
On Equivariant Model Selection through the Lens of Uncertainty

Abstract

Equivariant models leverage prior knowledge on
symmetries to improve predictive performance, but
misspecified architectural constraints can harm it
instead. While work has explored learning or relax-
ing constraints, selecting among pretrained models
with varying symmetry biases remains challeng-
ing. We examine this model selection task from an
uncertainty-aware perspective, comparing frequen-
tist (via Conformal Prediction), Bayesian (via the
marginal likelihood), and calibration-based mea-
sures to naive error-based evaluation. We find that
uncertainty metrics generally align with predictive
performance, but Bayesian model evidence does
so inconsistently. We attribute this to a mismatch
in Bayesian and geometric notions of model com-
plexity, and discuss possible remedies. Our find-
ings point towards the potential of uncertainty in
guiding symmetry-aware model selection.

1 INTRODUCTION

Real-world tasks frequently exhibit geometric symmetries
such as rotations or reflections, and equivariant predictive
models for such settings have proven effective on prob-
lems ranging from medical imaging [Fu et al., 2023] to
molecule synthesis [Atz et al., 2021, Batzner et al., 2022]
and physics simulations [Brandstetter et al., 2021]. Such
geometric knowledge is generally embedded as constraints
on model expressivity, and misspecifying the inductive bias
may harm performance [Petrache and Trivedi, 2023]. This
has lead to recent work on learning equivariance and soft-
ening constraints, e.g. Romero and Lohit [2022], Moskalev
et al. [2023], van der Linden et al. [2024], including from a
Bayesian model selection perspective [van der Wilk et al.,
2018, van der Ouderaa et al., 2023]. Yet such relaxations
also remain architecturally tied, and from a practitioner’s

post-hoc perspective it remains unclear what model to favor
when faced with a range of pretrained options, from fully
unconstrained to strictly equivariant. While a simple hold-
out error comparison (e.g. on accuracy) is possible, mea-
sures that incorporate notions of uncertainty have been advo-
cated for more robust model assessment [Begoli et al., 2019,
Makridakis and Bakas, 2016], resulting in much work on
uncertainty for neural networks [Gawlikowski et al., 2023].

Taking this perspective, we investigate equivariant model
selection through the lens of uncertainty. Given differently
constrained architectures, we verify how post-hoc frequen-
tist (via Conformal Prediction intervals), Bayesian (via the
marginal likelihood) and calibration measures compare to a
simple error-based evaluation. Our experiments on object
shapes (ModelNet40) and molecule data (QM9) suggest
that uncertainty-based model recommendations generally
align with predictive error, but the Bayesian model selec-
tion framework does so inconsistently. We posit that this
results from misaligned notions of Bayesian and geometric
model complexity in the marginal likelihood, and discuss
perspectives on addressing this interesting and challenging
problem. Our findings suggest the potential of uncertainty-
aware frameworks in guiding equivariant model selection.

2 BACKGROUND
We next provide some brief background on equivariance
and uncertainty-related topics relevant for this work.

Equivariance and invariance. A map f : X → Y is
said to be invariant to a given transformation group G if it
satisfies the condition

f(x) = f(g ◦ x) ∀g ∈ G, (1)

where we loosely use ◦ as the application of transformation
g1. This property implies the output of a function is left

1Formally, a group element g acts on a space via the group
action ρ(g). See Bronstein et al. [2021] for a thorough treatment.
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unchanged when the input is transformed by G. Similarly, a
function is said to be equivariant if it satisfies

g ◦ f(x) = f(g ◦ x) ∀g ∈ G, (2)

meaning that the output transforms in a structured, pre-
dictable way under the action of G. While equivariance
preserves geometric structure through the transformation,
invariance discards it. These properties are usually enforced
through architectural constraints that ensure transformation-
preserving layers, e.g. Cohen and Welling [2016], Weiler
and Cesa [2019]. However, invariance can also be approx-
imately enforced via data augmentation during training,
encouraging the model to produce identical outputs for trans-
formed inputs [Lyle et al., 2020].

