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Abstract
In distribution compression, one aims to accurately summarize a probability distribution P using
a small number of representative points. Near-optimal thinning procedures achieve this goal by
sampling n points from a Markov chain and identifying

√
n points with Õ(1/

√
n) discrepancy to

P. Unfortunately, these algorithms suffer from quadratic or super-quadratic runtime in the sam-
ple size n. To address this deficiency, we introduce Compress++, a simple meta-procedure for
speeding up any thinning algorithm while suffering at most a factor of 4 in error. When combined
with the quadratic-time kernel halving and kernel thinning algorithms of Dwivedi and Mackey
(2021), Compress++ delivers

√
n points with better-than-Monte-Carlo maximum mean discrep-

ancy in O(n log3 n) time and O(
√
n log2 n) space. Moreover, Compress++ enjoys the same near-

linear runtime given any quadratic-time input and reduces the runtime of super-quadratic algo-
rithms by a square-root factor. In our benchmarks with high-dimensional Monte Carlo samples
and Markov chains targeting challenging differential equation posteriors, Compress++ matches or
nearly matches the accuracy of its input algorithm in orders of magnitude less time.

1. Introduction

Distribution compression—constructing a concise summary of a probability distribution—is at the
heart of many learning and inference tasks. For example, in Monte Carlo integration and Bayesian
inference, n representative points are sampled i.i.d. or from a Markov chain to approximate expec-
tations and quantify uncertainty under an intractable (posterior) distribution (Robert and Casella,
1999). However, these standard sampling strategies represent a bottleneck in computationally-
demanding settings due to their slow root-n Monte Carlo error rate. For instance, the Monte Carlo
estimate Pinf ≜ 1

n

∑n
i=1 f(xi) of an unknown expectation Pf ≜ EX∼P[f(X)] based on n i.i.d.

points has Θ(n−
1
2 ) integration error |Pf − Pinf |, requiring n = 10000 points for 1% relative er-

ror and n = 106 points for 0.1% error. Such bloated sample representations preclude downstream
applications with critically expensive function evaluations like computational cardiology, where a
1000-CPU-hour tissue or organ simulation is required for each sample point (Niederer et al., 2011;
Augustin et al., 2016; Strocchi et al., 2020).

To restore the feasibility of such critically expensive tasks, it is common to thin down the initial
sequence of points to a produce a much smaller coreset. The standard thinning approach, select
every t-th sample point (Owen, 2017), is simple to implement but often leads to an substantial
increase in error: e.g., standard thinning n points from a fast-mixing Markov chain yields Ω(n−

1
4 )

error when n
1
2 points are returned. Recently, Dwivedi and Mackey (2021b,a) introduced a more

effective alternative, kernel thinning, that provides near optimal Õd(n
− 1

2 ) error when compressing
n points in Rd down to size n

1
2 . While practical for moderate sample sizes, the runtime of this

algorithm scales quadratically with the input size n, making its execution prohibitive for very large
input sizes. Our goal is to significantly improve the runtime of such compression algorithms while
providing comparable error guarantees.
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Given a sequence Sin of n input points summarizing a target distribution P, our aim is to identify
a high quality coreset Sout of size

√
n in time nearly linear in n. We measure coreset quality via

its integration error |Pf − PSoutf | ≜ |Pf − 1
|Sout|

∑
x∈Sout

f(x)| for functions f in the reproducing
kernel Hilbert space (RKHS)Hk induced by a given kernel k (Berlinet and Thomas-Agnan, 2011).
We consider both single function error and kernel maximum mean discrepancy (MMD, Gretton
et al., 2012), the worst-case integration error over the unit RKHS norm ball:

MMDk(P,PSout) ≜ sup∥f∥k≤1|Pf − PSoutf |. (1)

We introduce a new simple meta procedure—COMPRESS++—that significantly speeds up a
generic thinning algorithm while simultaneously inheriting the error guarantees of its input up to a
factor of four. A direct application of COMPRESS++ to kernel thinning improves its quadratic Θ(n2)

runtime to near linear O(n log3 n) time while preserving its error guarantees. Since the Õd(n
− 1

2 )

KT MMD guarantees of Dwivedi and Mackey (2021b) match the Ω(n−
1
2 ) minimax lower bounds of

Tolstikhin et al. (2017); Phillips and Tai (2020) up to factors of
√
log(n) and constants depending

on d, KT-COMPRESS++ also provides near-optimal MMD compression for a wide range of kernels
and distributions P. Moreover, the practical gains from applying COMPRESS++ are substantial:
KT thins 65, 000 points in 10 dimensions in 20m, while KT-COMPRESS++ needs only 1.5m; KT
takes more than a day to thin 250, 000 points in 100 dimensions, while KT-COMPRESS++ takes less
than an hour (a 32× speed-up). For larger n, the speed-ups are even greater due to the order n

log3 n

reduction in runtime.
COMPRESS++ can also be directly combined with any thinning algorithm, even those that have

suboptimal guarantees but often perform well in practice, like kernel herding (Chen et al., 2010),
MMD-critic (Kim et al., 2016), and Stein thinning (Riabiz et al., 2020a), all of which run in Ω(n2)
time.

We let PS denote the empirical distribution of S. For the output coreset SALG of the algo-
rithm ALG with the input coreset Sin, we use the simpler notation PALG ≜ PSALG

, along with
Pin ≜ PSin . We extend our MMD definition to point sequences (S1,S2) via MMDk(S1,S2) ≜
MMDk(PS1 ,PS2) and MMDk(P,S1) ≜ MMDk(P,PS1).

2. Thinning and Halving Algorithms

We begin by defining the thinning and halving algorithms that our meta-procedures take as input.

Definition 1 (Thinning and halving algorithms) A thinning algorithm ALG takes as input a point
sequence Sin of length n and returns a (possibly random) point sequence SALG of length nout. We
say ALG is αn-thinning if nout = ⌊n/αn⌋ and root-thinning if αn =

√
n. Moreover, we call ALG a

halving algorithm if SALG always contains exactly ⌊n2 ⌋ of the input points.

Many algorithms also offer high-probability bounds on the kernel MMD (1), the worst-case
integration error across the unit ball of the RKHS. We again capture these bounds abstractly using
the following definition of a k-sub-Gaussian thinning algorithm.

Definition 2 (k-sub-Gaussian thinning algorithm) For a kernel k, we call a thinning algorithm
ALG k-sub-Gaussian with parameter v and shift a and write ALG ∈ Gk(v, a) if

P[MMDk(Sin,SALG) ≥ an + vn
√
t
∣∣Sin] ≤ e−t for all t ≥ 0. (2)

We also call εk,ALG(n) ≜ max(vn, an) the k-sub-Gaussian error of ALG.
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3. COMPRESS

The core subroutine of COMPRESS++ is a new meta-procedure called COMPRESS that, given a halv-
ing algorithm HALVE, an oversampling parameter g, and n input points, outputs a thinned coreset of
size 2g

√
n. The COMPRESS algorithm (Alg. 1) is very simple to implement: first, divide the input

points into four subsequences of size n
4 (in any manner the user chooses); second, recursively call

COMPRESS on each subsequence to produce four coresets of size 2g−1√n; finally, call HALVE on
the concatenation of those coresets to produce the final output of size 2g

√
n. As we show in App. K,

COMPRESS can also be implemented in a streaming fashion to consume at most O(4g
√
n) memory

when processing n input points.

Algorithm 1: COMPRESS

Input: halving algorithm HALVE, oversampling parameter g, point sequence Sin of size n
if n = 4g then return Sin
else

Partition Sin into four arbitrary subsequences {Si}4i=1 each of size n/4
for i = 1, 2, 3, 4 do
S̃i ← COMPRESS(Si,HALVE, g) // return coresets of size 2g ·

√
n
4

end
S̃ ← CONCATENATE(S̃1, S̃2, S̃3, S̃4) // coreset of size 2 · 2g ·

√
n

return HALVE(S̃) // coreset of size 2g
√
n

end

Our first result relates the runtime of COMPRESS to the runtime and error of HALVE. We measure
runtime by the number of dominant operations performed by HALVE (e.g., the number of kernel evaluations
performed by kernel thinning).

