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Abstract

Advances in LLMs offer hope of corresponding
advances in agent participation in teamwork,
while also posing new challenges in designing
multi-agent benchmarks for evaluating these
agents and integrating them effectively into hy-
brid teams in real-world situations. While prior
work has demonstrated that LLMs can oper-
ate in multi-agent settings, they often oversim-
plify the complexity of collaboration in critical
dimensions, such as restricting evaluation to
in-domain and single episode tasks amongst
homogeneous LLM groups. To bridge this gap,
we propose a new cooperative multi-agent task,
Kitchen-Alien Rush, which includes both out-
of-domain multi-episode evaluation, as well
as evaluates the effectiveness of hybrid groups
in collaboration. Our findings reveal that our
evaluation exposes gaps in multi-agent collab-
oration, as LLM agents struggle to perform in
the out-of-domain task and show inconsistent
improvement over multiple episodes in hybrid
teams. By identifying these gaps, we motivate
the need for future work in addressing weak-
nesses of hybrid multi-agents systems for out-
of-domain multi-episode tasks.

1 Introduction

Human-human collaboration is challenging and has
been demonstrated to benefit from automated sup-
port, such as agent-based support (Adamson et al.,
2014; Naik et al., 2024). The language capabilities
of state-of-the-art Large Language Models (LLMs)
offer hope for advances in this space (Brown et al.,
2020; Driess et al., 2023), but also raise new ques-
tions about how to design such agents and even-
tually to introduce them effectively into hybrid
teams in real world scenarios. Simulation stud-
ies offer a means to generate synthetic data and to
narrow down the space of designs, strategies, and
behavior practices, or troubleshoot novel agent ca-
pabilities in highly controlled environments prior to
running more realistic but costly user studies with

human participants (Gao et al., 2023). This paper
contributes a simulation study paradigm involving
LLM agents that can play the role of collaborators
or supporters of collaboration.

In the same way that collaboration benefits hu-
mans, strong collaborative skills in multi-agent sys-
tems may enhance problem solving and decision
making (Zhang et al., 2024c). Collaboration cre-
ates the opportunity for agents to learn from each
other’s output and increase the abilities of weaker
models to complete tasks. Moreover, if we de-
sire models to seamlessly assist humans, they must
understand how to address challenges in collabora-
tion, such as adapting support to variable levels of
capabilities and improving coordination with other
partners over time (Hu et al., 2020; Carroll et al.,
2019).

In recent years, there has been increased interest
in developing collaborative multi-agent systems us-
ing LLMs (Carroll et al., 2019; Gong et al., 2023;
Zhang et al., 2024b; Light et al., 2023; Zhou et al.,
2024). However, prior agent simulation studies
are limited in their ability to inform design work
for agents that participate in hybrid teams because
of the narrow scope of task contexts. While these
frameworks have demonstrated that LLMs can op-
erate in multi-agent settings, they often oversim-
plify the complexity of collaboration in critical di-
mensions. Firstly, they restrict evaluation to in-
domain and single episode tasks, which fails to
measure a model’s ability to adapt to changing cir-
cumstances, partner relationships, and feedback.
Secondly, they do not evaluate heterogeneous LLM
teams including models with varying strengths and
capabilities. This motivates evaluation of multi-
agent LLM systems with hetereogenous partners
across domain and multiple episodes.

Our main contributions as a paradigm for advanc-
ing work in agent support for hybrid teams include:

* Task To bridge this gap of developing complex



collaborative benchmarks, we propose a new co-
operative multi-agent task, Kitchen-Alien Rush.
In contrast to prior work, our task consists of
multiple episodes and includes two domains
(Table 1).

» Teacher We explore a simple teacher-feedback
agent framework for multi-episode settings.

* Findings Our findings reveal that LLM agents
struggle to perform in the out-of-domain task
and show inconsistent improvement over multi-
ple episodes. Moreover, when placed in hybrid
teams, groups fail to adapt to their partner, with
stronger partners contributing the majority of
performance, which does not exhibit behavior
that is expected to enable groups to succeed in
scenarios that require group coordination.

