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Abstract

Advances in LLMs offer hope of corresponding001
advances in agent participation in teamwork,002
while also posing new challenges in designing003
multi-agent benchmarks for evaluating these004
agents and integrating them effectively into hy-005
brid teams in real-world situations. While prior006
work has demonstrated that LLMs can oper-007
ate in multi-agent settings, they often oversim-008
plify the complexity of collaboration in critical009
dimensions, such as restricting evaluation to010
in-domain and single episode tasks amongst011
homogeneous LLM groups. To bridge this gap,012
we propose a new cooperative multi-agent task,013
Kitchen-Alien Rush, which includes both out-014
of-domain multi-episode evaluation, as well015
as evaluates the effectiveness of hybrid groups016
in collaboration. Our findings reveal that our017
evaluation exposes gaps in multi-agent collab-018
oration, as LLM agents struggle to perform in019
the out-of-domain task and show inconsistent020
improvement over multiple episodes in hybrid021
teams. By identifying these gaps, we motivate022
the need for future work in addressing weak-023
nesses of hybrid multi-agents systems for out-024
of-domain multi-episode tasks.025

1 Introduction026

Human-human collaboration is challenging and has027

been demonstrated to benefit from automated sup-028

port, such as agent-based support (Adamson et al.,029

2014; Naik et al., 2024). The language capabilities030

of state-of-the-art Large Language Models (LLMs)031

offer hope for advances in this space (Brown et al.,032

2020; Driess et al., 2023), but also raise new ques-033

tions about how to design such agents and even-034

tually to introduce them effectively into hybrid035

teams in real world scenarios. Simulation stud-036

ies offer a means to generate synthetic data and to037

narrow down the space of designs, strategies, and038

behavior practices, or troubleshoot novel agent ca-039

pabilities in highly controlled environments prior to040

running more realistic but costly user studies with041

human participants (Gao et al., 2023). This paper 042

contributes a simulation study paradigm involving 043

LLM agents that can play the role of collaborators 044

or supporters of collaboration. 045

In the same way that collaboration benefits hu- 046

mans, strong collaborative skills in multi-agent sys- 047

tems may enhance problem solving and decision 048

making (Zhang et al., 2024c). Collaboration cre- 049

ates the opportunity for agents to learn from each 050

other’s output and increase the abilities of weaker 051

models to complete tasks. Moreover, if we de- 052

sire models to seamlessly assist humans, they must 053

understand how to address challenges in collabora- 054

tion, such as adapting support to variable levels of 055

capabilities and improving coordination with other 056

partners over time (Hu et al., 2020; Carroll et al., 057

2019). 058

In recent years, there has been increased interest 059

in developing collaborative multi-agent systems us- 060

ing LLMs (Carroll et al., 2019; Gong et al., 2023; 061

Zhang et al., 2024b; Light et al., 2023; Zhou et al., 062

2024). However, prior agent simulation studies 063

are limited in their ability to inform design work 064

for agents that participate in hybrid teams because 065

of the narrow scope of task contexts. While these 066

frameworks have demonstrated that LLMs can op- 067

erate in multi-agent settings, they often oversim- 068

plify the complexity of collaboration in critical di- 069

mensions. Firstly, they restrict evaluation to in- 070

domain and single episode tasks, which fails to 071

measure a model’s ability to adapt to changing cir- 072

cumstances, partner relationships, and feedback. 073

Secondly, they do not evaluate heterogeneous LLM 074

teams including models with varying strengths and 075

capabilities. This motivates evaluation of multi- 076

agent LLM systems with hetereogenous partners 077

across domain and multiple episodes. 078

Our main contributions as a paradigm for advanc- 079

ing work in agent support for hybrid teams include: 080

• Task To bridge this gap of developing complex 081
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collaborative benchmarks, we propose a new co-082