Theorem 3 (Runtime of COMPRESS) If HALVE has runtime rH(n) for inputs of size n, then COMPRESS
has runtime

rC(n) =
∑βn

i=0 4
i · rH(ℓn2

−i), (3)

where ℓn≜2g+1
√
n (twice the output size of COMPRESS), and βn≜ log2(

n
ℓn
) = log4 n−g−1.

As we prove in App. C, the runtime guarantee (3) is immediate once we unroll the COMPRESS recursion
and identify that COMPRESS makes 4i calls to HALVE with input size ℓn2−i. Let us now unpack the most
important implications of Thm. 3.

Remark 4 (Near-linear runtime and quadratic speed-ups for COMPRESS) Thm. 3 implies that a quadratic-
time HALVE with rH(n) = n2 yields a near-linear time COMPRESS with rC(n) ≤ 4g+1 n(log4(n) − g). If
HALVE instead has super-quadratic runtime rH(n) = nτ , COMPRESS enjoys a quadratic speed-up: rC(n) ≤
c′τ n

τ/2 for c′τ ≜ 2τ(g+2)

2τ−4 . More generally, whenever HALVE has superlinear runtime rH(n) = nτ ρ(n) for
some τ ≥ 1 and non-decreasing ρ, COMPRESS satisfies

rC(n) ≤

{
cτ · n (log4(n)− g) ρ(ℓn) for τ ≤ 2

c′τ · nτ/2 ρ(ℓn) for τ > 2
where cτ ≜ 4(τ−1)(g+1).

Next, we bound the MMD error of COMPRESS in terms of the MMD error of HALVE. Recall that
MMDk (1) represents the worst-case integration error across the unit ball of the RKHS of k. The error guar-
antee is subtle: here, COMPRESS benefits significantly from random cancellations among the conditionally
independent and mean-zero HALVE errors. Without these properties, the errors from each HALVE call could
compound without cancellation leading to a significant degradation in COMPRESS quality. The proof, based
on the concentration of subexponential matrix martingales, is provided in App. D.
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Theorem 5 (MMD guarantees for COMPRESS) Suppose HALVE ∈ Gk(a, v) for nan and n vn non-decreasing
and E

[
PHALVEk | Sin

]
= Pink. Then COMPRESS ∈ Gk(ã, ṽ) with

ṽn ≜ c̃n
√
2(log4 n−g), and ãn ≜ c̃n log(n+1)+ṽn

√
log(n+1), (4)

where c̃n ≜ 2(aℓn+vℓn) and ℓn = 2g+1
√
n as in Thm. 3.

Remark 6 (COMPRESS inflates MMD guarantee by at most 9 log(n+1)) Thm. 5 implies that the k-
sub-Gaussian error of COMPRESS is always at most 9 log(n+1) times that of HALVE with input size ℓn =
2g+1
√
n since

εk,COMPRESS(n)
Thm. 2
= max(ãn, ṽn)

(4)
≤ 9 log(n+ 1)max(aℓn , vℓn) = 9 log(n+ 1) · εk,HALVE(ℓn).

HALVE applied to an input of size ℓn is a particularly strong benchmark, as ℓn is twice the output size of
COMPRESS, and thinning from n to ℓn

2 points should incur at least as much MMD error as halving from ℓn
to ℓn

2 .

4. COMPRESS++
To offset any excess error due to COMPRESS while maintaining its near-linear runtime, we next introduce
COMPRESS++ (Alg. 2), a simple two-stage meta-procedure for faster root-thinning. COMPRESS++ takes
as input an oversampling parameter g, a halving algorithm HALVE, and a 2g-thinning algorithm THIN (see
Thm. 1). In our applications, HALVE and THIN are derived from the same base algorithm (e.g., from kernel
thinning with different thinning factors), but this is not required. COMPRESS++ first runs the faster but
slightly more erroneous COMPRESS(HALVE, g) algorithm to produce an intermediate coreset of size 2g

√
n.

Next, the slower but more accurate THIN algorithm is run on the greatly compressed intermediate coreset to
produce a final output of size

√
n. In the sequel we will demonstrate how to set g to offset error inflation due

to COMPRESS while maintaining its fast runtime.

Algorithm 2: COMPRESS++
Input: oversampling parameter g, halving algorithm HALVE, 2g-thinning algorithm THIN, point sequence

Sin of size n

SC ← COMPRESS(HALVE, g,Sin) // Coreset of size 2g
√
n

SC++ ← THIN(SC) // Coreset of size
√
n

return SC++

The following result, proved in App. F, relates the runtime of COMPRESS++ to the runtime of HALVE
and THIN.

Theorem 7 (Runtime and integration error of COMPRESS++) If HALVE and THIN have runtimes rH(n)
and rT(n) respectively for inputs of size n, then COMPRESS++ has runtime

rC++(n) = rC(n) + rT(ℓn/2) where rC(n)
(3)
=
∑βn

i=0 4
i · rH(ℓn2

−i), (5)

ℓn=2g+1
√
n, and βn=log4 n−g−1 as in Thm. 3.

Remark 8 (Near-linear runtime and near-quadratic speed-ups for COMPRESS++) When HALVE and
THIN have quadratic runtimes with max(rH(n), rT(n)) = n2, Thms. 4 and 7 yield that rC++(n) ≤ 4g+1 n(log4(n)−
g) + 4gn. Hence, COMPRESS++ maintains a near-linear runtime

rC++(n) = O(n logc+1
4 (n)) whenever 4g = O(logc4 n).
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If HALVE and THIN instead have super-quadratic runtimes with max(rH(n), rT(n)) = nτ , then by Thm. 4
we have rC++(n) ≤ ( 4τ

2τ−4+1) 2gτnτ/2, so that COMPRESS++ provides a near-quadratic speed up rC++(n) =

O(nτ/2 logcτ/24 (n)) whenever 4g = O(logc4 n).

Next, we bound the MMD error of COMPRESS++ in terms of the MMD error of HALVE and THIN. The
proof of the following result can be found in App. G.

Theorem 9 (MMD guarantees for COMPRESS++) If THIN ∈ Gk(a′,v′), HALVE ∈ Gk(a,v) for nan and
n vn non-decreasing, and E

[
PHALVEk | Sin

]
= Pink, then COMPRESS++ ∈ Gk(â, v̂) with

v̂n ≜ ṽn + v′ℓn/2, and ân ≜ ãn + a′ℓn/2 + v̂n
√
log 2

for ṽn and ãn defined in Thm. 5 and ℓn = 2g+1
√
n as in Thm. 3.

Remark 10 (COMPRESS++ inflates MMD guarantee by at most 4) Thm. 9 implies that the COMPRESS++
k-sub-Gaussian error εk,COMPRESS++(n) = max(ân, v̂n) satisfies

εk,COMPRESS++(n) ≤ (9 log(n+ 1) εk,HALVE(ℓn) + εk,THIN(
ℓn
2 )) (1 +

√
log 2)

≤ εk,THIN(
ℓn
2 )( 9 log(n+1)

2g
ζ̃H(ℓn)

ζ̃T(
ℓn
2 )

+ 1)(1 +
√
log 2),

where we have introduced the rescaled quantities ζ̃H(ℓn) ≜
ℓn
2 εk,HALVE(ℓn) and ζ̃T(

ℓn
2 ) ≜

√
n εk,THIN(

ℓn
2 ).

Therefore, COMPRESS++ satisfies

εk,COMPRESS++(n) ≤ 4 εk,THIN(
ℓn
2 ) whenever g ≥ log2 log(n+ 1) + log2(8

ζ̃H(ℓn)

ζ̃T(
ℓn
2 )

). (6)

In other words, relative to a strong baseline of thinning from ℓn
2 to

√
n points, COMPRESS++ inflates k-sub-

Gaussian error by at most a factor of 4 whenever g satisfies (6). For example, when the ratio ζ̃H(ℓn)/ζ̃T(
ℓn
2 )

is bounded by C, it suffices to choose g = ⌈log2 log(n+1)+log2(8C)⌉.