2 Related Work

Collaboration Tasks for LLMs As LLMs have
demonstrated remarkable capabilities in single-
agent tasks (Brown et al., 2020; Qin et al., 2023;
Driess et al., 2023; Wu et al., 2023), there has been
increased interest in developing benchmarks for
multi-agent scenarios. These benchmarks range
across multiplayer games (Carroll et al., 2019; Bard
et al., 2019; Light et al., 2023; Qi et al., 2024;
Gong et al., 2023), virtual embodied household
tasks (Zhang et al., 2024b; Guo et al., 2024), multi-
robot collaboration (Mandi et al., 2023), and social
scenarios (Zhou et al., 2024). Most involve pure
collaboration tasks in which groups work toward
a single, shared goal. Notable examples include
coordination of cooking in Overcooked (Carroll
et al., 2019), investigation of Theory of Mind abili-
ties in Hanabi (Bard et al., 2019), and completion
of tasks in virtual embodied environments (Zhang
et al., 2024b; Mandi et al., 2023). Other multi-
agent benchmarks have mixed objectives in which
groups have to compete against other teams (e.g.,
Avalon (Light et al., 2023), Werewolf (Xu et al.,
2024)) or potentially negotiate conflicting social
goals and motivations (e.g., Sotopia (Zhou et al.,
2024), Civilization (Qi et al., 2024))

Current benchmarks do not investigate an agent’s
ability to adapt to partner relationships and group
coordination strategies over an extended time
frame. Moreover, tasks are set in typical scenar-
ios where world knowledge accessible to LLMs
might bolster performance. Thus, existing bench-
marks are not useful for evaluating the ability to
adapt to new domains through abstraction. Con-
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Table 1: Comparison of multi-agent tasks and frame-
works with LLMs.

sequently, prior results cannot separate aspects of
performance that are indicative of abstraction and
generalization, for example by leveraging strate-
gic knowledge about collaboration. Our proposed
task addresses these issues by evaluating across
multiple episode and task domains.

Multi-Agent LLM Systems Most multi-agent
systems enhance performance with increased rea-
soning guidance (Wei et al., 2022) and reflection
feedback strategies (Yao et al., 2022; Shinn et al.,
2023). Other frameworks break down complex
tasks by managing team organization (Guo et al.,
2024; Zhao et al., 2024; Hong et al., 2023). In
a similar vein, other works improve LLM task
planning through hierarchical reasoning (Liu et al.,
2023), and sub-task planning (Mandi et al., 2023).
Our work extends the frontier by developing and
evaluating across multiple episodes and task do-
mains.

Computer Supported Collaborative Agents
The field of computer-supported collaborative
learning offers numerous technologies and design
principles for supporting collaboration, for the pur-
pose of mitigating these collaboration challenges
(Cress et al., 2021). Some of that work features
intelligent conversational agents (Naik et al., 2024;
Adamson et al., 2014; Karyotaki et al., 2022) or
teachable agents (Ma et al., 2024; Jin et al., 2024).
Other applications of Al to support collaboration
monitor the progression of a group’s knowledge to
identify learning and adjust instruction as needed
(Weitekamp et al., 2020; Han et al., 2021). Our
work bridges between past literature by offering a
simulation-based paradigm with the long term goal
of design of agents for supporting collaboration in
hybrid teams with multiple humans and multiple
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Figure 1: Kitchen Rush: A new evaluation benchmark for LLM collaboration over three episodes. In each episode,
the game state is initialized and encoded into a textual observation. From observations with manual or teacher

scaffolding, agents choose actions and update the game state.

autonomous agents.

3 Task: Kitchen Rush & Alien Rush

To evaluate multi-agent groups in collaboration
games within a realistic coordination environment,
we require a benchmark analyzing performance in
long-horizon interactions measured across multiple
episodes. Consequently, we introduce a new text
simulation environment and task for multi-agent
coordination inspired by the board game Kitchen
Rush (Turczi and Bagiartakis, 2017). Additionally,
to evaluate group collaboration skills in an out-of-
domain setting, we implement a parallel out-of-
domain version of Kitchen Rush, which we refer
to as Alien Rush.

3.1 In Domain Kitchen Rush

In Kitchen Rush, the goal of each episode is to
complete all assigned recipes within the specified
number of turns. Each turn, agents control a spe-
cific number of workers, each of which can be used
to complete one high-level action per turn, such as
taking ingredients, or cooking a meal on a stove.
An episode of a scenario ends when all assigned
recipes are either finished or ruined, or the group
exceed the allotted number of turns for the episode.

Agents work together in teams to complete each
recipe. Every recipe requires (1) ingredients
(pasta, carrots, lettuce, meat, or bread), (2) spices
(white, black, green, red, and yellow), and (3) cook
time to complete. In Figure 3, Spaghetti Aglio e
Olio requires collecting ingredients (2 pasta and

1 carrot), spices (1 green spice), and needs to be
cooked once. If an agent is not careful or a group
does not coordinate their actions properly, they may
ruin an order (e.g., cooking a meal before collecting
ingredients, exceeding the cook time of the order).
Once ruined, orders cannot be completed.

In addition to coordinating actions to complete
dishes, groups must also appropriately share re-
sources. Every action must be carried out in a
specific location of the kitchen (e.g., ingredients
from the pantry, spices from the spicebag, and
orders are cooked on the stoves). Locations have
a limited number of action spaces, which restricts
how many of the same action can be completed
every turn. A kitchen with only two stoves means
there can only be two cook actions every turn. In
this case, if the recipes require long cook times,
then it would be imperative that agents share stoves
carefully and plan to cook earlier than later.

