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ABSTRACT

While existing multivariate time series forecasting models have advanced signif-
icantly in modeling periodicity, they largely neglect the periodic heterogeneity
common in real-world data, where variates exhibit distinct and dynamically chang-
ing periods. To effectively capture this periodic heterogeneity, we propose PHAT
(Period Heterogeneity-Aware Transformer). Specifically, PHAT arranges multivari-
ate inputs into a three-dimensional "periodic bucket" tensor, where the dimensions
correspond to variate group characteristics with similar periodicity, time steps
aligned by phase, and offsets within the period. By restricting interactions within
buckets and masking cross-bucket connections, PHAT effectively avoids inter-
ference from inconsistent periods. We also propose a positive-negative attention
mechanism, which captures periodic dependencies from two perspectives: periodic
alignment and periodic deviation. Additionally, the periodic alignment attention
scores are decomposed into positive and negative components, with a modulation
term encoding periodic priors. This modulation constrains the attention mechanism
to more faithfully reflect the underlying periodic trends. A mathematical expla-
nation is provided to support this property. We evaluate PHAT comprehensively
on 14 real-world datasets against 18 baselines, and the results show that it signif-
icantly outperforms existing methods, achieving highly competitive forecasting
performance. Our sources is available at GitHub.

1 INTRODUCTION

Multivariate Time Series (MTS) forecasting serves as a core enabling technology for critical appli-
cations such as energy demand prediction, traffic management, financial modeling, and healthcare
monitoring (Ma et al., 2025b; Zhou et al., 2021; Zeng et al., 2023; Qiu et al., 2024b; Wu et al., 2021).

Periodicity, as a crucial intrinsic characteristic of time series data, plays a decisive role in enhancing
forecasting performance through accurate modeling (Lin et al., 2024a; Zhou et al., 2022b; Lin et al.,
2024b). To this end, researchers have developed a series of cutting-edge methods. One line of work
modifies neural network architectures to adapt to periodicity (Luo & Wang, 2024). For instance,
some studies leverage the strong capability of the Transformer architecture to model long-range
dependencies (Zhou et al., 2021; 2022b; Nie et al., 2022). In addition, seasonal-trend decomposition
techniques have been widely employed (Wang et al., 2024b; Hu et al., 2025; Ma et al., 2025d).
These methods separate the original time series into seasonal and trend components, which are then
modeled by parallel sub-networks. This strategy enables more efficient extraction and utilization
of periodic information. Furthermore, recent studies have incorporated classical signal processing
tools, particularly frequency domain analysis methods like the Fast Fourier Transform (FFT), to more
precisely identify and model periodic patterns in time series data (Ye et al., 2024; Zhang et al., 2025).

Despite the substantial progress, two major limitations remain: ❶ Most existing models unify periodic
modeling by treating variates as interchangeable channels for pooling and fusion, implicitly assuming
a shared, static periodic length. This overlooks the pronounced heterogeneity in periodic behavior
across variates. As shown in Figure 1, three variates from the ZafNoo dataset exhibit distinct period
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Figure 1: The visualization of period heterogeneity phenomenon on ZafNoo dataset. The orange
region in autocorrelation function represents the 95% confidence interval for the null hypothesis from
Bartlett’s Test (Arsham & Lovric, 2011). Correlation coefficients that fall within this interval are not
statistically significant and cannot be rejected as noise (Chandler, 1987).

lengths. Forcing such diverse periodicities into the unified framework can lead models to learn
spurious temporal dynamics. ❷ Mainstream Transformer architectures amplify positive correlations
but suppress negative ones during attention normalization, overlooking inverse or complementary
dynamics inherent in periodic signals, as shown in Figure 1 (d). Yet such negative correlations offer
critical insights into system dynamic. Therefore, it is crucial to develop multivariate time series
forecasting models capable of accurately capturing periodic heterogeneity.

In this paper, we propose a Period Heterogeneity-Aware Transformer (PHAT) for MTS forecasting.
Specifically, PHAT restructures multivariate time series into a periodic bucket structure by grouping
variates based on their periodic lengths. Within each bucket, each sequence is further reshaped
into a 2D tensor—rows align time steps by phase, while columns capture offsets within the period.
Interactions are restricted to variates within the same bucket, enabling the model to capture diverse
periodic patterns, while cross-bucket links are masked to prevent interference between variates with
differing periodicities. Second, PHAT introduces a Positive-Negative Self-Attention mechanism
(PNA), which interprets periodic dependencies through two attention coefficients: phase alignment
and periodic offset. The periodic offset coefficient is further decomposed into positive and negative
components, with a modulation term encoding periodic priors. This term reduces the positive weights
and increases the negative weights for distant phase-aligned points (and vice versa), enabling the
attention mechanism to more faithfully capture the periodic structure.

Contributions. ❶ Initial Exploration. We relax the single-period assumption to handle complex
time series with heterogeneous periodicities and introduce PHAT, the first method expressly devel-
oped to model such period heterogeneity. ❷ Periodic Bucket. PHAT introduces a "periodic bucket"
structure to manage time series data with heterogeneous periodicity, facilitating the learning of peri-
odic patterns.❸ Novel Self-attention. We further propose a positive-negative attention mechanism
that represents periodic information with distinct positive and negative components, combined with
a modulation term encoding periodic priors. Its favorable properties are demonstrated mathemati-
cally. ❹ Empirical Validation. On 14 real-world datasets with 18 baselines, PHAT achieves SOTA
performance on approximately 73.95% (71/96) of the metrics while maintaining low computational
complexity. Additionally, PHAT demonstrates strong robustness in complex periodic scenarios.

2 RELATED WORK

Periodicity plays a pivotal role in the predictability of time series data (Lin et al., 2025; Wang
et al., 2024b; Ma et al., 2025d). Recent advancements have introduced a range of sophisticated
techniques aimed at improving the ability to capture long-term dependencies, thereby enhancing the
perception of periodic patterns. For example, classical seasonal–trend decomposition uses moving-
average kernels for sliding aggregation to extract trend components (Zeng et al., 2023; Kingma &
Ba, 2014), while CycleNet proposes a learnable Cycle Decomposition to capture periodicity (Lin
et al., 2024a). Architecturally, Transformer-based models excel at modeling long-range dependencies:
Autoformer connects sequences by periodically aggregating similar subsequences (Wu et al., 2021),
while ModernTCN leverages very large convolutional kernels to substantially enlarge the receptive
field and capture long-range temporal dependencies (Luo & Wang, 2024). Frequency-domain analysis
and multi-scale modeling have also been used to strengthen periodic representations (Zhou et al.,
2022b; Wang et al., 2024b).
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Figure 2: The overall architecture of PHAT. Each bucket contains the same periodic variates and uses
PNA to capture the periodic attention mechanism.

However, existing methods typically handle multivariate series via pooling or adaptive fusion and
model periodicity from a unified perspective, implicitly assuming all variates share the same periodic
patterns. This overlooks widespread periodic heterogeneity and often ignores negatively correlated
periodic components, which can provide complementary perspectives and valuable information gains.
We provide a detailed discussion of multivariate time series forecasting in Appendix A.

3 METHODOLOGY

Multivariate time-series data typically refer to either a collection of multiple temporal objects or
a single object observed through multiple feature channels (Huang et al., 2024b; Wu et al., 2020;
Ma et al., 2025e). Given a multivariate time series input X = [x1,x2, . . . ,xT ] ∈ RC×T observed
over the past T time steps, where xt ∈ RC represents the observation at time step t across C
variates. And we use Xi ∈ RT to represent the input sequence corresponding to variates i. The
objective of the multivariate time-series forecasting is to forecast the subsequent L time steps
Y = [xT+1,xT+2, . . . ,xT+L] ∈ RC×L.

As shown in Figure 2, we propose PHAT for modeling periodic heterogeneity, a common yet
previously overlooked property of real-world multivariate time series, thus motivating our PHAT.
PHAT includes a novel period bucket structure to manage time series. Subsequently, PHAT integrates
a positive-negative attention mechanism to precisely model the positive and negative correlations of
periodicity. Finally, we perform weighted fusion of the generated periodic components based on their
frequency saliency to produce the prediction results.

3.1 PERIOD BUCKET FOR TIME SERIES

3.1.1 PERIOD DETECTION

Fast Fourier Transform (FFT) (Duhamel & Vetterli, 1990) is a commonly used tool for analyzing the
characteristics of time series, especially periodicity (Liu, 2025; Wu et al., 2022b; Fang et al., 2023).
Therefore, we first apply the FFT to each variate in the input sequence X. Subsequently, we retain
only the spectral magnitudes corresponding to the Top-K significant frequency components, which
are then converted into discrete period lengths. This process can be expressed as follows:

P = ⌊ T

arg TopK [|FFT(X)|]
+ 0.5⌋ ∈ NK×C , (1)

where arg TopK [·] selects the indices of the K most salient frequencies. P represents the set of
period lengths from C variates.

3.1.2 TIME SERIES PERIOD BUCKET CONSTRUCTION AND REPRESENTATION

To improve periodicity modeling, we propose a novel period-bucket structure for reconstructing time
series, consisting of two stages: bucketing and folding.
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Bucketing This process groups variates by their dominant period lengths. Given K ∗ C periods,
we first remove duplicate values, assuming there are N distinct elements. For any period length Pi,
we create a bucket matched to it, denoted as Bi, and place the variates with a period length of Pi into
the bucket. Because a variate can exhibit multiple periodicities, buckets are not necessarily disjoint.
In addition, we assign Bucket-0 to manage variates that do not exhibit significant periodic behavior.

Folding This process further reshapes the sequence of each variate. For the input sequence of
variate j in Bucket-b, denoted as Xj , we first use an linear layer to align it with the future window:
Xj → Xj ∈ RL×d. It is important to emphasize that the period length of variates in Bucket-b is Pb.
Next, we segment Xj into small fragments of length ⌊L/Pb⌋, which may require zero-padding for
Xj . This process can be expressed mathematically as:

Xj = Unflatten(Xpad
j ;Pb) ∈ RPb×Nb ,

Xpad
j =

{
Concat(X⊤

j ,0), if L mod Pb > 0,

X⊤
j , if L mod Pb = 0.

∈ R(Pb∗Nb)
(2)

where Nb=⌊L/Pb⌋ represents the number of periods contained in the sequence. So for Bucket-b
that contains of |Bb| time series, we can generate a 3D bucket-structured input denoted as X̄(b) ∈
R|Bb|×Pb×Nb , which adapts to the characteristics of periodic features: ❶ Periodic homogeneous
variates are grouped in the first dimension; ❷ Time steps in the second dimension are periodic-offset
within the same periodic; ❸ Each time step in the last dimension is periodic-aligned.

