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Before Canonicalization After Canonicalization 

Figure 1. Canonicalization of partial 3D reconstructions. Given non-canonicalized partial 3D shapes reconstructed from object-centric
videos (left), our method aligns them into a shared canonical space (right), enabling consistent comparison and downstream processing.

Abstract

Progress in 3D object understanding relies on the
category-level canonicalization of 3D objects, i.e., bring-
ing 3D instances into a consistent position and orientation.
Most related works assume complete 3D representations,
while real-world applications often require solving the more
challenging task of canonicalizing from partial views, i.e.,
short videos that cover only a part of the object. We in-
troduce C3PO, a method capable of canonicalizing partial
views from arbitrary object categories by enforcing geo-
metric and feature-level appearance consistency of overlap-
ping views. We represent partial views as 3D point clouds
obtained via structure-from-motion, where each point car-
ries a feature vector that is extracted from 2D images us-
ing a novel feature extractor capable of estimating gener-
alizable correspondence features. Notably, our correspon-
dence features are learned on a large dataset and general-
ize to object categories not seen during training. On top of

∗Work done during an internship at MPI for Informatics.

this, we introduce an efficient pairwise-registration frame-
work that aligns partial object representations into a glob-
ally consistent canonical frame. Experiments on synthetic
and real-world benchmarks demonstrate that C3PO signif-
icantly outperforms existing methods.

1. Introduction

Tasks that require understanding of 3D objects, such as ob-
ject recognition [41], object retrieval [10, 11], 3D pose esti-
mation [50, 54, 62], and learning category-level morphable
models [6, 9, 20, 31, 45, 61], have been extensively studied
in the computer vision community. A common prerequisite
across these tasks is category-level canonicalization: map-
ping all objects of a given category into a shared, standard-
ized pose, orientation, and scale, the canonical frame. This
allows comparing, analyzing, and processing them consis-
tently. Canonicalization has also been shown to benefit the
generation of high-quality 3D assets [25, 59].

In most existing benchmarks, category-level canonical-
ization is achieved through manual alignment during dataset



preparation, ensuring that all instances are consistently ori-
ented before training and evaluation. While this has enabled
progress in many downstream tasks, the manual labeling
severely limits scalability, both in terms of the number of
categories and captured instances per category.

Automating canonicalization becomes even more chal-
lenging when only partial observations of an object are
available, e.g., 3D point clouds reconstructed from a short
video showing part of the object. Yet, this scenario is com-
mon in real-world applications such as robotics, AR/VR,
and 3D content creation, where full object geometry is
rarely accessible. Achieving accurate canonicalization from
incomplete data would not only remove the manual bottle-
neck but also extend the benefits of consistent alignment
to long-tail object categories and in-the-wild captures. Fig-
ure 1 illustrates this problem setting.

Prior works on automatic canonicalization have typically
considered complete 3D coverage of each object. Some
study the canonicalization of point clouds from synthetic
data [38, 44, 46] or real data [22], where each object in-
stance is fully observed from one or more scans and align-
ment is based solely on geometry. However, purely ge-
ometric approaches struggle for categories with multiple
symmetry axes, such as keyboards and laptops, where ap-
pearance cues are essential to resolve ambiguity. Other
works address canonicalization from videos with 100% or-
bit coverage[40, 43], but most in-the-wild videos capture
only partial views, which can be observed for egocentric
footage (e.g., EGO4D[19]) and for many object-centric
videos (e.g., CO3D [35], MVImgNet [55]).

In this work, we study category-level canonicalization
from partial views of object-centric videos, considering
10%, 25%, and 50% coverage. To this end, we intro-
duce two benchmarks: one using synthetically rendered
ShapeNet videos [4], and one using real-world object-
centric videos from CO3D [35].

