Bayesian estimation of causal effects from observational categorical data

Vera Kvisgaard'

Johan Pensar’

'Department of mathematics, University of Oslo , Oslo, Norway

Abstract

We develop a scaleable Bayesian method for the
estimation of all pairwise causal effects in a sys-
tem from observational data, under the assumption
that the underlying causal model is an unknown
discrete Bayesian network and that there are no
latent confounders. Specifically, we build upon the
Bayesian IDA (BIDA) and extend this method to
the categorical setting. The key-idea is to com-
bine Bayesian estimation of intervention distribu-
tions through the so-called backdoor formula with
Bayesian model averaging. The main motivation of
the method is to inform future experiments about
plausible strong relationships, and we demonstrate
by numerical experiments that our Bayesian mod-
eling averaging approach can be highly relevant
for this task.

1 BACKGROUND

The ambition to learn causal effects from observational data
under an unknown causal structure can be approached by
combining a structure learning procedure with a method
for estimating causal effects given a structure. As a first
scalable method in this direction, Maathuis et al.|[2009] in-
troduced the IDA algorithm. The IDA algorithm first infers
a single CPDAG from the data and subsequently estimates
the causal effects consistent with all DAGs in the associated
equivalence class [Pearl| 2009]]. Providing estimates of the
bounds of the causal effects, the algorithm is proven useful
for example for the purpose of ranking the pairwise effects.
However, it is prone to errors in the single inferred causal
structure. Several modifications of the algorithm have later
been proposed to better account for the model uncertainty,
including frequentist resampling strategies [Stekhoven et al.,
2012 |Taruttis et al.|[2015]] and Bayesian approaches [Castel{
letti and Consonnil, 2021} [Pensar et al., 2020, [Viinikka et al.|

2020\ [Kuipers and Moffal 2022].

We build upon the Bayesian IDA (BIDA, |Pensar et al.
[2020])), a procedure that aims to account fully for the model
uncertainty. The algorithm builds a posterior over the causal
effect of every cause-effect pair in the considered system,
by combining Bayesian estimation of the causal effects in
a given DAG with Bayesian model averaging over DAGs.
The main challenge with the Bayesian approach is com-
putational. Averaging over all possible structures becomes
infeasible even for smaller-scale systems, due to the vast
model space. As in the original IDA procedure, the BIDA ex-
ploits the fact that when causal effects are estimated through
the backdoor formula, the estimated effects are common to
all DAGs that share the same adjustment set. The target pos-
terior can therefore be consistently estimated by averaging
over the unique adjustment sets, rather than unique DAGs.
More precisely, let 7;; denote the causal effect of variable
X on X; and let G;; be the indices of a valid adjustment set
w.r.t X;, X; and the graph G. The target posterior p(7;;|D)
can then be computed as:

p(7i;1D) =Y p(7i;1Gij, D)p(Gij| D) )]
Gij

where p(7;;|G;;) is the posterior conditional on the adjust-
ment set being valid for adjustment and p(G,;) the posterior
probability that G;; is indeed valid with respect to a prede-
fined class of backdoor adjustment sets. In its original form,
the BIDA algorithm relies on a dynamical programming
routine that computes exact posterior probabilities over par-
ent sets, and it is applicable to systems with up to around 25
nodes.

A key assumption in both the original and modified IDA
algorithms is that the underlying model can be assumed to
be linear Gaussian, which implies that the causal effects
are linear and can conveniently be estimated using linear
regression. Here, we assume the data are categorical, and
extend the Bayesian IDA to this setting.
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2 BAYESIAN IDA FOR CATEGORICAL
VARIABLES

Consider a set of categorical variables X1,..., X, each
with 7; possible outcomes and assume their joint distribution
P(z1,...,2,|0,G) can be modeled by a causal Bayesian
network, such that the parameters ¢ = {6,}" , is a set of
conditional probability tables 6;, one for each node i. Our
goal then is to estimate the marginal intervention probabili-
ties
7ij|mi = P(Xj = $j|d0(Xi = .Z‘i),e)

and the associated causal effects 7;; for every cause-effect
pair (i, j), given data sampled from P with both § and G
unknown. To quantify the causal effect between categorical
variables, we use the Jensen-Shannon-divergence between
intervention distributions [Lin, (1991, |Griffiths et al., 2015]]:

Tii = L E E 71' log _ Twiles
o= zj|z; 1 :
T T sz 7rwj|a;i

T

We develop a Bayesian estimator for the target posterior
p(7i;] D) by first considering the setting where we are given
a causal DAG G, then the setting where G is not known.