3.2 Out of Domain Alien Rush

To evaluate group collaboration performance in an
out-of-domain setting, we evaluate on Alien Rush,
a parallel version of Kitchen Rush which swaps all
in-domain cooking entities to out-of-domain “alien’
gibberish words. To do so, in each written prompt
of Kitchen Rush, we manually identify all words
and stems that refer to cooking. This includes cook-
ing related terms such as ingredients, spices, recipe
names, and stems of cooking-related verbs. Next,
we generated gibberish words using ChatGPT for
each cooking themed entity in Kitchen Rush. Us-

s
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Figure 2: Abbreviated sample Alien Rush manual.

ing a lexical mapping dictionary, we translate any
text within Kitchen Rush to Alien Rush gibberish
(Figure 2). This same one-to-one mapping is used
across all scenarios and episodes of the game.

Consequently, Kitchen Rush and Alien Rush are
functionally equivalent tasks; however, agents can-
not benefit from their implicit world knowledge
of cooking when performing in the Alien Rush
Domain. Only high-level collaborative strategies
should transfer to this novel setting.

3.3 Multi-Episode Scenarios

To allow for experimental design, a scenario’s
recipes and resources are easily modifiable, and
rounds may be played with any number of agents.
Each scenario consists of three episodes each with
five assigned recipes, which must be completed
within ten turns. Each episode within a scenario is
strategically equivalent with the same initial state
of resources and recipe composition but relevant
entities are swapped. For instance, we alter the
Spagetti Aglio Olio into a Mac and Cheese with
two cheese and 1 pasta (instead of two pasta and
one carrot), 1 black spice (instead of one green
spice), and cook times remain the same. Initial
resources are adjusted such that the same kinds of
conflicts occur, such as ensuring one resource is
severely limited. This prevents any success across
episodes that could come from memorizing recipes
but maintains the same difficulty and flavor of co-
ordination challenges over a multi-episode evalua-
tion.

Similar to work by Carroll et al. (2019), this flex-
ibility of customization enables design of scenarios
that can target evaluation of specific low-level game
understanding versus high-level coordination strate-
gies. When manipulating experimental variables,
we require evaluation which can pinpoint why mod-
els are failing. For example, while transferring to
an out-of-domain setting, we must identify whether
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Figure 3: Example of a Kitchen Rush Recipe specifying
ingredients, spices, and length of cook time. Agents
must coordinate their actions in a valid order to complete
the recipe (left). Otherwise, agents may ruin the recipe,
such as cooking the meal too many times (right).

the domain shift results in an agent’s inability to
play the game due to lack of understanding of game
rules in an alien setting or whether agents can un-
derstand the game but are unable to transfer higher-
level coordination strategies across domain. Thus,
we design an easy scenario and a hard scenario.

Easy Scenario serves as a baseline to evaluate an
agent’s understanding of the game. Each episode
can be completed by one agent within the allotted
turns and does not require coordination strategies.
There are no resources conflicts, so agents have
unlimited ingredients, spices, and actions spaces
at each location. Groups that can complete all
five recipes signal that they have mastery of the
basic rules of the game. However, groups that ruin
recipes in this scenario suggest they lack the ability
to play the game at its simplest level.

Hard Scenario evaluates group ability to coordi-
nate resources and strategies. The pantry and stoves
are severely limited, such that all five recipes can
only be completed by the final turn. Successful
completion requires agents to divide tasks between
collecting ingredients and cooking recipes. With-
out task division, groups cannot complete all five
recipes within the allotted time. Thus, groups that
complete less than five recipes, ruin recipes, or ex-
ceed the allotted time of the episode may indicate



Group Recipes/Turns

Completed (CR) # recipes completed by the group
Ruined (RR) # ruined recipes completed by the group
Turns # of turns in the episode

Individual Actions

Positive  (A™) Agent contributed to completing recipes
Negative (A™) Agent contributed to ruining recipes
Neutral (A7) Neutral action (e.g. no action) by an agent
Total AT+ A” + A5

Table 2: Evaluation Metrics

that they did not effectively apply group coordina-
tion strategies.

3.4 Metrics

We evaluate episodes on group and individual met-
rics (Table 2). Metrics are measured over all three
episodes. By measuring over multiple episodes, we
evaluate a group’s ability to adapt to other partners
and settings over an extended time frame. We use
these metrics to measure performance and distin-
guish between greedily acting groups (individual
success at the cost of coordination strategies) vs.
balanced collaborative groups (high group success
with equal individual participation).