To address this challenging task, we propose C3PO,
Canonicalization of 3D POse from partial views with gen-
eralizable correspondence features. Unlike prior work [43],
which canonicalizes each source object to a single target
object, we jointly canonicalize multiple partial source ob-
jects and enforce global consistency among them through
overlapping regions. This requires simultaneously estimat-
ing canonical transformations and identifying overlapping
regions, a particularly challenging optimization problem.
We tackle this with an efficient global-consistency frame-
work based on pairwise registration, combined with a cor-
respondence feature extractor trained on the large-scale Im-
ageNet3D dataset [26]. Our learned features can reliably
determine, for example, whether an RGB image of an un-
seen instance was captured from the left or right side of the
object in canonical space. Thanks to large-scale training,
they generalize beyond the categories of the training distri-

bution. Finally, within the global-consistency optimization,
we incorporate semantic distances between partial views
into the loss function, allowing the model to effectively ac-
count for viewpoint variations. Across both synthetic and
real-world benchmarks, C3PO significantly outperforms the
prior state-of-the-art method for challenging partial-view
settings (10%, 25%, 50%).

2. Related Work
Category-level canonicalization of partial views for com-
mon object categories remains largely unexplored. Pioneer-
ing works are bounded to animal categories [23, 52, 53]
or require CAD models and RGB-D input [58]. However,
we discuss methods for canonicalization of 3D shapes in
Sec. 2.1, and methods designed for 100% orbit coverage in
Sec. 2.2. Further, we provide an overview for correspon-
dence feature extractors in Sec. 2.3.

2.1. Canonicalization of Shapes
Self-supervised category-level canonicalization has ad-
vanced significantly with SE(3)-invariant and equivariant
networks. Early research prioritized rotation and transla-
tion invariance [8, 32–34], while subsequent methods de-
veloped equivariant architectures [5, 7, 16, 47, 48, 60, 63].
By combining both, recent works enable canonicalization of
arbitrary point clouds [22, 38, 44, 46]. However, these ap-
proaches require extensive per-category training data, lim-
iting their scalability to ”long-tail” object categories.
Partial-to-partial shape matching, despite its significant
practical importance, remains relatively underexplored. For
humans and animals, however, several works exist. [24] in-
troduce a theoretical framework for partial-to-partial match-
ing but lack practical evaluation. [2] study overlapping
regions between partial shapes without addressing shape
matching. [1] and [36] advance the problem using deep
learning and combinatorial optimization, respectively; how-
ever, Sm-comb is limited to water-tight shapes. [14] pro-
pose a method that neither requires 3D ground-truth labels
nor hole filling. All these works focus on humans and ani-
mals, where topology changes can be ignored. In contrast,
our work targets arbitrary object categories, including those
with topology changes, such as chairs.
Overall, all these methods are not leveraging appearance.
Therefore, posing the task of canonicalization close to in-
feasible for object categories with two more or symmetry
axes such as mouse, keyboard, or laptop.

2.2. Canonicalization of Complete Views
With the increased availability of large scale datasets of
object-centric videos such as CO3D [35], category-level
canonicalization has received more attention. The com-
pletely unsupervised method, proposed by [17], builds upon
DINO [3]. First, they find two images that are taken from



a similar viewpoint using the image features. Second, they
filter pixel-wise feature correspondences to get relative pose
estimation. Further, the authors extend their work in [18],
where they find a consensus over many images from both
videos. Sommer et al. [43] introduce an efficient represen-
tation to take into account more images, adding a geomet-
ric constraint besides the appearance correspondences, and
formulating the cyclic distances for down-weighting in 3D
euclidean instead of 2D pixel space. In contrast to these
works, we are addressing the ambiguities of DINO corre-
spondences given few viewpoints, and are maximizing the
appearance and geometric consistency over many videos.

2.3. Correspondence Feature Learning
Matching semantic keypoints across images from arbitrary
object categories is a challenging but important computer
vision task [28]. Self-supervised models have shown re-
markable performance in zero-shot semantic correspon-
dences from self-superivsed models like DINOv2 [3] and
Stable Diffusion [37]. However, recent studies [12, 27, 57]
have demonstrated that DINOv2 features struggle to accu-
rately distinguish between object symmetries and individual
parts. Mariotti et al. [27] introduced a novel method for esti-
mating semantic correspondences that enhances DINO fea-
tures with 3D awareness through a coarse geometric spheri-
cal prior. Further, Zhang et al. [57] leverages viewpoint aug-
mentations to account for viewpoint dependency. Shtedrit-
ski et al. [42] showed that by leveraging 3D shape repre-
sentations, the consistency of 2D-3D correspondences may
improve overall performance significantly. However, the
necessity of a detailed categorical mesh, restricts this ap-
plicability to a small selected set of animals. In contrast to
others, we train a feature extractor that generalize to novel
categories leveraging images of over a hundred categories.