5. Experiments
Supplementary experimental details and results can be found in App. J.

Each experiment compares a high-accuracy, quadratic time thinning algorithm—either target kernel thin-
ning (Dwivedi and Mackey, 2021a) —with our near-linear time COMPRESS and COMPRESS++ variants that
use the same input algorithm to HALVE and THIN. In each case, we perform root thinning, compressing n
input points down to

√
n points, so that COMPRESS is run with g = 0. For COMPRESS++, we use g = 4

throughout to satisfy the small relative error criterion (6) in all experiments. When halving we restrict each
input algorithm to return distinct points and symmetrize the output as discussed in App. E.

We first apply COMPRESS++ to the near-optimal KT algorithm to obtain comparable summaries at a
fraction of the cost. Figs. 3 and 4 reveal that, in line with our guarantees, KT-COMPRESS++ matches or
nearly matches the MMD error of KT in all experiments while also substantially reducing runtime. For
example, KT thins 65, 000 points in 10 dimensions in 20m, while KT-COMPRESS++ needs only 1.5m; KT
takes more than a day to thin 250, 000 points in 100 dimensions, while KT-COMPRESS++ takes less than an
hour (a 32× speed-up).
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Figure 1: For Gaussian targets P with d ∈ {2, 4, 10, 100}, KT-COMPRESS++ improves upon the MMD of
i.i.d. sampling (ST), closely tracks the error of its quadratic-time input algorithm KT, and substan-
tially reduces the runtime. See App. J.2 for more details.
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Figure 2: Given MCMC sequences summarizing challenging differential equation posteriors P, KT-
COMPRESS++ consistently improves upon the MMD of standard thinning (ST) and matches or
nearly matches the error of of its quadratic-time input algorithm KT. See App. J.2 for more details.
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Appendix A. Additional Definitions and Notation
This section provides additional definitions and notation used throughout the appendices.

We associate with each algorithm ALG and input Sin the measure difference

ϕALG(Sin) ≜ PSin − PSALG
= 1

n

∑
x∈Sin

δx − 1
nout

∑
x∈SALG

δx (7)

that characterizes how well the output empirical distribution approximates the input. We will often write
ϕALG instead of ϕALG(Sin) for brevity if Sin is clear from the context.
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We also make use of the following standard definition of a sub-Gaussian random variable (see, e.g.,
Boucheron et al., 2013, Sec. 2.3).

Definition 11 (Sub-Gaussian random variable) We say that a random variable G is sub-Gaussian with
parameter ν and write G ∈ G(ν) if

E
[
exp(λG)

]
≤ exp

(
λ2ν2

2

)
for all λ ∈ R.

Given Thm. 11, it follows that ALG ∈ Gf (ν) for a function f as in Thm. 13 if and only if the random
variable ϕALG(f) ≜ PSin

f − PSALG
f is sub-Gaussian with parameter ν conditional on the input Sin.

In our proofs, it is often more convenient to work with an unnormalized measure discrepancy

ψALG(Sin) ≜ n · ϕALG(Sin)
(7)
=
∑

x∈Sin
δx − n

nout

∑
SALG

δx. (8)

By definition (8), we have the following useful equivalence:

ψALG(f) ≜ n · ϕALG(f) ∈ G(σALG)⇐⇒ ϕALG(f) ∈ G(νALG) for σALG =n · νALG.

The following standard lemma establishes that the sub-Gaussian property is closed under scaling and
summation.

Lemma 12 (Summation and scaling preserve sub-Gaussianity) Suppose G1 ∈ G(σ1). Then, for all β ∈
R, we have β ·G1 ∈ G(βσ1). Furthermore, ifG1 is F-measurable andG2 ∈ G(σ2) given F , thenG1+G2 ∈
G(
√
σ2
1 + σ2

2).

Proof Fix any β ∈ R. Since G1 ∈ G(σ1), for each λ ∈ R,

E
[
exp(λ · β ·G1)

]
≤ exp

(
λ2(βσ1)

2

2

)
,

so that βG1 ∈ G(βσ1) as advertised.
Furthermore, if G1 is F-measurable and G2 ∈ G(σ2) given F , then, for each λ ∈ R,

E
[
exp
(
λ · (G1 +G2)

)]
= E

[
exp(λ ·G1 + λ ·G2)

]
= E

[
exp(λ ·G1) · E

[
exp(λ ·G2) | F

]]
≤ exp

(
λ2σ2

2

2

)
· E
[
exp
(
λ · f(G2)

)]
= exp

(
λ2σ2

1

2

)
· exp

(
λ2σ2

2

2

)
= exp

(
λ2(σ2

1+σ2
2)

2

)
,

so that G1 +G2 ∈ G(
√
σ2
1 + σ2

2) as claimed.

Appendix B. KT-SPLIT Discussion
Many thinning algorithms offer high-probability bounds on the integration error |PSin

f−PSALG
f |. We capture

such bounds abstractly using the following definition of a sub-Gaussian thinning algorithm.

Definition 13 (Sub-Gaussian thinning algorithm) For a function f , we call a thinning algorithm ALG
f -sub-Gaussian with parameter ν and write ALG ∈ Gf (ν) if

E[exp(λ(PSin
f − PSALG

f)) | Sin] ≤ exp
(

λ2ν2(n)
2

)
for all λ ∈ R.

10
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Thm. 13 is equivalent to a sub-Gaussian tail bound for the integration error, and, by Boucheron et al.
(2013, Section 2.3), if ALG ∈ Gf (ν) then E[PSALG

f | Sin] = PSinf and, for all δ ∈ (0, 1),

|PSin
f−PSALG

f | ≤ ν(n)
√

2 log( 2δ ), with probability at least 1− δ given Sin.

Hence the integration error of ALG is dominated by the sub-Gaussian parameter ν(n).

Example 1 (KT-SPLIT) Given a kernel k and n input points Sin, the KT-SPLIT(δ) algorithm1 of Dwivedi
and Mackey (2021a,b, Alg. 1a) takes Θ(n2) kernel evaluations to output a coreset of size nout with better-
than-i.i.d. integration error. Specifically, Dwivedi and Mackey (2021a, Thm. 1) prove that, on an event with
probability 1− δ, KT-SPLIT(δ) ∈ Gf (ν) with

ν(n) = 2
nout

√
3

√
log( 4(n−nout)

δ )∥k∥∞

for all f with ∥f∥k = 1. ■

Example 2 (Kernel thinning) Given a kernel k and n input points Sin, the generalized kernel thinning
(KT(δ)) algorithm1 of Dwivedi and Mackey (2021a,b, Alg. 1) takes Θ(n2) kernel evaluations to output a
coreset of size nout with near-optimal MMD error. In particular, by leveraging an appropriate auxiliary
kernel ksplit, Dwivedi and Mackey (2021a, Thms. 2-4) establish that, on an event with probability 1 − δ,
KT(δ) ∈ Gk(a, v) with

an = Ca

nout

√
∥ksplit∥∞, and vn = Cv

nout

√
∥ksplit∥∞ log( 4(n−nout)

δ )MSin,ksplit
, (9)

where ∥ksplit∥∞ = supx ksplit(x, x),Ca andCv are explicit constants, and MSin,ksplit
≥ 1 is non-decreasing

in n and varies based on the tails of ksplit and the radius of the ball containing Sin. ■

Appendix C. Proof of Thm. 3: Runtime of COMPRESS

First, we bound the running time of COMPRESS. By definition, COMPRESS makes four recursive calls to
COMPRESS on inputs of size n/4. Then, HALVE is run on an input of size 2g+1

√
n. Thus, rC satisfies the

recursion

rC(n) = 4rC
(
n
4

)
+ rH(

√
n2g+1).

Since rC(4
g) = 0, we may unroll the recursion to find that

rC(n) =
∑βn

i=0 4
irH(2

g+1
√
n4−i),

as claimed in (3).

Appendix D. Proof of Thm. 5: MMD guarantees for COMPRESS

Our proof proceeds in several steps. To control the MMD (1), we need to control the Hilbert norm of the
measure discrepancy of COMPRESS (8), which we first write as a weighted sum of measure discrepancies
from different (conditionally independent) runs of HALVE. To effectively leverage the MMD tail bound
assumption for this weighted sum, we reduce the problem to establishing a concentration inequality for the
operator norm of an associated matrix. We carry out this plan in four steps summarized below.

