensor is co-
ordinated by two controllers in different clock domains – a slow
controller-s at 100MHz and a fast controller-f at 400MHz. In Fig. 6(a)
the blue arrows are synchronized by the controller-s while the red

Row Select

Controller-s

Controller-f

local SRAM write i-buffer write i-buffer read + local SRAM
read + MAC (4x4) ADC (1x4)

PESCM

o-buffer
pair

Global SRAM

Pixel Array

ADC

o-buffer
pair

o-buffer
pair

o-buffer
pair

i-buffer i-buffer i-buffer i-bufferi-buffer i-buffer i-buffer i-buffer

PE

11 22 33 44

1 2 3 41 2 3 4
1 2 3 41 2 3 4
1 2 3 41 2 3 4
1 2 3 41 2 3 4

1 2 3 4
1 2 3 4
1 2 3 4
1 2 3 4

11 22 33 44

Controller-f (fast)Controller-s (slow)

…

1 2 3 41 2 3 4

ADC

PE

ADC

Local
SRAM

(16x5-bit)

…

11 ×

5μs

500ns 30ns 200ns

250ns

5 6 7 85 6 7 8

(a)

(b)



 



Figure 6: (a) Hardware signal path and (b) controller timing diagram.

ones are by the controller-f. The operation sequence among each
component of the LeCA sensor is shown in Fig. 6(b) in four steps:
1 Once the readout for the 1st row of pixels starts (ROWSEL is on),
the row scanner triggers controller-s to enable writing 16×5-bit
weights from the global SRAM to the local SRAM. The local SRAM
write consumes 500ns and the pixel readout typically takes ∼ 𝜇s,
thus the latency of the local SRAM write is hidden behind that
of the pixel readout. When pixel readout is finished (ROWSEL off),
controller-s enables writing of 4 analog pixel values (ifmap) to 4
i-buffers, consuming 30ns.
2 Controller-s triggers controller-f to consecutively read weights
from the SRAM to the SCM, and cyclically read the 4 ifmap elements
from the i-buffers to the SCM. The generated psums are written to
the o-buffers. This step takes 250ns.
3 After 16 psums are accumulated to 4 o-buffers, controller-f trig-
gers the row scanner to readout the 2nd row of pixels.
4 After processing 4 rows of pixels, controller-s is triggered to
fetch the 4 ofmap elements from the o-buffers to the ADC, and
finally to the global SRAM, which consumes 200ns. Depending on
𝑁ch, the row scanner can either trigger the readout of the 5th row (if
𝑁ch ≤4), or trigger the readout of the 1st row again for repetitive
readout (if 𝑁ch >4).

As the LeCA encoder processes the image row by row, the frame
latency is determined by the encoder processing latency of each 4
row accumulated over the height of the pixel array. The row pro-
cessing latency is dominated by pixel readout prior to computation,
especially when the repetitive readout is needed. Based on the tim-
ing diagram in Fig. 6(b), we estimate the frame rate to reach 209fps
with 448×448 resolution.

4.3 Circuit Implementation
The main building blocks of the LeCA sensor system include pixel
array, analog-domain PE array, and ADC array. Fig. 7 illustrates
how the raw pixel values, as voltage signals, are processed in the

ISCA ’23, June 17–21, 2023, Orlando, FL, USA Ma and Boloor, et al.

positive o-buffer

ϕowrite ϕoread

VCM

Cout ϕrst

ϕ owrite ϕoread

VCM

ϕrst

negative o-buffer

Cout

Local SRAM
(16x5)

8Cu

w[3]

ϕsample

w[0] w[2] w[1]

4Cu 2Cu Cu

SCMi-buffers + PSF

ϕiwrite

ϕiread

ϕrst

bias
ϕiwrite

ϕiread

ϕrst

bias

ϕtransfer

w[3] w[0] w[2] w[1] w[4]

ϕsample

ϕtransfer

VCM

VCM

SAR
LogicCMPCMPT-CMPT-CMP

FVF

FVF

3-bit
CDAC

3-bit
CDAC

2-bit~4-bit1.5-bit

ADC

ϕsample

ϕtransfer

 ϕowrite

ϕoread ADC

Vin
Vout

Csample

Vin

Vout

Vpixel

VADC ϕiread

Figure 7: Circuit schematic of the mixed-signal PE and resolution-reconfigurable ADC and the operation timing diagram.

W
ei

gh
t

(a) Actual Output Codes

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
1 7 7 7 7 7 7 7 7 7
2 7 7 7 7 7 6 6 6 6
3 7 7 7 6 6 6 5 5 5
4 7 7 6 6 6 5 5 5 4
5 7 7 6 6 5 5 4 4 4
6 7 7 6 6 5 5 4 4 3
7 7 6 6 5 5 4 4 3 3
8 7 6 6 5 4 4 3 3 2
9 7 6 6 5 4 4 3 2 2
10 7 6 5 5 4 3 3 2 1
11 7 6 5 5 4 3 2 2 1
12 7 6 5 4 4 3 2 1 1
13 7 6 5 4 4 3 2 1 0
14 7 6 5 4 3 3 2 1 0
15 7 6 5 4 3 2 2 1 0

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
1 0 0 0 0 0 1 1 1 1
2 0 0 1 1 1 0 0 0 1
3 0 1 1 0 0 1 0 0 0
4 0 1 0 0 1 0 0 1 0
5 0 1 0 1 0 0 0 0 1
6 0 1 0 1 0 1 0 1 0
7 0 0 1 0 1 0 1 0 1
8 1 0 1 0 0 0 0 0 0
9 1 0 1 0 0 1 0 0 0
10 1 0 0 1 0 0 0 0 0
11 1 0 0 1 0 0 0 0 0
12 1 0 0 0 0 0 0 0 0
13 1 0 0 0 1 0 0 0 0
14 1 0 0 0 0 1 0 0 0
15 1 1 0 0 0 0 0 0 0

W
ei

gh
t

(b) Absolute Error

[V]Vpixel [V]Vpixel

Figure 8: (a) Simulation output and (b) simulation error compared
with ideal output.

analog domain inside the PE, as they go through i-buffer, SCM,
o-buffer, and ADC to complete the LeCA encoding operation.
Pixel and analog readout. We adopt standard 4-T pixel (Fig. 2(b)).
The pixel array size is set to 448×448 to match ImageNet’s image
resolution (224×224×3) with ifmap/weight flattening. The energy
of pixel exposure and readout is estimated as 12.1pJ/pixel based on
previous work [74].
I-buffer. As the first PE stage, the i-buffer is implemented using
metal-oxide-metal (MOM) capacitors. The analog pixel readout is
stored as voltage (𝑉pixel) at the capacitor through 𝜙iwrite and reset
through 𝜙rst. To drive the SCM, the i-buffer is followed by a PSF
which reads 𝑉i-buffer out as 𝑉in through 𝜙iread. The capacitance of
the i-buffer is 109fF.
Switched-capacitor multiplier (SCM). The four i-buffers share
one SCM for MAC operation and the computation precision is ±4-
bit. The SCM consists of a 4-bit sampling capacitor (𝐶sample) for
magnitude multiplication, and differential o-buffers for sign opera-
tion. The trained weight 𝑤[4:0] is read out from the local SRAM,
with the magnitude bits 𝑤[3:0] setting how much capacitance is
connected in the𝐶sample, and the sign bit determining if the𝐶sample
is connected to the positive o-buffer or the negative o-buffer.