3. Method

In this section, we describe our approach for canonicalizing
partial views. First, we transform the partial views into the
object-centric surface features representation, see Sec. 3.1.
These are then aligned to ensure global geometric and ap-
pearance consistency (Sec. 3.2). Furthermore, we introduce
a method for obtaining generalizable correspondence fea-
tures from foundational models that facilitates the global
consistency in comparison with DINOv2 and, hence, im-
proves the canonicalization Sec. 3.3.

3.1. Partial Views as Surface Features
We represent the partial views as object-centric surface fea-
tures, to partially capture the geometry as well as the ap-
pearance of each object. This is similar to other works
that represent categories or complete objects as 3D object
geometries with attached surface features [29, 43, 49, 56].

We use the combination of DINOv2 and generalizable cor-
respondence features in this step. The surface features
S = {V,F} comprise a set of vertices V and a set of fea-
tures F. By using structure-from-motion [39] we obtain
depth maps, and by using masked backprojecting we obtain
a point cloud. We approximate this geometry with a trian-
gular mesh using alpha shapes [13], resulting in the vertices
V = {vi ∈ R3}|V|

i=1. Further, we capture the appearance
per vertex with semantic features from multiple viewpoints
as follows F = {{fki ∈ RD}|Fi|

k=1}
|V |
i=1. Features are accu-

mulated by projecting visible vertices into the 2D feature
image from an image encoder.
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Figure 2. Pairwise registration for global consistency. Illus-
tration of pairwise registration for achieving global consistency
across multiple partial scans. This method involves sequentially
aligning scans to build a coherent global 3D structure. The num-
bers on the edges indicate the registration sequence. Initially, scans
predominantly capturing the left side are aligned (edge 1). The
third scan, including views from both the left and right sides, is
then integrated (edge 2), serving as a bridge for subsequent right-
side dominant scans (edges 3 and 4). This ensures global con-
sistency even in the absence of direct overlap between some scan
pairs. Edge colors reflect the distance between scan nodes: red
indicates larger distances, while green indicates shorter distances.

3.2. Global Consistency via Pairwise Registration
Achieving global consistency with respect to geometry and
appearance by transforming all object-centric surface fea-
tures in one canonical coordinate frame is highly challeng-
ing. Especially, because some partial views may have no or
only minimal pairwise overlap. Imagine the illustrative sce-
nario where one partial view covers an object from the left
side and another one covers another object from the right
side. As there is no common region of the two objects the
problem itself is ill-posed. Hence global consistency for
many partial views is required. We achieve this by canoni-
calizing all partial views in a way that the geometry and the



Figure 3. Feature comparison across seen and unseen categories. Comparison of DINOv2, Spherical Mapper, and Generalizable
Correspondence features on car, teddybear, laptop, and handbag. The car category is seen by the Spherical Mapper, while the others are
unseen; all categories are unseen for the Generalizable Correspondence Feature. DINOv2 shows symmetric ambiguities across viewpoints.
The Spherical Mapper distinguishes left/right for seen categories but fails to generalize to unseen ones, producing noisier predictions. In
contrast, the Generalizable Correspondence Feature yields robust, generalizable 3D-aware predictions across all categories.

appearance of overlapping partial views match. In total we
have K partial views S = {Si}Ki=1 which we can transform
into the canonical space with the corresponding transforma-
tions T = {Ti = (Ri ∈ R3×3, ti ∈ R3) : R3 7→ R3}Ki=1,
as follows:

T(S) = {{T(vi)}|V|
i=1,F}. (1)

For global consistency, we introduce the unknown graph
G = (N,E) of overlapping partial views, resulting in the
following optimization problem:

argmin
T ,E

∑
(i,j)∈E

D(Ti(Si),Tj(Sj)). (2)