1. The δ argument indicates that each input parameter δi = δ
ℓ−nout

in Dwivedi and Mackey (2021a, Alg. 1a), where ℓ
is the size of the input to KT-SPLIT(δ) or KT(δ) and nout is the target output size.
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First, we express the MMD associated with each HALVE measure discrepancy as the Euclidean norm of
a suitable vector (Thm. 14). Second, we define a matrix dilation operator for a vector that allows us to control
vector norms using matrix spectral norms (Thm. 15). Third, we establish moment bounds for these matrices
by leveraging tail bounds for the MMD error (Thm. 17). Finally, we prove and apply a subexponential matrix
Freedman concentration inequality (Thm. 16) to control the MMD error for the COMPRESS output.

We now begin our formal argument. We will make use of the unrolled representation for the COMPRESS
measure discrepancy ψC(Sin) in terms of the HALVE inputs (S ink,j)j∈[4k] of size nk = 2g+1−k

√
n for 0 ≤

k ≤ log4 n−g−1. For brevity, we will use the shorthand ψC ≜ ψC(Sin), ψH
k,j ≜ ψH(S ink,j), and ψT ≜ ψT(SC)

hereafter.

D.1. Reducing MMD to vector Euclidean norm
Number the elements of Sin as (x1, . . . , xn), define the n×n kernel matrix K ≜ (k(xi, xj))

n
i,j=1, and let K

1
2

denote a matrix square-root such that K = K
1
2 ·K 1

2 (which exists since K is a positive semidefinite matrix
for any kernel k). Next, let Soutk,j denote the output sequence corresponding to ψH

k,j (i.e., running HALVE on
S ink,j), and let {ei}ni=1 denote the canonical basis of Rn. The next lemma (with proof in App. D.5) relates the
Hilbert norms to Euclidean norms of carefully constructed vectors.

Lemma 14 (MMD as a vector norm) Define the vectors

uk,j≜K
1
2

∑n
i=1 ei

(
1(xi∈S ink,j)−2·1(xi∈Soutk,j )

)
, and uC ≜

∑log4 n−g−1
k=0

∑4k

j=1 wj,kuj,k, (10)

where wj,k≜
√
n

2g+1+k . Then, we have

n2 ·MMD2
k(Sin,SC) = ∥uC∥22, and (11)

E[uk,j |{uk′,j′ , j
′ ∈ [4k

′
], k′ > k}] = 0 for k = 0, . . . , log4 n−g−2, (12)

and uk,j for j ∈ [4k] are conditionally independent given {uk′,j′ , j
′ ∈ [4k

′
], k′ > k}.

Applying (11), we effectively reduce the task of controlling the MMD errors to controlling the Euclidean
norm of suitably defined vectors. Next, we reduce the problem to controlling the spectral norm of a suitable
matrix.

D.2. Reducing vector Euclidean norm to matrix spectral norm
To this end, we define the following symmetric dilation matrix operator: given a vector u ∈ Rn, define the
matrix Mu as

Mu≜

(
0 u⊤

u 0n×n

)
∈ R(n+1)×(n+1). (13)

It is straightforward to see that u 7→ Mu is a linear map. In addition, the matrix Mu also satisfies a few
important properties (established in App. D.6) that we use in our proofs.

Lemma 15 (Properties of the dilation operator) For any u ∈ Rn, the matrix Mu (13) satisfies

∥Mu∥op
(a)
= ∥u∥2

(b)
= λmax(Mu), and Mq

u

(c)

⪯ ∥u∥q2In+1 for all q ∈ N. (14)

Define the shorthand Mk,j ≜ Mwk,juk,j
(defined in Thm. 14). Applying Thms. 14 and 15, we find that

nMMDk(Sin,SC)
(11)
= ∥uC∥2

(14)
= λmax(MuC)

(i)
= λmax

(∑log4 n−g−1
k=0

∑4k

j=1 Mk,j

)
, (15)

where step (i) follows from the linearity of the dilation operator. Thus to control the MMD error, it suffices
to control the maximum eigenvalue of the sum of matrices appearing in (15).

12
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D.3. Controlling matrix spectral norm via a matrix Freedman inequality
To control the maximum eigenvalue of the matrix MuC , we make use of (15) and the following subexponential
generalization of the matrix Freedman inequality of Tropp (2011, Thm. 1.2). The proof of Thm. 16 can be
found in App. D.7. For two matrices A and B of the same size, we write A ⪯ B if B − A is positive
semidefinite.

Lemma 16 (Subexponential matrix Freedman inequality) If a finite sequence {Yi}Ni=1 of symmetric ran-
dom matrices in Rm×m satisfies

E
[
Yi|
{
Yj

}i−1

j=1

]
= 0 and E

[
Yp

i |
{
Yj

}i−1

j=1

]
⪯ p!

2 R
p−2A2

i , for all i ∈ [N ], and p ∈ N\{1}, (16)

for some R > 0, and a deterministic sequence {Ai}Ni=1 of symmetric matrices in Rm×m, then

P[λmax(
∑N

i=1 Yi) ≥
√
2σ2(log(m) + t) +R(log(m) + t)] ≤ e−t for all t > 0

and equivalently

P[λmax(
∑N

i=1 Yi) ≤
√
2σ2 log(m/δ) +R log(m/δ)] ≥ 1− δ for all δ ∈ (0, 1).

To apply Thm. 16 with the matrices
{
Mk,j

}
, we need to establish the zero-mean and moment bound

conditions for suitable R and Ak,j in (16).

D.3.1. VERIFYING THE ZERO MEAN CONDITION

To this end, first we note that the conditional independence and zero-mean property of
{
ψH
k,j

}
implies that

the random vectors uk,j and the matrices Mk,j also satisfy a similar property, and in particular that

E
[
Mk,j |

{
Mk′,j′ , k

′ > k, j′ ∈ [4k
′
]
}]

= 0 for j ∈ [4k], k ∈ {0, 1, . . . , log4 n− g− 1}. (17)

D.3.2. ESTABLISHING MATRIX MOMENT BOUNDS VIA MMD TAIL BOUNDS FOR HALVE

To establish the moment bounds on Mk,j , note that Thms. 14 and 15 imply that

Mq
k,j = Mq

wk,juk,j

(14)
⪯
∥∥wk,juk,j

∥∥q
2
· In+1

(11)
= wq

k,j

∥∥uk,j∥∥q2 · In+1 (18)

where wk,j was defined in Thm. 14. Thus it suffices to establish the moment bounds on ∥uk,j∥qk. To this
end, we first state a lemma that converts tail bounds to moment bounds (see App. D.8 for a proof inspired by
Boucheron et al. (2013, Thm. 2.3)).

Lemma 17 (Tail bounds imply moment bounds) For a non-negative random variable Z,

P[Z>a+v
√
t+ct]≤e−t, ∀t ≥ 0 =⇒ E[Zq] ≤ q!

2 (2a+ 2c+ 2v)q, ∀q ∈ N with q ≥ 2.

To obtain a moment bound for
∥∥uk,j∥∥2, we first state some notation. For each n, define the quantities

a′n ≜ nan, v′n ≜ nvn (19)

where an and vn are the parameters such that HALVE ∈ Gk(an, vn) on inputs of size n. Using an argument
similar to Thm. 14, we have∥∥uk,j∥∥2 = nk,j MMDk(S ink,j ,Soutk,j ) for nk,j = |S ink,j | =

√
n2g+1−k.

13
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Thereby, using the Gk assumption on HALVE implies that

P[
∥∥uk,j∥∥2 ≥ a′ℓk + v′ℓk

√
t] ≤ e−t for all t ≥ 0, where ℓk ≜ nk,j =

√
n2g+1−k, (20)

conditioned on {uk′,j′ , j
′ ∈ [4k

′
], k′ > k}. Combining the bound (20) with Thm. 17 yields that

E[
∥∥uk,j∥∥q2|{uk′,j′ ,j

′∈ [4k′
], k′>k}] ≤ q!