Conformal prediction and calibration. Conformal pre-
diction offers a popular framework to extend a model’s point-
wise predictions to prediction set estimation. The approach
is fully data-driven, post-hoc, and amenable to both clas-
sification and regression [Fontana et al., 2023]. Crucially,
relying on a data exchangeability argument (i.e. relaxed
i.i.d.’ness) a probabilistic coverage guarantee for unseen
test samples can be provided, attaching a notion of reliabil-
ity to obtained uncertainties [Shafer and Vovk, 2008]. In
contrast, probabilistic calibration does not provide explicit
guarantees, but instead captures a notion of asymptotic con-
sistency between predicted and observed outcomes [Guo
et al., 2017, Silva Filho et al., 2023]. That is, whether a
model’s prediction confidence p̂ aligns with the target’s true
observed frequency p in the data, rendering it trustworthy.

Bayesian model selection. Within a Bayesian context,
a model M’s ability to explain observed data D can be
evaluated via the marginal likelihood, formally denoted as

p(D|M) =

∫
p(D|θ,M) p(θ|M) dθ. (3)

Also referred to as model evidence, the quantity averages
the data likelihood p(D|θ,M) over the prior p(θ|M) for
model parameters θ, effectively quantifying data fit while
penalizing overly complex models that assign low prior
probability to regions of high likelihood [MacKay, 2003].
This naturally integrates Occam’s Razor as a model selec-
tion principle, where the model with highest p(D|M) is
preferred [Rasmussen and Ghahramani, 2000] and arguably
generalizes more favourably [Germain et al., 2016, Lotfi
et al., 2022]. As Eq. 3 is generally intractable, and in partic-
ular for large-scale neural networks, efficient and scalable
approximations become necessary [Llorente et al., 2023].

3 UNCERTAINTY MEASURES FOR
MODEL SELECTION

We next detail the particular uncertainty-based measures we
employ based on the above frameworks to assess model fit.

Conformal prediction set size. The satisfaction of confor-
mal coverage guarantees at some target level 1−α (e.g. 90%)
is met by design, thus we focus on assessing model fit by
the efficiency of obtained prediction sets, where smaller
set size indicates more informative uncertainty [Shafer and
Vovk, 2008]. Given test observations (xi,yi) ∈ Dtest and
produced prediction sets C(xi), the mean set size is simply

Mean set size =
1

|Dtest|
∑

i∈Dtest

|C(xi)|. (4)

We combine the models outlined in § 4 with simple top-class
and residual scoring to construct the conformal prediction
sets (see Appendix B), and refer to Angelopoulos et al.
[2023] for an introductory work covering these mechanisms.

Calibration error. For classification, the expected cali-
bration error (ECE) is commonly employed despite some
pathologies [Guo et al., 2017, Nixon et al., 2019]. Therein
confidence levels are binned and the gap to similarly binned
model accuracies is measured, thus favouring a smaller ECE
that better aligns model confidence and output. We addition-
ally measure the Brier score [Brier, 1950], a classical prob-
abilistic scoring rule whose decomposition expresses both
calibration and efficiency properties of the model [Gneiting
et al., 2007, Murphy, 1973]. For regression tasks the notion
of calibration is ambiguously defined, but tends to pertain
to coverage properties of estimated intervals [Kompa et al.,
2021, Kuleshov et al., 2018]. In that context, conformal
prediction intervals can also be framed as a calibration pro-
cedure [Dheur and Taieb, 2023], and we do not consider any
additional measures.

Bayesian model selection via the Laplace approxima-
tion. We employ Laplace’s method [MacKay, 1992] to
obtain a tractable approximation of Eq. 3. Therein, a second-
order Taylor expansion for the unnormalized log-posterior
p(θ|D,M) around a local optimum θ∗ (here, the pretrained
model’s weights) yields the distinct terms

log p(D|M) ≈ log p(D|θ∗,M)︸ ︷︷ ︸
Data fit

−
[
1
2 log |

1
2πH∗| − log p(θ∗|M)

]
︸ ︷︷ ︸

Model complexity

,
(5)

where H∗ = −∇2
θ log p(D|θ∗,M) + δI is the Hessian of

the negative log likelihood and δ is the precision of the
isotropic Gaussian prior p(θ|M) = N (0, δ−1I). The trade-
off between data fit (the log-likelihood evaluated at θ∗) and
model complexity in the Bayesian sense becomes apparent.
As we aim for post-hoc model selection, we follow the
recommendation of Daxberger et al. [2021] for a last-layer
Laplace approximation2, wherein H∗ is computed only over
the last linear model layer. Other approximations such as
KFAC or diagonal are also possible [Immer et al., 2021].