4 Methods & Experimental Design

Success of human collaborations varies based on
task characteristics, group composition including
distribution of expertise and scaffolding. As we
aim to define a paradigm in which questions related
to supporting hybrid human-agent teams can be ad-
dressed going forward, we incorporate these three
dimensions in our experimental design. To investi-
gate the impact of one form of domain characteris-
tics, we manipulate the extent to which tasks build
on every-day knowledge with the Kitchen Rush and
Alien Rush settings. To investigate expertise and
group composition, we manipulate the family of
models, GPT (OpenAl, 2023) and Gemini (Google,
2023), as well as the strength of model (GPT-3.5-
Turbo, GPT-40, Gemini 1.0 Pro and Gemini 1.5
Flash). We explore group composition in terms
of homogeneity or heterogeneity along these two
separate dimensions. Additionally, we explore two
different types of support, namely a manual and a
teacher (which is always a strong model, but which
may be from either model family).

4.1 Methods

As simple baselines, we implement an LLM agent
similar to those in prior LLM agent tasks (Yao
et al., 2022; Agashe et al., 2024). In this method,
LLMs are given an action generation prompt which
contains relevant observations obtained from the
environment and a list of candidate actions. Agents
may also be given reasoning and additional knowl-
edge of the task, which we refer to as scaffolding.
With this textual information, agents must pick the
best next action to update the environment from the
candidate actions. We implement several ablations
of scaffolding which we detail below. Full prompts
for scaffolds may be found in Appendix A.

Observation Only (No Scaffolding) We provide
agents with a text description of the current turn of
the game with relevant details (e.g., recipes, order
status, resource availability). Agents are prompted
to choose the next best action within a list of valid
candidate actions. An abbreviated sample of the ob-
servation is shown in Figure 4. In this condition, we
examine the extent to which implicit world knowl-
edge about the domain and the task structure helps
model performance.

Observation and Manual Along with observa-
tions, we provide agents with a manual explaining
the rules of the game. Agents may use provided
explicit knowledge of the game to generate action
from the observation. Thus, with a given manual,
we investigate how well agents can reason from
explicit low-level static information given about
the task. For reference, we provide a sample of the
manual in Figure 5.

Multi-Episode Teacher Feedback To design a
framework for multi-agent collaborative groups
that increase their performance over multi-episode
interactions, we implement a teacher agent to pro-
vide relevant plans and strategies to agents from
prior round history. Similar to the action gener-
ation prompt, in order to generate feedback, we
give the teacher expert knowledge of the game via
a board game manual as well as prior action his-
tory and results from the previous round. From
this information, we prompt teachers to generate
new strategies for the next round of the game or
adjust prior strategies. We evaluate two teacher
agents: (1) a group strategy teacher that gives
the same feedback and strategies to every agent,
and (2) an individual roles and feedback teacher
that gives personalized roles and feedback to each



Recipes:

Fettucine Alfredo:
ingredients: {'pasta': 2, 'cheese': 1, 'meat': 2}
spices: {'white': 1, 'black': 1}
cook time: 1

Orders:

Fettucine Alfredo:
ingredients: collected
spices: collected
cook time: 1
finished: True
ruined: False

Board Areas:
pantry:
area_type: pantry
area_id: pantry
ingredients: {'meat': 16, 'carrot': 20, 'lettuce': 20,
'bread': 20, 'pasta': 17, 'cheese': 17}
available_action_spaces: 4

Valid Actions:
{'action type': 'TAKE INGREDIENTS', 'area id': 'pantryl',

The game Kitchen Rush has the following rules:

- The goal of the game is to finish all the orders. You
score points for finishing orders and lose points for
ruining orders.

- Players work together to finish orders. To finish an order
properly, players must follow its corresponding recipe.
Orders are finished when its ingredients, spices and cook
time matches the corresponding recipe.

- There are 6 kinds of ingredients (meat, carrot, lettuce,
bread, pasta, and cheese) and 5 kinds of spices (green,
black, white, yellow, and red).

***Actiong***

1. Take Ingredients: Collect ingredients for an order from
the specified pantry. Removes one available action space
from pantry.

*** The game ends when: **%*
- All the orders are either finished or ruined

These conventions will help when playing the game:
1. ***Take Ingredients before Cooking Order***

- Only cook an order if the order already has its
ingredients to avoid ruined orders

Figure 4: Abbreviated observation prompt

player. In this condition, we examine how explicit
high-level dynamic feedback may improve perfor-
mance across multiple episode.

4.2 Experimental Design

The effectiveness of collaborations depends on the
nature of the tasks, the makeup of the group (par-
ticularly the distribution of skill and expertise), and
scaffolding. In our effort to create a paradigm for
exploring how to best support hybrid human-agent
teams, we incorporate these factors into our experi-
mental approach. For each experimental dimension,
we evaluate on both easy and hard scenarios to sep-
arate evaluation of low-level individual game coor-
dination and high-level group collaborative skills.