2 (2a
′
ℓk

+ 2v′ℓk)
q, (21)

for all q ∈ N, where ℓk is defined in (20). Now, putting together (18) and (21), and using the conditional
independence of Mk,j , we obtain the following control on the q-th moments of Mk,j for q ≥ 2:

E
[
Mq

k,j

∣∣{Mk′,j′ , k
′ > k, j′ ∈ [4k

′
]
}] (18)
⪯ wq

k,j ·E
[∥∥uk,j∥∥q2∣∣{uk′,j′ , k

′ > k, j′ ∈ [4k
′
]
}]
·In+1

(21)
⪯ wq

k,j ·
[
q!
2 (2a

′
ℓk

+ 2v′ℓk)
q
]
·In+1

= q!
2 R

q−2
k,j A2

k,j where
Rk,j≜ 2wk,j(a

′
ℓk

+ v′ℓk)

Ak,j≜Rk,jIn+1,
(22)

where ℓk is defined in (20).

D.4. Putting the pieces together

Putting (17) and (22) together, we conclude that with a suitable ordering of the indices (k, j), the assump-
tions of Thm. 16 are satisfied by the random matrices

{
Mk,j , j ∈ [4k], k ∈ {0, 1, . . . , log4 n− g− 1}

}
, the

deterministic sequence
{
Ak,j

}
, and any scalar R satisfying R ≥ maxk,j Rk,j . Now, since ℓk =

√
n2g+1−k

is decreasing in k, wk,j = ℓk
4g+1 , and na′n and nv′n, (19) are assumed non-decreasing in n, we find that

R = n ·RM,C is a valid choice as

n ·RM,C = n 2(a√n2g+1 + v√n2g+1)

= 2
√
n

2g+1 (a
′√
n2g+1 + v′√

n2g+1)

= 2 ℓ0
4g+1 (a

′
ℓ0
+ v′ℓ0)

≥ maxk≤log4 n−g−1 2
ℓk

4g+1 (a
′
ℓk

+ v′ℓk)

= maxk,j 2wk,j(a
′
ℓk

+ v′ℓk) = maxk,j Rk,j .

Moreover, since a′n and v′n, are assumed non-decreasing in n, ℓk is decreasing in k, and wk,j =
√
n

2g+1+k , our
choice σ2

M,C satisfies

n2 · σ2
M,C = n2(log4 n− g)R2

M,C

= n2(log4 n− g)(2(a√n2g+1 + c√n2g+1 +
√
2v√n2g+1))2

= (log4 n− g) n
4g+1 (2(a

′
ℓ0
+ v′ℓ0))

2

≥
∑log4 n−g−1

k=0
n

4g+1 (2(a
′
ℓk

+ v′ℓk))
2

=
∑log4 n−g−1

k=0

∑4k

j=1
n

4g+1+k (2(a
′
ℓk

+ v′ℓk))
2

=
∑log4 n−g−1

k=0

∑4k

j=1(2wk,j(a
′
ℓk

+ v′ℓk))
2

=
∑log4 n−g−1

k=0

∑4k

j=1R
2
k,j

(22)
=

∥∥∥∥∑log4 n−g−1
k=0

∑4k

j=1 A
2
k,j

∥∥∥∥
op

.

14
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Finally, applying (15) along with Thm. 16, we conclude that

P[MMD(Sin,SC) ≥ σM,C
√
2(log(n+ 1) + t) +RM,C(log(n+ 1) + t)]

= P[λmax(
∑log4 n−g−1

k=0

∑4k

j=1 Mk,j) ≥ nσM,C
√

2(log(n+ 1) + t) + nRM,C(log(n+ 1) + t)]

≤ e−t for all t > 0.

D.5. Proof of Thm. 14: MMD as a vector norm
Let vk,j≜

∑n
i=1 ei

(
1(xi ∈ S ink,j)−2·1(xi ∈ Soutk,j )

)
. By the reproducing property of k we have

∥ψH
k,j(k)∥2k =

∥∥∥∑x∈Sin
k,j

k(x, ·)−2
∑

x∈Sout
k,j

k(x, ·)
∥∥∥2
k

=
∑

x∈Sin
k,j ,y∈Sin

k,j
k(x, y)− 2

∑
x∈Sout

k,j ,y∈Sin
k,j

k(x, y) +
∑

x∈Sout
k,j ,y∈Sout

k,j
k(x, y)

= v⊤k,jKvk,j
(10)
=
∥∥uk,j∥∥22. (23)

Using (10) and (13), and mimicking the derivation above (23), we can also conclude that

∥ψC(k)∥2k = ∥uC∥22.

Additionally, we note that

MMDk(Sin,SC) = sup∥f∥k=1
1
n

〈
f, ψC(k)

〉
Hk

= 1
n∥ψC(k)∥k.

Finally the conditional independence and zero mean property (12) follows by noting that conditioned on
(S ini′,j′)i′>i,j′≥1, the sets (S ini,j)j≥1 are independent.

D.6. Proof of Thm. 15: Properties of the dilation operator
For claim (a) in the display (14), we have

M2
u =

(
∥u∥22 0⊤

n

0n uu⊤

)
(i)

⪯ ∥u∥22In+1 =⇒ ∥Mu∥op
(ii)
= ∥u∥2,

where step (i) follows from the standard fact that uu⊤ ⪯ ∥u∥22In and step (ii) from the facts M2
uẽ1 = ∥u∥22ẽ1

for ẽ1 the first canonical basis vector of Rn+1 and ∥Mu∥2op =
∥∥M2

u

∥∥
op

. Claim (b) follows directly by

verifying that the vector v = [1, u⊤

∥u∥2
]⊤ is an eigenvector of Mu with eigenvalue ∥u∥2. Finally, claim (c)

follows directly from the claim (a) and the fact that ∥Mq
u∥op = ∥Mu∥qop for all integers q ≥ 1.

D.7. Proof of Thm. 16: Subexponential matrix Freedman inequality
We first note the following lemmas about the moment generating functions (MGFs) for matrix valued random
variables.

Lemma 18 (Matrix tail bounds (Tropp, 2011, Thm 2.3)) Let Xk be an adaptive sequence of matrix val-
ued random variables in Rm×m (with respect to the filtrationFk and let Vk be a sequence that is measureable
with respect to Fk−1. Suppose that, for some θ > 0,

logE
[
exp(θXk)|Fk−1

]
⪯ g(θ)Vk.

Let Yk =
∑

i≤k Xi and Wk =
∑

i≤k Vi. Then,

P
[
∃k > 0 : λmax(Yk) ≥ t and λmax(Wk) ≤ w

]
≤ m exp

(
−θt+ g(θ)w

)
.
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Lemma 19 (Supexponential matrix MGF) Let X be a random symmetric matrix such that

EX = 0 and EXq ⪯ q!
2 R

q−2A2 for q = 2, 3, . . . .

Then,

E exp(θX) ⪯ exp
(

θ2

2(1−Rθ) ·A
2
)

for all θ ∈ (0, 1/R).

Proof When R = 1, the result coincides with Tropp (2012, Lem. 6.8). To obtain the general result, we apply
Tropp (2012, Lem. 6.8) to X′ = X/R and A′ = A/R.

We apply Thm. 19 conditional on {Xi}i<k along with the operator monotonicity of log to get

logE
[
exp(θXk)|{Xi}i<k

]
⪯ θ2

2(1−Rθ) ·A
2 for all θ ∈ (0, 1/R).

By assumption, we have that λmax(
∑

i A
2
i ) ≤ σ2. Thus, applying Thm. 18, we get, for all t > 0,

P[λmax(
∑

iXi) ≥ t] ≤ m inf
θ∈(0,1/R)

exp
(
−θt+ θ2σ2

2(1−Rθ)

)
= m exp(− σ2

R2h1(Rt/σ
2))

where, by Boucheron et al. (2013, Sec. 2.4),

h1(u) ≜ 1 + u−
√
1 + 2u for u > 0.

Now, since the inverse of h1 takes the form h−1
1 (u) = u +

√
2u for u > 0 by Boucheron et al. (2013, Sec.

2.4), we additionally have

P[λmax(
∑

iXi) ≥ σ2

R h
−1
1 (R

2

σ2 (log(m) + t))]

= P[λmax(
∑

iXi) ≥
√
2σ2(log(m) + t) +R(log(m) + t)] ≤ exp(−t)

as advertised.