The SCM performs MAC operations in a time-multiplexing man-
ner. After the local SRAM sets 𝐶sample, 𝑉in is sampled to 𝐶sample’s
top plate through 𝜙sample. Then with 𝜙sample off and 𝜙transfer on,
the sampled charge is transferred to 𝐶sample’s bottom plate, and re-
distributed between𝐶sample and𝐶out in one of the o-buffers. In this
way, the multiplication of the 𝑉in and the weight𝑤[4:0] is finished,
and the psum is stored as voltage (𝑉out) at 𝐶out. Time-multiplexed
on/off of the 𝜙sample-𝜙transfer with different 𝑉in and𝑤[4:0] updates

the 𝑉out cycle by cycle, realizing the consecutive MAC operations,
as illustrated in the timing diagram in Fig. 7. Analytically, after the
𝑖th cycle of 𝜙sample-𝜙transfer, the 𝑉out is as Eq. (3):

𝑉out [𝑖] =
𝐶sample [𝑖] (2𝑉CM −𝑉in [𝑖]) +𝐶out𝑉out [𝑖 − 1]

𝐶out +𝐶sample [𝑖]
(3)

where𝑉out [𝑖−1] is the voltage on the𝐶out after the first 𝑖−1 cycles;
𝑉in [𝑖] is the input voltage to SCM at the 𝑖th cycle; 𝐶sample [𝑖] is the
connected capacitance in the SCM at the 𝑖th cycle; and 𝑉CM is a
constant voltage. The total capacitance of the sampling capacitance
is 𝐶sample,tot=135fF.
O-buffer. Conventionally, the o-buffer has much larger capaci-
tance (𝐶out ≫ 𝐶sample,tot) to reduce the incomplete charge transfer
which incurs large area overhead [48]. However, with our hardware-
aware training technique introduced earlier (Sec 3.4), extremely-low

𝐶out
𝐶sample,total

ratio can be tolerated, allowing us to set 𝐶out to 135fF
(ratio=1) to save notable area.
Variable-resolution ADC. The 4 pairs of 𝑉out are sequentially
quantized by a differential-input ADC. The ADC’s resolution is
reconfigurable to accommodate different 𝑄bit. When 𝑄bit=1.5-bit
(ternary), the differential𝑉out is connected to a ternary comparator
(T-CMP) [26]. For higher bit depth (𝑄bit > 1.5), the differential𝑉out
is sampled to a successive approximation register ADC [55] through
a pair of FVFs [10]. The ADC is configurable to 8-bit resolution to
support normal sensing mode. In the normal mode, after each row
exposure, the digital controller enables the pixels to bypass the PE
and be quantized by the ADC through four quantization cycles.

4.4 Full System Simulation
We perform full system transistor-level simulation in a standard
CMOS 65nm process and and plot the {𝑉pixel,𝑤 } against digitized
output code to validate the correctness of the system. We choose
65nm, as the CIS technology scaling has to balance the degraded
photon sensitivity in smaller pixel size and therefore typically lags
behind the more aggressive scaling of the digital process. Since the
sign operations are performed on independent o-buffers, the output
code with negative weight is central symmetric to the one with
positive weight. Without loss of generality, in the simulation, the
ADC’s resolution is set to 4-bit and the weights are always positive,
so the output code ranges from 0 to 7. The simulation results are
shown in Fig. 8(a), and the output code correctly changes from 7 to
0 along with increased {𝑉pixel, 𝑤 }. Comparing to the results from
analytical circuit model where the PSF/FVF/ADC are linear and

LeCA: In-Sensor Learned Compressive Acquisition for Efficient Machine Vision on the Edge ISCA ’23, June 17–21, 2023, Orlando, FL, USA

the SCM exactly follows Eq. (3), the absolute error in the actual
output codes is within 1 LSB, as show in Fig. 8(b). The absolute error
comes from the PSF/FVF/ADC’s nonlinearity, the SCM’s offset, and
the ADC’s offset. The ADC’s nonlinearity and offset can be easily
calibrated digitally, and all other nonidealities are considered in
the LeCA hardware-aware training using stage-wise, fine-grained
look-up-tables, which will be introduced in Sec. 5.3.

5 EXPERIMENTAL METHODOLOGY
5.1 Baseline Compression Methods
To rigorously evaluate the LeCA method, we compare it with five
alternative compression methods, as well as the conventional full-
precision sensor:

• Conventional sensor (CNV). Pixel-wise uniform quantiza-
tion with 8-bit precision.

• Spatial down-sampling (SD). Block-wise spatial averaging
of the pixel values with 8-bit uniform quantization.

• Low-resolution quantizer (LR). Pixel-wise uniform quan-
tization with low precision.

• Compressive sensing (CS) [64]. Block-based compressive
sensing using random matrix for measurement and L0 nor-
malization for reconstruction.

• Microshift (MS) [84]. Fixed value-shifting pattern is per-
formed to each block of pixels, and each pixel is quantized
to low resolution.

• Accumulated gradient thresholding (AGT) [39]. Pixel
gradients are accumulated over the neighboring pixels and
the pixels are skipped until the sum crosses a threshold.

We evaluate the task accuracy of all these methods using a frozen
ResNet-style network as the downstream DNN.

5.2 Datasets and Training
We validate the LeCA algorithm on TinyImageNet [47] and Im-
ageNet [18]. TinyImageNet is a subset of the ImageNet dataset
down-sampled to 64×64 with 200 classes. For TinyImageNet, we
use a random rotation of 20 degrees and random horizontal flipping
during training. We use PyTorch [66] with its provided pre-trained
weights for ResNet-like [28] downstream DNN models. We use
Adam [43] as the optimizer to train LeCA for 100 epochs for TinyIm-
ageNet and 25 epochs for ImageNet while keeping the downstream
weights frozen. We start the learning rate at 10−3 and decay it by
a factor of 0.1 every 30 epochs for tiny, and every 10 epochs for
ImageNet with a batch size of 256.

5.3 Hardware Non-idealities Modeling
Comprehensive noise sources and non-ideality effects in the LeCA
sensor are modeled and added to the training pipeline to fine-tune
the pre-trained LeCA encoder and decoder.
Pixel array noise. The pixel array noise is added to the images to
emulate real CIS sensing effect, including shot noise and read noise,
which are formulated as Poisson and Gaussian distribution, respec-
tively. We first convert the digital image to its voltage intensity, add
the equivalent noise in the voltage domain, and finally convert it
back to the digital image.

Digital Controller

ADC

Hard
Training

Hard Training Accuracy

Le
C

A
 A

lg
or

ith
m

Le
C

A
 H

ar
dw

ar
e

Hardware
Performance

LeCA
Encoder

LeCA
Decoder

Backbone
DNN

Nch|Qbit

LeCA
Encoder

Analytical
model

Noisy
Training

Noisy Training
Accuracy

PE Array

LeCA
Decoder

Backbone
DNN

Pixel Array

Hardware Non-idealities Model

SPICE
simulation

Nch Qbit

pre-trained
weights

Figure 9: Evaluation methodology of LeCA system.