Then, we perform interactions between variates to learn their dependencies as follows,

Z(b) =
(
X̄(b)

)⊤
Wi + bi ∈ RPb×Nb×dh , (3)

where W ∈ R|Bb|×dh and b ∈ Rdh are learnable parameters with the dimension size dh. The
processing of Bucket with periodicity B0 is represented in Appendix B.

3.2 POSITIVE-NEGATIVE X-SHAPE ATTENTION FOR PERIODICITY MODELING

Conventional self-attention allows unrestricted token interactions, which is suboptimal for capturing
the periodic structures inherent in time series. To address this, we propose Positive-Negative Attention
for Periodicity Modeling (PNA), featuring three key designs: ❶ X-Shaped Receptive Field: PNA
allocates attention along the rows and columns of the bucketed representation Z , forming an X-
shaped (cross-like) receptive field centered on each target element. This structure explicitly separates
period-aligned (across-period) and period-offset (within-period) relationships, enhancing periodic
pattern modeling. ❷ Strong Periodic Inductive Bias: Attention scores are modulated by a periodic-
distance-dependent term, enforcing inductive bias that aligns attention weights with the underlying
periodic trends. ❸ Decoupled Positive–Negative Correlation Modeling: PNA separately model
positive and negative periodic dependencies, mitigating interference between opposing correlations
and enabling more expressive representation of complex periodic interactions.

Specifically, given Bucket-b representation Z(b) ∈ RPb×Nb×dh (except for Bucket-0, which lacks
periodic characteristics), we first obtain multiple components using the following formula:

[Q1;Q2] = Z(b)Wq, [K1;K2] = Z(b)Wk, V = Z(b)Wv, Λ = σ(Z(b)Wg), (4)

where WQ,WK ,WV ∈ Rdh×d,Wh
λ ∈ Rd×1 are learnable projection parameters. Q1 and

Q2 ∈ RPb×Nb×2d are the query vectors, K1 and K2 ∈ RPb×Nb×2d are the key vectors, and
V ∈ RPb×Nb×2d is the value vector. Λ is the weighted strength filter. σ(·) is the sigmoid function.
The calculation process of PNA can be written as:

PNA(Z(b)) = Attention([Q1;Q2], [K1;K2],V,Λ) = A×1

(
Ã×2 V

)
, (5)

where ×i means the multiplication in the i-th dimension of the matrix. Periodic-aligned attention Ã
encodes dependencies between time-steps that share the same phase across periods, while periodic-
offset attention A captures dependencies among time-steps within the same period.
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Period-offset Attention A We compute the positive logits ζ and negative logits η of the period-
offset attention with separate query and key in each head as follows,

ζ = µQ1 ×1 K
⊤
1 ∈ RPb×Pb×Nb , η = µQ2 ×1 K

⊤
2 ∈ RPb×Pb×Nb , (6)

where µ = d−1/2 is the scale factor. The positive and negative logits are first adjusted by the periodic
modulation terms and then separately normalized via softmax to produce attention coefficient matrices.
These two matrices are subsequently fused to form the final attention matrix as follows,

A = Softmax(ζ̃)−Λ⊙ Softmax(η̃) ∈ RPb×Pb×Nb , (7)

ζ̃[m,n] = ζ[m,n]−
∑

s∈∆
(b)
m,n

Softplus(ζ[m, s])

︸ ︷︷ ︸
Positive Modulation Term

, η̃[m,n] = η[m,n]−
∑

s∈∇(b)
m,n

Softplus(η[m, s])

︸ ︷︷ ︸
Negative Modulation Term

,

where ζ[m,n] denotes the attention coefficient between the m-th and n-th time steps within a
signal of period Pb, corresponding to the (m,n) -th entry of the attention matrix ζ. We define
the periodic relative distance between m-th and n-th time steps as δbm,n. For a fixed m and n, let
∆p

m,n = {s|δbm,s < δbm,n} ∪ {m} be the set of time steps whose periodic distance to m is smaller
than that between m and n. We aggregate the attention coefficients ζ[m, s] for all s ∈ ∆p

m,n. After
applying the Softplus(·) activation (Zheng et al., 2015), this term encourages the model to produce
attention weights that decay monotonically with increasing periodic distance, thereby reinforcing the
inductive bias toward local periodic structure. The periodic distance is computed as follows:

δbij = min{(i− j) mod Bb, (j − i) mod Bb} ∈ [0, ⌊Bb/2⌋] , (8)

Conversely, the farther apart the periodic positions of the time steps, the greater their negative
correlation. Therefore, the set ∇b

m,n = {s|δbm,s > δbm,n} ∪ {m} includes time steps with larger
periodic relative distances. Then, the negative modulation term is computed as the sum of the attention
coefficients of these time steps and applied to the attention coefficients.

In this manner, PNA ensures that as the periodic relative distance between two time steps increases,
their positive correlation coefficient decreases while their negative correlation coefficient increases.
We provide a mathematical explanation of this favorable property of the periodic-offset atten-
tion, which can be found in Appendix C.2.

The row sums of the generated A are not strictly equal to 1, satisfying:
Bb∑
j=1

A[i, j, n] = 1−Λ < 1, ∀i = {1, . . . ,Bb}; n ∈ {1, . . . , Nb}. (9)

To address it, when generating the final attention, we inject a residual path with residual strength Λh

to stabilize the information flow. Please refer to Equation 11.

Period-aligned Attention Ã To capture dependencies among time steps that are phase-aligned
with the periodicity, we employ a simplified self-attention mechanism. This mechanism shares the
same query, key, and value vectors as the positive component of the period-offset attention, as these
phase-aligned time steps exhibit strong correlations. This process can be expressed as:

Ã = Softmax(µQ1 ×2 K
⊤
1 ) ∈ RPb×Nb×Nb . (10)

where µ is the learnable coefficient.

Multi-head Attention Output We introduce a multi-head mechanism to enhance the model’s
expressiveness. The final computation is as follows:

Multi-Head(Z(b)) = Concat(head1, head2, . . . ,headH)WO, (11)

headh = γhTanh[αh(PNA(Z(b)) +Λh ⊙ Z(b))] + βh, (12)

where H is the number of heads, WO ∈ Rd×d is learnable parameters, and αh ∈ R,γh,βh ∈ R2∗dh

are learnable normalization parameters. ⊙ means Hadamard Product. We use Dynamic Tanh (Zhu
et al., 2025) to eliminate any remaining numerical instability.

A special case involves the variates in the zero bucket, which lack periodicity. For these variates, the
folding operation is skipped. When computing period-aligned attention and period-offset attention,
absolute distance is used instead of periodic distance. The details are represented in Appendix B.
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3.3 BUCKET-WISE FORECASTING

Flatten&Align Let us define the output of the b-th bucket after PNA learning as Z̄(b) ∈ RPb×Nb×d.
Then, we flatten its first two dimensions, and if zero-padding has been applied (i.e., (Pb ∗Nb) > L),
we truncate the padded time steps: RPb×Nb×d → RL×d. Finally, we align the channels to the number
of variates originally in the bucket:

Z̃(b) = Z̄(b)W
(b)
i + b(b) ∈ R|Bb|×L (13)

where W(b) ∈ Rd×|Bb| and b(b) ∈ R|Bb| are learnable parameters. |Bb| denotes the number of
variates in the b-th bucket.

Frequency-based Multi-period Prediction To predict the future value of the c-th variate among
C variates, we first determine which buckets contain this variate based on its Kc period lengths, and
then extract the corresponding bucket representations for prediction, which can be expressed as:

Ŷc =

Kc∑
b=1

α(b)
c Z̃(b)

c ∈ RL, s.t. c ∈ {Bi}Ni=1, (b = 1, . . . ,N ) (14)

α(b)
c = Avg(Softmax(|β(b)

c |)), β(b)
c = Extract

(
FFT(X(b)

c )
)

(15)

where β
(b)
c denotes the spectral magnitude extracted in the frequency domain for period length b.

After normalization, β(b)
c is converted into the weight α(b)

c , which is used to perform a weighted
fusion of the corresponding bucket representation Z̃

(b)
c , yielding the final prediction. Finally, we can

generate the prediction for C variates Ŷ ∈ RC×L.

4 EXPERIMENTS

4.1 EXPERIMENTAL SETUP

Protocol Settings All experiments are performed on an NVIDIA A100 GPU with 80 GB of
memory using PyTorch. For a comprehensive evaluation, we disable the “Drop Last” batch sampling
procedure (Li et al., 2024; Qiu et al., 2024a). Optimization is performed with Adam (Kingma &
Ba, 2014). Mean squared error (MSE) and mean absolute error (MAE) are used for evaluation.
Considering that different models vary in their sensitivity to input history, we treat the look back
length T as a tunable hyperparameter and report the best performance, and also comparisons using a
fixed input length in Section 4.3. The details of hyperparameters are summarized in Table 5.

Table 1: Statistics of used datasets.
Datasets NN5 Exchange FRED-MD ETTh ETTm AQShunyi AQWan ILI CzeLan ZafNoo NASDAQ NYSE
# Samples 791 7,588 728 14,440 57,600 35,064 35,064 966 19,934 19,225 1,244 1,243
# Frequency 1 day 1 day 1 month 1 hour 15 mins 1 hour 1 hour 1 week 30 mins 30 mins 1 day 1 day
Split Ration 7:1:2 7:1:2 7:1:2 6:2:2 6:2:2 6:2:2 6:2:2 7:1:2 7:1:2 7:1:2 7:1:2 7:1:2
Damain Banking Economic Economic Electricity Electricity Environment Environment Health Nature Nature Stock Stock

Datasets We evaluate our method on 15 datasets: 14 real-world benchmarks (NN5, Exchange,
FRED-MD, ETTh1, ETTh2, ETTm1, ETTm2, AQShunyi, AQWan, ILI, CzeLan, ZafNoo, NASDAQ,
NYSE) and one synthetic dataset. Synthetic dataset is constructed by concatenating sequences from
ETTm1 (period 96) and ETTh1 (period 24) along the time axis to simulate varying periodicities
(see Appendix D.3). To account for varying dataset sizes, we adopt two evaluation regimes: for
datasets with fewer than 5,000 samples, the tunable range of look back length is T ∈ {36, 104} and
forecasting horizons are L ∈ {24, 36, 48, 60}; for larger datasets, the tunable range of look back
length is T ∈ {96, 336, 512} and forecasting horizons are L ∈ {96, 192, 336, 720}. Dataset statistics
are summarized in Table 1.