D.8. Proof of Thm. 17: Tail bounds imply moment bounds
Let ā = a+ v/2 and c̄ = c+ v/2. For all t > 0, by the arithmetic-geometric mean inequality,

P[Z > ā+ c̄t] = P[Z > a+ v/2 + (c+ v/2)t] ≤ P[Z > a+ v
√
t+ ct] ≤ e−t.

We begin by bounding the moments of the shifted random variable X = Z − ā. First note that X =
X+−X− whereX± = max(±X, 0) and that |X|q = Xq

++X
q
−. Furthermore,Xq

− ≤ āq by the nonnegativity
of Z, so that |X|q ≤ āq +Xq

+. Since P[X+ > u] = P[X > u] = P[Z > ā + u] for any u > 0 we will use
the our tail bounds to control the moments of X+. In particular, we have

E
[
Xq

+

] (i)
= q

∫∞
0
uq−1P[X+ > u]du

(ii)
= qc̄

∫∞
0

(c̄t)q−1P[X+ > c̄t]dt

(iii)

≤ qc̄q
∫∞
0
tq−1e−tdt

(iv)
= Γ(q)q c̄q = q! c̄q.

where we have applied (i) integration by parts, (ii) the substitution u = c̄t, (iii) the assumed tail bound for
Z, and (iv) the definition of the Gamma function.

Now since Z = X + ā, we have EZq ≤ 2q−1(āq + E|X|q) ≤ 2q−1(2āq + EXq
+) from the convexity of

tq . For each q ≥ 2, our combined results now yield

EZq ≤ (2ā)q + q!
2 (2c̄)

q

≤ q!
2 (2ā)

q + q!
2 (2c̄)

q

≤ q!
2 (2ā+ 2c̄)q = q!

2 (2a+ 2c+ 2v)q

since xq + yq ≤ (x+ y)q for all q ∈ N and x, y ≥ 0.
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Appendix E. COMPRESS MMD Examples

Remark 20 (Symmetrization) We can convert any halving algorithm into one that satisfies the unbiased-
ness condition E

[
PHALVEk | Sin

]
= Pink without impacting integration error by symmetrization, i.e., by

returning either the outputted half or its complement with equal probability.

Example 3 (KT-COMPRESS) Consider running COMPRESS with, for each HALVE input of size ℓ, HALVE =
KT( ℓ

2n−ℓn
δ) from Ex. 2 after symmetrizing as in Thm. 20. Since KT has Θ(n2) runtime, COMPRESS yields

near-linear O(n log n) runtime by Thm. 4. Moreover, as we detail in App. I.1, on an event of probability at
least 1− δ, every HALVE call invoked by COMPRESS is k-sub-Gaussian with

aℓ =
2Ca

ℓ

√
∥ksplit∥∞, and vℓ =

2Cv

ℓ

√
∥ksplit∥∞ log( 4n−2ℓn

δ )MSin,ksplit
,

in the notation of Ex. 2. Hence, Thm. 6 implies that, on the same event, KT-COMPRESS has k-sub-Gaussian
error εk,COMPRESS(n) ≤ 9 log(n + 1) · εk,HALVE(ℓn), a guarantee within 9 log(n + 1) of the original KT(δ)
MMD error (9). ■

Appendix F. Proof of Thm. 7: Runtime of COMPRESS++

First, the runtime bound (5) follows directly by adding the runtime of COMPRESS(HALVE, g) as given by (3)
in Thm. 3 and the runtime of THIN.

Appendix G. Proof of Thm. 9: MMD guarantees for COMPRESS++

Noting that MMD is a metric, and applying triangle inequality, we have

MMDk(Sin,SC++) ≤ MMDk(Sin,SC) +MMDk(SC,SC++).

Since SC++ is the output of THIN(2g) with SC as the input, applying the MMD tail bound assumption (24)
with |SC| =

√
n2g substituted in place of n, we find that

P
[
MMD(SC,SC++)≥a′2g√n+v

′
2g

√
n

√
t
]
≤ e−t for all t ≥ 0.

Recall that ℓn/2 = 2g
√
n. Next, we apply Thm. 5 with HALVE to conclude that

P[MMDk(Sin,SC) ≥ ãn + ṽn ·
√
t] ≤ e−t for all t ≥ 0.

Thus, we have

P
[
MMDk(Sin,SC++) ≥ a′ℓn/2 + ãn + (v′ℓn/2 + ṽn)

√
t
]
≤ 2 · e−t for all t ≥ 0,

which in turn implies that

P
[
MMDk(Sin,SC++) ≥ a′ℓn/2 + ãn + (v′ℓn/2 + ṽn)

√
log 2 + (v′ℓn/2 + ṽn)

√
t
]
≤ e−t for all t ≥ 0,

thereby yielding the claimed result.
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Appendix H. Examples for MMD for COMPRESS++
Example 4 (KT-COMPRESS++) In the notation of Ex. 2 and Thm. 20, consider running COMPRESS++
with THIN = KT( 2g−1√

n−1
δ) and HALVE = symmetrized KT( ℓ

2(n−
√
n)
δ) for HALVE inputs of size ℓ. As we

detail in App. I.2, on an event of probability 1 − δ, all COMPRESS++ invocations of HALVE and THIN are
simultaneously k-sub-Gaussian with parameters satisfying

ζ̃H(ℓn) = ζ̃T(
ℓn
2 ) = Cv

√
∥ksplit∥∞ log( 4(n−

√
n)

δ )MSin,ksplit
=⇒ ζ̃H(ℓn)

ζ̃T(
ℓn
2 )

= 1.

Since KT runs in Θ(n2) time, Thms. 8 and 10 imply that KT-COMPRESS++ with g= ⌈log2 log n+3⌉ runs
in near-linear O(n log3 n) time and inflates k-sub-Gaussian error by at most 4. ■

Appendix I. Proofs of Exs. 3 and 4
We begin by defining the notions of sub-Gaussianity and k-sub-Gaussianity on an event.

Definition 21 (Sub-Gaussian on an event) We say that a random variable G is sub-Gaussian on an event E
with parameter σ if

E[1[E] · exp(λ ·G)] ≤ exp(λ
2σ2

2 ) for all λ ∈ R.

Definition 22 (k-sub-Gaussian on an event) For a kernel k, we call a thinning algorithm ALG k-sub-
Gaussian on an event E with parameter v and shift a if

P[E,MMDk(Sin,SALG) ≥ an + vn
√
t | Sin] ≤ e−t for all t ≥ 0. (24)

We will also make regular use of the unrolled representation for the COMPRESS measure discrepancy
ψC(Sin) in terms of the HALVE inputs (S ini,j)j∈[4i] of size ni = 2g+1−i

√
n for 0 ≤ i ≤ βn. For brevity, we

will use the shorthand ψC ≜ ψC(Sin), ψH
i,j ≜ ψH(S ini,j), and ψT ≜ ψT(SC) hereafter.

I.1. Proof of Ex. 3: KT-COMPRESS

Since HALVE = symmetrized KT( ℓ
2n−ℓn

δ) when applied to an input of size ℓ, the proofs of Thms. 1 - 4 in
Dwivedi and Mackey (2021a) identify a sequence of events Ei,j and random signed measures ψ̃i,j such that,
for each 0 ≤ i ≤ βn and j ∈ [4i],

(a) P[Eci,j ] ≤ ni

2n−ℓn
δ

(b) 1[Ei,j ]ψH
i,j = 1[Ei,j ]ψ̃i,j

(c) P[ 1
ni
∥ψ̃i,j(k)∥k ≥ ani + vni

√
t | (ψ̃i′,j′)i′>i,j′≥1, (ψ̃i,j′)j′<j ] ≤ e−t for all t ≥ 0

(d) E[ψ̃i,j(k) | (ψ̃i′,j′)i′>i,j′≥1, (ψ̃i,j′)j′<j ] = 0.

Hence, on the event E =
⋂

i,j Ei,j , these properties hold simultaneously for all HALVE calls made by COM-
PRESS, and, by the union bound, P[Ec] ≤ δ.