Analog circuit non-ideality. The analog non-ideality includes
three parts, starting from pixel readout to ADC:
1 PSF’s non-linear transfer function and mismatch. 200-sample
Monte-Carlo simulation is conducted to obtain the PSF’s transfer
function with mismatch variation incorporated. The PSF’s readout
effect is thus modeled as a look-up-table (LUT) with input-related
Gaussian disturbance: 𝑉in [𝑖] = N(LUTPSF (𝑉pixel [𝑖]), 𝜎PSF [𝑖]).
2 SCM’s incomplete charge transfer and mismatch. The SCM’s out-
put is calculated by the ideal analytical model (Eq. (3), LUTSCM) and
superimposed by an input/weight-related error term with Gauss-
ian disturbance, which is obtained from 200-sample Monte-Carlo
simulation. The SC multiplier’s computation effect is thus modeled
as: 𝑉out [𝑖] = LUTSCM (𝑉in [𝑖],weight[𝑖]) − N (𝜖SCM [𝑖], 𝜎SCM [𝑖]).
3 FVF’s non-linear transfer function and mismatch. Similar to the
PSF, the FVF’s readout effect is modeled as a LUTwith input-related
Gaussian disturbance: 𝑉ADC [𝑖] = N (LUTFVF (𝑉out [𝑖]) , 𝜎FVF [𝑖]).
Our hardware non-idealitymodel lumps the effects of time-invariant
process variations (e.g. spatial mismatch) with time-variant fluctua-
tions due to supply, temperature, and aging as random statistical
variables. In this way, we comprehensively capture all non-ideal
behaviors in the training process without the need to retrain for
each hardware instantiation.

5.4 System-level Accuracy and Performance
Analysis

Our evaluation methodology is shown in Fig. 9. First, the perfor-
mance of LeCA algorithm is validated by hard training, from which
we determine the value/range of 𝑁ch|𝑄bit that achieves optimal
tradeoff between compression ratio and downstream accuracy. Sec-
ond, the LeCA hardware is configured by the 𝑁ch|𝑄bit from the
hard training. Specifically, the 𝑁ch is used to configure the pixel
array and the PE array for repetitive readout, and the𝑄bit is used to
configure the ADC’s quantization resolution. The hardware perfor-
mance is then evaluated through transistor-level simulation and the
hardware non-idealities model is extracted. Third, the noisy train-
ing is set up to get noisy training accuracy by initializing with the
pre-trained weights from the hard training and incorporating the
extracted hardware non-idealities model. Note that the parameters
of the backbone DNN are always frozen.

ISCA ’23, June 17–21, 2023, Orlando, FL, USA Ma and Boloor, et al.

4 6 8
(a)

0.0

20.0

40.0

66.8
80.0

Ac
cu

ra
cy

(%
) SD LR LeCA

4 6 8
Compression Ratio

(b)

0.0

20.0

40.0

60.0
76.0

Ac
cu

ra
cy

(%
)

0 10 20 30 40 50
1/Compression Ratio (%)

(c)

0

10

20

30

40

50

60

Ac
cu

ra
cy

 L
os

s
(%

)

SD
LR
CS
MS
AGT
LeCA

Figure 10: Downstream classification accuracy comparison on (a)
proxy and (b) ImageNet for CR ∈ {4, 6, 8} with SD, LR and LeCA. (c)
Accuracy loss vs. compression tradeoff based on the proxy pipeline.

6 EVALUATION
In this section, we thoroughly evaluate the LeCA method on its
accuracy, noise resilience, and sensor performance. Additionally, we
provide an in-depth discussion about task accuracy improvement,
image resolution flexibility, standard compression comparison and
system deployment.

6.1 Accuracy-optimized Compression
LeCA has the ability to retain high downstream accuracy at high
compression ratios due to its ability to jointly remove redundancy
across the spatial domain, color domain, and bit-depth resolution.
In our baselines, SD and LR are typical methods to remove the
redundancy in the spatial domain and bit-depth resolution, respec-
tively. In Fig. 10(a) and (b), we compare our LeCA method with SD
and LR on ResNet18 and ResNet50 for TinyImageNet and ImageNet,
respectively. For SD validation, we use a 2×2, 2×3, and 2×4 average
pooling kernel with corresponding upsampling through bilinear
interpolation to acquire compression ratios of 4, 6, and 8, respec-
tively (using Eq. (1)). For LR validation, we perform 3-bit, 1.5-bit
(ternary), and 1-bit quantization to achieve compression ratios of 4,
6, and 8 respectively. LeCA outperforms its predecessors in all three
compression ratio categories. LeCA attains accuracies of 75.05%,
75.04% and 74.01% for 4×, 6×, and 8× compression respectively
which translate to 0.97%, 0.98%, and 2.01% accuracy loss with re-
spect to the baseline accuracy of 76.02%. An important observation
is that LeCA overall loses less accuracy on ImageNet, than on Tiny-
ImageNet, especially when performing aggressive compression.
We hypothesize that this is because ImageNet’s larger image sizes
(224×224 as compared to 64×64) allows LeCA to generate larger
encoded images which contain more information.

Fig. 10(c) shows a more thorough comparison of LeCA with
its counterparts on the proxy pipeline. It shows the compression
ratio of LeCA can be flexibly changed over a large ratio range by
adjusting 𝑁ch and𝑄bit. It also shows that LeCA outperforms all the
baselines. At a compression of 25% (CR = 4), MS and CS have an
accuracy loss of 5.3% and 18% respectively, whereas LeCA loses
<1% accuracy, highlighting the advantage of LeCA’s task-specific
training. A common trend seen is that aggressive compression

60.0

66.8
70.0

80.0

Ac
cu

ra
cy

 (%
)

Eval(*) Eval(noisy)

60.0

70.0
76.0
80.0

Soft
 training

Hard
training

Noisy
training

(a)

0.0

5.0

Soft
 training

Hard
training

Noisy
training

(b)

0.0

5.0

Figure 11: Accuracy of different training modes with respect to hard-
ware non-idealities for (a) proxy and (b) ImageNet.With our rigorous
hardware-aware training, most of the lost accuracy is recovered.

3

2

Original Decoded Encoded featuresQbit

1.5

CR

4

6

8

Figure 12: Visualization of encoded (last 4) and decoded features.

leads to higher accuracy loss. This is trivial because all models
perform lossy compression, meaning that increasing information
is irrevocably lost with higher compression.

6.2 Hardware-aware Noise Resilience
Fig. 11 shows the performance of different training modalities -
soft, hard and noisy (see Sec. 3.4). The goal is to acquire the best
hardware-aware accuracy for a given compression ratio. The left -
Eval(*) and right - Eval(noisy) bars show the validation accuracy
on the corresponding modalities and on the full hardware with
non-idealities, respectively. Soft training clearly shows good per-
formance with <1% accuracy loss on both datasets. However, when
learned soft weights are mapped to the hard (analytical hardware)
modality, there is a large accuracy drop. This implies that there is
no trivial method to map soft to hard. With hard training we get
accuracies that are on par with the purely soft training (-1.1% and
-0.01% accuracy loss for proxy and ImageNet with respect to soft
respectively). However, we lose some accuracy (∼4% in both cases)
when we use these learned weights and map them to the noisy
modality. The final pair of bars (noisy training) show that finetun-
ing the hard model helps recover most of the accuracy lost due to
noise. We find that directly training the hard model is insufficient
for LeCA to converge to a good optimum on the noisy modality
and that finetuning is indeed important. Overall, this highlights the
novelty and noise-resilience of our training method, where even
with most of the hardware non-idealities, we are able to achieve
negligible accuracy loss.