operative multi-agent task, Kitchen-Alien Rush.083

In contrast to prior work, our task consists of084

multiple episodes and includes two domains085

(Table 1).086

• Teacher We explore a simple teacher-feedback087

agent framework for multi-episode settings.088

• Findings Our findings reveal that LLM agents089

struggle to perform in the out-of-domain task090

and show inconsistent improvement over multi-091

ple episodes. Moreover, when placed in hybrid092

teams, groups fail to adapt to their partner, with093

stronger partners contributing the majority of094

performance, which does not exhibit behavior095

that is expected to enable groups to succeed in096

scenarios that require group coordination.097

2 Related Work098

Collaboration Tasks for LLMs As LLMs have099

demonstrated remarkable capabilities in single-100

agent tasks (Brown et al., 2020; Qin et al., 2023;101

Driess et al., 2023; Wu et al., 2023), there has been102

increased interest in developing benchmarks for103

multi-agent scenarios. These benchmarks range104

across multiplayer games (Carroll et al., 2019; Bard105

et al., 2019; Light et al., 2023; Qi et al., 2024;106

Gong et al., 2023), virtual embodied household107

tasks (Zhang et al., 2024b; Guo et al., 2024), multi-108

robot collaboration (Mandi et al., 2023), and social109

scenarios (Zhou et al., 2024). Most involve pure110

collaboration tasks in which groups work toward111

a single, shared goal. Notable examples include112

coordination of cooking in Overcooked (Carroll113

et al., 2019), investigation of Theory of Mind abili-114

ties in Hanabi (Bard et al., 2019), and completion115

of tasks in virtual embodied environments (Zhang116

et al., 2024b; Mandi et al., 2023). Other multi-117

agent benchmarks have mixed objectives in which118

groups have to compete against other teams (e.g.,119

Avalon (Light et al., 2023), Werewolf (Xu et al.,120

2024)) or potentially negotiate conflicting social121

goals and motivations (e.g., Sotopia (Zhou et al.,122

2024), Civilization (Qi et al., 2024))123

Current benchmarks do not investigate an agent’s124

ability to adapt to partner relationships and group125

coordination strategies over an extended time126

frame. Moreover, tasks are set in typical scenar-127

ios where world knowledge accessible to LLMs128

might bolster performance. Thus, existing bench-129

marks are not useful for evaluating the ability to130

adapt to new domains through abstraction. Con-131

Domain Episodic Group
Framework In Out Single Multi Homo Hetero

Zhang et al. (2024b) ✓ ✗ ✓ ✗ ✓ ✗
Guo et al. (2024) ✓ ✗ ✓ ✗ ✓ ✓
Shi et al. (2023) ✓ ✗ ✓ ✗ ✓ ✓
Xu et al. (2024) ✓ ✗ ✓ ✓ ✓ ✗
Zhang et al. (2024a) ✓ ✗ ✓ ✗ ✓ ✗
Liu et al. (2023) ✓ ✗ ✓ ✗ ✓ ✗
Agashe et al. (2024) ✓ ✗ ✓ ✗ ✓ ✗
Mandi et al. (2023) ✓ ✗ ✓ ✗ ✓ ✗
Zhou et al. (2024) ✓ ✗ ✓ ✗ ✓ ✓

Ours ✓ ✓ ✓ ✓ ✓ ✓

Table 1: Comparison of multi-agent tasks and frame-
works with LLMs.