Furthermore, we may invoke the measure discrepancy representation, the equivalence of ψH
i,j and ψ̃i,j on

E, the nonnegativity of the exponential, and the proof of Thm. 5 in turn to find

P[E,MMD(Sin,SC) ≥ ãn + ṽn
√
t | Sin] = P[E, 1

n∥ψC(k)∥k ≥ ãn + ṽn
√
t | Sin]

= P[E, 1
n∥
√
n2−g−1

∑βn

i=0

∑4i

j=1 2
−iψ̃i,j(k)∥k ≥ ãn + ṽn

√
t | Sin]

≤ P[ 1n∥
√
n2−g−1

∑βn

i=0

∑4i

j=1 2
−iψ̃i,j(k)∥k ≥ ãn + ṽn

√
t | Sin] ≤ e−t for all t ≥ 0,

so that COMPRESS is k-sub-Gaussian on E with parameters (ṽ, ã).
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I.2. Proof of Ex. 4: KT-COMPRESS++
In the notation of Ex. 2, define

ℓn
2 aℓn =

√
na′ℓn/2 = Ca

√
∥ksplit∥∞, and

ℓn
2 vℓn =

√
nv′ℓn/2 = Cv

√
∥ksplit∥∞ log( 4(n−

√
n)

δ )MSin,ksplit
.

Since THIN = KT( 2g−1√
n−1

δ) and HALVE = symmetrized KT( ℓ
2(n−

√
n)
δ) for HALVE inputs of size ℓ, the

proofs of Thms. 1 - 4 in Dwivedi and Mackey (2021a) identify a sequence of events Ei,j and ET and random
signed measures ψ̃i,j and ψ̃T such that, for each 0 ≤ i ≤ βn and j ∈ [4i],

(a) P[Eci,j ] ≤ ni

2(n−
√
n)
δ and P[EcT] ≤ 2g−1√

n−1
δ

(b) 1[Ei,j ]ψH
i,j = 1[Ei,j ]ψ̃i,j and 1[ET]ψT = 1[ET]ψ̃T

(c) P[ 1
ni
∥ψ̃i,j(k)∥k ≥ ani

+ vni

√
t | (ψ̃i′,j′)i′>i,j′≥1, (ψ̃i,j′)j′<j ] ≤ e−t and P[ 2

ℓn
∥ψ̃T(k)∥k ≥ a′ℓn/2 +

v′ℓn/2
√
t | SC] ≤ e−t for all t ≥ 0

(d) E[ψ̃i,j(k) | (ψ̃i′,j′)i′>i,j′≥1, (ψ̃i,j′)j′<j ] = 0.

Hence, on the event E =
⋂

i,j Ei,j ∩ ET, these properties hold simultaneously for all HALVE calls made by
COMPRESS and

ζ̃H(ℓn) = ζ̃T(
ℓn
2 ) = Cv

√
∥ksplit∥∞ log( 4(n−

√
n)

δ )MSin,ksplit
.

Moreover, by the union bound, P[Ec] ≤ δ.
Finally, since ϕC++ = 1

n (ψC + ψT) and the argument of App. I.1 implies that COMPRESS is k-sub-
Gaussian on E with parameters (ṽ, ã), the triangle inequality implies that COMPRESS++ is k-sub-Gaussian
on E with parameters (v̂, â) as in App. G.

Appendix J. Experiments
We now turn to an empirical evaluation of the speed-ups and error of COMPRESS++.

J.1. Experiment set-up
We begin by describing the thinning algorithms, compression tasks, evaluation metrics, and kernels used in
our experiments. Supplementary experimental details and results can be found in App. J.5.

Thinning algorithms Each experiment compares a high-accuracy, quadratic time thinning algorithm—
either target kernel thinning (Dwivedi and Mackey, 2021a) or kernel herding (Chen et al., 2010)—with our
near-linear time COMPRESS and COMPRESS++ variants that use the same input algorithm to HALVE and
THIN. In each case, we perform root thinning, compressing n input points down to

√
n points, so that

COMPRESS is run with g = 0. For COMPRESS++, we use g = 4 throughout to satisfy the small relative error
criterion (6) in all experiments. When halving we restrict each input algorithm to return distinct points and
symmetrize the output as discussed in Thm. 20.

Compressing i.i.d. summaries To demonstrate the advantages of COMPRESS++ over equal-sized i.i.d.
summaries we compress input point sequences Sin drawn i.i.d. from either (a) Gaussian targets P = N (0, Id)

with d ∈ {2, 4, 10, 100} or (b) M -component mixture of Gaussian targets P = 1
M

∑M
j=1N (µj , I2) with

M ∈ {4, 6, 8, 32} and component means µj ∈ R2 defined in App. J.5.
Compressing MCMC summaries To demonstrate the advantages of COMPRESS++ over standard

MCMC thinning, we also compress input point sequences Sin generated by a variety of popular MCMC
algorithms (denoted by RW, ADA-RW, MALA, and pMALA) targeting four challenging Bayesian posterior
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distributions P. In particular, we adopt the four posterior targets of Riabiz et al. (2020a) based on the Goodwin
(1965) model of oscillatory enzymatic control (d = 4), the Lotka (1925); Volterra (1926) model of oscillatory
predator-prey evolution (d = 4), the Hinch et al. (2004) model of calcium signalling in cardiac cells (d = 38),
and a tempered Hinch model posterior (d = 38). Notably, for the Hinch experiments, each summary point
discarded via an accurate thinning procedure saves 1000s of downstream CPU hours by avoiding an additional
critically expensive whole-heart simulation (Riabiz et al., 2020a). More details on the MCMC algorithms and
targets can be found in App. J.5.

Kernel settings Throughout we use a Gaussian kernel k(x, y) = exp(− 1
2σ2 ∥x− y∥22) with σ2 as

specified by Dwivedi and Mackey (2021b, Sec. K.2) for the MCMC targets and σ2 = 2d otherwise.
Evaluation metrics For each thinning procedure we report mean runtime across 3 runs and mean

MMD error across 10 independent runs ± 1 standard error (the error bars are often too small to be visible).
All runtimes were measured on a single core of an Intel Xeon CPU with 32GB RAM. For the i.i.d. targets,
we report MMDk(P,Pout) which can be exactly computed in closed-form. For the MCMC targets, we report
the thinning error MMDk(Pin,Pout) analyzed directly by our theory (Thms. 5 and 9). We also display an
empirical rate of decay on each MMD plot.

J.2. Kernel thinning results
We first apply COMPRESS++ to the near-optimal KT algorithm to obtain comparable summaries at a fraction
of the cost. Figs. 3 and 4 reveal that, in line with our guarantees, KT-COMPRESS++ matches or nearly matches
the MMD error of KT in all experiments while also substantially reducing runtime. For example, KT thins
65, 000 points in 10 dimensions in 20m, while KT-COMPRESS++ needs only 1.5m; KT takes more than a day
to thin 250, 000 points in 100 dimensions, while KT-COMPRESS++ takes less than an hour (a 32× speed-up).
For reference we also display the error of standard thinning (ST) to highlight that KT-COMPRESS++ signif-
icantly improves approximation quality relative to the standard practice of i.i.d. summarization or standard
MCMC thinning. See Fig. 7 in App. J.6 for analogous results with mixture of Gaussian targets.
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Figure 3: For Gaussian targets P with d ∈ {2, 4, 10, 100}, KT-COMPRESS++ improves upon the MMD of
i.i.d. sampling (ST), closely tracks the error of its quadratic-time input algorithm KT, and substan-
tially reduces the runtime. See App. J.2 for more details.

J.3. Kernel herding results
A strength of COMPRESS++ is that it can be applied to any thinning algorithm, including those with subop-
timal or unknown performance guarantees that often perform well in practical. In such cases, Thm. 6 still
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Figure 4: Given MCMC sequences summarizing challenging differential equation posteriors P, KT-
COMPRESS++ consistently improves upon the MMD of standard thinning (ST) and matches or
nearly matches the error of of its quadratic-time input algorithm KT. See App. J.2 for more details.

ensures that COMPRESS++ error is never much larger than that of the input algorithm. As an illustration,
we apply COMPRESS++ to the popular quadratic-time kernel herding algorithm (Herd). Fig. 5 shows that
Herd-COMPRESS++ matches or nearly matches the MMD error of Herd in all experiments while also sub-
stantially reducing runtime. For example, Herd requires more than 11 hours to compress 250, 000 points
in 100 dimensions, while Herd-COMPRESS++ takes only 14 minutes (a 45× speed-up). Moreover, surpris-
ingly, Herd-COMPRESS++ is consistently more accurate than the original kernel herding algorithm for lower
dimensional problems. See Fig. 7 in App. J.6 for comparable results with mixture of Gaussian targets.