Domain The level of implicit strategy knowledge
of a large language model on a task varies by do-
main. We evaluate models across domains in order
to identify whether the agents and teachers abstract
generalizable collaboration strategies. As such, we
evaluate pairs on both the in-domain Kitchen Rush
task and the out-of-domain Alien Rush task. In
our paradigm, we aim to separate aspects of perfor-
mance contributed by the implicit world knowledge
of in-domain tasks to the use high-level abstrac-
tions to transfer knowledge in out-of-domain tasks.

LLM Group Composition We experiment with
homogeneous and heterogeneous pairs. Homoge-
neous pairs contain agent partners with the same
LLM models. In contrast, heterogeneous pairs con-
sist of partners with two different LLM models. We
vary along four models across two LLM families:
GPT-40, GPT-3.5-Turbo, Gemini 1.0 Pro, and Gem-
ini 1.5 Flash. We further frame our analysis across
different LLM strengths in which we categorize

Figure 5: Abbreviated manual prompt

larger LLM models with longer contexts as strong
(GPT-40 and Gemini 1.5 Flash) and smaller mod-
els with shorter contexts as weak (GPT-3.5-Turbo,
Gemini 1.0 Pro). This dimension aims to success
the ability of LL.Ms to adapt to other partners.

Teacher Scaffolding We vary experiments by
different scaffolding. In particular, we examine
the effects of group strategy and personalized roles
teachers in comparison to static scaffolding in man-
uals. We limit the teacher model to strong mod-
els. By measuring the effects of dynamic scaffold-
ing, we aim to address whether LLMs can improve
performance and learn over multi-episode interac-
tions.

5 Results and Discussion

5.1 Domain Results

We investigate the effects of domain on different
model groups. We focus our analysis on homoge-
neous groups. In doing so, we evaluate baseline
performance across domains for each model.

In domain, strong models perform well. Weaker
models struggle (Figure 6). Across both do-
mains, we observe that strong models tend to per-
form better than weaker models. GPT-4o tends to
perform the best while Gemini 1.5 Flash is a close
equivalent when a manual is present. In particular,
we note that strong groups can finish all five recipes
in the easy difficulty while weaker groups struggle
to complete more than two. The high performance
by strong models in the easy scenario indicate that
they have a stronger understanding of basic game
rules while the lower performance suggest weaker
models do not. This is also shown by the severe
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Figure 6: Comparison of average number of completed
recipes and error margin across domain, conditions, and
difficulty for homogeneous groups

lack of recipes completed by weaker models in the
difficult collaborative scenario. This aligns with
expectations of models given their size and context
length.

Out-of-domain, strong models can perform with
a manual, however performance drops on hard
problems. Strong groups with a manual can un-
derstand basics of Alien Rush. In fact, in the easy
scenario, both strong groups are able to achieve
close to equivalent performance to Kitchen Rush.
Thus, we conclude if strong models are given a
manual, they have enough explicit knowledge to
play the game in both domains despite having less
implicit world knowledge in the out-of-domain
Alien Rush environment.

However, even with a manual, strong groups in
the harder scenario perform worse in Alien Rush.
Unlike in-domain findings, they do not reach equiv-
alent performance to the Kitchen Rush counterpart.
This gap suggests that coordination skills required
in the hard difficulty might not transfer in out-of-
domain settings.

Performance drops in out-of-domain hard prob-
lems may be explained by lack of collaborative
skill transfer and difficulty of the setting (Ta-
ble 3). To investigate this performance gap, we
looked more closely at the nature of the perfor-
mance across domains for strong groups. In the

Turns <10 =10

CR Ave
Model Domain 1 2 3 4 5 RR
GPT-40 Kitchen 0 0 22 78 0 0 0.11
GPT-40 Alien 0 11 22 67 0 0 022
Gemini 1.5 Flash  Kitchen 11 33 22 0 0 34 266
Gemini 1.5 Flash  Alien 0 0 0O O O 100 3.88

Table 3: Percentage of homogeneous strong groups with
a manual that terminated early (<10) or reached turn
limit (=10) in the hard difficulty, and average ruined
recipes from runs.

hard scenario, all five recipes can only be com-
pleted by the final turn. Groups that fail fall under
one of two cases: (1) groups complete less recipes
but time out, which signals agents are competent
but are not collaborating effectively or (2) groups
ruin recipes and terminate episode early, which sig-
nals agents are less competent and struggle to apply
rules properly in the out-of-domain setting.