sequently, prior results cannot separate aspects of 132

performance that are indicative of abstraction and 133

generalization, for example by leveraging strate- 134

gic knowledge about collaboration. Our proposed 135

task addresses these issues by evaluating across 136

multiple episode and task domains. 137

Multi-Agent LLM Systems Most multi-agent 138

systems enhance performance with increased rea- 139

soning guidance (Wei et al., 2022) and reflection 140

feedback strategies (Yao et al., 2022; Shinn et al., 141

2023). Other frameworks break down complex 142

tasks by managing team organization (Guo et al., 143

2024; Zhao et al., 2024; Hong et al., 2023). In 144

a similar vein, other works improve LLM task 145

planning through hierarchical reasoning (Liu et al., 146

2023), and sub-task planning (Mandi et al., 2023). 147

Our work extends the frontier by developing and 148

evaluating across multiple episodes and task do- 149

mains. 150

Computer Supported Collaborative Agents 151

The field of computer-supported collaborative 152

learning offers numerous technologies and design 153

principles for supporting collaboration, for the pur- 154

pose of mitigating these collaboration challenges 155

(Cress et al., 2021). Some of that work features 156

intelligent conversational agents (Naik et al., 2024; 157

Adamson et al., 2014; Karyotaki et al., 2022) or 158

teachable agents (Ma et al., 2024; Jin et al., 2024). 159

Other applications of AI to support collaboration 160

monitor the progression of a group’s knowledge to 161

identify learning and adjust instruction as needed 162

(Weitekamp et al., 2020; Han et al., 2021). Our 163

work bridges between past literature by offering a 164

simulation-based paradigm with the long term goal 165

of design of agents for supporting collaboration in 166

hybrid teams with multiple humans and multiple 167
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Figure 1: Kitchen Rush: A new evaluation benchmark for LLM collaboration over three episodes. In each episode,
the game state is initialized and encoded into a textual observation. From observations with manual or teacher
scaffolding, agents choose actions and update the game state.

autonomous agents.168

3 Task: Kitchen Rush & Alien Rush169

To evaluate multi-agent groups in collaboration170

games within a realistic coordination environment,171

we require a benchmark analyzing performance in172

long-horizon interactions measured across multiple173

episodes. Consequently, we introduce a new text174

simulation environment and task for multi-agent175

coordination inspired by the board game Kitchen176

Rush (Turczi and Bagiartakis, 2017). Additionally,177

to evaluate group collaboration skills in an out-of-178

domain setting, we implement a parallel out-of-179

domain version of Kitchen Rush, which we refer180

to as Alien Rush.181

3.1 In Domain Kitchen Rush182

In Kitchen Rush, the goal of each episode is to183

complete all assigned recipes within the specified184

number of turns. Each turn, agents control a spe-185

cific number of workers, each of which can be used186

to complete one high-level action per turn, such as187

taking ingredients, or cooking a meal on a stove.188

An episode of a scenario ends when all assigned189

recipes are either finished or ruined, or the group190

exceed the allotted number of turns for the episode.191

Agents work together in teams to complete each192

recipe. Every recipe requires (1) ingredients193

(pasta, carrots, lettuce, meat, or bread), (2) spices194

(white, black, green, red, and yellow), and (3) cook195

time to complete. In Figure 3, Spaghetti Aglio e196

Olio requires collecting ingredients (2 pasta and197

1 carrot), spices (1 green spice), and needs to be 198

cooked once. If an agent is not careful or a group 199

does not coordinate their actions properly, they may 200

ruin an order (e.g., cooking a meal before collecting 201

ingredients, exceeding the cook time of the order). 202

Once ruined, orders cannot be completed. 203

In addition to coordinating actions to complete 204

dishes, groups must also appropriately share re- 205

sources. Every action must be carried out in a 206

specific location of the kitchen (e.g., ingredients 207

from the pantry, spices from the spicebag, and 208

orders are cooked on the stoves). Locations have 209

a limited number of action spaces, which restricts 210

how many of the same action can be completed 211

every turn. A kitchen with only two stoves means 212

there can only be two cook actions every turn. In 213

this case, if the recipes require long cook times, 214

then it would be imperative that agents share stoves 215

carefully and plan to cook earlier than later. 216

3.2 Out of Domain Alien Rush 217

To evaluate group collaboration performance in an 218

out-of-domain setting, we evaluate on Alien Rush, 219

a parallel version of Kitchen Rush which swaps all 220

in-domain cooking entities to out-of-domain “alien” 221

gibberish words. To do so, in each written prompt 222

of Kitchen Rush, we manually identify all words 223

and stems that refer to cooking. This includes cook- 224

ing related terms such as ingredients, spices, recipe 225

names, and stems of cooking-related verbs. Next, 226

we generated gibberish words using ChatGPT for 227

each cooking themed entity in Kitchen Rush. Us- 228
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Figure 2: Abbreviated sample Alien Rush manual.