Baselines We compare our model with 18 advanced multivariate time series forecasting baselines
including TimeKAN (Huang et al., 2025), xPatch (Stitsyuk & Choi, 2025), Amplifier (Fei et al.,
2025), CycleNet (Lin et al., 2024a), TimeMixer (Wang et al., 2024c), SparseTSF (Lin et al., 2024b),
iTransformer (Liu et al., 2023), Pathformer (Chen et al., 2024), PDF (Dai et al., 2024), FITS (Xu
et al., 2023), PatchTST (Nie et al., 2022), Crossformer (Zhang & Yan, 2023), NLinear (Zeng et al.,
2023), TimesNet (Wu et al., 2022a), FEDformer (Zhou et al., 2022b), Triformer (Cirstea et al., 2022),
FiLM (Zhou et al., 2022a) and Non-stationary Transformer (Liu et al., 2022b).
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Table 2: Multivariate time series forecasting performance comparison. We report average MSE and
MAE. Best results are bold , second-best are underlined .
Methods Ours TimeKan xPatch Amplifier CycleNet TimeMixer SparseTSF iTransformer Pathformer PDF

2025 2025 2025 2025 2024 2024 2024 2024 2024 2024
Metrics MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE

E
T

T
h

96 0.316 0.356 0.324 0.37 0.327 0.364 0.334 0.377 0.327 0.369 0.327 0.376 0.322 0.364 0.342 0.377 0.326 0.364 0.318 0.366
192 0.360 0.394 0.364 0.399 0.384 0.403 0.381 0.407 0.374 0.400 0.381 0.409 0.371 0.395 0.398 0.422 0.377 0.398 0.366 0.398
336 0.384 0.412 0.394 0.421 0.420 0.427 0.413 0.435 0.401 0.422 0.402 0.432 0.387 0.408 0.419 0.439 0.408 0.421 0.396 0.421
720 0.412 0.441 0.425 0.453 0.456 0.460 0.431 0.456 0.438 0.458 0.444 0.46 0.402 0.431 0.460 0.466 0.444 0.459 0.427 0.448

E
T

T
m

96 0.224 0.288 0.225 0.3 0.225 0.291 0.233 0.303 0.229 0.298 0.229 0.301 0.241 0.306 0.238 0.31 0.227 0.293 0.225 0.296
192 0.272 0.323 0.285 0.334 0.276 0.325 0.277 0.333 0.274 0.327 0.280 0.335 0.284 0.334 0.292 0.346 0.278 0.323 0.270 0.327
336 0.311 0.349 0.316 0.358 0.320 0.352 0.321 0.359 0.319 0.354 0.323 0.359 0.323 0.357 0.328 0.367 0.322 0.352 0.312 0.357
720 0.388 0.392 0.380 0.402 0.401 0.405 0.393 0.404 0.390 0.398 0.393 0.402 0.398 0.402 0.402 0.412 0.395 0.397 0.379 0.399

N
N

5

24 0.681 0.551 0.769 0.605 0.853 0.663 1.400 0.910 0.754 0.588 0.723 0.574 1.679 1.026 0.727 0.568 0.769 0.602 0.736 0.579
36 0.640 0.538 0.7 0.585 0.785 0.634 1.268 0.862 0.687 0.571 0.657 0.557 1.789 1.066 0.664 0.552 0.701 0.583 0.676 0.567
48 0.613 0.532 0.659 0.565 0.716 0.601 1.202 0.842 0.656 0.564 0.630 0.55 1.982 1.097 0.633 0.543 0.668 0.573 0.616 0.538
60 0.603 0.531 0.651 0.568 0.673 0.579 1.237 0.861 0.642 0.568 0.612 0.543 1.734 1.046 0.615 0.537 0.655 0.570 0.599 0.533

E
xc

ha
ng

e 96 0.083 0.203 0.089 0.208 0.087 0.204 0.084 0.203 0.093 0.216 0.084 0.207 0.116 0.243 0.086 0.205 0.088 0.208 0.083 0.200
192 0.169 0.295 0.183 0.304 0.188 0.306 0.179 0.300 0.184 0.307 0.178 0.300 0.203 0.325 0.177 0.299 0.183 0.304 0.172 0.294
336 0.316 0.406 0.338 0.421 0.332 0.422 0.337 0.419 0.329 0.416 0.376 0.451 0.3600 0.437 0.331 0.417 0.354 0.429 0.323 0.411
720 0.773 0.669 0.918 0.719 0.899 0.718 0.929 0.719 0.854 0.698 0.884 0.707 0.882 0.714 0.846 0.693 0.909 0.716 0.820 0.682

FR
E

D
-M

D 24 21.495 0.903 25.178 0.875 35.290 1.030 42.125 1.192 31.558 0.945 29.132 0.93 66.664 1.55 28.581 0.917 43.434 1.142 30.949 0.936
36 38.363 1.161 45.811 1.194 52.339 1.262 70.560 1.525 56.633 1.285 58.770 1.33 96.051 1.841 54.221 1.276 70.370 1.441 56.870 1.276
48 52.065 1.453 76.144 1.542 73.426 1.495 102.150 1.825 124.077 2.043 90.283 1.632 139.333 2.175 89.574 1.607 96.827 1.728 88.240 1.615
60 76.292 1.679 96.139 1.736 103.023 1.778 145.867 2.176 172.747 2.411 126.438 1.865 190.400 2.526 130.061 1.947 134.397 2.023 131.531 1.884

A
Q

Sh
un

yi 96 0.665 0.468 0.651 0.478 0.663 0.469 0.667 0.489 0.653 0.484 0.654 0.483 0.696 0.509 0.650 0.479 0.667 0.472 0.647 0.481
192 0.707 0.488 0.689 0.497 0.708 0.492 0.702 0.505 0.699 0.502 0.700 0.498 0.719 0.521 0.693 0.498 0.707 0.491 0.690 0.499
336 0.737 0.502 0.712 0.512 0.741 0.506 0.718 0.511 0.719 0.514 0.715 0.510 0.728 0.525 0.713 0.510 0.732 0.503 0.708 0.512
720 0.795 0.529 0.763 0.531 0.790 0.532 0.765 0.537 0.774 0.540 0.756 0.534 0.784 0.552 0.766 0.537 0.783 0.515 0.765 0.537

A
Q

W
an

96 0.746 0.452 0.749 0.467 0.752 0.455 0.762 0.478 0.758 0.473 0.744 0.468 0.796 0.497 0.747 0.470 0.761 0.458 0.747 0.469
192 0.808 0.475 0.791 0.488 0.803 0.479 0.806 0.493 0.804 0.492 0.804 0.488 0.820 0.509 0.787 0.486 0.801 0.478 0.794 0.489
336 0.824 0.487 0.815 0.497 0.833 0.490 0.821 0.500 0.826 0.503 0.813 0.500 0.837 0.514 0.814 0.497 0.821 0.488 0.817 0.500
720 0.907 0.517 0.888 0.527 0.906 0.522 0.894 0.530 0.899 0.532 0.878 0.522 0.907 0.543 0.889 0.529 0.888 0.506 0.885 0.527

IL
I

24 1.318 0.705 2.176 0.928 2.320 1.017 2.950 1.220 2.195 1.023 1.804 0.820 4.917 1.660 1.783 0.846 2.086 0.922 1.801 0.874
36 1.523 0.775 2.166 0.993 2.255 1.011 2.759 1.187 1.971 0.942 1.891 0.926 4.377 1.518 1.746 0.860 1.912 0.882 1.743 0.867
48 1.437 0.775 2.011 0.928 2.221 1.004 2.821 1.199 1.950 0.951 1.752 0.866 4.412 1.525 1.716 0.898 1.985 0.905 1.843 0.926
60 1.461 0.777 2.010 0.967 2.269 1.013 2.857 1.196 1.996 0.966 1.831 0.930 4.497 1.521 2.183 0.963 1.999 0.929 1.845 0.925

C
ze

L
an

96 0.170 0.204 0.197 0.248 0.173 0.205 0.174 0.223 0.178 0.229 0.175 0.230 0.205 0.256 0.177 0.239 0.172 0.213 0.177 0.232
192 0.206 0.227 0.203 0.257 0.196 0.228 0.204 0.251 0.209 0.252 0.206 0.254 0.223 0.284 0.201 0.257 0.207 0.236 0.205 0.252
336 0.236 0.254 0.239 0.291 0.218 0.256 0.232 0.274 0.242 0.280 0.230 0.277 0.261 0.308 0.232 0.282 0.240 0.262 0.232 0.277
720 0.285 0.293 0.248 0.308 0.258 0.296 0.254 0.325 0.282 0.315 0.262 0.309 0.330 0.362 0.261 0.311 0.288 0.298 0.273 0.310

Z
af

N
oo

96 0.439 0.383 0.427 0.398 0.433 0.396 0.443 0.404 0.446 0.409 0.441 0.396 0.510 0.452 0.439 0.408 0.435 0.391 0.438 0.401
192 0.503 0.429 0.485 0.433 0.498 0.437 0.495 0.442 0.503 0.445 0.498 0.444 0.542 0.475 0.505 0.443 0.501 0.432 0.498 0.440
336 0.547 0.456 0.533 0.464 0.541 0.463 0.545 0.469 0.543 0.467 0.543 0.466 0.586 0.493 0.555 0.473 0.551 0.461 0.545 0.463
720 0.592 0.477 0.606 0.503 0.595 0.478 0.590 0.496 0.584 0.490 0.588 0.498 0.616 0.514 0.591 0.501 0.596 0.483 0.580 0.486

N
A

SD
A

Q 24 0.416 0.473 0.541 0.517 0.503 0.500 0.753 0.630 0.631 0.570 0.720 0.612 1.363 0.876 0.570 0.540 0.572 0.568 0.611 0.541
36 0.610 0.600 1.013 0.732 0.865 0.665 1.179 0.784 0.886 0.675 0.951 0.699 1.223 0.854 0.691 0.600 0.836 0.683 0.862 0.683
48 0.949 0.731 1.202 0.779 1.128 0.794 1.425 0.881 1.321 0.854 1.214 0.795 1.310 0.884 1.188 0.773 1.227 0.798 1.235 0.803
60 0.961 0.779 1.414 0.846 1.445 0.836 1.352 0.862 1.535 0.888 1.136 0.817 1.110 0.818 1.325 0.820 1.421 0.855 1.426 0.841

N
Y

SE

24 0.161 0.251 0.224 0.304 0.210 0.296 0.280 0.362 0.237 0.314 0.253 0.369 0.512 0.497 0.225 0.302 1.102 0.814 0.261 0.331
36 0.298 0.352 0.322 0.360 0.366 0.387 0.640 0.599 0.395 0.411 0.638 0.621 0.669 0.566 0.392 0.409 1.598 1.002 0.385 0.406
48 0.445 0.427 0.475 0.447 0.693 0.558 0.761 0.599 0.555 0.484 0.747 0.663 0.937 0.691 0.529 0.480 1.910 1.116 0.689 0.562
60 0.619 0.525 0.660 0.534 0.886 0.646 0.950 0.685 0.759 0.584 1.027 0.807 1.219 0.814 0.687 0.557 2.123 1.188 0.810 0.616

# Top1 71 6 2 0 0 4 3 2 3 9
# Top2 81 23 24 4 1 13 7 12 14 24

4.2 FORECASTING PERFORMANCE COMPARISON

Due to space limitations, we averaged the results for ETTh1 and ETTh2 (denoted as ETTh) as well
as ETTm1 and ETTm2 (denoted as ETTm). Complete results and additional baseline comparison
experiments can be found in Appendix 7.