Here, D(Ti(Si),Tj(Sj)) denotes the geometric and ap-
pearance distance between two canonicalized partial views.
Note, to avoid the trivial solution of an empty graph, we
enforce the graph to be connected. As more edges may
only increase the cost, this means for the number of edges
|E| = |N|−1. Hence, the graph we are searching is actually
a tree, and the optimal relative transformation between two
neighboring nodes is independent of the others, resulting in

argmin
E

∑
(i,j)∈E

argmin
iTj

D(Si,
i Tj(Sj)), (3)

with
iTj = T−1

i Tj . (4)

This independence enables us to first efficiently estimate
iTj and D(Si,

i Tj(Sj)) by building on the RANSAC-
based[15] method, as proposed by Sommer et al. [43], and
then optimize for the optimal tree graph. Otherwise, esti-
mating all T , would become too exhaustive, as the number
of proposals would grow exponentially with the number of

partial views. We find the optimal tree graph G with edges
E using a greedy search algorithm. Therefore, we start with
the two partial views whose pairwise overlap yields the min-
imum distance. Then, we iteratively add the partial view
with the minimum distance to one of the previously selected
partial views. The method is illustrated in Fig. 2.
Regarding the pairwise geometric and appearance distance,
we built upon [43], and define the distance for two overlap-
ping partial views Si and Sj as follows

D(Si,Sj) = (1− α)Dgeo(Si,Sj) + αDapp(Si,Sj), (5)

where the geometric distance Dgeo equals a weighted cham-
fer distance for the vertices. And similarly, the appearance
distance Dapp is measuring the distance between vertices in
euclidean space, but the nearest neighbors ψ are found in
feature space and not in euclidean space, as follows

ψ(i) = argmin
j∈1...|Vj |

∑
l

min
k

||fkj − f li || , for i ∈ 1...|Vi|.

(6)
Each vertex-based distance is weighted with respect to its
feature correspondence cyclic consistency. Therefore, se-
mantic parts which are only captured in one partial view,
are wrongly matched, resulting in a low cycle consistency
and are thus down-weighted.

3.3. Generalizable Correspondence Features
The large-scale training of foundational models, such as
DINOv2 [30], lead to the emergence of features that cap-
ture semantic concepts, which also allows finding semantic
correspondences between two images. However, a limita-
tion of the direct application of such foundational features



Figure 4. Visualization of the Generalizable Correspondence Feature across categories. Visualization of the Generalizable Correspon-
dence Feature for the categories bicycle, toy truck, motorcycle, toy bus, toy plane, and chair. These features show that instances captured
from similar viewpoints are closely grouped in the feature space, demonstrating effective canonicalization across different categories.

arises from the feature ambiguities of object parts with sim-
ilar appearance. This sometimes results in the inability to
distinguish between object symmetries, i.e. left-right am-
biguity [57], or to differentiate between identical semantic
parts located at different positions. This missing capability
is, however, critical for our task, since we aim at canonical-
izing 3D objects from partial views. Mariotti et al. [27] ad-
dress the limitations for solving semantic correspondences
by proposing a spherical mapper, i.e., a neural network that
maps DINOv2 features F to points s ∈ S2 on a canoni-
calized spherical coordinate system: s = fs(F). This ap-
proach conceptually addresses our need for resolving fea-
tures ambiguities of DINOv2 features. For example, the
feature of a patch from the left side of a car is mapped to
the opposite hemisphere than the features of a patch from
the right side of a car. However, we observe that the origi-
nal work, trained on only the 18 categories of the SPair-71K
dataset [28], does not generalize to novel categories. There-
fore, we introduce a generalizable approach that avoids the
requirement of knowing beforehand which object categories
shall be matched at test time. Specifically, we train a gener-
alizable correspondence feature extractor on large scale 3D
pose annotations from ImageNet3D [26]. To achieve this,
we quantize the given azimuth angles to 8 bins and acquire
the object masks using SAM [21]. To ensure a generalizable
setting, we carefully remove all categories for training that
overlap with our evaluation, eventually applying the scaled
spherical mapper in an out-of-distribution scenario. Quali-
tatively, we show in Fig. 3, that our feature extractor gener-
alizes to novel categories. Further, quantitative experiments
confirm that our approach leads to a better generalizability
in semantic correspondence, hence largely facilitating the
canonicalization of 3D objects from partial views.

After training the correspondence feature extractor, we

follow prior work [27], and concatenate the trained features
with pretrained DINOv2 features. This combination pre-
serves the rich semantic information from DINOv2 while
incorporating crucial viewpoint information from the gen-
eralizable correspondence feature.