ing a lexical mapping dictionary, we translate any229

text within Kitchen Rush to Alien Rush gibberish230

(Figure 2). This same one-to-one mapping is used231

across all scenarios and episodes of the game.232

Consequently, Kitchen Rush and Alien Rush are233

functionally equivalent tasks; however, agents can-234

not benefit from their implicit world knowledge235

of cooking when performing in the Alien Rush236

Domain. Only high-level collaborative strategies237

should transfer to this novel setting.238

3.3 Multi-Episode Scenarios239

To allow for experimental design, a scenario’s240

recipes and resources are easily modifiable, and241

rounds may be played with any number of agents.242

Each scenario consists of three episodes each with243

five assigned recipes, which must be completed244

within ten turns. Each episode within a scenario is245

strategically equivalent with the same initial state246

of resources and recipe composition but relevant247

entities are swapped. For instance, we alter the248

Spagetti Aglio Olio into a Mac and Cheese with249

two cheese and 1 pasta (instead of two pasta and250

one carrot), 1 black spice (instead of one green251

spice), and cook times remain the same. Initial252

resources are adjusted such that the same kinds of253

conflicts occur, such as ensuring one resource is254

severely limited. This prevents any success across255

episodes that could come from memorizing recipes256

but maintains the same difficulty and flavor of co-257

ordination challenges over a multi-episode evalua-258

tion.259

Similar to work by Carroll et al. (2019), this flex-260

ibility of customization enables design of scenarios261

that can target evaluation of specific low-level game262

understanding versus high-level coordination strate-263

gies. When manipulating experimental variables,264

we require evaluation which can pinpoint why mod-265

els are failing. For example, while transferring to266

an out-of-domain setting, we must identify whether267

Figure 3: Example of a Kitchen Rush Recipe specifying
ingredients, spices, and length of cook time. Agents
must coordinate their actions in a valid order to complete
the recipe (left). Otherwise, agents may ruin the recipe,
such as cooking the meal too many times (right).

the domain shift results in an agent’s inability to 268

play the game due to lack of understanding of game 269

rules in an alien setting or whether agents can un- 270

derstand the game but are unable to transfer higher- 271

level coordination strategies across domain. Thus, 272

we design an easy scenario and a hard scenario. 273

Easy Scenario serves as a baseline to evaluate an 274

agent’s understanding of the game. Each episode 275

can be completed by one agent within the allotted 276

turns and does not require coordination strategies. 277

There are no resources conflicts, so agents have 278

unlimited ingredients, spices, and actions spaces 279

at each location. Groups that can complete all 280

five recipes signal that they have mastery of the 281

basic rules of the game. However, groups that ruin 282

recipes in this scenario suggest they lack the ability 283

to play the game at its simplest level. 284

Hard Scenario evaluates group ability to coordi- 285

nate resources and strategies. The pantry and stoves 286

are severely limited, such that all five recipes can 287

only be completed by the final turn. Successful 288

completion requires agents to divide tasks between 289

collecting ingredients and cooking recipes. With- 290

out task division, groups cannot complete all five 291

recipes within the allotted time. Thus, groups that 292

complete less than five recipes, ruin recipes, or ex- 293

ceed the allotted time of the episode may indicate 294
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Group Recipes/Turns
Completed (CR) # recipes completed by the group
Ruined (RR) # ruined recipes completed by the group
Turns # of turns in the episode

Individual Actions
Positive (A+) Agent contributed to completing recipes
Negative (A−) Agent contributed to ruining recipes
Neutral (A=) Neutral action (e.g. no action) by an agent
Total A+ +A− +A=