As shown in Table 2, among the advanced baselines, TimeKAN leverages the Kolmogorov-Arnold
network to approximate the complex nonlinear dynamics in time series, demonstrating effective ex-
pressive power. xPatch introduces exponential seasonal-trend decomposition and amplifies low-energy
components in the spectrum, thereby enhancing sensitivity to subtle signals. Some architectures
emphasize periodicity modeling. For example, PDF incorporates a multi-scale patch strategy to
jointly capture periodic features, while TimeMixer introduces multi-scale modeling techniques,
achieving remarkable performance. In the next section, we provide a detailed comparison of these
periodicity-learning models’ performance on datasets with periodic heterogeneity. In conclusion,
due to its strong adaptability to periodic heterogeneity, PHAT achieves SOTA performance. Notably,
on the NYSE dataset, it improves MSE by up to 23.33%. It achieves the best results on 73.95% of
metrics and ranks in the top two for 84.38% of metrics in Table 7.

7



Published as a conference paper at ICLR 2026

4.3 COMPARISON WITH FIXED INPUT LENGTH SETTINGS

The handling of input windows in time series forecasting tasks has always been flexible. In our
experiments, we treated the historical window length as a hyperparameter, allowing models to flexibly
select the length based on their own characteristics. We believe that this approach provides a more
comprehensive evaluation. In contrast, maintaining a fixed input window length avoids fairness
concerns arising from unequal usage of historical information across models. Here, we do not assess
the advantages or disadvantages of these two settings. Instead, we further supplement a comparison
under the fixed look back window setting, with the results presented below. As shown in Table 3, Our
model still achieves the best performance.

Table 3: Comparison in the same input setting. ETTh1 is 96 to 96 and the others are 24 to 36.

Dataset Ours TimeKAN xPatch Amplifer CycleNet TimeMixer SparseTSF iTransformer Pathformer PDF

ETTh1
MSE 0.375 0.378 0.379 0.443 0.400 0.381 0.400 0.386 0.386 0.378
MAE 0.389 0.402 0.401 0.428 0.415 0.397 0.403 0.405 0.392 0.396

ILI
MSE 2.062 2.857 2.704 3.455 2.955 2.015 5.498 2.112 2.906 2.168
MAE 0.876 1.053 1.064 1.296 1.195 0.863 1.777 0.885 1.154 0.899

NASDAQ
MSE 0.606 0.610 0.616 0.752 0.967 0.619 1.363 0.615 0.643 0.624
MAE 0.534 0.542 0.539 0.629 0.729 0.546 0.876 0.546 0.578 0.550

4.4 ABLATION STUDIES

We design several ablation variants of PHAT to validate the contribution of its key components.
Specifically, “w/o POA” removes the period-offset attention branch from PNA, while “w/o PAA”
eliminates the period-aligned attention branch. “w/o Attn” cancels the self-attention mechanism
entirely, reducing it to a single feed-forward net. “w/o Bucket" disables the period-based variate
grouping, treating each variate independently rather than within its detected period bucket.

As shown in Figure 3 (a) (where taller bars indicate lower MSE for intuitive display), the “w/o
Bucket" variant exhibits significantly larger prediction errors, indicating that interactions between
variates with different periodic characteristics increase the difficulty of capturing complex periodic
patterns. The poor performance of the “w/o PAA” variant highlights the importance of cross-period
synchronization signals at the same phase, especially on datasets with weaker periodicity, such as
NN5 and CzeLan. “w/o POA” variant achieves extremely poor predictive performance. We further
conducted ablation experiments on the combination of periodic offset attention, and the results are
shown in Table 10. We found that modeling dependencies between time steps from both positive and
negative perspectives is beneficial. Additionally, the modulators configured for each perspective help
generate attention coefficients that align more closely with periodic trends. Detailed comparison of
combination ablation study on additional datasets is in Appendix D.7.

T
o
p
𝐾

#
 P

N
A

 L
ay

er

ILI (𝐿 = 24)ETTh1 (𝐿 = 96) NN5 (𝐿 = 24)

(b) Hyperparameter sensitivity experiments of the number of PNA layers

(upper) and the number of periods K (lower). The highlight star ‘   ’ is the

corresponding optimal hyperparameters.(a) Ablation study.

Figure 3: Ablation study and hyperparameters sensitivity experiments of phats

4.5 HYPERPARAMETER SENSITIVITY EXPERIMENTS

We further investigate the sensitivity of two key hyperparameters: the number of PNA layers and
the number of cycle lengths K selected for each variate, as shown in Figure 3. Experimental results
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(Figure 3 (b-upper)) show that our model achieves strong performance with just one or two layers,
thanks to the periodic bucket structure and the PNA mechanism, which effectively capture periodic
patterns. In contrast, adding more Transformer layers brings little gain and may even hurt performance
due to overfitting. As for the hyperparameter K, Figure 3(b-lower) shows that on datasets with simple
periodicity, a single dominant period (K=1) is often sufficient. Using more periods tends to introduce
noise and degrade prediction accuracy.

4.6 COMPLEXITY ANALYSIS

We evaluate PHAT against advanced baselines on two datasets. As summarized in Table 4, PHAT
achieves the best forecasting accuracy while substantially reducing model complexity. Compared with
Transformer-based methods (e.g., PatchTST, PDF) and recently advanced methods (e.g. TimeKAN,
xPatch), PHAT cuts parameter counts by more than an order of magnitude and reduces MACs
and FLOPs by over 98%. Even compared to lightweight architectures like TimeKAN, PHAT
retains a Transformer-style backbone while reducing the parameter count by up to 91.27% with
competitive inference latency. Because the computational cost of our attention scales with the square
of the detected period length rather than with the full input sequence, so long sequences remain
inexpensive to process. In practice, PHAT also typically requires only a single layer to capture
temporal dependencies effectively.

Table 4: Computational Complexity Comparison. # Para: All learnable parameters requiring gradient
descent. MACs: multiply–accumulate operations. # FLOPs: floating point operations. K: Kilo (103).
M: Million (106). B: Billion (109). Inf: actual inference latency (s).

Models MAE # Para # MACs # FLOPs Inf lat Models MAE # Para # MACs # FLOPs Inf lat

E
T

T
m

1
(L

=
96

) FEDformer 0.463 3.4 M 1.7 B 1.3 B 20.044 s

E
T

T
h1

(L
=

72
0)

FEDformer 0.488 16.8 M 111.9 B 95.7 B 0.480 s
TimesNet 0.378 2.4 M 72.2 B 72.2 B 3.348 s TimesNet 0.495 665.9 K 77.0 B 76.9 B 1.022 s
Crossformer 0.367 2.1 M 13.5 B 14.3 B 1.806 s Crossformer 0.514 11.6 M 60.4 B 61.5 B 4.031 s
PDF 0.340 2.0 M 4.4 B 4.6 B 4.234 s PDF 0.462 534.2 K 1.6 B 1.6 B 0.351 s
TimeMixer 0.345 397.3 K 3.2 B 3.1 B 3.967 s TimeMixer 0.484 2.3 M 34.0 B 34.0 B 0.891 s
TimeKAN 0.346 52.8 K 205.4 M 455.0 M 6.542 s TimeKAN 0.463 374.4 K 1.4 B 1.7 B 1.934 s
PHAT 0.330 33.4 K 2.9 M 7.0 M 1.671 s PHAT 0.458 32.7 K 3.7 M 16.5 M 0.462 s

4.7 VISUALIZATION OF PERIODIC POSITIVE-NEGATIVE COMPONENTS IN DATA, FEATURE,
AND ATTENTION LEVELS

In this subsection, we further demonstrate that positive-negative periodic correlation indeed exist at
all multiple levels. We provide comprehensive experimental analysis at three levels-sequence, feature,
and attention—to support our motivation on ETTh1 dataset of variates with daily period and NN5
with weekly period.

❶ Sequence Level. We visualize the autocorrelation function (ACF) of the original time series data
X, which clearly demonstrates the presence of both positive and negative correlations between time
steps.

❷ Feature Level. We computed the autocorrelation function for each time step in the bucket
representation Z(b). As shown in Figure 4 (a), across each hidden feature dimension, the resulting
high-dimensional features continue to exhibit negative correlation, indicating that the positive and
negative correlations present in the original signals persist after the complex-valued linear projection.

❸ Attention Level. We aim to demonstrate two points: (1) attention coefficients do contain negative
components; and (2) the softmax operation tends to smooth out or suppress these negative components.
As shown in Figure 4 (b) and (c), we visualized PHAT model’s attention logits before and after
the softmax, and compared them with a control variant in which our positive–negative attention is
replaced by standard self-attention. The results show that before softmax, both models’ logits exhibit
clear positive and negative components; after softmax, the negative components of the standard
self-attention nearly vanish, whereas our attention preserves negative correlations.

In contrast, our PNA mechanism preserves these negative correlations by separately modulating the
positive and negative pathways, which is beneficial for capturing the complete periodic structure.
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Sequence level Feature level Attention level

(a) ACF on input raw time series data 𝐗 (left) and bucket 

representation 𝐙(𝑏) (right).

(b) Vanilla self-attention logits of 𝐐𝐊⊤ (left) and 

Softmax 𝜇𝐐𝐊⊤ (right).
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(c) Period-offset 

Attention in PHAT.

Attention level

Figure 4: Multi-level visualizations on raw-sequence level, feature level and attention level.

4.8 ATTENTION VISUALIZATION

As shown in Figure 5, we illustrate the autocorrelation coefficients between different time steps
within a time series (left side) for various datasets, while the right side visualizes the corresponding
cycle-shifted attention weights generated by our method. The attention matrix exhibits a clear periodic
structure: bright bands represent positive attention, dark bands represent negative attention, and green
areas indicate zero attention. We can observe that the trend between our generated attention matrix
and the periodic correlation of time series data is consistent, demonstrating the ability to capture
underlying periodic structures. For time series with weaker negative periodicity (such as ZafNoo),
there are fewer negative dark regions in the attention. For non-periodic time series (such as those
from the ETTh2 and NASDAQ datasets), our cycle-shifted attention mechanism naturally degrades
to focus on each individual time step. Overall, our method effectively captures the periodic dynamics
of time series.

ETTh2 (a day)

NN5 (a week)

ETTh1 (a day)

ILI (a year) NASDAQ (None)

ZafNoo (half day)

Figure 5: Autocorrelation function (left) and periodic-offset attention weights (right). Highlighted
regions denote positive components; dark regions denote negative components.