Fig. 12 shows a sample image from TinyImageNet, which demon-
strates qualitatively what the encoded and decoded features look
like. A key observation of this visualization is that despite LeCA
encoder-decoder being trained on cross-entropy loss to maximize

LeCA: In-Sensor Learned Compressive Acquisition for Efficient Machine Vision on the Edge ISCA ’23, June 17–21, 2023, Orlando, FL, USA

CNV SD
CR=4

LR
CR=4

CS
CR=4

MS
CR=4*

AGT
CR=4

LeCA
CR=4

LeCA
CR=6

LeCA
CR=8

(a)

0

50

100

150

200

En
er

gy
 (p

J/
pi

xe
l)

69.1
41.3 36.4

Pixel+analog readout
Analog PE
ADC

Processor
On-chip SRAM
Communication

CNV CS
CR=4

MS
CR=4

LeCA
CR=4

(b)

0

20

40

60

80

100

N
or

m
al

iz
ed

 E
ne

rg
y

(%
)

50 100 150 200
Total Energy (pJ/pixel)

(c)

0

5

10

15

20

25

30

Ac
cu

ra
cy

 L
os

s
(%

) CNV
SD
LR
CS
MS

AGT
LeCA 4x
LeCA 6x
LeCA 8x

Figure 13: Energy and accuracy comparison between conventional,
compressive, and LeCA sensors: (a) absolute energy; (b) relative en-
ergy normalized to LeCA (CR=4); (c) tradeoff between sensor energy
consumption and accuracy loss on the proxy pipeline. *-MS’s com-
pression is image dependent, varying between 4× and 5×.

the downstream accuracy, the decoded image structurally looks
similar to the original image. The visual quality decays as more
aggressive quantization is used.

6.3 Sensor System Evaluation
As shown in Fig. 13(a), LeCA sensor achieves extremely-low energy
consumption. Compared to the conventional image sensor (CNV),
the energy of ADC and communication in LeCA sensor (CR = 4) is
dramatically reduced by 10.1× and 5×, respectively, due to analog
domain image compression and low-resolution ADC. Comparing
to the CIS with SD and LR compression techniques under the same
compression ratio, the energy of ADC in LeCA sensor (CR = 4) is
still reduced by 5× and 6.6× because SD only has compression in
spatial domain while LR only in bit-depth domain. Comparing to
the CIS with learned compression techniques (CS, MS, and AGT)
under the same compression ratio, LeCA sensor consumes 11%,
57%, and 31% less energy, respectively. Fig. 13(b) shows the nor-
malized energy breakdown of CNV, MS, CS, and LeCA. For CS,
excessive energy is consumed by ADC due to the requirement on
high quantization resolution in CS algorithms [20]. For MS, since it
is implemented in the digital domain, pixel-wise A/D conversion
consumes excessive energy, even though the quantization resolu-
tion is as low as 2-bit. In LeCA (CR = 4), neither analog PE nor
ADC is the energy bottleneck. LeCA (CR = 6) and LeCA (CR = 8)
gain more energy savings from non-repetitive pixel readout and
less off-chip communication. Specifically, LeCA (CR = 8) is 6.3×
and 2.2× more energy efficient than CNV and CS, respectively.
Fig. 13(c) shows the tradeoff between sensor chip energy and down-
stream task accuracy. In line with expectations, lower energy is
gained in exchange of higher accuracy loss. However, LeCA defines
the optimal Pareto frontier by achieving extremely-low energy

consumption while maintaining the lowest accuracy loss. LeCA
encoder circuit occupies 1.1𝑚𝑚2 (0.85𝑚𝑚2 is ADC area) based on
layout estimate. Considering that the conventional CIS would mini-
mally include the pixel array (5𝑚𝑚2 for 5𝜇𝑚 pitched pixel) and the
ADC, the area overhead of LeCA is less than 5%.

6.4 Discussion and Future Work
Task accuracy. Our evaluations assume a downstream model with
frozen weights. However, by unfreezing the downstream model,
experiments show 0.02% and 0.78% accuracy loss for 4× and 8×
compression, respectively, which are well within standard metrics
(<1%) proposed by benchmarks like MLPerf[69]. This suggests that
there are avenues to further improve and close the gap with the
state-of-the-art task accuracy, at the cost of longer training time
and the complexity to adapt the weights of entire vision pipeline.
Image resolution. Both LeCA’s hardware and algorithm support
higher-resolution images. LeCA adopts column-parallel PE arrays
where the physical width of the PE and ADC matches four pixel
columns, allowing LeCA to scale with the pixel array width to ac-
commodate higher-resolution inputs. We also validate that LeCA
can achieve up to 86fps frame rate with 1080p resolution, comfort-
ably supporting moving-object recording (at 60fps). Our results
indicate comparable performance from TinyImageNet (64×64) and
ImageNet (224×224), suggesting LeCA algorithmworks across vary-
ing resolutions and the trend continues for high-resolution inputs.
Standard compression. Our evaluation has included standard
compression techniques such as spatial gradients (AGT), run-length
encoding (MS), and quantization (LR). We also perform JPEG and
see a 0.51% accuracy loss at 5.07× compression, with LeCA’s 0.98%
accuracy at 6×. Critically, we emphasize that LeCA achieves out-
standing compression/accuracy performance on top of sizable sen-
sor energy saving, while standard digital compression invariably
requires significant additional hardware and energy to perform.
System deployment. LeCA can adapt to downstream tasks be-
yond image classification by following the same training/finetuning
process with no change to the hardware. It allows for configurable
number of feature channels and quantization levels to provide
flexible compression/accuracy tradeoff. The trained encoding pa-
rameters instantiated in the PE are re-programmable according
to the downstream task. Therefore, it is a practical solution with
broad applications. Intuitively, capturing a smaller image directly
translates to reduced memory storage and fewer communication
and computing powers in the later processing stages of the machine
vision pipeline. Nonetheless, we limit the scope of our study to the
sensor chip and leave the full system analysis for future work.

7 RELATEDWORKS
Computational CIS for DNN. Many prior computational CIS
works offload the first layer [32, 81] or the first few layers [31, 53]
of a DNN in the sensor chip. However, these works do not explic-
itly leverage data compression brought by the DNN offloading to
improve the sensor’s energy efficiency. Recent study has also con-
sidered optimizing the ISP design jointly with the downstream CV
tasks[7, 27, 80]. Nonetheless, these computational approaches after

ISCA ’23, June 17–21, 2023, Orlando, FL, USA Ma and Boloor, et al.

CIS digitization do not translate to sensor resource/energy sav-
ings, whereas LeCA sensor implements an encoder to highly com-
press the data in the analog domain, which results in compression-
dependent extremely-low energy consumption.
In-sensor compression. Common in-sensor compression works
either adopt heuristic compression method [39, 84, 88] or are based
on compressive sensing [63, 64]. However, these compression meth-
ods are task-agnostic and the compression ratio is related to the
PSNR of the reconstructed images and independent of downstream
tasks. Instead, LeCA sensor encodes the image to a task-specific
representation so that there exists a clear tradeoff between the
compression ratio and the downstream task accuracy.
Learned compression. Learning-based image compression has
been increasingly popular since the advent of neural networks [21,
36]. Most models use an autoencoder structure that can compress
an image by 80∼100× while maintaining high visual quality [14, 60,
90]. Adjacent to the autoencoder approach, generative adversarial
networks [1, 23] have been proposed to synthesize details the model
cannot afford to store. However, these models use computation-
intensive encoder networks which are infeasible to be incorporated
into the CIS. LeCA also uses an encoder-decoder structure but
implements the encoder in the analog domain with extremely-low
overhead while also maintaining the decoder in lightweight.