Table 2: Evaluation Metrics

that they did not effectively apply group coordina-295

tion strategies.296

3.4 Metrics297

We evaluate episodes on group and individual met-298

rics (Table 2). Metrics are measured over all three299

episodes. By measuring over multiple episodes, we300

evaluate a group’s ability to adapt to other partners301

and settings over an extended time frame. We use302

these metrics to measure performance and distin-303

guish between greedily acting groups (individual304

success at the cost of coordination strategies) vs.305

balanced collaborative groups (high group success306

with equal individual participation).307

4 Methods & Experimental Design308

Success of human collaborations varies based on309

task characteristics, group composition including310

distribution of expertise and scaffolding. As we311

aim to define a paradigm in which questions related312

to supporting hybrid human-agent teams can be ad-313

dressed going forward, we incorporate these three314

dimensions in our experimental design. To investi-315

gate the impact of one form of domain characteris-316

tics, we manipulate the extent to which tasks build317

on every-day knowledge with the Kitchen Rush and318

Alien Rush settings. To investigate expertise and319

group composition, we manipulate the family of320

models, GPT (OpenAI, 2023) and Gemini (Google,321

2023), as well as the strength of model (GPT-3.5-322

Turbo, GPT-4o, Gemini 1.0 Pro and Gemini 1.5323

Flash). We explore group composition in terms324

of homogeneity or heterogeneity along these two325

separate dimensions. Additionally, we explore two326

different types of support, namely a manual and a327

teacher (which is always a strong model, but which328

may be from either model family).329

4.1 Methods 330

As simple baselines, we implement an LLM agent 331

similar to those in prior LLM agent tasks (Yao 332

et al., 2022; Agashe et al., 2024). In this method, 333

LLMs are given an action generation prompt which 334

contains relevant observations obtained from the 335

environment and a list of candidate actions. Agents 336

may also be given reasoning and additional knowl- 337

edge of the task, which we refer to as scaffolding. 338

With this textual information, agents must pick the 339

best next action to update the environment from the 340

candidate actions. We implement several ablations 341

of scaffolding which we detail below. Full prompts 342

for scaffolds may be found in Appendix A. 343

Observation Only (No Scaffolding) We provide 344

agents with a text description of the current turn of 345

the game with relevant details (e.g., recipes, order 346

status, resource availability). Agents are prompted 347

to choose the next best action within a list of valid 348

candidate actions. An abbreviated sample of the ob- 349

servation is shown in Figure 4. In this condition, we 350

examine the extent to which implicit world knowl- 351

edge about the domain and the task structure helps 352

model performance. 353

Observation and Manual Along with observa- 354

tions, we provide agents with a manual explaining 355

the rules of the game. Agents may use provided 356

explicit knowledge of the game to generate action 357

from the observation. Thus, with a given manual, 358

we investigate how well agents can reason from 359

explicit low-level static information given about 360

the task. For reference, we provide a sample of the 361

manual in Figure 5. 362

Multi-Episode Teacher Feedback To design a 363

framework for multi-agent collaborative groups 364

that increase their performance over multi-episode 365

interactions, we implement a teacher agent to pro- 366

vide relevant plans and strategies to agents from 367

prior round history. Similar to the action gener- 368

ation prompt, in order to generate feedback, we 369

give the teacher expert knowledge of the game via 370

a board game manual as well as prior action his- 371

tory and results from the previous round. From 372

this information, we prompt teachers to generate 373

new strategies for the next round of the game or 374

adjust prior strategies. We evaluate two teacher 375

agents: (1) a group strategy teacher that gives 376

the same feedback and strategies to every agent, 377

and (2) an individual roles and feedback teacher 378

that gives personalized roles and feedback to each 379
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Figure 4: Abbreviated observation prompt