2Using https://aleximmer.com/Laplace/
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Figure 1: We visualize alignment between uncertainty-based measures (y-axis) and prediction accuracy (x-axis) on Model-
Net40 test data for all four models (§ 4). ‘NLL’ refers to the negative log-likelihood of the model’s direct softmax output
(i.e. not using Laplace), while ‘Log Marg Lik’ equates Eq. 5. (↑ ↓) indicate the desired direction of the measure.

Train data Dtrain Test data Dtest

Target Model M MAE ↓ LogLik ↑ Complexity ↓ Log-MargLik ↑ MAE ↓ LogLik ↑

µ

Invariant 0.0025 -101084 767 -101851 0.0204 22064
Equivariant 0.0083 -101091 723 -101814 0.0145 22940
Augment 0.0048 -101086 799 -101886 0.0254 20826
Plain 0.0038 -101086 798 -101884 0.0296 19622

α

Invariant 0.0102 -101097 1530 -102628 0.0613 768
Equivariant 0.0290 -101176 1515 -102691 0.0522 9014
Augment 0.0153 -101112 1521 -102633 0.0679 -3732
Plain 0.0106 -101100 1564 -102664 0.0888 -19273

εHOMO

Invariant 0.2540 -101083 1211 -102295 23.4848 20586
Equivariant 2.9681 -101084 1243 -102327 21.3705 20989
Augment 0.7900 -101083 1149 -102233 27.4825 19461
Plain 0.2288 -101083 1148 -102231 33.6994 17578

εLUMO

Invariant 0.9781 -101083 416 -101500 20.2211 21650
Equivariant 4.3102 -101085 465 -101550 19.3362 22028
Augment 1.3789 -101083 414 -101498 21.6268 21417
Plain 1.0273 -101083 361 -101445 24.2827 20628

Cν

Invariant 0.0134 -101112 1345 -102457 0.0298 19330
Equivariant 0.0180 -101121 1326 -102447 0.0275 20017
Augment 0.0107 -101104 1334 -102438 0.0331 18098
Plain 0.0066 -101094 1357 -102451 0.0394 15812

Table 1: We tabularize results for all four models (§ 4) and five regression targets on QM9 train and test data. We report
predictive error (via the mean absolute error, MAE) and the Laplace-based terms in Eq. 5: data fit via the log-likelihood
(LogLik), Bayesian model complexity, and the overall log-marginal likelihood (Log-MargLik). (↑ ↓) indicate the desired
direction of the measure, and we highlight the preferred model according to different selection criteria.

4 EXPERIMENTAL RESULTS

We next outline our experimental design and results, and
defer further implementation details to Appendix B. We
consider two prediction tasks and datasets: classification on
ModelNet40 [Wu et al., 2015] and regression on QM9 [Ra-
makrishnan et al., 2014]. ModelNet40 consists of ∼ 12 000
rotationally aligned objects across 40 classes and hence
does not strictly require SO(3) invariance. QM9 contains
∼ 130 000 molecular point clouds with several scalar tar-
gets, of which we consider µ, α, εHOMO, εLUMO and Cν

(separate models are trained for each target). Due to arbi-
trary molecular orientations, invariance to the SO(3) group
is generally considered necessary here.

Model choice. We evaluate four variations of the message-
passing architecture PONITA [Bekkers et al., 2024], which
are implemented in Vadgama et al. [2025] as Rapidash.

The Rapidash model is well-suited for our study as it
enables explicit control over the equivariance constraints
employed within layers, and else maintains the same archi-
tecture. We consider the following choices:

1. Invariant: constrained via invariant message passing
layers;

2. Equivariant: constrained via equivariant message
passing layers;

3. Augment: same as Plain but trained with SO(3) data
augmentations;

4. Plain: fully expressive and unconstrained, without
equivariance.

In terms of geometric (i.e. function-fitting) expressivity,
Models 3 and 4 are most expressive, while Model 1 is the
most constrained. Model 2 leverages geometric structure for
richer representations despite (intermediate) constraints.
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Figure 2: We optimize the Laplace approximation’s prior precision parameter δ in a post-hoc fashion via grid search using
the marginal likelihood (Eq. 5). We visualize the grid’s values and optimum (⋆) for every QM9 regression target and model.