8 CONCLUSION
We propose a new in-sensor processing paradigm – LeCA – that
targets machine vision applications on the edge. By jointly learning
the sensor acquisition functionwith the downstreamCV algorithms,
LeCA effectively compresses the original image into informative
condensed feature maps. Co-designed with LeCA algorithm, LeCA
sensor adopts analog-domain in-sensor processing to translate the
compression into meaningful hardware savings. Evaluated on Ima-
geNet, LeCA shows both high compression ratio (6×) and minimal
accuracy loss (0.98%). Transistor-level simulation shows LeCA sen-
sor is 6.3× and 2.2×more energy efficient than conventional sensor
and compressive sensing sensor with negligible area overhead.

ACKNOWLEDGMENTS
The authors would like to thank the anonymous reviewers for their
valuable comments and suggestions. Tianrui Ma, Adith Jagadish
Boloor, Weidong Cao, and Xuan Zhang were partially supported
by NSF CCF-1942900 and NSF CNS-1739643.

REFERENCES
[1] Eirikur Agustsson, Michael Tschannen, Fabian Mentzer, Radu Timofte, and

Luc Van Gool. 2019. Generative adversarial networks for extreme learned image
compression. In Proceedings of the IEEE/CVF International Conference on Computer
Vision. 221–231.

[2] Alessandro Aimar, Hesham Mostafa, Enrico Calabrese, Antonio Rios-Navarro,
Ricardo Tapiador-Morales, Iulia-Alexandra Lungu, Moritz B Milde, Federico
Corradi, Alejandro Linares-Barranco, Shih-Chii Liu, et al. 2018. Nullhop: A
flexible convolutional neural network accelerator based on sparse representations
of feature maps. IEEE transactions on neural networks and learning systems 30, 3
(2018), 644–656.

[3] Evgeny Belyaev, Kai Liu, Moncef Gabbouj, and YunSong Li. 2014. An efficient
adaptive binary range coder and its VLSI architecture. IEEE transactions on
circuits and systems for video technology 25, 8 (2014), 1435–1446.

[4] Yoshua Bengio, Nicholas Léonard, and Aaron Courville. 2013. Estimating or
propagating gradients through stochastic neurons for conditional computation.
arXiv preprint arXiv:1308.3432 (2013).

[5] Wissam Benjilali, WilliamGuicquero, Laurent Jacques, and Gilles Sicard. 2019. An
analog-to-information vga image sensor architecture for support vector machine
on compressive measurements. In 2019 IEEE International Symposium on Circuits
and Systems (ISCAS). IEEE, 1–5.

[6] Kyeongryeol Bong, Sungpill Choi, Changhyeon Kim, Donghyeon Han, and Hoi-
Jun Yoo. 2017. A low-power convolutional neural network face recognition
processor and a CIS integrated with always-on face detector. IEEE Journal of
Solid-State Circuits 53, 1 (2017), 115–123.

[7] Mark Buckler, Suren Jayasuriya, and Adrian Sampson. 2017. Reconfiguring the
imaging pipeline for computer vision. In Proceedings of the IEEE International
Conference on Computer Vision. 975–984.

[8] Shijie Cao, Lingxiao Ma, Wencong Xiao, Chen Zhang, Yunxin Liu, Lintao Zhang,
Lanshun Nie, and Zhi Yang. 2019. Seernet: Predicting convolutional neural
network feature-map sparsity through low-bit quantization. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition. 11216–11225.

[9] Weidong Cao, Yilong Zhao, Adith Boloor, Yinhe Han, Xuan Zhang, and Li Jiang.
2021. Neural-PIM: Efficient processing-in-memory with neural approximation of
peripherals. IEEE Trans. Comput. 71, 9 (2021), 2142–2155.

[10] Ramón González Carvajal, Jaime Ramírez-Angulo, Antonio J López-Martín,
Antonio Torralba, Juan Antonio Gómez Galán, Alfonso Carlosena, and Fer-
nando Muñoz Chavero. 2005. The flipped voltage follower: A useful cell for
low-voltage low-power circuit design. IEEE Transactions on Circuits and Systems
I: Regular Papers 52, 7 (2005), 1276–1291.

[11] Denis Guangyin Chen, Fang Tang, Man-Kay Law, and Amine Bermak. 2014. A
12 pJ/pixel analog-to-information converter based 816× 640 pixel CMOS image
sensor. IEEE Journal of Solid-State Circuits 49, 5 (2014), 1210–1222.

[12] Denis Guangyin Chen, Fang Tang, Man-Kay Law, Xiaopeng Zhong, and Amine
Bermak. 2014. A 64 fJ/step 9-bit SAR ADC array with forward error correction
and mixed-signal CDS for CMOS image sensors. IEEE Transactions on Circuits
and Systems I: Regular Papers 61, 11 (2014), 3085–3093.

[13] Zhe Chen, Huifeng Zhu, Erxiang Ren, Zheyu Liu, Kaige Jia, Li Luo, Xuan Zhang,
Qi Wei, Fei Qiao, Xinjun Liu, et al. 2019. Processing near sensor architecture in
mixed-signal domain with CMOS image sensor of convolutional-kernel-readout
method. IEEE Transactions on Circuits and Systems I: Regular Papers 67, 2 (2019),
389–400.

[14] Zhengxue Cheng, Heming Sun, Masaru Takeuchi, and Jiro Katto. 2018. Deep
convolutional autoencoder-based lossy image compression. In 2018 Picture Coding
Symposium (PCS). IEEE, 253–257.

[15] Jaehyuk Choi, Seokjun Park, Jihyun Cho, and Euisik Yoon. 2015. An
energy/illumination-adaptive CMOS image sensor with reconfigurable modes of
operations. IEEE Journal of Solid-State Circuits 50, 6 (2015), 1438–1450.

[16] Jaehyuk Choi, Jungsoon Shin, Dongwu Kang, and Du-Sik Park. 2015. Always-on
CMOS image sensor for mobile and wearable devices. IEEE Journal of Solid-State
Circuits 51, 1 (2015), 130–140.

[17] K. D. Choo, L. Xu, Y. Kim, J. Seol, X. Wu, D. Sylvester, and D. Blaauw. 2019.
Energy-Efficient Motion-Triggered IoT CMOS Image Sensor With Capacitor
Array-Assisted Charge-Injection SAR ADC. IEEE Journal of Solid-State Circuits
54, 11 (2019), 2921–2931.

[18] Jia Deng,Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. 2009. Imagenet:
A large-scale hierarchical image database. In 2009 IEEE conference on computer
vision and pattern recognition. Ieee, 248–255.

[19] Piotr Dollár, Mannat Singh, and Ross Girshick. 2021. Fast and accurate model
scaling. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition. 924–932.

[20] Marco F Duarte, Mark A Davenport, Dharmpal Takhar, Jason N Laska, Ting
Sun, Kevin F Kelly, and Richard G Baraniuk. 2008. Single-pixel imaging via
compressive sampling. IEEE signal processing magazine 25, 2 (2008), 83–91.

[21] Michael Egmont-Petersen, Dick de Ridder, and Heinz Handels. 2002. Image
processing with neural networks—a review. Pattern recognition 35, 10 (2002),
2279–2301.