5 CONCLUSION

In this paper, we identify the challenge of periodic heterogeneity, where the periodic characteristics
of variates within a dataset differ. To address this, we propose a Periodic Heterogeneity-Aware
Transformer (PHAT). PHAT employs a periodic bucket structure to manage multivariate time series
with heterogeneous periodicity. By introducing the periodic bucket mechanism and the novel
Positive-Negative Attention (PNA) module, PHAT is able to seamlessly and accurately model
heterogeneous periodic patterns while capturing both positive and negative phase dependencies.
Extensive experiments conducted on 14 real-world datasets demonstrate that PHAT achieves state-of-
the-art performance across most evaluation metrics.
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A RELATED WORK

Multivariate Time Series Forecasting Deep learning has become the dominant paradigm for multi-
variate time series (MTS) forecasting thanks to its ability to model nonlinear dynamics and long-range
dependencies (Mendis et al., 2024; Liang et al., 2024; Ma et al., 2025f;c). Researchers have developed
numerous specialized and general-purpose methods for time series modeling architectures (Qiu et al.,
2024b; Ma et al., 2026b; Kim et al., 2021), optimization techniques (Qiu et al., 2025; Wang et al.,
2024a; Ma et al., 2025e), and inference strategies (Christou et al., 2024; Ma et al., 2026a). Early
solutions relied on recurrent architectures (e.g., LSTM, GRU) or convolutional models such as TCN
(Siami-Namini et al., 2019; Hewage et al., 2020). More recently, the Transformer has emerged as
a popular backbone, offering flexible global dependency modeling for sequence-to-sequence tasks
and coming to dominate the field (Wen et al., 2022). For example, ModernTCN (Luo & Wang,
2024) uses large convolutional kernels to substantially widen the receptive field and capture broader
temporal dependencies, while Pyraformer (Liu et al., 2022a) combines TCN layers with a Transformer
backbone to model both local and global patterns.

At the same time, lightweight MLP-based models have gained traction by achieving strong forecasting
performance with lower computational cost. DLinear (Zeng et al., 2023) decomposes series into trend
and seasonal components via a moving-average kernel and models each with separate linear modules;
PatchMLP (Tang & Zhang, 2025) introduces a patch-based approach and channel mixing to enhance
inter-variate communication; and HDMixer (Huang et al., 2024a) employs flexible patch lengths to
capture short-term dependencies within patches and long-term dependencies across patches while
better modeling cross-variate interactions. Overall, Transformer and lightweight MLP approaches
present complementary trade-offs between representational capacity and computational efficiency.

Transformers for Time Series. Although the Transformer architecture has shown significant promise,
it poses challenges such as high computational complexity (Zhang & Yan, 2023; Wu et al., 2021; Ma
et al., 2025g). To mitigate this, various approaches have been proposed to modify the self-attention
mechanism, incorporating techniques like distillation and temporal decomposition to reduce computa-
tional demands (Zhou et al., 2021; 2022b; Ma et al., 2025a). LogTrans (Li et al., 2019) introducing a
convolutional LogSparse attention that ensured long-distance interactions while reducing the number
of interactions, is an early and influential attempt to apply Transformer. Informer (Zhou et al., 2021)
proposes ProbSparse attention while combining with a distillation mechanism to select the most
representative query vectors to compute the attention scores. More recently, researchers have inte-
grated signal processing methods with Transformers, leveraging techniques such as signal frequency
analysis and decomposition (Piao et al., 2024; Zeng et al., 2023). These advancements have enabled
models to more effectively capture and analyze the structural characteristics of time series data.
However, the softmax operation in Transformers filters out negatively correlated signals—preserving
only positive correlations—which leads to a loss of information.

B THE BUCKET WITHOUT PERIODICITY

Not all variates in a multivariate time series exhibit clear periodic behavior. To account for such
cases, we introduce a dedicated bucket B0, which collects all variates whose Fourier spectra do not
reveal statistically significant periodicity. Although B0 does not correspond to any explicit cycle, it is
still processed through the proposed PNA to maintain architectural consistency and allow residual
correlations to be captured. For notational convenience, we continue to use the terms period-offset
and period-aligned to denote the two orthogonal attention directions, even though no true period
exists. Concretely, learning for bucket B0 differs from periodic buckets in two key aspects:

❶ No segmentation into periodic fragments. Since B0 has no detected period length, we do not
segment its sequences into smaller fragments. Instead, each variate j is withour any padding and
folding operation preserving the full temporal structure without periodic folding.

❷ Offset attention with absolute distance. In the absence of periodic structure, the offset axis is
defined by absolute temporal distance as follows,

δ0ij = |j − i| ∈ [0, L− 1] , (16)

18



Published as a conference paper at ICLR 2026

where the period-offset attention is also coupled with positive attention and negative attention with
the same modulation as in periodic buckets. This allows PHAT to still capture local autocorrelations
and longer-range and potential temporal recurrences.

An important consequence is that the period-aligned attention matrix degenerates into the identity
since the period-aligned attention matrix Ã ∈ RL×1×1 after softmax normalization along the last
axis, all entries are equal to 1. Thus, the PNA attention in B0 is equal to,

PNA(Z(0)) = A×1

(
Ã×2 V

)
= A×1 V ∈ RL×1×d, (17)

Overall, this design ensures that variates without periodicity are handled consistently within the
PHAT framework: they bypass unnecessary folding while still benefiting from offset-based attention
to capture temporal dependencies. By unifying both periodic and non-periodic buckets under the
same framework, PHAT achieves robustness across diverse real-world datasets where not all signals
are strictly cyclical.

C MATHEMATICAL JUSTIFICATION

In this section, we provide mathematical justification to clarify the motivation of PHAT and to
address concerns raised during the review process. Section C.1 definite the Period Heterogeneity
by mathematical formulation. Section C.2 shows that period-offset attention exhibits periodic
behavior aligned with the autocorrelation periodicity of time series. Section C.3 demonstrates that
decomposition of positive and negative paths yields strictly lower variance than vanilla attention,
offering a clearer learning-theoretic rationale for the effectiveness of our method.

C.1 A MATHEMATICS DEFINITION OF PERIOD HETEROGENEITY

Here we formally defines period heterogeneity.

Definition: Period Heterogeneity. Period heterogeneity refers to the phenomenon where different
variates exhibit distinct periodic lengths and periodic correlation patterns.

❶ Different periodic lengths. There exist two variates ci and cj whose dominant periods differ, i.e.,

Pci ̸= Pcj , (18)

where Pci and Pcj denote their corresponding fundamental period lengths.

❷ Different periodic correlations. Although periodic patterns are commonly characterized by the
presence of correlations across specific time lags, existing models typically overlook the sign of such
correlations. In particular, real-world sequences may exhibit negative correlations between certain
time steps within a period. Let ρc(δ) = ACF(xc,t, xc,t+δ) denote the autocorrelation function of
variate c at lag δ within a single period. Then this kind of period heterogeneity exists if there exist a
variate c∗ such that

sign(ρc∗(⌊P/2⌋)) ≪ 0. (19)

This definition reminds us that modeling period heterogeneity not only need to differences in period
lengths among variates, but also to the diversity of period correlation patterns—ranging from purely
positive correlations to positive and negative correlation patterns.

C.2 A STATISTICAL INTERPRETATION OF PERIOD-OFFSET ATTENTION (ANOTHER VIEW)

In this subsection, we will show that period-offset attention aligns with the inductive bias of auto-
correlation in real-world time series by separating positive and negative paths and assigning them
different modulation types. In addition, through a statistical stick-breaking perspective (Ren et al.,
2011), we provide an interpretable view of the mechanism and show that the upper bound of the
attention logits is monotonic with respect to the period distance.
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Proposition. Period-offset Attention as a Stick-breaking Allocation Let ζ[m,n] and η[m,n]
denote the raw positive and negative logit between time steps m and n within a detected period of
length Pb, receptively. Define the modulated positive and negative logits of the period-offset attention
as

ζ̃[m,n] = ζ[m,n]−
∑

s∈∆
(b)
m,n

Softplus(ζ[m, s]), (20)

η̃[m,n] = η[m,n]−
∑

s∈∇(b)
m,n

Softplus(η[m, s]), (21)

where ∆
(b)
m,n = {s | δbm,s < δbm,n} ∪ {n} and ∇(b)

m,n = {s | δbm,s > δbm,n} ∪ {n} is the set of offsets
closer and farther to m than n under corresponding distance δbm,s. Then, before the normalization
step in softmax, the exponentiated logits satisfy the following stick-breaking decomposition (Ren
et al., 2011):

exp(ζ̃[m,n]) = σ(ζ[m,n])
∏

{s|δm,s<δm,n}

(1− σ(ζ[m, s])), (22)

exp(η̃[m,n]) = σ(η[m,n])
∏

{s|δm,s>δm,n}

(1− σ(η[m, s])), (23)

where σ(·) denotes the sigmoid function.

Proof of Proposition: The logits from positive branch of period-offset attention is,

ζ̃[m,n]

=ζ[m,n]−
∑

s∈∆
(b)
m,n

Softplus(ζ[m, s])

=ζ[m,n]−
∑

s∈∆
(b)
m,n

ln (1 + exp (ζ[m, s]))

=ζ[m,n]− ln (1 + exp (ζ[m,n]))−
∑

s∈∆
(b)
m,n−{n}

ln (1 + exp (ζ[m, s]))

= ln (
exp (ζ[m,n])

1 + exp (ζ[m,n])
) +

∑
s∈∆

(b)
m,n−{n}

ln (
1

1 + exp (ζ[m, s])
)

= ln (
1

1 + exp−1 (ζ[m,n])
) +

∑
s∈∆

(b)
m,n−{n}

ln (1− exp (ζ[m, s])

1 + exp (ζ[m, s])
)

= ln (σ(ζ[m,n])) +
∑

s∈∆
(b)
m,n−{n}

ln (1− 1

1 + exp−1 (ζ[m, s])
)

= ln (σ(ζ[m,n])) +
∑

s∈∆
(b)
m,n−{n}

ln (1− σ(ζ[m, s]),

(24)

where σ(·) is the sigmoid function and set ∆(b)
m,n − {n} = {s|δbm,s < δbm,n} means all of the closer

time step from m than n. Hence before the normalization operator in Softamax(·), the postie logits
are activated by exponential function satisfying,

exp (ζ̃[m,n]) = exp (ln (σ(ζ[m,n])) ∗ exp (
∑

{s|δm,s<δm,n}

ln (1− σ(ζ[m, s])))

= exp (ln (σ(ζ[m,n])) ∗
∏

{s|δm,s<δm,n}

exp (ln (1− σ(ζ[m, s])))

=σ(ζ[m,n]) ∗
∏

{s|δm,s<δm,n}

(1− σ(ζ[m, s])).

(25)
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The proof of the situation of negative logits is similar.