ModelNet40 classification results. We visualize our re-
sults across various uncertainty-based measures in Fig. 1.
Conformal and calibration measures closely align with pre-
diction accuracy, and similarly suggest the unconstrained
model (Plain) as the best fit for rotationally aligned data.
In contrast, the Log-MargLik slightly favours the equivari-
ant model despite its lower accuracy (i.e. presumed data
fit), suggesting a slight effect of the model complexity term
(discussed further in § 5). In contrast, for SO(3)-rotated
ModelNet40 (Fig. 3) the geometric inductive bias becomes
crucial, and all measures correctly identify the equivariant
model as the preferred choice.

QM9 regression results. Tab. 1 reports results for pre-
diction error – as measured via the mean absolute error
or MAE – and the marginal likelihood (Log-MargLik), in-
cluding its individual terms on data fit (LogLik) and model
complexity (Eq. 5). Note that the Log-MargLik is rightly
evaluated on the train data on which the Laplace approxima-
tion is computed. Measures on test data (incl. the Laplace’s
test log-likelihood) clearly express a preferred model rank-
ing in line with expectations on this SO(3)-affected task,
that is Equivariant > Invariant > Augment > Plain. Con-
formal results are given in Fig. 4 and also align with the
MAE. In contrast, the Log-MargLik fails to capture this
trend and varies preferences across targets. Despite slight
variations in train MAE the log-likelihoods are extremely
similar and entirely dominate the complexity term, resulting
in indistinguishable marginal likelihoods. Given the lack of
coherence in obtained model complexities, we hypothesize
that the objective thus fails to properly account for geomet-
ric expressivity or complexity as purportedly captured in
the model’s feature structures. We discuss this effect next.

5 DISCUSSION & OUTLOOK

The marginal likelihood can also be leveraged in an “em-
pirical Bayes” fashion to (even post-hoc) optimize hyper-
parameters of the Laplace approximation, such as the prior
precision δ [Immer et al., 2021]. Relating this step to a
model’s feature expressivity, one might expect the prior
precision of a more expressive model to be tuned higher
as an intrinsic guard against data over-fit [Bishop, 2006],

and result in a larger complexity term in Eq. 53. Neverthe-
less, our investigation on this relation in Fig. 2 finds the
optimal value to be almost identical across all models. We
interpret this as further evidence for our hypothesis that the
feature differences induced by geometric constraints are not
appropriately reflected in the marginal likelihood objective.
Such geometry-induced structural differences clearly exist,
as exemplified by Moskalev et al. [2023] (cf. Fig. 2) who
demonstrate that data-augmented models map transformed
inputs to close but distinct locations in the representation
space of last-layer activations, whereas strict invariance en-
sures a mapping to a single representation by design.

Perspectives on a Geometric Occam’s Razor. How to
appropriately integrate geometric inductive biases into such
a Bayesian framework in general fashion remains a seem-
ingly open challenge. Several recent works have blended the
two by framing geometric constraints as learnable parame-
ters under a marginal likelihood objective. While promising,
these approaches remain restricted in their generality to
particular transformations (e.g., the required degree of aug-
mentation [Immer et al., 2022]) or model structures (e.g.,
formulated as a Gaussian Process kernel [van der Wilk et al.,
2018, Schwöbel et al., 2022]). Perhaps more generally, the
integration of such constraints as regularizers with a pos-
sible Bayesian prior interpretation [Finzi et al., 2021, Kim
et al., 2023a] or more explicit distributional correspondences
[Bloem-Reddy et al., 2020, Kim et al., 2023b] could prove
fruitful. We touch upon other related works in Appendix A.

Conclusion. We explore the use of post-hoc uncertainty-
based measures to guide model selection among pretrained
equivariant architectures. Conformal and calibration mea-
sures, while well aligned with predictive performance, offer
limited insights into the underlying model fit. Bayesian
model selection via the marginal likelihood shows partial
promise, but fails to account for the differences in expres-
sivity induced by geometric constraints. This seemingly
points towards a mismatch between Bayesian and geomet-
ric notions of model complexity. Future work should strive
towards integrating priors informed by equivariant represen-
tations to enable symmetry-aware Bayesian model selection.