J.4. Visualizing coresets

For a 32-component mixture of Gaussians target, Fig. 6 visualizes the coresets produced by i.i.d. sampling,
KT, kernel herding, and their COMPRESS++ variants. The COMPRESS++ coresets closely resemble those
of their input algorithms and, compared with i.i.d. sampling, yield visibly improved stratification across the
mixture components.

J.5. Supplementary Details for Experiments

In this section, we provide supplementary experiment details deferred from Sec. 5, as well as some additional
results.

In all experiments involving kernel thinning, we set the algorithm failure probability parameter δ =
1
2

√
n−1√
n

and compare KT(δ) to COMPRESS and COMPRESS++ with HALVE and THIN set as in Exs. 3 and 4
respectively.
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Figure 5: Herd-COMPRESS++ improves upon the MMD of i.i.d. sampling (ST), closely tracks or improves
upon the error of its quadratic-time input algorithm kernel herding (Herd), and substantially re-
duces the runtime. See App. J.3 for more details.
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Figure 6: Coresets of size 32 (top) or 64 (bottom) for 32-component mixture of Gaussian target with equiden-
sity contours of the target underlaid. See App. J.4 for more details.

J.6. Mixture of Gaussian target details and MMD plots

For the target used for coreset visualization in Fig. 6, the mean locations are on two concentric circles of radii
10 and 20, and are given by

µj = αj

[
sin(j)
cos(j)

]
where αj = 10 · 1(j ≤ 16) + 20 · 1(j > 16) for j = 1, 2, . . . , 32.
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Here we also provide additional results with mixture of Gaussian targets given by P = 1
M

∑M
j=1N (µj , Id)

for M ∈ {4, 6, 8}. The mean locations for these are given by

µ1 = [−3, 3]⊤, µ2 = [−3, 3]⊤, µ3 = [−3,−3]⊤, µ4 = [3,−3]⊤,
µ5 = [0, 6]⊤, µ6 = [−6, 0]⊤, µ7 = [6, 0]⊤, µ8 = [0,−6]⊤.

Fig. 7 plots the MMD errors of KT and herding experiments for the mixture of Gaussians targets with 4, 6 and
8 centers, and notice again that COMPRESS++ provides a competitive performance to the original algorithm,
in fact suprisingly, improves upon herding.
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Figure 7: For M -component mixture of Gaussian targets, KT-COMPRESS++ and Herd-COMPRESS++ im-
prove upon the MMD of i.i.d. sampling (ST) and closely track or improve upon the error of their
quadratic-time input algorithms, KT and kernel herding (Herd). See App. J.6 for more details.

J.7. Details Of MCMC Targets
Our set-up for the MCMC experiments is identical to that of Dwivedi and Mackey (2021b, Sec. 6), except that
we use all post-burn-in points to generate our Goodwin and Lotka-Volterra input point sequences Sin instead
of only the odd indices. In particular, we use the MCMC output of Riabiz et al. (2020b) described in (Riabiz
et al., 2020a, Sec. 4) and perform thinning experiments after discarding the burn-in points. To generate an
input Sin of size n for a thinning algorithm, we downsample the post-burn-in points using standard thinning.
For Hinch, we additionally do coordinate-wise normalization by subtracting the sample mean and dividing
by sample standard deviation of the post-burn-in-points.

In Sec. 5, RW and ADA-RW respectively refer to Gaussian random walk and adaptive Gaussian ran-
dom walk Metropolis algorithms (Haario et al., 1999) and MALA and pMALA respectively refer to the
Metropolis-adjusted Langevin algorithm (Roberts and Tweedie, 1996) and pre-conditioned MALA (Giro-
lami and Calderhead, 2011). For Hinch experiments, RW 1 and RW 2 refer to two independent runs of
Gaussian random walk, and “Tempered” denotes the runs targeting a tempered Hinch posterior. For more
details on the set-up, we refer the reader to Dwivedi and Mackey (2021b, Sec. 6.3, App. J.2).
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Appendix K. Streaming Version of COMPRESS

COMPRESS can be efficiently implemented in a streaming fashion (Alg. 3) by viewing the recursive steps
in Alg. 1 as different levels of processing, with the bottom level denoting the input points and the top level
denoting the output points. The streaming variant of the algorithm efficiently maintains memory at several
levels and processes inputs in batches of size 4g+1. At any level i (with i = 0 denoting the level of the input
points), whenever there are 2i4g+1 points, the algorithm runs HALVE on the points in this level, appends the
output of size 2i−14g+1 to the points at level i + 1, and empties the memory at level i (and thereby level i
never stores more than 2i4g+1 points). In this fashion, just after processing n = 4k+g+1 points, the highest
level is k + 1, which contains a compressed coreset of size 2k−14g+1 = 2k+g+12g =

√
n2g (outputted by

running HALVE at level k for the first time), which is the desired size for the output of COMPRESS.

Algorithm 3: COMPRESS (Streaming) – Outputs stream of coresets of size 2g
√
n for n = 4k+g+1 and

k ∈ N
Input: halving algorithm HALVE, oversampling parameter g, stream of input points x1, x2, . . .

S0 ← {} // Initialize empty level 0 coreset
for t = 1, 2, . . . , do
S0 ← S0 ∪ (xj)

t·4g+1

j=1+(t−1)·4g+1 // Process input in batches of size 4g+1

if t == 4j for j ∈ N then
Sj+1 ← {} // Initialize level j + 1 coreset after processing 4j+g+1 input points

end
for i = 0, . . . , ⌈log4 t⌉+ 1 do

if |Si| == 2i4g+1 then
S ← HALVE(Si) // Halve level i coreset to size 2i−14g+1

Si+1 ← Si+1 ∪ S // Update level i+ 1 coreset: has size ∈ {1, 2, 3, 4} · 2i−14g+1

Si ← {} // Empty coreset at level i
end

end
if t == 4j for j ∈ N then

output Sj+1 // Coreset of size
√
n2g with n ≜ t4g+1 and t = 4j for j ∈ N

end
end

Our next result analyzes the space complexity of the streaming variant (Alg. 3) of COMPRESS. The
intuition for gains in memory requirements is very similar to that for running time, as we now maintain (and
run HALVE) on subsets of points with size much smaller than the input sequence. We count the number of
data points stored as our measure of memory.

Proposition 23 (COMPRESS Streaming Memory Bound) Let HALVE store sH(n) data points on inputs
of size n. Then, after completing iteration t, the streaming implementation of COMPRESS (Alg. 3) has used
at most sC(t) = 4g+3

√
t+ sH(2

g+1
√
t) data points of memory.

Proof At time t, we would like to estimate the space usage of the algorithm. At the ith level of memory, we
can have at most 2i+24g data points. Since we are maintaining a data set of size at most

√
t4g at time t, there

are at most log t
2 levels. Thus, the maximum number of points stored at time t is bounded by∑0.5 log t

i=0 2i+24g ≤ 4g+3
√
t.

Furthermore, at any time up to time t, we have run HALVE on a point sequence of size at most
√
t2g+1 which

requires storing at most sH(
√
t2g+1) additional points.
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Example 5 (KT-COMPRESS and KT-COMPRESS++) First consider the streaming variant of COMPRESS
with HALVE = symmetrized KT( ℓ

2n−ℓn
δ) for HALVE inputs of size ℓ as in Ex. 3. Since sKT(n) ≤ n (Dwivedi

and Mackey, 2021b, Sec. 3), Thm. 23 implies that sC(n) ≤ 4g+4
√
n.

Next consider COMPRESS++ with the streaming variant of COMPRESS, THIN = KT( 2g−1√
n−1

δ), and

HALVE = symmetrized KT( ℓ
2(n−

√
n)
δ) for HALVE inputs of size ℓ as in Ex. 4. The space complex-

ity sC++(n) = sC(n)+sKT(ℓn) = 4g+4
√
n + ℓn ≤ 4g+5

√
n. Setting g as in Ex. 4, we get sC++(n) =

O(
√
n log2 n). ■
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