This identity reveals that the unnormalized attention coefficient assigned to time step n is exactly
a stick–breaking allocation. Attention coefficient is allocated sequentially in the order of periodic
distance: nearby offsets consume mass first, while farther offsets only receive the leftover. Unlike
standard dot-product attention, which distributes weights independently, our period-offset formulation
embeds a period-aware stick-breaking bias, yielding structured sparsity, interpretability, and inductive
alignment with the autocorrelation structure of time series.

Corollary: Local dominance of periodic distance

From Proposition 1, it follows that for any reference time step m, the allocation weight to
time step n in period-offset attention is strictly upper-bounded by the leftover stick mass after
all closer offsets have been considered:

exp(ζ̃[m,n]) <
∏

{s|δm,s<δm,n}

(1− σ(ζ[m, s])), (26)

exp(η̃[m,n]) <
∏

{s|δm,s>δm,n}

(1− σ(η[m, s])), (27)

This corollary formalizes the intuition that local periodic dependencies are always prioritized: nearby
(far away) time steps consume most of the positive (negative) attention budget, and more distant steps
are suppressed unless strongly supported by their logits. This guarantees that period-offset attention
respects the inductive bias of autocorrelation in real-world time series, where closer (farther) periodic
positions tend to carry stronger positive (negative) correlations.

C.3 THE VARIANCE OF PERIOD-OFFSET ATTENTION UNDER PERIOD HETEROGENEITY

As the request from reviewer tCVf, we add a brief learning-theoretic argument to further strengthen the
theoretical contribution. Let the vanilla attention between steps i and j be Aij = Softmax(µQiK

⊤
j )

with variance V[Aij ] = σ2. Period-offset attention decomposes this interaction into positive and
negative paths, leading to

V[Āij ] = (1− Λij)σ
2, (28)

where Λij ∈ (0, 1) when periodic heterogeneity induces a non-zero negative path. Thus, period-offset
attention yields strictly lower variance than vanilla attention. This provides a clear learning-theoretic
intuition: the positive and negative decomposition reduces attention-logit variance in heterogeneous
periodic settings, producing more stable and accurate estimates than vanilla attention.

D EXPERIMENTS

D.1 EXPERIMENTS DETAILS

We report the detailed hyperparameters of our model in Table 5. All experiments were conducted on
a single NVIDIA A100 GPU with 80 GB of memory using PyTorch. Forecasting performance was
evaluated using mean squared error (MSE) and mean absolute error (MAE). For a comprehensive
assessment, we disabled the “Drop Last” batch sampling procedure (Li et al., 2024; Qiu et al.,
2024a) and trained models with the Adam optimizer (Kingma & Ba, 2014). Because models vary in
sensitivity to input history, the look back length T was treated as a tunable hyperparameter and each
model’s best performance is reported. Hyperparameter settings are summarized in Table 5.

D.2 DATASET PERIODICITY TEST

We further visualize temporal correlations across multiple datasets. We use the Autocorrelation
Function (Dégerine & Lambert-Lacroix, 2003) to analyze the autoregressiveness between time steps.
As shown in Figure 6, most datasets exhibit complex periodic heterogeneity. For example, in the
ETTh1 dataset, variate 3 shows only positively correlated periodicity, while variate 4 demonstrates
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Table 5: Optimal hyperparameters on our experiments.

Hyperparameters NN5 Exchange FRED-MD ETTh1 ETTh2 ETTm1 ETTm2 AQShunyi AQWan ILI CzeLan ZafNoo NASDAQ NYSE
L

=2
4/

96
Batch Size 16 16 16 16 32 8 16 32 32 8 16 16 256 32
Learning Rate 0.01 0.001 0.01 0.001 0.001 0.01 0.01 0.001 0.001 0.001 0.01 0.001 0.01 0.1
Model Dimension 32 4 32 4 4 8 4 8 16 24 4 4 24 4
Layers 1 1 1 2 1 1 1 1 1 1 1 1 1 1
Head Number 2 2 2 4 4 4 2 2 2 2 4 2 4 4
Look Back Window 104 96 36 512 512 336 336 512 512 104 336 336 104 36

L
=3

6/
19

2

Batch Size 256 32 16 16 16 16 16 32 32 64 16 16 16 64
Learning Rate 0.01 0.01 0.01 0.001 0.001 0.01 0.001 0.001 0.0001 0.01 0.0001 0.0001 0.01 0.1
Model Dimension 128 8 96 4 12 8 8 8 8 8 4 6 24 6
Layers 1 1 1 1 1 1 1 1 1 1 1 1 1 1
Head Number 4 4 2 2 2 2 2 2 2 2 4 2 2 2
Look Back Window 104 96 36 512 512 336 336 336 512 104 512 512 104 36

L
=4

8/
33

6

Batch Size 256 64 16 16 32 16 16 32 32 8 16 16 32 64
Learning Rate 0.01 0.01 0.01 0.001 0.01 0.0001 0.001 0.0001 0.001 0.1 0.01 0.0001 0.1 0.1
Model Dimension 64 8 32 4 16 8 8 16 16 8 4 4 8 8
Layers 1 1 1 1 1 1 1 1 1 1 1 1 1 1
Head Number 4 2 2 2 4 2 2 2 2 2 2 2 2 4
Look Back Window 104 96 36 512 336 336 336 336 336 104 336 512 104 36

L
=6

0/
72

0

Batch Size 128 256 32 32 128 16 16 32 32 8 16 16 256 64
Learning Rate 0.01 0.1 0.1 0.001 0.001 0.0001 0.01 0.0001 0.0001 0.01 0.0001 0.001 0.1 0.1
Model Dimension 32 16 32 4 12 4 4 8 8 4 4 4 32 2
Layers 1 1 1 1 1 1 1 1 1 1 1 1 1 1
Head Number 8 2 2 2 4 4 2 4 2 2 2 2 4 2
Look Back Window 104 96 36 336 336 336 336 336 336 104 512 512 104 36
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Figure 6: The autocorrelation visualization of ETT datasets.

a bilateral periodic pattern with both positive and negative correlations, and variate 5 exhibits no
significant periodicity. In contrast, the ETTh2 dataset lacks clear periodicity across the entire dataset.

D.3 SYNTHETIC DATASET

We systematically created a synthetic dataset by combining ETTh1 (with a period of 24) and ETTm1
(with a period of 96), which record data from the same variates but at different time granularities.
Each dataset was divided into four equal parts along the time axis. Then, we alternately sampled
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Table 6: Multivariate forecasting results on 14 datasets. We report MSE and MAE. Best results
are bold , second-best are underlined . The corresponding results on ETTh1 and ETTh2 (denoted
ETTh), ETTm1 and ETTm2 (denoted ETTm) are averaged for better presentation.

Methods Ours FITS PatchTST Crossformer NLinear TimesNet FEDformer Triformer FiLM Stationary
2025 2024 2023 2023 2023 2023 2022 2022 2022 2022

Metrics MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE

E
T

T
h

96 0.316 0.356 0.327 0.371 0.326 0.367 0.570 0.519 0.331 0.371 0.362 0.391 0.358 0.400 0.668 0.543 0.326 0.370 0.469 0.456
192 0.360 0.394 0.366 0.399 0.379 0.405 0.566 0.523 0.384 0.404 0.422 0.428 0.418 0.436 0.867 0.609 0.382 0.409 0.497 0.479
336 0.384 0.412 0.385 0.416 0.404 0.430 0.587 0.543 0.400 0.419 0.456 0.461 0.424 0.462 0.909 0.630 0.403 0.430 0.495 0.482
720 0.412 0.441 0.409 0.442 0.432 0.459 0.945 0.698 0.423 0.447 0.478 0.472 0.479 0.488 1.025 0.690 0.444 0.4645 0.625 0.558

E
T

T
m

96 0.224 0.288 0.234 0.300 0.227 0.299 0.305 0.379 0.232 0.298 0.265 0.322 0.340 0.386 0.313 0.366 0.233 0.299 0.313 0.352
192 0.272 0.323 0.278 0.328 0.275 0.331 0.372 0.413 0.287 0.335 0.323 0.357 0.436 0.438 0.430 0.432 0.280 0.328 0.416 0.412
336 0.311 0.349 0.320 0.355 0.319 0.359 0.501 0.516 0.323 0.356 0.368 0.386 0.492 0.472 0.559 0.498 0.326 0.357 0.505 0.453
720 0.388 0.392 0.390 0.397 0.389 0.402 0.752 0.613 0.396 0.400 0.444 0.428 0.536 0.501 1.209 0.666 0.393 0.400 0.595 0.506

N
N

5

24 0.681 0.551 0.870 0.663 0.740 0.596 0.741 0.591 0.758 0.592 0.739 0.579 0.785 0.618 1.382 0.929 0.846 0.651 1.274 0.900
36 0.640 0.538 0.814 0.655 0.694 0.595 0.703 0.589 0.693 0.577 0.717 0.585 0.727 0.606 1.352 0.920 0.883 0.702 1.318 0.93
48 0.613 0.532 0.780 0.644 0.667 0.585 0.669 0.575 0.688 0.587 0.647 0.558 0.623 0.555 1.348 0.918 0.969 0.741 1.277 0.905
60 0.603 0.531 0.781 0.650 0.653 0.582 0.683 0.587 0.679 0.587 0.633 0.547 0.630 0.559 1.346 0.918 0.633 0.556 1.313 0.927

E
xc

ha
ng

e 96 0.083 0.203 0.082 0.199 0.087 0.204 0.231 0.356 0.085 0.204 0.112 0.242 0.138 0.268 0.201 0.335 0.087 0.210 0.121 0.247
192 0.169 0.295 0.173 0.295 0.177 0.300 0.460 0.509 0.175 0.297 0.209 0.334 0.273 0.379 0.453 0.495 0.182 0.308 0.220 0.337
336 0.316 0.406 0.317 0.406 0.297 0.399 1.034 0.825 0.320 0.409 0.358 0.435 0.437 0.485 0.703 0.630 0.318 0.409 0.352 0.437
720 0.773 0.669 0.825 0.684 0.843 0.692 1.576 1.021 0.838 0.690 0.944 0.736 1.158 0.828 1.395 0.915 0.815 0.681 0.725 0.656

FR
E

D
-M

D 24 21.495 0.903 56.779 1.374 32.808 0.962 385.599 3.559 32.125 0.931 43.219 1.265 66.090 1.623 395.947 5.049 40.183 1.145 47.852 1.238
36 38.363 1.161 97.396 1.774 61.035 1.345 398.728 3.716 58.332 1.258 69.554 1.531 94.359 1.863 412.165 5.210 90.434 1.670 68.140 1.493
48 52.065 1.453 145.471 2.183 91.835 1.648 414.353 3.939 82.184 1.609 95.071 1.810 129.798 2.135 423.926 5.234 131.081 2.119 92.906 1.736
60 76.292 1.679 196.613 2.523 127.018 1.958 422.864 4.093 109.625 1.882 116.341 1.976 173.616 2.435 432.464 5.299 180.367 2.397 117.756 1.929