player. In this condition, we examine how explicit380

high-level dynamic feedback may improve perfor-381

mance across multiple episode.382

4.2 Experimental Design383

The effectiveness of collaborations depends on the384

nature of the tasks, the makeup of the group (par-385

ticularly the distribution of skill and expertise), and386

scaffolding. In our effort to create a paradigm for387

exploring how to best support hybrid human-agent388

teams, we incorporate these factors into our experi-389

mental approach. For each experimental dimension,390

we evaluate on both easy and hard scenarios to sep-391

arate evaluation of low-level individual game coor-392

dination and high-level group collaborative skills.393

394 Domain The level of implicit strategy knowledge395

of a large language model on a task varies by do-396

main. We evaluate models across domains in order397

to identify whether the agents and teachers abstract398

generalizable collaboration strategies. As such, we399

evaluate pairs on both the in-domain Kitchen Rush400

task and the out-of-domain Alien Rush task. In401

our paradigm, we aim to separate aspects of perfor-402

mance contributed by the implicit world knowledge403

of in-domain tasks to the use high-level abstrac-404

tions to transfer knowledge in out-of-domain tasks.405

LLM Group Composition We experiment with406

homogeneous and heterogeneous pairs. Homoge-407

neous pairs contain agent partners with the same408

LLM models. In contrast, heterogeneous pairs con-409

sist of partners with two different LLM models. We410

vary along four models across two LLM families:411

GPT-4o, GPT-3.5-Turbo, Gemini 1.0 Pro, and Gem-412

ini 1.5 Flash. We further frame our analysis across413

different LLM strengths in which we categorize414

Figure 5: Abbreviated manual prompt

larger LLM models with longer contexts as strong 415

(GPT-4o and Gemini 1.5 Flash) and smaller mod- 416

els with shorter contexts as weak (GPT-3.5-Turbo, 417

Gemini 1.0 Pro). This dimension aims to success 418

the ability of LLMs to adapt to other partners. 419

Teacher Scaffolding We vary experiments by 420

different scaffolding. In particular, we examine 421

the effects of group strategy and personalized roles 422

teachers in comparison to static scaffolding in man- 423

uals. We limit the teacher model to strong mod- 424

els. By measuring the effects of dynamic scaffold- 425

ing, we aim to address whether LLMs can improve 426

performance and learn over multi-episode interac- 427

tions. 428

5 Results and Discussion 429

5.1 Domain Results 430

We investigate the effects of domain on different 431

model groups. We focus our analysis on homoge- 432

neous groups. In doing so, we evaluate baseline 433

performance across domains for each model. 434

In domain, strong models perform well. Weaker 435

models struggle (Figure 6). Across both do- 436

mains, we observe that strong models tend to per- 437

form better than weaker models. GPT-4o tends to 438

perform the best while Gemini 1.5 Flash is a close 439

equivalent when a manual is present. In particular, 440

we note that strong groups can finish all five recipes 441

in the easy difficulty while weaker groups struggle 442

to complete more than two. The high performance 443

by strong models in the easy scenario indicate that 444

they have a stronger understanding of basic game 445

rules while the lower performance suggest weaker 446

models do not. This is also shown by the severe 447
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Figure 6: Comparison of average number of completed
recipes and error margin across domain, conditions, and
difficulty for homogeneous groups

lack of recipes completed by weaker models in the448

difficult collaborative scenario. This aligns with449

expectations of models given their size and context450

length.451

Out-of-domain, strong models can perform with452

a manual, however performance drops on hard453

problems. Strong groups with a manual can un-454

derstand basics of Alien Rush. In fact, in the easy455

scenario, both strong groups are able to achieve456

close to equivalent performance to Kitchen Rush.457

Thus, we conclude if strong models are given a458

manual, they have enough explicit knowledge to459

play the game in both domains despite having less460

implicit world knowledge in the out-of-domain461

Alien Rush environment.462

However, even with a manual, strong groups in463

the harder scenario perform worse in Alien Rush.464

Unlike in-domain findings, they do not reach equiv-465

alent performance to the Kitchen Rush counterpart.466

This gap suggests that coordination skills required467

in the hard difficulty might not transfer in out-of-468

domain settings.469

Performance drops in out-of-domain hard prob-470

lems may be explained by lack of collaborative471

skill transfer and difficulty of the setting (Ta-472

ble 3). To investigate this performance gap, we473

looked more closely at the nature of the perfor-474

mance across domains for strong groups. In the475

Turns < 10 = 10

CR Ave
Model Domain 1 2 3 4 5 RR

GPT-4o Kitchen 0 0 22 78 0 0 0.11
GPT-4o Alien 0 11 22 67 0 0 0.22

Gemini 1.5 Flash Kitchen 11 33 22 0 0 34 2.66
Gemini 1.5 Flash Alien 0 0 0 0 0 100 3.88

Table 3: Percentage of homogeneous strong groups with
a manual that terminated early (<10) or reached turn
limit (=10) in the hard difficulty, and average ruined
recipes from runs.