4. Experiments
In this section, we introduce the experimental setup in 4.1,
how we train the generalizable correspondence features in
Section 4.2, present how we test our methods in both syn-
thetic and real-world datasets in Section 4.3. In the end, we
show the ablation of key components in our method in 4.4.

4.1. Experimental setup
Dataset for training generalizable correspondence fea-
tures. We train the spherical mapper on a large-scale
dataset of ImageNet3D[26] that consists of more than
86 000 images of 200 rigid categories that are annotated
with 3D pose label. In order to show the generalizability of
our new features, we remove all the CO3Dv2 and ShapeNet
dataset categories in the training. We test our feature on un-
seen categories from CO3Dv2 and ShapeNetv2 to show the
better generalization compared to the spherical mapper.

Dataset for Evaluation of Canonicalization Results
from Partial Views. We test our method and baseline
on the real-world CO3Dv2 dataset[35] and the synthetic
ShapeNet dataset[4]. All tested categories from CO3Dv2
and ShapeNet dataset were unseen during the training of
the spherical mapper.

The CO3Dv2 dataset[35] includes object-centric full
videos across 50 diverse categories. We focused our testing
on the same 20 benchmark categories that were previously
examined by the baseline UOP3D [43] within the CO3Dv2
dataset. Each category features maximum five annotated



canonicalized sequences used as ground truth labels. We
explored various partial video settings with frame ratios of
10% , 25%, 50%, starting always from the first frame of
each sequence. Using COLMAP[39], we generated partial
scans from these partial video sequences.

We use ShapeNet [4], which provides ground-truth
canonicalization labels, to evaluate 10 categories. This ex-
tends the CO3Dv2 categories by four classes: table, bench,
display, and telephone. For each category, we render 30 ob-
jects at partial fractions of 10%, 25%, and 50%. The camera
always points to the object origin with θ = 0, a random ele-
vation in [0◦, 30◦], and an azimuth that starts from a random
angle and increases to cover the desired partial fraction.

Baseline. Our baselines are UOP3D [43], which in-
troduces a canonicalization method for object-centric full-
view video sequences, and OrientAnything [51], a foun-
dation model for object orientation estimation in single-
view images, trained on 2M synthetically rendered im-
ages. UOP3D utilizes the DINOv2 feature, back-projecting
it onto the entire mesh. We evaluate our method against
UOP3D across various settings, including partial views of
10%, 25% and 50%. We use the base version of DINOv2 for
both the UOP3D and our method. The feature dimension of
DINOv2 feature is 768. For both UOP3D and our method,
we select α = 0.2 in distance formulation 5. Since Ori-
entAnything [51] predicts both orientation and confidence
for each frame, we compute the canonical orientation for
the whole partial video sequence by averaging orientations
weighted by their confidence scores.

Evaluation Metrics. Our evaluation follows the stan-
dard benchmark settings used by UOP3D[43]. We compute
the rotational error between each pair in the test dataset.
The evaluation metric is determined by the proportion of
pairs where the rotational error is less than 30◦.

Training Details for generalizable correspondence
features. Current SOTA viewpoint-dependent features
trained on the Spair-71K dataset cannot generalize well on
the unseen categories from the training set. To address this
shortcoming, we train the model on ImageNet3D[26] fol-
lowing the architecture and training scheme of [27], keep-
ing the base variant of DINOv2 frozen as backbone.

4.2. Generalizable Correspondence Features
Quantitative Analysis. The original spherical mapper is
trained on SPair-71K dataset, which has overlap categories
with CO3Dv2 dataset. For evaluation, we pick unseen cat-
egories of SPair-71K training categories from CO3D cate-
gories. Those categories will be both unseen for the original
spherical mapper and our adapted version, the Generaliz-
able Correspondence Features. As shown in Table 1, the
model trained on a larger data scale performs better than
the original Spherical Mapper on unseen categories.