A
Q

Sh
un

yi 96 0.665 0.468 0.655 0.485 0.646 0.478 0.652 0.484 0.653 0.486 0.658 0.488 0.706 0.525 0.665 0.492 0.664 0.486 0.771 0.518
192 0.707 0.488 0.701 0.503 0.688 0.498 0.674 0.499 0.701 0.506 0.707 0.512 0.729 0.531 0.681 0.501 0.705 0.504 0.775 0.53
336 0.737 0.502 0.720 0.515 0.710 0.513 0.704 0.515 0.722 0.519 0.786 0.538 0.824 0.569 0.731 0.525 0.725 0.517 0.821 0.554
720 0.795 0.529 0.774 0.540 0.768 0.539 0.747 0.518 0.777 0.545 0.756 0.528 0.794 0.561 0.742 0.534 0.782 0.544 0.793 0.547

A
Q

W
an

96 0.746 0.452 0.757 0.473 0.745 0.468 0.750 0.465 0.758 0.475 0.787 0.486 0.796 0.508 0.762 0.474 0.766 0.475 0.872 0.508
192 0.808 0.475 0.806 0.492 0.793 0.490 0.762 0.479 0.809 0.496 0.778 0.489 0.825 0.517 0.786 0.484 0.809 0.494 0.860 0.524
336 0.824 0.487 0.826 0.504 0.819 0.502 0.802 0.504 0.830 0.508 0.815 0.505 0.863 0.537 0.802 0.495 0.831 0.505 0.864 0.532
720 0.907 0.517 0.900 0.532 0.890 0.533 0.829 0.512 0.906 0.538 0.869 0.519 0.907 0.552 0.852 0.519 0.906 0.536 0.897 0.526

IL
I

24 1.318 0.705 2.182 1.002 1.932 0.872 2.981 1.096 1.998 0.919 2.131 0.958 2.398 1.02 6.052 1.730 2.256 0.996 2.394 1.066
36 1.523 0.775 2.330 1.051 1.869 0.866 3.549 1.196 1.920 0.916 2.612 0.974 2.410 1.005 6.111 1.743 2.133 0.992 2.226 1.031
48 1.437 0.775 2.761 1.184 1.891 0.883 3.851 1.288 1.895 0.924 1.916 0.897 2.591 1.033 6.289 1.774 2.034 0.969 2.525 1.003
60 1.461 0.777 2.929 1.217 1.914 0.896 4.692 1.450 1.964 0.947 1.995 0.905 2.539 1.070 7.000 1.893 1.974 0.929 2.410 1.010

C
ze

L
an

96 0.170 0.204 0.187 0.243 0.176 0.232 0.581 0.443 0.178 0.228 0.179 0.239 0.231 0.311 0.818 0.519 0.180 0.232 0.240 0.296
192 0.206 0.227 0.214 0.263 0.205 0.263 0.705 0.503 0.210 0.252 0.216 0.28 0.283 0.349 0.962 0.589 0.212 0.255 0.280 0.315
336 0.236 0.254 0.247 0.292 0.236 0.286 0.971 0.596 0.243 0.280 0.265 0.313 0.298 0.363 1.161 0.659 0.243 0.281 0.311 0.341
720 0.285 0.293 0.291 0.329 0.270 0.316 1.566 0.762 0.290 0.326 0.283 0.338 0.426 0.449 1.496 0.741 0.282 0.312 0.328 0.379

Z
af

N
oo

96 0.439 0.383 0.449 0.412 0.429 0.405 0.430 0.418 0.447 0.410 0.478 0.419 0.476 0.450 0.441 0.419 0.451 0.411 0.524 0.449
192 0.503 0.429 0.511 0.447 0.494 0.449 0.479 0.449 0.503 0.447 0.491 0.445 0.544 0.479 0.493 0.451 0.508 0.448 0.562 0.475
336 0.547 0.456 0.544 0.468 0.538 0.475 0.505 0.464 0.545 0.470 0.551 0.480 0.628 0.523 0.523 0.467 0.549 0.471 0.614 0.502
720 0.592 0.477 0.585 0.491 0.573 0.486 0.560 0.494 0.589 0.497 0.626 0.511 0.653 0.562 0.564 0.491 0.598 0.504 0.692 0.542

N
A

SD
A

Q 24 0.416 0.473 0.709 0.645 0.649 0.567 1.149 0.745 0.557 0.522 0.587 0.533 0.537 0.481 2.737 1.334 0.767 0.645 0.655 0.607
36 0.610 0.600 1.058 0.778 0.821 0.682 1.414 0.885 0.869 0.668 0.792 0.664 0.808 0.628 3.387 1.534 1.379 0.835 0.991 0.695
48 0.949 0.731 1.255 0.834 1.169 0.793 2.108 1.136 1.152 0.770 1.216 0.783 1.137 0.746 3.425 1.555 1.179 0.829 1.260 0.814
60 0.961 0.779 1.153 0.818 1.247 0.843 2.276 1.201 1.284 0.809 1.220 0.768 1.251 0.783 3.313 1.537 1.303 0.853 1.119 0.819

N
Y

SE

24 0.161 0.251 0.301 0.410 0.226 0.296 0.820 0.841 0.193 0.283 0.267 0.335 0.159 0.254 2.353 1.258 0.313 0.364 0.249 0.342
36 0.298 0.352 0.497 0.517 0.380 0.389 0.942 0.904 0.315 0.356 0.376 0.410 0.289 0.344 3.338 1.540 0.390 0.415 0.371 0.403
48 0.445 0.427 0.741 0.633 0.575 0.492 1.049 0.955 0.464 0.438 0.573 0.506 0.477 0.457 4.248 1.733 0.538 0.48 0.521 0.468
60 0.619 0.525 1.036 0.757 0.749 0.572 1.121 0.937 0.631 0.522 0.776 0.629 0.693 0.586 4.696 1.846 0.721 0.563 0.686 0.543

# Top1 68 4 8 10 1 1 3 2 0 1
# Top2 83 14 29 16 20 10 9 7 5 3

each segment to construct the Synthetic, represented as ETTh1[:14 ], ETTm1[ 14 : 12 ], ETTh1[ 12 : 34 ],
ETTm1[ 34 :]. As a result, the synthetic dataset exhibits mixed periodic lengths of (24, 96, 24, 96).

D.4 DETAILED FORECASTING COMPARISON

We present additional benchmark comparison results in Table 6 and provide fine-grained experimental
results for ETTh in Table 7. Among the advanced baseline models, Crossformer achieves strong
predictive performance due to its cross-dimension attention mechanism, which facilitates efficient
modeling of long-term dependencies. PatchTST, on the other hand, introduces self-supervised
learning and adopts a channel-independent strategy to capture complex temporal dynamics. Overall,
PHAT achieves state-of-the-art (SOTA) performance, demonstrating exceptional adaptability to
periodic heterogeneity. It outperforms other models on the majority of metrics, ranking in the top two
positions for 86% of the evaluation metrics, thereby showcasing a significant performance advantage.

D.5 COMPARISON OF PERIODIC HETEROGENEITY MODELING

We further compared the performance of models specializing in periodic modeling under mixed
periodicity scenarios, with results shown in Table 8. ETTh and ETTm exhibit clear periodicity, while
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Table 7: Detailed forecasting results on ETTh1, ETTh2, ETTm1 and ETTm2 datasets. We report
MSE and MAE. Best results are bold , second-best are underlined .

Datasets ETTh1 ETTh2 ETTm1 ETTm2
# Top2 Methods 96 192 336 720 96 192 336 720 96 192 336 720 96 192 336 720

27 PHAT (Ours)
MSE 0.361 0.393 0.414 0.441 0.272 0.328 0.354 0.384 0.287 0.328 0.360 0.422 0.162 0.216 0.262 0.355
MAE 0.383 0.410 0.427 0.458 0.330 0.379 0.398 0.425 0.330 0.362 0.381 0.412 0.246 0.285 0.317 0.372

5 TimeKan
MSE 0.369 0.402 0.419 0.442 0.279 0.326 0.368 0.408 0.286 0.331 0.354 0.400 0.163 0.238 0.277 0.359
MAE 0.396 0.417 0.430 0.463 0.343 0.380 0.411 0.443 0.346 0.368 0.386 0.417 0.254 0.299 0.330 0.387

8 xPatch
MSE 0.378 0.420 0.467 0.516 0.275 0.348 0.373 0.395 0.288 0.331 0.367 0.447 0.162 0.202 0.272 0.354
MAE 0.395 0.426 0.451 0.493 0.332 0.380 0.403 0.427 0.335 0.360 0.383 0.428 0.247 0.289 0.320 0.381

1 Amplifier
MSE 0.373 0.414 0.442 0.455 0.295 0.348 0.383 0.407 0.292 0.327 0.365 0.427 0.174 0.226 0.276 0.358
MAE 0.399 0.420 0.446 0.467 0.354 0.393 0.424 0.444 0.348 0.365 0.386 0.419 0.257 0.300 0.331 0.388

4 CycleNet
MSE 0.374 0.406 0.431 0.450 0.279 0.342 0.371 0.426 0.299 0.334 0.368 0.417 0.159 0.214 0.269 0.363
MAE 0.396 0.415 0.430 0.464 0.341 0.385 0.413 0.451 0.348 0.367 0.386 0.414 0.247 0.286 0.322 0.382

0 TimeMixer
MSE 0.372 0.413 0.438 0.486 0.281 0.349 0.366 0.401 0.293 0.335 0.368 0.426 0.165 0.225 0.277 0.36
MAE 0.401 0.430 0.450 0.484 0.351 0.387 0.413 0.436 0.345 0.372 0.386 0.417 0.256 0.298 0.332 0.387

10 SparseTSF
MSE 0.361 0.394 0.415 0.419 0.283 0.347 0.358 0.384 0.316 0.348 0.373 0.434 0.166 0.220 0.273 0.361
MAE 0.386 0.406 0.419 0.440 0.341 0.381 0.396 0.422 0.355 0.376 0.387 0.422 0.256 0.292 0.327 0.381

0 iTransformer
MSE 0.386 0.424 0.449 0.495 0.297 0.372 0.388 0.424 0.300 0.341 0.374 0.429 0.175 0.242 0.282 0.375
MAE 0.405 0.440 0.460 0.487 0.348 0.403 0.417 0.444 0.353 0.380 0.396 0.430 0.266 0.312 0.337 0.394

5 Pathformer
MSE 0.372 0.408 0.438 0.450 0.279 0.345 0.378 0.437 0.290 0.337 0.374 0.428 0.164 0.219 0.267 0.361
MAE 0.392 0.415 0.434 0.463 0.336 0.380 0.408 0.455 0.335 0.363 0.384 0.416 0.250 0.288 0.319 0.377