3Albeit such trends implicitly assume that additional expres-
sivity is not fully absorbed in the data fit term.
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On Equivariant Model Selection through the Lens of Uncertainty
— Supplementary Material —

A OTHER RELATED WORK

Bayesian (and other) approaches to uncertainty quantification have been recently applied to molecular point cloud data,
often using domain-specific desiderata to assess reliability [Lamb and Paige, 2020, Soleimany et al., 2021, Wollschläger
et al., 2023], as well as in molecule and drug design [Mervin et al., 2021, Chen and Li, 2025]. In 3D vision, uncertainty
methods have been applied to more general point cloud segmentation and classification [Petschnigg et al., 2021, Cortinhal
et al., 2020]. These approaches leverage uncertainty primarily for predictive purposes, not for general model selection.

B IMPLEMENTATION DETAILS

Parameter counts
ModelNet40 QM9

Model Feature extractor Last layer Feature extractor Last layer

Invariant 1.664.896 | 4.638.208 |
Equivariant 1.994.752 5160 5.131.904 257Augment 1.669.504 4.642.816
Plain 1.669.504 | 4.642.816 |

Table 2: Model sizes for the feature extractors and their last layers. All models share the same penultimate feature dimension
within each dataset, and hence have the same last layer size.

Parameter counts. Tab. 2 shows model sizes in terms of parameter counts for all models. All models except Plain are
trained with SO(3) data augmentation. For both ModelNet40 and QM9 we follow the architecture-specific hyperparameter
configurations described in Vadgama et al. [2025].

ModelNet40 training. Models are trained for 250 epochs with a final layer dimension of 128. We use a 7375/2468/2468
train/validation/test split, sampling 1024 points per object. All point clouds are spatially centered and normalized, and
training samples are further augmented with small random shifts drawn from U([0.0, 0.1]).

QM9 training. Models are trained for 300 epochs with a final layer dimension of 256. During training, node coordinates are
normalized using a global scale and shift computed from the training set. We use a 110000/10000/10831 train/validation/test
split.
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Conformal prediction sets. In both experiments we consider standard split conformal prediction leveraging a hold-out
calibration set for the conformal procedure, and evaluating on test data [Angelopoulos et al., 2023]. We additionally repeat
100 random resamples of calibration and test data splits for the mean prediction set sizes (for classification) and interval
widths (for regression) following Eq. 4. We set the target coverage level to (1− α) = 0.9, i.e. a desired coverage rate of
90%. We omit reporting coverage since the rate is equally satisfied across all models (by design). For classification we
use a simple thresholding nonconformity score which ranks predictions based on the model’s confidence in the true class
label [Sadinle et al., 2019]. For regression we adopt the absolute residual between predicted and true target as a simple
nonconformity score [Lei et al., 2018].

C ADDITIONAL EXPERIMENTAL RESULTS

Rotated ModelNet40 classification results. Our experimental design for ModelNet40 is additionally employed for the
rotated data setting, wherein train, validation, and test data are randomly transformed by elements from the SO(3) group.
Results are shown in Fig. 3. We omit the unconstrained model (Plain) as it performs extremely poorly due to lack of SO(3)
generalization and is therefore uninformative. Results for the other methods highlight the same alignment observed in Fig. 1.

Figure 3: We visualize alignment between uncertainty-based measures (y-axis) and prediction accuracy (x-axis) on rotated
ModelNet40 test data for three models. ‘NLL’ refers to the negative log-likelihood of the model’s direct softmax output
(i.e. not using Laplace), while ‘Log Marg Lik’ equates Eq. 5. (↑ ↓) indicate the desired direction of the measure.

Conformal prediction set size for QM9 regression. We display the conformal mean set size (i.e. interval widths) for
considered QM9 regression targets in Fig. 4. Consistent with the trends discussed in § 4 and Fig. 3 the measure closely
aligns with predictive performance.

Figure 4: We visualize alignment between conformal mean set sizes or interval widths (y-axis) and prediction error (x-axis)
for all four models (§ 4) and five regression targets on QM9. (↑ ↓) indicate the desired direction of the measure.
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