Qualitative Analysis. The effectiveness of the Gener-

Category Acc@30◦ (SPH) Acc@30◦ (GCF)

Teddybear 33.3 100.0
Toaster 30.0 30.0
Handbag 60.0 90.0
Laptop 10.0 100.0
Keyboard 60.0 60.0
Hairdryer 0.0 60.0
Toilet 100.0 100.0
Toytruck 30.0 40.0
Mouse 10.0 10.0

Mean 37.03 65.56

Table 1. 30◦ accuracy on unseen object categories. Compar-
ison of 30◦ accuracy on unseen categories between the original
Spherical Mapper Features (SPF) and Generalizable Correspon-
dence Feature (GCF).

alizable Correspondence Features is demonstrated through
the visualization results of unseen categories from training
dataset presented in Figure 4. This figure highlights several
key insights. Firstly, the features vary significantly with
changes in viewpoint, indicating that distant viewpoints
yield distinctly different feature representations. In addi-
tion, instances from the same category exhibit similar fea-
tures when observed from similar viewpoints, confirming
that the feature successfully canonicalizes these instances.
Lastly, the proposed features generalize across different cat-
egories, as similar viewpoints across various object types
lead to similar feature spaces.

4.3. Canonicalization from Partial Views
Quantitative Analysis. We report experimental results on
the CO3Dv2 dataset (Table 2) and the ShapeNet dataset
(Table 3). Across both real-world and synthetic settings,
our method consistently outperforms baselines at all tested
ratios. As OrientAnything is a foundation model devel-
oped for frame-wise canonical orientation estimation, its
predictions across video frames can be subject to temporal
inconsistencies. By contrast, our approach naturally inte-
grates multi-view information and enforces globally consis-
tent alignment across 3D shapes reconstructed from partial
videos, which results in superior performance with substan-
tially lower training cost. The difference in dataset char-
acteristics is also notable: CO3Dv2 provides at most five
annotated sequences per category, whereas ShapeNet offers
thirty. The greater number of sequences in ShapeNet re-
duces variance in performance, likely due to a more uniform
distribution of partial views in the canonical space.

Qualitative Analysis. We compare the canonicalization
results of UOP3D baseline and our method in Figure 5. In
UOP3D, the first scan on the left serves as the reference; all
other source scans attempt to align to this reference. For the



l � [ M T Avg (20)

10% UOP3D 100.0 33.3 50.0 20.0 60.0 100.0 50.0 50.0 33.3 40.0 42.9
OrientAnything 40.0 0.0 60.0 10.0 50.0 83.3 10.0 100.0 33.3 20.0 42.2
Ours 100.0 16.7 100.0 20.0 60.0 100.0 60.0 83.3 33.3 40.0 47.0

25% UOP3D 75.0 20.0 50.0 25.0 60.0 100.0 60.0 83.3 100.0 20.0 48.3
OrientAnything 40.0 0.0 90.0 10.0 40.0 100.0 20.0 100.0 100.0 20.0 55.5
Ours 90.0 40.0 100.0 20.0 60.0 100.0 50.0 100.0 100.0 20.0 57.3

50% UOP3D 50.0 45.0 85.0 30.0 55.0 100.0 100.0 83.0 100.0 65.0 68.8
OrientAnything 40.0 0.0 100.0 10.0 40.0 100.0 40.0 100.0 100.0 20.0 60.0
Ours 40.0 60.0 100.0 40.0 60.0 100.0 100.0 100.0 100.0 100.0 71.7

Table 2. Comparison under varying supervision ratios on CO3Dv2 dataset. Comparison of baselines (UOP3D, OrientAnything) and
our method (Ours) at 10%, 25%, and 50% supervision ratios on selected CO3Dv2 categories. The evaluation metric is 30◦ accuracy.
Results are averaged over all 20 categories, while only 10 categories are shown.

� � � � l T ù Avg (10)

10% UOP3D 39.1 25.7 33.7 42.3 41.0 32.1 44.1 33.0 72.5 33.0 39.7
Ours 51.5 32.0 43.9 55.9 46.4 40.9 45.5 52.2 92.4 40.0 50.1

25% UOP3D 46.7 31.1 33.3 45.1 42.1 35.9 49.2 38.6 84.1 42.9 44.9
Ours 87.1 35.4 25.7 48.3 52.2 42.1 59.5 48.0 100.0 57.9 55.6

50% UOP3D 85.5 30.3 44.5 54.9 51.1 39.8 64.9 41.0 88.4 50.0 55.0
Ours 93.3 41.1 58.4 66.9 46.4 40.0 54.0 52.0 93.3 57.9 60.3

Table 3. Comparison under varying supervision ratios on ShapeNet dataset. Comparison of the baseline (UOP3D) and our method
(Ours) at 10%, 25%, and 50% supervision ratios on the synthetic ShapeNet dataset. The evaluation metric is 30◦ accuracy.