2.1 POSTERIOR UNDER KNOWN DAG

If the causal DAG is known and there are no unobserved
confounders, interventional distributions can be estimated
through the backdoor formula. Suppose Xg,; is a set of
valid adjustment variables. The backdoor formula then states
that [Pearl, [2009],
{P(xj) ifj € Gy
Tajle; =

P(zjlzi,vq,;,0)P(xilra,,;,0) otherwise

i
The right-hand side of the formula includes only the ob-
servational distribution, and can consistently from non-
experimental data. We estimate the involved marginal dis-
tributions directly, and thereby avoid inference in the full
model, which is typically computationally demanding in
the categorical setting. In particular, we assume a conjugate
Dirichlet prior over the parameters of the relevant marginal
distributions. Each row in the interventional probability
table m;; = {{szlmi};i-:l}?;:l is then a linear combi-
nation of Dirichlet vectors, unless the adjustment set is
empty. Moreover, the row-vectors will generally be depen-
dent. While there are no closed-form expression for the exact
posterior distribution p(;;|G,;, D) and p(7;;|G;;, D), they
can easily be sampled from through Monte Carlo sampling.

2.2 POSTERIOR UNDER AN UNKNOWN DAG

Under model uncertainty, the target posterior p(7;;|D) can
be computed by equation (TJ), given the local estimator for

the conditional posterior p(7;;|G;;, D) outlined in the pre-
vious section. To scale up the procedure, we compute the
posterior probability P(G;;|D) of G;; being a valid ad-
justment set by the means of MCMC. In particular, we
employ the partition-MCMC scheme [Kuipers et al., [2022]]
and sample a sequence of DAGs from the graph posterior.
The posterior probability P(G;;|D) can then be approxi-
mated simply by counting the number of sampled DAGs in
which G is indeed a valid adjustment set with respect to a
specific class of adjustment sets (e.g. a parent set or o-set).
Where the current exact BIDA is limited to the use of parent
sets for adjustment, this MCMC approach also allows us to
consider various non-local backdoor adjustment sets identi-
fiable through graphical criteria. Specifically, we consider
the o-set [Henckel et al.,[2022] Witte et al., 2020]] as well as
the minimal o-set and minimal parent set. The minimal sets
are obtained by removing the variables that do not close any
backdoor paths from the respective adjustment set.

3 NUMERICAL EXPERIMENTS

We implemented the proposed BIDA method in R and eval-
uated its performance in a simulation experiment, on data
sampled from 9 discrete Bayesian networks of various sizes
from the bnlearn repository. The results show that the use
of non-local adjustment sets improves the accuracy of the
point-estimates over parent sets, also when the true DAG is
not known (Figure [T)). Compared with two variants of the
IDA method, the original procedure as well as the optimal
IDA [Witte et al.l 2020f], our proposed method is overall the
most accurate both in terms of point-estimates (Figure [2)
and in terms of discovering strong effects (Figure[3). Still,
there are some particular networks where both the absolute
and relative performance of our method is rather poor. The
poor results are explained by the MCMC-chain that has
trouble mixing given data from these networks.

4 CONCLUSION

We have extended the Bayesian IDA to the categorical set-
ting. Additionally, using MCMC methods in the space of
DAGs, we have both scaled up the method and improved its
accuracy by replacing parent sets with non-local adjustment
sets. A good approximation of the posterior over adjustment
sets is crucial for the method, and delving deeper into the
structure learning part of the method is a natural way to
improve upon the current version. To further scale up the
method, some approximation of the conditional posterior
distribution is required, as sampling from the exact posterior
distribution is computationally costly.
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A SELECTED SIMULATION RESULTS
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Figure 1: The point-estimates of our proposed BIDA method using different adjustment sets for adjustment: parent sets (pa),
minimal parent sets (pa-min), o-sets (0) or minimal o-sets (0-min), as measured by the mean squared errors (MSE) between
the true and estimated causal effects, 7. Each subfigure corresponds to one network and the boxplot shows for each sample
size the distribution over 30 independently sampled data sets. Outliers are excluded. In the upper row the DAG is assumed
known, in the bottom unknown.



20

10

30

MSE * 1000
8

[N
o

10

(53]

Figure 2: The accuracy of BIDA using parent sets (BIDA+pa) or minimal o-sets (BIDA-+o-min) for adjustment, as measured
by the mean squared errors (MSE) between the true and estimated causal effects, 7. Compared to the estimated marginal
probabilities (marg.), conditional probabilities (cond.), the original IDA (IDA+pa) and the optimal IDA (IDA+o0). Each
subfigure corresponds to one network and the boxplot shows for each sample size the distribution over 30 independently
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Figure 3: The accuracy in predicting the strongest effects (the top 20 percentile of positive effects in each network) using the
mean values (BIDA+o-min) and mean ranks (BIDA-R+0-min) from the BIDA posterior, as measured by the area under
the precision-recall curve (AUC-PR). Compared to the estimated marginal probabilities (marg.), conditional probabilities
(cond.), the original IDA (IDA+pa), the optimal IDA (IDA+0) and the ancestor relation probabilities (ARP). Each subfigure
corresponds to one network and the boxplot shows for each sample size the distribution over 30 independently sampled data
sets. Outliers are excluded.
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