[22] Sven Fleck and Wolfgang Straßer. 2008. Smart camera based monitoring system
and its application to assisted living. Proc. IEEE 96, 10 (2008), 1698–1714.

[23] Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley,
Sherjil Ozair, Aaron Courville, and Yoshua Bengio. 2020. Generative adversarial
networks. Commun. ACM 63, 11 (2020), 139–144.

[24] Jie Gui, Zhenan Sun, Shuiwang Ji, Dacheng Tao, and Tieniu Tan. 2016. Feature
selection based on structured sparsity: A comprehensive study. IEEE transactions
on neural networks and learning systems 28, 7 (2016), 1490–1507.

[25] Bahadir K Gunturk, John Glotzbach, Yucel Altunbasak, Ronald W Schafer, and
Russel M Mersereau. 2005. Demosaicking: color filter array interpolation. IEEE
Signal processing magazine 22, 1 (2005), 44–54.

[26] Wenjuan Guo and Nan Sun. 2016. A 12b-ENOB 61𝜇W noise-shaping SAR ADC
with a passive integrator. In ESSCIRC Conference 2016: 42nd European Solid-State
Circuits Conference. IEEE, 405–408.

[27] Patrick Hansen, Alexey Vilkin, Yury Khrustalev, James Imber, David Hanwell,
Matthew Mattina, and Paul N Whatmough. 2019. ISP4ML: Understanding the
role of image signal processing in efficient deep learning vision systems. arXiv
preprint arXiv:1911.07954 (2019).

LeCA: In-Sensor Learned Compressive Acquisition for Efficient Machine Vision on the Edge ISCA ’23, June 17–21, 2023, Orlando, FL, USA

[28] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. 2016. Deep Residual
Learning for Image Recognition. In Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition (CVPR).

[29] Felix Heide, Markus Steinberger, Yun-Ta Tsai, Mushfiqur Rouf, Dawid Pająk,
Dikpal Reddy, Orazio Gallo, Jing Liu, Wolfgang Heidrich, Karen Egiazarian, et al.
2014. Flexisp: A flexible camera image processing framework. ACM Transactions
on Graphics (ToG) 33, 6 (2014), 1–13.

[30] Alain Hore and Djemel Ziou. 2010. Image quality metrics: PSNR vs. SSIM. In
2010 20th international conference on pattern recognition. IEEE, 2366–2369.

[31] Tzu-Hsiang Hsu, Guan-Cheng Chen, Yi-Ren Chen, Chung-Chuan Lo, Ren-Shuo
Liu, Meng-Fan Chang, Kea-Tiong Tang, and Chih-Cheng Hsieh. 2022. A 0.8 V in-
telligent vision sensor with tiny convolutional neural network and programmable
weights using mixed-mode processing-in-sensor technique for image classifica-
tion. In 2022 IEEE International Solid-State Circuits Conference (ISSCC), Vol. 65.
IEEE, 1–3.

[32] Tzu-Hsiang Hsu, Yi-Ren Chen, Ren-Shuo Liu, Chung-Chuan Lo, Kea-Tiong Tang,
Meng-Fan Chang, and Chih-Cheng Hsieh. 2020. A 0.5-V real-time computational
CMOS image sensor with programmable kernel for feature extraction. IEEE
Journal of Solid-State Circuits 56, 5 (2020), 1588–1596.

[33] Yueyu Hu, Wenhan Yang, Zhan Ma, and Jiaying Liu. 2021. Learning end-to-end
lossy image compression: A benchmark. IEEE Transactions on Pattern Analysis
and Machine Intelligence (2021).

[34] Sun-Il Hwang, Jae-Hyun Chung, Hyeon-June Kim, Il-Hoon Jang, Min-Jae Seo,
Sang-Hyun Cho, Heewon Kang, Minho Kwon, and Seung-Tak Ryu. 2018. A 2.7-M
pixels 64-mW CMOS image sensor with multicolumn-parallel noise-shaping SAR
ADCs. IEEE Transactions on Electron Devices 65, 3 (2018), 1119–1126.

[35] Laurent Jacques, Pierre Vandergheynst, Alexandre Bibet, Vahid Majidzadeh,
Alexandre Schmid, and Yusuf Leblebici. 2009. CMOS compressed imaging by
random convolution. In 2009 IEEE International Conference on Acoustics, Speech
and Signal Processing. IEEE, 1113–1116.

[36] J Jiang. 1999. Image compression with neural networks–a survey. Signal process-
ing: image Communication 14, 9 (1999), 737–760.

[37] Yun-Rae Jo, Seong-Kwan Hong, and Oh-Kyong Kwon. 2015. A multi-bit incremen-
tal ADC based on successive approximation for low noise and high resolution
column-parallel readout circuits. IEEE Transactions on Circuits and Systems I:
Regular Papers 62, 9 (2015), 2156–2166.

[38] Vinay Joshi, Manuel Le Gallo, Simon Haefeli, Irem Boybat, Sasidharan Rajalek-
shmi Nandakumar, Christophe Piveteau, Martino Dazzi, Bipin Rajendran, Abu
Sebastian, and Evangelos Eleftheriou. 2020. Accurate deep neural network infer-
ence using computational phase-change memory. Nature communications 11, 1
(2020), 2473.

[39] Amandeep Kaur, Deepak Mishra, KM Amogh, and Mukul Sarkar. 2020. On-
array compressive acquisition in cmos image sensors using accumulated spatial
gradients. IEEE Transactions on Circuits and Systems for Video Technology 31, 2
(2020), 523–532.

[40] Masaya Kawano, Xiangy-Yu Wang, and Qin Ren. 2019. New Cost-Effective
Via-Last Approach by" One-Step TSV" After Wafer Stacking for 3D Memory
Applications. In 2019 IEEE 69th Electronic Components and Technology Conference
(ECTC). IEEE, 1996–2002.

[41] Hyeon-June Kim. 2021. 11-bit column-parallel single-slope ADC with first-step
half-reference ramping scheme for high-speed CMOS image sensors. IEEE Journal
of Solid-State Circuits 56, 7 (2021), 2132–2141.

[42] Hyeon-June Kim, Sun-Il Hwang, Ji-Wook Kwon, Dong-Hwan Jin, Byoung-Soo
Choi, Sang-Gwon Lee, Jong-Ho Park, Jang-Kyoo Shin, and Seung-Tak Ryu. 2016.
A delta-readout scheme for low-power CMOS image sensors with multi-column-
parallel SAR ADCs. IEEE Journal of Solid-State Circuits 51, 10 (2016), 2262–2273.

[43] Diederik P Kingma and Jimmy Ba. 2014. Adam: A method for stochastic opti-
mization. arXiv preprint arXiv:1412.6980 (2014).

[44] Diederik P Kingma, Max Welling, et al. 2019. An introduction to variational
autoencoders. Foundations and Trends® inMachine Learning 12, 4 (2019), 307–392.

[45] Minho Kwon, Seunghyun Lim, Hyeokjong Lee, Il-Seon Ha, Moo-Young Kim,
Il-Jin Seo, Suho Lee, Yongsuk Choi, Kyunghoon Kim, Hansoo Lee, et al. 2020. A
Low-Power 65/14nm Stacked CMOS Image Sensor. In 2020 IEEE International
Symposium on Circuits and Systems (ISCAS). IEEE, 1–4.