ShapeNet CO3Dv2

10% 25% 50% 10% 25% 50%

Ours 50.1 55.6 60.3 47.0 57.3 71.7
w/o GCF 43.5 47.4 57.9 46.0 53.9 75.7
w/o GO 45.0 50.9 59.3 44.4 50.3 69.4
w/o GCF & GO 39.7 44.9 55.0 42.9 48.3 68.8

Table 4. Ablation study on GCF and global optimization. Ab-
lation study of the Generalizable Correspondence Feature (GCF)
and Global Optimization (GO) on the ShapeNet and CO3Dv2
datasets. The evaluation metric is 30◦ accuracy.

laptop category, the pairwise alignment is problematic due
to the suboptimal choice of a noisy and partial reference
mesh, leading to poor canonicalization outcomes for subse-
quent scans. Conversely, our method initiates canonicaliza-
tion with two clean and comprehensive scans from the se-
lection of lowest distance between the partial scans, allow-
ing subsequent partial scans to align more effectively into
the canonical space. Furthermore, Figure 6 showcases the
canonicalization results for a collection of partial scans, in-
cluding both annotated and unannotated sequences to create
a more comprehensive dataset. Within each category, the

sequence order from left to right also delineates the canoni-
calization process.

4.4. Ablation Studies
Effect of Generalizable Correspondence Features. The
Generalizable Correspondence Features significantly en-
hance the performance, as demonstrated in Table 4. By
incorporating viewpoint-aware elements, these features im-
prove the accuracy of finding matches. This improvement
helps to effectively mitigate the challenges of invalid corre-
spondences, often resulting from the feature ambiguities of
repeated object parts that are observed with DINOv2. Fur-
thermore, the GCFs enable more precise weighting during
the evaluation of pairwise registration quality, as defined in
Eq. (5), which is crucial for global optimization.

Effect of Global Optimization. Table 4 highlights the
benefits of global optimization, which ensures precise pair-
wise pose registration across a collection of partial scans,
demonstrating an improved global pose accuracy.

5. Conclusion
In this work, we introduced C3PO, a novel framework for
category-level canonicalization of 3D objects from partial



UOP3D Ours

Figure 5. Qualitative comparison of canonicalization results. Visualization comparing the UOP3D baseline and our method for the
laptop (10%) and hydrant (50%) categories. For UOP3D, the leftmost scan serves as the reference to which the remaining scans are
aligned. For our method, scans are processed sequentially from left to right, reflecting the canonicalization order.

Figure 6. Canonicalization of partial scans across categories. Visualization of canonicalized partial scans for the categories car (25%),
bicycle (10%), and backpack (10%). Both annotated and unannotated video sequences are integrated into a unified collection of partial
sequences. Scans are processed sequentially from left to right, indicating the canonicalization order.

views. Unlike prior approaches that rely on full object cov-
erage or fixed references, our method jointly canonicalizes
multiple partial reconstructions by enforcing both geomet-
ric and appearance consistency across overlapping regions.
Central to this is are Generalizable Correspondence Fea-
tures (GCF) that capture viewpoint-aware correspondences
from large-scale data and generalize effectively to unseen
categories. Together with our global-consistency optimiza-
tion via pairwise registration, C3PO achieves robust canon-
icalization even under severe partial-view settings.

We established two new benchmarks on synthetic
(ShapeNet) and real-world (CO3Dv2) datasets to rigorously
evaluate canonicalization from partial observations. Across
both, C3PO consistently and significantly outperformed

state-of-the-art baselines, with particularly strong gains in
challenging low-coverage scenarios. By enabling scalable
and accurate canonicalization without manual alignment or
full geometry, C3PO opens the door to applying canonical-
ization at scale, including to long-tail object categories and
in-the-wild video data.
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