hard scenario, all five recipes can only be com- 476

pleted by the final turn. Groups that fail fall under 477

one of two cases: (1) groups complete less recipes 478

but time out, which signals agents are competent 479

but are not collaborating effectively or (2) groups 480

ruin recipes and terminate episode early, which sig- 481

nals agents are less competent and struggle to apply 482

rules properly in the out-of-domain setting. 483

When examining the performance of GPT-4o 484

in Kitchen Rush, we observe that GPT-4o models 485

tend to complete more recipes before timing out. 486

This suggests that while the model’s collaboration 487

was not perfectly successful, they were still able to 488

collaborate well enough to complete four recipes. 489

In contrast, groups tend to complete less recipes 490

and time out in Alien Rush. This suggests that 491

in an out-of-domain setting, GPT-4o cannot as ef- 492

fectively transfer collaborative skills shown from 493

Kitchen Rush to Alien Rush. 494

5.2 LLM Group Composition Results 495

With the established trends across domains for ho- 496

mogeneous groups, we investigate the differences 497

between homogeneous and heterogeneous groups. 498

Again, for this analysis we focus on experiments 499

with manual as a baseline across model groups. 500

By focusing on groups with manuals, we control 501

that all models have explicit knowledge of both 502

domains. 503

Homogeneous strong groups perform better 504

than heterogeneous weak-strong groups Ho- 505

mogeneous strong groups perform the best, and 506

homogeneous weak groups perform the worst. In 507

the middle, heterogeneous strong-weak groups per- 508

form worse than homogeneous strong, but they per- 509

form better than homogeneous weak groups. Thus, 510

weaker model benefit from stronger partners (see 511

Appendix C.1). 512
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Figure 7: Plot of percent positive actions to percent negative actions across group compositions

Weaker models do not benefit from stronger513

models because models collaborate well together514

but through unbalanced participation. To ex-515

amine why heterogeneous models see improve-516

ments over weaker models, we examine the dis-517

tributions of positive and negative actions across518

players and models (Figure 7).519

The distributions between weak-strong groups520

reveal that strong models tend to contribute to more521

positive actions and less negative actions. In con-522

trast, weak models contribute to more negative ac-523

tions and less positive actions. The graduation524

across the four models in weak-strong is consistent,525

showing performance is unbalanced proportional to526

the strength of the model. Consequently, while het-527

erogeneous groups perform better than their weaker528

counterparts, it is not because strong partners in-529

crease collaborative strategies, but rather the strong530

model contributes to the performance.531

Similarly, when comparing to homogeneous532

groups, we do not see as clear of a player split.533

Homogeneous pairs contribute more equally than534

heterogeneous. Thus, while models can may play535

well with their identical counterparts, they do not536

coordinate well with others.537

5.3 Multi-Episode and Teacher Results538

We finish our analysis by investigating the perfor-539

mance of the teacher framework. Initial exploration540

found that teachers help, except when models al-541

ready have a manual. Consequently, we analyze the542

rest of the teacher findings only on groups without543

a manual, as well as report obs+manual with no544

teacher baseline to allow comparison between the545

two.546

Having a teacher helps generally, but not more547

than a manual. Trends in both domains suggest548

having a teacher benefits groups, but not better than549

a manual (see Appendix C.2). Similar to manual 550

findings, weak-weak groups models see marginal 551

benefits. However, weak-strong and strong-strong 552

groups see greater gains for teachers and manuals. 553

The manual to teacher gap is much larger in out- 554

of-domain Alien Rush. However, teachers give 555

much more direct coordination strategies than the 556

manual. This may suggest that groups cannot apply 557

the collaboration strategies as well or that Alien 558

Rush strategies are more difficult to generate and 559

understand. 560

Trends of scaffolding across episodes can be in- 561

consistent Across episodes, we see improvement 562

from the teacher feedback. In the first episode, 563

which has no feedback, the performance is con- 564

sistently the lowest. Additionally, we see upward 565

trends in performance in episode two, after the first 566

round of feedback. However, trends can be incon- 567

sistent and are within standard deviation (see Ap- 568

pendix C.2). In fact, it is common for episode three 569

to plateau or perform worse than prior episodes. 570

This motivates future work to develop frameworks 571

that improve performance in multi-episode tasks. 572

6 Conclusion 573

We present a new multi-agent coordination task, 574

Kitchen-Alien Rush. By evaluating hybrid LLM 575

teams within in-domain and out-of-domain across 576

multiple episodes, our task addresses several crit- 577

ical dimensions of collaboration that prior work 578

does not consider. We find that the proposed 579

task environment evaluates key dimensions not ad- 580

dressed in prior multi-agent literature. By expos- 581

ing these dimensions in our evaluation, we lay the 582

foundation for future work to address gaps in per- 583

formance of heterogeneous LLM groups in long 584

horizon collaborative tasks. 585
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7 Limitations586