[46] Nicholas D Lane, Emiliano Miluzzo, Hong Lu, Daniel Peebles, Tanzeem Choud-
hury, and Andrew T Campbell. 2010. A survey of mobile phone sensing. IEEE
Communications magazine 48, 9 (2010), 140–150.

[47] Ya Le and Xuan Yang. 2015. Tiny imagenet visual recognition challenge. CS 231N
7, 7 (2015), 3.

[48] E. H. Lee and S. S. Wong. 2017. Analysis and Design of a Passive Switched-
Capacitor Matrix Multiplier for Approximate Computing. IEEE Journal of Solid-
State Circuits 52, 1 (2017), 261–271.

[49] Hyunkeun Lee, Woo-Tae Kim, Jinho Kim, Myonglae Chu, and Byung-Geun
Lee. 2020. A compressive sensing CMOS image sensor with partition sampling
technique. IEEE Transactions on Industrial Electronics 68, 9 (2020), 8874–8884.

[50] Hyunkeun Lee, Donghwan Seo, Woo-Tae Kim, and Byung-Geun Lee. 2017. A
Compressive Sensing-Based CMOS Image Sensor With Second-Order ΣΔ ADCs.
IEEE Sensors Journal 18, 6 (2017), 2404–2410.

[51] Junan Lee, Himchan Park, Bongsub Song, Kiwoon Kim, Jaeha Eom, Kyunghoon
Kim, and Jinwook Burm. 2015. High frame-rate VGA CMOS image sensor using
non-memory capacitor two-step single-slope ADCs. IEEE Transactions on Circuits
and Systems I: Regular Papers 62, 9 (2015), 2147–2155.

[52] Sheng Li, ZhongMa, Zhonglin Cao, Lijia Pan, and Yi Shi. 2020. Advancedwearable
microfluidic sensors for healthcare monitoring. Small 16, 9 (2020), 1903822.

[53] R. LiKamWa, Y. Hou, Y. Gao, M. Polansky, and L. Zhong. 2016. RedEye: Ana-
log ConvNet Image Sensor Architecture for Continuous Mobile Vision. In 2016
ACM/IEEE 43rd Annual International Symposium on Computer Architecture (ISCA).
255–266.

[54] Chiao Liu, Song Chen, Tsung-Hsun Tsai, Barbara De Salvo, and Jorge Gomez.
2022. Augmented Reality-The Next Frontier of Image Sensors and Compute
Systems. In 2022 IEEE International Solid-State Circuits Conference (ISSCC), Vol. 65.
IEEE, 426–428.

[55] Chun-Cheng Liu, Soon-Jyh Chang, Guan-Ying Huang, and Ying-Zu Lin. 2010. A
10-bit 50-MS/s SAR ADC with a monotonic capacitor switching procedure. IEEE
Journal of Solid-State Circuits 45, 4 (2010), 731–740.

[56] Zheyu Liu, Erxiang Ren, Fei Qiao, Qi Wei, Xinjun Liu, Li Luo, Huichan Zhao,
and Huazhong Yang. 2020. NS-CIM: A current-mode computation-in-memory
architecture enabling near-sensor processing for intelligent IoT vision nodes.
IEEE Transactions on Circuits and Systems I: Regular Papers 67, 9 (2020), 2909–2922.

[57] Yi Luo and Shahriar Mirabbasi. 2017. Always-on CMOS image sensor pixel design
for pixel-wise binary coded exposure. In 2017 IEEE International Symposium on
Circuits and Systems (ISCAS). IEEE, 1–4.

[58] Siwei Ma, Xinfeng Zhang, Chuanmin Jia, Zhenghui Zhao, Shiqi Wang, and Shan-
she Wang. 2019. Image and video compression with neural networks: A review.
IEEE Transactions on Circuits and Systems for Video Technology 30, 6 (2019), 1683–
1698.

[59] Vahid Majidzadeh, Laurent Jacques, Alexandre Schmid, Pierre Vandergheynst,
and Yusuf Leblebici. 2010. A (256× 256) pixel 76.7 mW CMOS imager/compressor
based on real-time in-pixel compressive sensing. In Proceedings of 2010 IEEE
International Symposium on Circuits and Systems. IEEE, 2956–2959.

[60] Fabian Mentzer, Eirikur Agustsson, Michael Tschannen, Radu Timofte, and Luc
Van Gool. 2018. Conditional probability models for deep image compression. In
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.
4394–4402.

[61] Laurent Millet, Stephane Chevobbe, Caaliph Andriamisaina, Lamine Benaissa,
Edouard Deschaseaux, Edith Beigne, Karim Ben Chehida, Maria Lepecq, Mehdi
Darouich, Fabrice Guellec, et al. 2019. A 5500-frames/s 85-gops/w 3-d stacked
bsi vision chip based on parallel in-focal-plane acquisition and processing. IEEE
Journal of Solid-State Circuits 54, 4 (2019), 1096–1105.

[62] David Minnen, Johannes Ballé, and George D Toderici. 2018. Joint autoregressive
and hierarchical priors for learned image compression. Advances in neural
information processing systems 31 (2018).

[63] Yusuke Oike and Abbas El Gamal. 2012. CMOS image sensor with per-column
ΣΔ ADC and programmable compressed sensing. IEEE Journal of Solid-State
Circuits 48, 1 (2012), 318–328.

[64] Chanmin Park, Wenda Zhao, Injun Park, Nan Sun, and Youngcheol Chae. 2021.
A 51-pJ/pixel 33.7-dB PSNR 4× compressive CMOS image sensor with column-
parallel single-shot compressive sensing. IEEE Journal of Solid-State Circuits 56,
8 (2021), 2503–2515.

[65] Injun Park, Woojin Jo, Chanmin Park, Byungchoul Park, Jimin Cheon, and
Youngcheol Chae. 2019. A 640×640 Fully Dynamic CMOS Image Sensor for
Always-On Operation. IEEE Journal of Solid-State Circuits 55, 4 (2019), 898–907.

[66] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory
Chanan, Trevor Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, et al. 2019.
Pytorch: An imperative style, high-performance deep learning library. Advances
in neural information processing systems 32 (2019).

[67] Tommaso Polonelli, Daniele Battistini, Manuele Rusci, Davide Brunelli, and
Luca Benini. 2020. An energy optimized jpeg encoder for parallel ultra-low-
power processing-platforms. In Applications in Electronics Pervading Industry,
Environment and Society: APPLEPIES 2019 7. Springer, 125–133.

[68] Christoph Posch, Daniel Matolin, and Rainer Wohlgenannt. 2010. A QVGA 143
dB dynamic range frame-free PWM image sensor with lossless pixel-level video
compression and time-domain CDS. IEEE Journal of Solid-State Circuits 46, 1
(2010), 259–275.

[69] Vijay Janapa Reddi, Christine Cheng, David Kanter, Peter Mattson, Guenther
Schmuelling, Carole-Jean Wu, Brian Anderson, Maximilien Breughe, Mark
Charlebois, William Chou, et al. 2020. Mlperf inference benchmark. In 2020
ACM/IEEE 47th Annual International Symposium on Computer Architecture (ISCA).
IEEE, 446–459.

[70] Ryan Robucci, Jordan D Gray, Leung Kin Chiu, Justin Romberg, and Paul Hasler.
2010. Compressive sensing on a CMOS separable-transform image sensor. Proc.
IEEE 98, 6 (2010), 1089–1101.