When examining the performance of GPT-4o0
in Kitchen Rush, we observe that GPT-40 models
tend to complete more recipes before timing out.
This suggests that while the model’s collaboration
was not perfectly successful, they were still able to
collaborate well enough to complete four recipes.
In contrast, groups tend to complete less recipes
and time out in Alien Rush. This suggests that
in an out-of-domain setting, GPT-40 cannot as ef-
fectively transfer collaborative skills shown from
Kitchen Rush to Alien Rush.

5.2 LLM Group Composition Results

With the established trends across domains for ho-
mogeneous groups, we investigate the differences
between homogeneous and heterogeneous groups.
Again, for this analysis we focus on experiments
with manual as a baseline across model groups.
By focusing on groups with manuals, we control
that all models have explicit knowledge of both
domains.

Homogeneous strong groups perform better
than heterogeneous weak-strong groups Ho-
mogeneous strong groups perform the best, and
homogeneous weak groups perform the worst. In
the middle, heterogeneous strong-weak groups per-
form worse than homogeneous strong, but they per-
form better than homogeneous weak groups. Thus,
weaker model benefit from stronger partners (see
Appendix C.1).
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Figure 7: Plot of percent positive actions to percent negative actions across group compositions

Weaker models do not benefit from stronger
models because models collaborate well together
but through unbalanced participation. To ex-
amine why heterogeneous models see improve-
ments over weaker models, we examine the dis-
tributions of positive and negative actions across
players and models (Figure 7).

The distributions between weak-strong groups
reveal that strong models tend to contribute to more
positive actions and less negative actions. In con-
trast, weak models contribute to more negative ac-
tions and less positive actions. The graduation
across the four models in weak-strong is consistent,
showing performance is unbalanced proportional to
the strength of the model. Consequently, while het-
erogeneous groups perform better than their weaker
counterparts, it is not because strong partners in-
crease collaborative strategies, but rather the strong
model contributes to the performance.

Similarly, when comparing to homogeneous
groups, we do not see as clear of a player split.
Homogeneous pairs contribute more equally than
heterogeneous. Thus, while models can may play
well with their identical counterparts, they do not
coordinate well with others.

5.3 Multi-Episode and Teacher Results

We finish our analysis by investigating the perfor-
mance of the teacher framework. Initial exploration
found that teachers help, except when models al-
ready have a manual. Consequently, we analyze the
rest of the teacher findings only on groups without
a manual, as well as report obs+manual with no
teacher baseline to allow comparison between the
two.

Having a teacher helps generally, but not more
than a manual. Trends in both domains suggest
having a teacher benefits groups, but not better than

a manual (see Appendix C.2). Similar to manual
findings, weak-weak groups models see marginal
benefits. However, weak-strong and strong-strong
groups see greater gains for teachers and manuals.
The manual to teacher gap is much larger in out-
of-domain Alien Rush. However, teachers give
much more direct coordination strategies than the
manual. This may suggest that groups cannot apply
the collaboration strategies as well or that Alien
Rush strategies are more difficult to generate and
understand.

Trends of scaffolding across episodes can be in-
consistent  Across episodes, we see improvement
from the teacher feedback. In the first episode,
which has no feedback, the performance is con-
sistently the lowest. Additionally, we see upward
trends in performance in episode two, after the first
round of feedback. However, trends can be incon-
sistent and are within standard deviation (see Ap-
pendix C.2). In fact, it is common for episode three
to plateau or perform worse than prior episodes.
This motivates future work to develop frameworks
that improve performance in multi-episode tasks.

6 Conclusion

We present a new multi-agent coordination task,
Kitchen-Alien Rush. By evaluating hybrid LLM
teams within in-domain and out-of-domain across
multiple episodes, our task addresses several crit-
ical dimensions of collaboration that prior work
does not consider. We find that the proposed
task environment evaluates key dimensions not ad-
dressed in prior multi-agent literature. By expos-
ing these dimensions in our evaluation, we lay the
foundation for future work to address gaps in per-
formance of heterogeneous LLM groups in long
horizon collaborative tasks.



7 Limitations

While this work contributes and expands on prior
literature in collaborative multi-agent tasks for
LLMs, it has several limitations which we detail
below.

Limitations of Simulation We limit our current
benchmark in several ways that reduce the scope
of our evaluation. Firstly, we restrict our task to
text-only simulation. In reality, collaboration is
a complex, multimodal interaction that cannot be
captured solely through written communication.
Effective collaboration includes verbal and non-
verbal cues, such as body language, tonality of
speech, and joint attention, all of which ground
communication and coordination. Secondly, our
task is constrained to a fixed turn-based interaction,
which cannot capture aspects of multi-agent tasks
such as interjection and simultaneous coordination.
And lastly, our simulation does not include human
interaction, which limits our benchmark’s ability
to transfer findings to human collaboration applica-
tions. While we did not implement other modalities
in the scope of this work, we choose to base our
simulation on a real board game, Kitchen Rush, to
allow for future work on this dimension.