7 PDF
MSE 0.360 0.392 0.418 0.456 0.276 0.339 0.374 0.398 0.286 0.321 0.354 0.408 0.163 0.219 0.269 0.349
MAE 0.391 0.414 0.435 0.462 0.341 0.382 0.406 0.433 0.340 0.364 0.383 0.415 0.251 0.290 0.330 0.382

7 FITS
MSE 0.376 0.400 0.419 0.435 0.277 0.331 0.350 0.382 0.303 0.337 0.368 0.420 0.165 0.219 0.272 0.359
MAE 0.396 0.418 0.435 0.458 0.345 0.379 0.396 0.425 0.345 0.365 0.384 0.413 0.254 0.291 0.326 0.381

1 PatchTST
MSE 0.377 0.409 0.431 0.457 0.274 0.348 0.377 0.406 0.289 0.329 0.362 0.416 0.165 0.221 0.276 0.362
MAE 0.397 0.425 0.444 0.477 0.337 0.384 0.416 0.441 0.343 0.368 0.390 0.423 0.255 0.293 0.327 0.381

0 Crossformer
MSE 0.411 0.409 0.433 0.501 0.728 0.723 0.740 1.386 0.314 0.374 0.413 0.753 0.296 0.369 0.588 0.75
MAE 0.435 0.438 0.457 0.514 0.603 0.607 0.628 0.882 0.367 0.410 0.432 0.613 0.391 0.416 0.600 0.612

1 NLinear
MSE 0.385 0.422 0.431 0.439 0.276 0.345 0.368 0.406 0.301 0.355 0.372 0.430 0.163 0.218 0.273 0.361
MAE 0.403 0.426 0.429 0.452 0.338 0.382 0.408 0.441 0.343 0.379 0.385 0.418 0.252 0.290 0.326 0.382

0 TimesNet
MSE 0.389 0.440 0.523 0.521 0.334 0.404 0.389 0.434 0.340 0.392 0.423 0.475 0.189 0.254 0.313 0.413
MAE 0.412 0.443 0.487 0.495 0.370 0.413 0.435 0.448 0.378 0.404 0.426 0.453 0.265 0.310 0.345 0.402

0 FEDformer
MSE 0.379 0.420 0.458 0.474 0.337 0.415 0.389 0.483 0.463 0.575 0.618 0.612 0.216 0.297 0.366 0.459
MAE 0.419 0.444 0.466 0.488 0.380 0.428 0.457 0.488 0.463 0.516 0.544 0.551 0.309 0.360 0.400 0.450

0 Triformer
MSE 0.399 0.444 0.492 0.549 0.936 1.290 1.325 1.500 0.349 0.387 0.426 0.482 0.276 0.473 0.692 1.936
MAE 0.425 0.449 0.479 0.529 0.660 0.768 0.781 0.850 0.388 0.410 0.446 0.476 0.344 0.453 0.549 0.856

0 FiLM
MSE 0.370 0.405 0.434 0.463 0.282 0.358 0.372 0.425 0.301 0.339 0.374 0.423 0.165 0.220 0.277 0.363
MAE 0.394 0.416 0.435 0.474 0.346 0.401 0.425 0.455 0.343 0.365 0.385 0.414 0.254 0.291 0.329 0.386

0 Stationary
MSE 0.591 0.615 0.632 0.828 0.347 0.379 0.358 0.422 0.415 0.494 0.577 0.636 0.21 0.338 0.432 0.554
MAE 0.524 0.540 0.551 0.658 0.387 0.418 0.413 0.457 0.410 0.451 0.490 0.535 0.294 0.373 0.416 0.476

ILI and CzeLan show significant differences in periodicity between variates. The NASDAQ dataset
displays no periodicity, whereas the Synthetic dataset demonstrates mixed periodicity. Our analysis
shows that these periodic learners struggle to handle periodic heterogeneity effectively. On datasets
without clear periodic patterns, such as NASDAQ, PDF and SpareTSF exhibit significant performance
errors. In contrast, our model remains robust to periodic heterogeneity.

Table 8: Comparison with periodicity-modeling model. The results are average MAE among all
horizon. ↑ is the relative percentage increasing regarding PHAT.

Datasets ETTh ETTm ILI CzeLan NASDAQ Synthetic
TimesNet 0.438↑9.50% 0.373↑10.35% 0.933↑23.08% 0.292↑19.18% 0.687↑6.34% 0.376↑35.41%
PDF 0.408↑2.00% 0.345↑2.07% 0.898↑18.46% 0.268↑9.38% 0.717↑10.99% 0.291↑16.39%
CycleNet 0.412↑3.00% 0.344↑1.77% 0.971↑28.10% 0.269↑9.79% 0.747↑15.63% 0.310↑21.67%
SpareTSF 0.400↑0.00% 0.350↑3.55% 1.556↑105.27% 0.303↑23.67% 0.858↑32.81% 0.339↑28.31%
PHAT (Ours) 0.400 0.338 0.758 0.245 0.646 0.243

D.6 COMPARISON OF TRANSFORMER VARIANTS

We further evaluated the effectiveness of the proposed positive-negative attention mechanism (PNA)
by comparing it with other attention variants. As shown in Table 9, we found that Crossformer
improves representation capability by modeling the dependencies between variates across channels.
However, the interaction of variates with different periodic characteristics may introduce confusion.
In contrast, the proposed attention mechanism, PNA, achieved the lowest prediction error. This
is because it comprehensively models both the positive and negative correlations of periodicity,
demonstrating strong periodic representation capabilities.
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Table 9: Comparison with various self-attention mechanisms The results are average MAE among all
horizon.

Datasets ETTh ETTm ILI
+ CrossFormer 0.441 0.380 0.742
+ Vanilla Transformer 0.424 0.366 0.768
+ PatchFormer 0.435 0.373 0.825
PHAT (Ours) 0.400 0.338 0.758

D.7 DETAILED ABLATION STUDY

In this section, we conduct combined ablation studies across additional datasets and provide further
analysis. Our results show that jointly modeling both positive and negative periodic correlation is
beneficial, as it yields a more complete representation of the underlying periodic characteristic. We
also observe that using only positive periodicity performs slightly better than using only negative
correlations, likely because positive correlations capture the most direct and dominant periodic
dynamics. For datasets where negative periodic correlations are weak or largely absent (e.g., ETTh2,
ETTm2, and AQShunyi), whether or not negative paths are included—or whether their attenion
logits are modulated—has minimal impact on performance. This behavior arises naturally from the
gating mechanism Λ, which adaptively determines the extent to which negative correlations should
be modeled based on dataset characteristics. As a result, the model avoids unnecessary overfitting
when negative periodicity is not present.

Table 10: Details of combination Ablation Study of the period-offset attention in PNA. Pos (Neg):
Positive (Negative) components. Mod: Modulation.

Variants ETTh1 ETTh2 ETTm1 ETTm2 NN5 FRED-MD AQShunyi ILI CzeLan NASDAQ
Pos. Neg. MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE

- - 0.369 0.390 0.275 0.336 0.305 0.340 0.169 0.253 0.688 0.552 25.698 0.980 0.666 0.468 1.551 0.775 0.185 0.222 0.440 0.490
- ✓ 0.368 0.386 0.273 0.331 0.302 0.339 0.168 0.254 0.688 0.551 25.305 0.954 0.665 0.468 1.531 0.765 0.176 0.221 0.433 0.483
✓ - 0.363 0.384 0.272 0.330 0.297 0.332 0.167 0.253 0.684 0.553 25.520 0.967 0.665 0.468 1.485 0.759 0.175 0.215 0.427 0.476
✓ ✓ 0.361 0.383 0.272 0.330 0.287 0.330 0.162 0.246 0.681 0.551 21.495 0.903 0.665 0.468 1.318 0.705 0.170 0.204 0.416 0.473

PMod. NMod. MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE
- - 0.368 0.390 0.275 0.334 0.309 0.345 0.166 0.243 0.688 0.554 23.869 0.942 0.669 0.468 1.560 0.774 0.177 0.284 0.420 0.479
- ✓ 0.365 0.386 0.272 0.330 0.305 0.339 0.167 0.242 0.685 0.553 24.740 0.943 0.666 0.468 1.535 0.764 0.174 0.252 0.419 0.478
✓ - 0.362 0.385 0.272 0.330 0.295 0.334 0.166 0.243 0.685 0.554 23.876 0.907 0.665 0.468 1.446 0.750 0.177 0.234 0.416 0.479
✓ ✓ 0.361 0.383 0.272 0.330 0.287 0.330 0.162 0.246 0.681 0.551 21.495 0.903 0.665 0.468 1.318 0.705 0.170 0.204 0.416 0.473

E DISCUSSIONS

Although both our model and patch-based Transformers rely on operations such as unflattening or
folding the sequence, their design philosophies diverge significantly.

Patch-based methods, such as PatchTST (Zeng et al., 2023), Crossformer (Zhang & Yan, 2023), and
PDF (Dai et al., 2024), divide the temporal sequence into contiguous segments, reinterpreting one
dimension of each patch as a feature axis. This effectively performs temporal down-sampling by
aggregating multiple time steps into a single token. While this approach improves computational
efficiency, it comes at the cost of mixing distinct temporal roles, leading to the loss of fine-grained
alignment among the original time steps.

In contrast, our period folding approach preserves the full temporal resolution by avoiding any
form of down-sampling. Instead, the sequence is reorganized into two orthogonal axes—period-
offset and period-aligned—based on the detected periodic structure. Attention is applied along both
axes, enabling the model to explicitly capture rich intra-period and inter-period dependencies while
maintaining the integrity of the original temporal sequence.

A related idea can be observed in TimesNet (Wu et al., 2022a), which also employs a folding operation.
However, TimesNet extracts features from the folded representation using convolutional kernels.
These kernels aggregate information across multiple positions, which can blur inherent periodic
boundaries and disrupt latent cyclic correlations. This misalignment between convolutional receptive
fields and true periodic structures limits TimesNet’s ability to fully capture cycle-aware dependencies.
In contrast, our model applies X-shaped attention directly to the folded representation, preserving
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periodic fidelity and ensuring that the periodic structure is consistently leveraged throughout the
learning process.

In summary, our fold-and-attend approach stands apart by preserving the full temporal sequence
and explicitly structuring it along periodic axes. Unlike patch-based Transformers, which sacrifice
temporal resolution for efficiency, or TimesNet, which disrupts periodic integrity with convolutional
receptive fields, our design respects periodicity at its core. This allows our model to generalize
effectively across diverse temporal patterns while offering enhanced interpretability in capturing
heterogeneous periodic dependencies.

F USE OF LLM

We only use LLMs as a language optimization tool to polish sentences, improving their readability
and fluency.
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