[71] Amir Said and William A Pearlman. 1996. An image multiresolution representa-
tion for lossless and lossy compression. IEEE Transactions on image processing 5,
9 (1996), 1303–1310.

ISCA ’23, June 17–21, 2023, Orlando, FL, USA Ma and Boloor, et al.

[72] Min-Woong Seo, Myunglae Chu, Hyun-Yong Jung, Suksan Kim, Jiyoun Song,
Junan Lee, Sung-Yong Kim, Jongyeon Lee, Sung-Jae Byun, Daehee Bae, et al. 2021.
A 2.6 e-rms low-random-noise, 116.2 mW low-power 2-Mp global shutter CMOS
image sensor with pixel-level ADC and in-pixel memory. In 2021 Symposium on
VLSI Technology. IEEE, 1–2.

[73] Min-Seok Shin, Jong-Boo Kim, Min-Kyu Kim, Yun-Rae Jo, and Oh-Kyong Kwon.
2012. A 1.92-megapixel CMOS image sensor with column-parallel low-power
and area-efficient SA-ADCs. IEEE Transactions on Electron Devices 59, 6 (2012),
1693–1700.

[74] Rituraj Singh, Stevo Bailey, Phillip Chang, Ashkan Olyaei, Mohammad Hekmat,
and Renaldi Winoto. 2021. 34.2 a 21pJ/frame/pixel imager and 34pJ/frame/pixel
image processor for a low-vision augmented-reality smart contact lens. In 2021
IEEE International Solid-State Circuits Conference (ISSCC), Vol. 64. IEEE, 482–484.

[75] H Tsugawa, H Takahashi, R Nakamura, T Umebayashi, T Ogita, H Okano, K
Iwase, H Kawashima, T Yamasaki, D Yoneyama, et al. 2017. Pixel/DRAM/logic 3-
layer stacked CMOS image sensor technology. In 2017 IEEE International Electron
Devices Meeting (IEDM). IEEE, 3–2.

[76] Vincent C Venezia, Alan Chih-Wei Hsiung, Wu-Zang Yang, Yuying Zhang, Cheng
Zhao, Zhiqiang Lin, and Lindsay A Grant. 2018. Second generation small pixel
technology using hybrid bond stacking. Sensors 18, 2 (2018), 667.

[77] L Verger, MC Gentet, L Gerfault, R Guillemaud, C Mestais, O Monnet, G Monte-
mont, G Petroz, JP Rostaing, and J Rustique. 2004. Performance and perspectives
of a CdZnTe-based gamma camera for medical imaging. IEEE Transactions on
Nuclear Science 51, 6 (2004), 3111–3117.

[78] Gregory K Wallace. 1991. The JPEG still picture compression standard. Commun.
ACM 34, 4 (1991), 30–44.

[79] Jiangtao Wen and John D Villasenor. 1997. A class of reversible variable length
codes for robust image and video coding. In Proceedings of International Conference
on Image Processing, Vol. 2. IEEE, 65–68.

[80] Chyuan-Tyng Wu, Leo F Isikdogan, Sushma Rao, Bhavin Nayak, Timo Gerasi-
mow, Aleksandar Sutic, Liron Ain-kedem, and Gilad Michael. 2019. VisionISP:
Repurposing the image signal processor for computer vision applications. In 2019
IEEE International Conference on Image Processing (ICIP). IEEE, 4624–4628.

[81] Han Xu, Ningchao Lin, Li Luo, Qi Wei, Runsheng Wang, Cheng Zhuo, Xunzhao
Yin, Fei Qiao, and Huazhong Yang. 2021. Senputing: An ultra-low-power always-
on vision perception chip featuring the deep fusion of sensing and computing.
IEEE Transactions on Circuits and Systems I: Regular Papers 69, 1 (2021), 232–243.

[82] Christopher Young, Alex Omid-Zohoor, Pedram Lajevardi, and Boris Murmann.
2019. A data-compressive 1.5/2.75-bit log-gradient QVGA image sensor with
multi-scale readout for always-on object detection. IEEE Journal of Solid-State
Circuits 54, 11 (2019), 2932–2946.

[83] Bin Zhang, Kuizhi Mei, and Nanning Zheng. 2012. Reconfigurable processor
for binary image processing. IEEE transactions on circuits and systems for video
technology 23, 5 (2012), 823–831.

[84] Bo Zhang, Pedro V Sander, Chi-Ying Tsui, and Amine Bermak. 2018. Microshift:
An efficient image compression algorithm for hardware. IEEE Transactions on
Circuits and Systems for Video Technology 29, 11 (2018), 3430–3443.

[85] Jian Zhang, Chen Zhao, Debin Zhao, and Wen Gao. 2014. Image compressive
sensing recovery using adaptively learned sparsifying basis via L0 minimization.
Signal Processing 103 (2014), 114–126.

[86] Kai Zhang, Wangmeng Zuo, Yunjin Chen, Deyu Meng, and Lei Zhang. 2017.
Beyond a gaussian denoiser: Residual learning of deep cnn for image denoising.
IEEE transactions on image processing 26, 7 (2017), 3142–3155.

[87] Milin Zhang and Amine Bermak. 2009. Compressive acquisition CMOS image
sensor: from the algorithm to hardware implementation. IEEE Transactions on
Very Large Scale Integration (VLSI) Systems 18, 3 (2009), 490–500.

[88] Milin Zhang and Amine Bermak. 2010. CMOS image sensor with on-chip image
compression: A review and performance analysis. Journal of Sensors 2010 (2010).

[89] Chuteng Zhou, Fernando Garcia Redondo, Julian Büchel, Irem Boybat, Xavier Ti-
moneda Comas, SR Nandakumar, Shidhartha Das, Abu Sebastian, Manuel Le
Gallo, and Paul N Whatmough. 2021. Analognets: ML-HW co-design of noise-
robust TinyML models and always-on analog compute-in-memory accelerator.
arXiv preprint arXiv:2111.06503 (2021).

[90] Lei Zhou, Chunlei Cai, Yue Gao, Sanbao Su, and Junmin Wu. 2018. Variational
autoencoder for low bit-rate image compression. In Proceedings of the IEEE Con-
ference on Computer Vision and Pattern Recognition Workshops. 2617–2620.

[91] Chenzhuo Zhu, Song Han, Huizi Mao, and William J Dally. 2016. Trained ternary
quantization. arXiv preprint arXiv:1612.01064 (2016).

	Abstract
	1 Introduction
	2 Background
	2.1 CMOS Image Sensor Primer
	2.2 Sensor-side Image Compression
	2.3 In-Sensor Processing

	3 LeCA Co-Design Framework
	3.1 LeCA Overview
	3.2 LeCA Machine Vision Processing Pipeline
	3.3 LeCA Encoder Design
	3.4 Training Methodology

	4 LeCA Sensor Architecture and Circuits
	4.1 LeCA Processing Dataflow
	4.2 Sensor Operation Sequence
	4.3 Circuit Implementation
	4.4 Full System Simulation

	5 Experimental Methodology
	5.1 Baseline Compression Methods
	5.2 Datasets and Training
	5.3 Hardware Non-idealities Modeling
	5.4 System-level Accuracy and Performance Analysis

	6 Evaluation
	6.1 Accuracy-optimized Compression
	6.2 Hardware-aware Noise Resilience
	6.3 Sensor System Evaluation
	6.4 Discussion and Future Work

	7 Related Works
	8 Conclusion
	Acknowledgments
	References