Lack of Finetuning We do not evaluate the effect
of fine-tuning in our task. While we do assess the
foundational capability of LLMs which is neces-
sary in evaluating the implicit knowledge of models
in this task, this approach limits our understanding
of an LLM’s potential performance with training.
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A Example Prompts

We provide several full examples of Kitchen Rush
(Figure 8 and 10) and Alien Rush Prompts (Figure
9and 11)

B Details of Metrics

In this appendix, we elaborate on the details of our
metrics in Table 2 and how they measure collabo-
ration performance in our task.

Group Performance Our metrics capture overall
group performance with the total number of com-
pleted recipes and ruined recipes. Throughout our
evaluation, we refer to score as the number of com-
pleted recipes in an episode. This score serves as a
quick reference to estimate success and failure in
an episode. Moreover, these metrics also evaluate
graded success on a spectrum in which groups that
complete all five recipes and ruin none are the most
successful whereas group complete zero recipes
and ruin all five recipes are the least successful.

Efficiency We evaluate efficiency by tracking the
turns to complete or ruin the recipes. Evaluating
total turns taken in an episode may proxy measure-
ment of coordination level between groups. Groups
that complete more recipes at lower turn levels sug-
gest they coordinated better whereas groups that
terminate early due to ruining all recipes signal lack
of understanding of the game. Moreover, groups
that perform as single actors rather than in coordi-
nated groups will have longer episodes.

Contribution Balance Lastly, we measure indi-
vidual metrics of positive, negative, and neutral
action counts to measure contribution balance of
each agent. While certain groups may perform
well in our scenarios, individual metrics allow us
to capture how each agent contributes to the per-
formance. With this metric, we can distinguish
between groups with balanaced coordination ver-
sus groups with inbalanced participation in which
one model greedily contributes to the majority of
performance.
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C Additional Analysis Figures

This section includes additional figures references
in our analysis.

C.1 Average Completed Recipes Across
Different Model Pairs (Figure 12)

C.2 Teacher Performance Across Episodes
(Figure 13)
C.3 Teacher Performance across group

strength, composition, and domain
(Figure 14)
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"The game Kitchen Rush has the following rules:

- The goal of the game is to finish all the orders. You score points for
finishing orders and lose points for ruining orders.

- Players work together to finish orders. To finish an order properly,
players must follow its corresponding recipe. Orders are finished when
its ingredients, spices and cook time matches the corresponding recipe.
- There are 6 kinds of ingredients (meat, carrot, lettuce, bread, pasta,
and cheese) and 5 kinds of spices (green, black, white, yellow, and
red).

- If an order is cooked before its ingredients are collected, it is
ruined. If an order is ruined, it cannot be finished.

- There are 3 types of board areas: pantries, spicebags, and stoves.
Each board area has a limited number of action spaces. If there are no
available action spaces, the board area cannot be used. Action spaces
reset to available after a turn is finished.

- Players have two workers which can carry out one action per turn.

- Players can only choose action for their workers from the Valid
Actions

***Actions***

1. Take Ingredients: Collect ingredients for an order from the specified
pantry. Removes one available action space from pantry.

2. Take Spices: Collect spices for an order from specified spicebag.
Removes one available action space from spicebag.

3. Cook Order: Cook a meal by one cooking time on specified stove.
Removes one available action space from stove.

*** The game ends when: ***
- All the orders are either finished or ruined OR
- You have played all 10 turns of the game.

These conventions will help when playing the game:

1. ***Tgke Ingredients before Cooking Order**=*

- Only cook an order if the order already has its ingredients to avoid
ruined orders

2. ***Do Not Work on Ruined or Finished Orders***

- If an order is ruined or finished, you do not need to work on it. Do
not do actions on ruined orders or finished orders

3. ***Avoid Ruining Orders*=*

- Do not cook an order before its ingredients are collected.

Figure 8: Full Kitchen Rush manual
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The game Alien Rush has the following rules:

- The goal of the game is to finish all the irenkels. You score points
for finishing irenkels and lose points for ruining irenkels.

- Players work together to finish irenkels. To finish an irenkel
properly, players must follow its corresponding blintar. Irenkels are
finished when its ayplixs, plurns and jantrox time matches the
corresponding blintar.

- There are 6 kinds of ayplixs (zarvex, fluxin, shonix, flozix, grintal,
and brentix) and 5 kinds of plurns (drikel, quentor, froxen, glivent,
and plorix).

- If an irenkel is jantroxed before its ayplixs are collected, it is
ruined. If an irenkel is ruined, it cannot be finished.

- There are 3 types of board areas: drovus, quelixths, and yorvexs. Each
board area has a limited number of action spaces. If there are no
available action spaces, the board area cannot be used. Action spaces
reset to available after a turn is finished.