While this work contributes and expands on prior587

literature in collaborative multi-agent tasks for588

LLMs, it has several limitations which we detail589

below.590

Limitations of Simulation We limit our current591

benchmark in several ways that reduce the scope592

of our evaluation. Firstly, we restrict our task to593

text-only simulation. In reality, collaboration is594

a complex, multimodal interaction that cannot be595

captured solely through written communication.596

Effective collaboration includes verbal and non-597

verbal cues, such as body language, tonality of598

speech, and joint attention, all of which ground599

communication and coordination. Secondly, our600

task is constrained to a fixed turn-based interaction,601

which cannot capture aspects of multi-agent tasks602

such as interjection and simultaneous coordination.603

And lastly, our simulation does not include human604

interaction, which limits our benchmark’s ability605

to transfer findings to human collaboration applica-606

tions. While we did not implement other modalities607

in the scope of this work, we choose to base our608

simulation on a real board game, Kitchen Rush, to609

allow for future work on this dimension.610

Lack of Finetuning We do not evaluate the effect611

of fine-tuning in our task. While we do assess the612

foundational capability of LLMs which is neces-613

sary in evaluating the implicit knowledge of models614

in this task, this approach limits our understanding615

of an LLM’s potential performance with training.616
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A Example Prompts808

We provide several full examples of Kitchen Rush809

(Figure 8 and 10) and Alien Rush Prompts (Figure810

9 and 11)811

B Details of Metrics812

In this appendix, we elaborate on the details of our813

metrics in Table 2 and how they measure collabo-814

ration performance in our task.815

Group Performance Our metrics capture overall816

group performance with the total number of com-817

pleted recipes and ruined recipes. Throughout our818

evaluation, we refer to score as the number of com-819

pleted recipes in an episode. This score serves as a820

quick reference to estimate success and failure in821

an episode. Moreover, these metrics also evaluate822

graded success on a spectrum in which groups that823

complete all five recipes and ruin none are the most824

successful whereas group complete zero recipes825

and ruin all five recipes are the least successful.826

Efficiency We evaluate efficiency by tracking the827

turns to complete or ruin the recipes. Evaluating828

total turns taken in an episode may proxy measure-829

ment of coordination level between groups. Groups830

that complete more recipes at lower turn levels sug-831

gest they coordinated better whereas groups that832

terminate early due to ruining all recipes signal lack833

of understanding of the game. Moreover, groups834

that perform as single actors rather than in coordi-835

nated groups will have longer episodes.836

Contribution Balance Lastly, we measure indi-837

vidual metrics of positive, negative, and neutral838

action counts to measure contribution balance of839

each agent. While certain groups may perform840

well in our scenarios, individual metrics allow us841

to capture how each agent contributes to the per-842

formance. With this metric, we can distinguish843

between groups with balanaced coordination ver-844

sus groups with inbalanced participation in which845

one model greedily contributes to the majority of846

performance.847

C Additional Analysis Figures 848

This section includes additional figures references 849

in our analysis. 850

C.1 Average Completed Recipes Across 851

Different Model Pairs (Figure 12) 852

C.2 Teacher Performance Across Episodes 853

(Figure 13) 854

C.3 Teacher Performance across group 855

strength, composition, and domain 856

(Figure 14) 857
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Figure 8: Full Kitchen Rush manual
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Figure 9: Full Alien Rush Manual
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Figure 10: Sample Kitchen Rush Observation

Figure 11: Sample Alien Rush Observation
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Figure 12: Average completed recipes between varying
model group pairings
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Figure 13: Average completed recipe performance across episodes for observation only agents with a teacher

Figure 14: Average score performance for observation only agents with a teacher. Results are divided across group
strength composition and domain.
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