- Players have two workers which can carry out one action per turn.

- Players can only choose action for their workers from the Valid
Actions

***Actions***

1. Take Ayplixs: Collect ayplixs for an irenkel from the specified
drovus. Removes one available action space from drovus.

2. Take Plurns: Collect plurns for an irenkel from specified quelixth.
Removes one available action space from quelixth.

3. Jantrox Irenkel: Jantrox a pokem by one jantroxing time on specified
yorvex. Removes one available action space from yorvex.

*** The game ends when: **%*
- All the irenkels are either finished or ruined
- You have played all 11 turns of the game.

These conventions will help when playing the game:

1. ***Take Ayplixs before Jantroxing Irenkel***

- Only jantrox an irenkel if the irenkel already has its ayplixs to
avoid ruined irenkels

2. ***Do Not Work on Ruined or Finished Irenkels#***

- If an irenkel is ruined or finished, you do not need to work on it. Do
not do actions on ruined irenkels or finished irenkels

3. ***Avoid Ruining Irenkels**

- Do not jantrox an irenkel before its ayplixs are collected.

Figure 9: Full Alien Rush Manual
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Recipes:

Fettucine Alfredo:
ingredients: {'pasta': 2, 'cheese': 1, 'meat': 2}
spices: {'white': 1, 'black': 1}
cook time: 1

Orders:

Fettucine Alfredo:
ingredients: not collected
spices: not collected
cook time: 0
finished: False
ruined: False

Board Areas:
pantry:
area_type: pantry
area_id: pantry
ingredients: {'meat': 40, 'carrot': 40, 'lettuce': 40, 'bread': 40, 'pasta': 40, 'cheese': 40}
available_action_spaces: 4

spicebag:
area_type: spicebag
area_id: spicebag
spices: {'green': 12, 'black': 12, 'white': 12, 'red': 8, 'yellow': 8}
available_action_spaces: 4

stoves:
area_type: stoves
area_id: stoves
available_action_spaces: 4

Valid Actions:

0.{'action_type': 'TAKE_INGREDIENTS', 'area_id': 'pantry', 'value': {'order': 'Fettucine Alfredo'}}
1.{'action type': 'TAKE SPICES', 'area_id': 'spicebag', 'value': {'order': 'Fettucine Alfredo'}}
2.{'action_type': 'COOK_MEAL', 'area_id': 'stoves', 'value': {'order': 'Fettucine Alfredo'}}

Figure 10: Sample Kitchen Rush Observation

Blintars:

Zarnorblat Alfrek:
ayplixs: {'grintal': 2, 'brentix': 1, 'zarvex': 2}
plurns: {'froxen': 1, 'quentor': 1}
jantrox time: 1

Irenkels:

Zarnorblat Alfrek:
ayplixs: not collected
plurns: not collected
jantrox time: 0
finished: False
ruined: False

Board Areas:
drovus:
area_type: drovus
area_id: drovus
ayplixs: {'zarvex': 40, 'fluxin': 40, 'shonix': 40, 'flozix': 40, 'grintal': 40, 'brentix': 40}
available_ action_spaces: 4

quelixth:
area_type: quelixth
area_id: quelixth
plurns: {'drikel': 12, 'quentor': 12, 'froxen': 12, 'plorix': 8, 'glivent': 8}
available_action_spaces: 4

yorvexs:
area_type: yorvexs
area_id: yorvexs
available action_spaces: 4

Valid Actions:
0.{'action_type'
1.{'action_type'
2.{'action_type'

'TAKE_AYPLIXS', 'area_id': 'drovus', 'value': {'irenkel': 'Zarnorblat Alfrek'}}
'TAKE_PLURNS', 'area_id': 'quelixth', 'value': {'irenkel': 'Zarnorblat Alfrek'}}
'JANTROX_POKEM', 'area id': 'yorvexs', 'value': {'irenkel': 'Zarnorblat Alfrek'}}

Figure 11: Sample Alien Rush Observation

14



® 4 -

< Flash -

4 1.0Pro -

& 35

©35 4 10Pr0 4 Flash @ 40

Figure 12: Average completed recipes between varying
model group pairings

15



—e— obs+none —o— obs+roles  —e— obs+group —e— obs+manual

easy scenario | weak-weak easy scenario | weak-strong easy scenario | strong-strong
54 i i
f/+\n
44
3 1
I
o
13
w
2 \,
14 p
)
3
o]
hard scenario | weak-weak hard scenario | weak-strong hard scenario | strong-strong
54
24
34
g
o
O
"
24
L
1] |

efI>3 e:.")l ep2 EI:;B

e;‘)l efl:3 eél ep2
episode episode

ep2
episode

Figure 13: Average completed recipe performance across episodes for observation only agents with a teacher
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