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ABSTRACT

The self-attention mechanism of vision transformer has demonstrated potential for
instance segmentation even using a single point as supervision. However, when it
comes to objects with significant deformation and variations in appearance, this at-
tention mechanism encounters a challenge of semantic variation among object parts.
In this study, we propose discriminatively matched part tokens (DMPT), to extend
the capacity of self-attention for pointly supervised instance segmentation. DMPT
first allocates a token for each object part by finding a semantic extreme point, and
then introduces part classifiers with deformable constraint to re-estimate part tokens
which are utilized to guide and enhance the fine-grained localization capability of
the self-attention mechanism. Through iterative optimization, DMPT matches the
most discriminative part tokens which facilitate capturing fine-grained semantics
and activating full object extent. Extensive experiments on PASCAL VOC and
MS-COCO segmentation datasets show that DMPT respectively outperforms the
state-of-the-art method by 2.0% mAP50 and 1.6% AP. DMPT is combined with
the Segment Anything Model (SAM), demonstrating the great potential to reform
point prompt learning. Code is enclosed in the supplementary material.

1 INTRODUCTION

In the past few years, the self-attention mechanism (Vaswani et al., 2017) of vision transformers
(ViTs) (Dosovitskiy et al., 2021; Touvron et al., 2021; Liu et al., 2021) has achieved success in
object localization (Zhou et al., 2016). Due to its ability to establish spatial dependencies among
features, the self-attention mechanism has also been widely applied in weakly supervised object
localization scenarios (Gao et al., 2021). Nevertheless, in fine-grained segmentation tasks, the
attention mechanism remains challenged by the significant semantic variation among object parts,
Fig. 1(b) and (c). This issue can be mitigated by providing precise mask annotations (Lin et al., 2014;
Everingham et al., 2010; Hariharan et al., 2011), but it entails a substantial human effort for data
annotation.

Given the powerful spatial localization potential of the self-attention mechanism, how can we harness
it to achieve accurate instance segmentation in scenarios where only point supervision is available,
Fig. 1(a)? In tackling this problem, we conducted analysis of two key factors that influence the self-
attention maps for instance segmentation: the architecture of self-attention itself, and the guidance
in self-attention-based networks. Modifying the self-attention architecture renders existing pre-
trained models inapplicable. We adopt the latter approach, where we propose to split each object
to parts and use these parts as guidance to steer the self-attention mechanism towards the activation
of finer-grained semantics, and thereby achieving more accurate instance segmentation under the
point supervision setting. In order to obtain the object parts while ensuring their ability to guide
the self-attention mechanism, we encounter two challenges: (1) How to partition an object with
deformation to semantic-consistent parts using the coarse attention map generated through point
supervision; (2) How to guarantee the same parts of different objects semantically consistent.

In this paper, we propose Discriminatively Matched Part Tokens (DMPT), which models each instance
as a set of deformable parts. Such deformable parts are initialized on the attention map generated
on a supervision point and optimally and iteratively matched with part classifiers. Using ViT as the
backbone network, DMPT performs the following three procedures. (i) Part token allocation. Upon
the self-attention map, the mean-shift method is carried out to generate part clusters and localize

1



Under review as a conference paper at ICLR 2024

Person

(b) Appearance Variance(a) Image & Supervision (c) Self-attention Map

(e) Matched Part Tokens
in Feature Space

(d) Learned Part Classifiers
with Deformation Constraint

(f) Matched Part Tokens in Image
Space & Predicted Mask

Part 1

Part 2

Part 3
Part 4

Part 5

Background

Figure 1: Illustration of challenges (upper) of pointly supervised instance segmentation and the
proposed approach (lower). Upper: The self-attention map produced by ViT ignores object parts
with semantic variance when using a single point as supervision. Lower: Our DMPT learns
multiple part classifiers with deformation constraint (colored ovals) to match the part tokens (colored
rectangles), and handle part semantic variance. (Best viewed in color)

semantic extreme points, Fig. 1(d). The part tokens are then initialized using the patch tokens near
these semantic extreme points. (ii) Token-classifier matching. A set of part classifiers are firstly
trained based on the part tokens to capture stable fine-grained semantics by optimizing an instance
classification loss, Fig 1(f). As the part annotations are unavailable during training, we introduce a
token-classifier matching mechanism under the constraint of the instance classification loss, where
each part classifier takes the matched part tokens as input to avoid the semantic aliasing among part
classifiers. Considering that the initialized part tokens maybe inaccurate caused by the deformation
of objects, we treat the semantic extreme points as “anchors", and used them to define spatial offset
constraint for part tokens during the token-classifier matching. (iii) Part-based guidance generation.
Using these part tokens, a set of part points is generated and utilized as guidance for the self-attention-
based network to improve the fine-grained localization capability of the self-attention mechanism in
a point-supervised manner. Through this procedure, DMPT extends the capacity of self-attention so
that it can handle large deformation and semantic variance.

When combined with Segment Anything Model (SAM), DMPT-SAM improves the instance segmen-
tation performance of vanilla SAM by a significant margin with a single point as prompt, Table. 1,
demonstrating its ability to reform point prompt learning.

The contributions of this paper are summarized as follows:

• We propose discriminatively match part tokens (DMPT), extends the capacity of self-
attention for pointly supervised instance segmentation (PSIS), providing a systemic way to
address large deformation and appearance variance.

• We design simple-yet-effective modules to allocate and optimize part tokens using semantic
extreme points and token-classifier matching.

• DMPT achieves the best performance for PSIS, demonstrating the potential to reform point
prompt learning.
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Method PASCAL VOC 2012 MS-COCO 2017

mAP25 mAP50 mAP75 AP AP50 AP75

SAM (Kirillov et al., 2023) 59.4 39.9 19.0 19.5 36.8 18.8
DMPT-SAM(ours) 70.7(+11.3) 59.4(+19.5) 35.5(+16.5) 22.6(+3.1) 45.7(+8.9) 21.4(+2.6)

Table 1: Comparison of DMPT-SAM with vanilla SAM, where ViT-base is used as the backbone.

2 RELATED WORK

Deformable Part-based Models. Deformable part-based models, i.e., deformable template mod-
els(Coughlan et al., 2000; Cootes et al., 2001) and manifold part-based models (Fischler & Elschlager,
1973; Felzenszwalb & Huttenlocher, 2005; Amit & Trouvé, 2007; Burl et al., 1998), achieved great
success to handle object appearance variance. In particular, pictorial structure models (Felzenszwalb
& Huttenlocher, 2005; Fischler & Elschlager, 1973) captured the geometric arrangement of parts
through a set of “springs" that connect pairs of parts. DPM (Felzenszwalb et al., 2010) defined
deformation cost to punish parts far away from the root position. DCN (Dai et al., 2017) augmented
convolutional kernels by learning offsets of spatial locations to cover irregular object layout. De-
formable DETR (Zhu et al., 2021) implemented this idea into vision transformer to further improve
the feature representative. PST (Yang et al., 2022) decomposed object to parts by splitting feature
vectors belonging to a whole object to multiple subsets using an Expectation-Maximization algorithm.
In this study, we are inspired by the conventional DPM (Felzenszwalb et al., 2010) and intend to
exploit its potential to enhance the self-attention mechanism of ViTs.

Weakly Supervised Instance Segmentation.This pursues segmenting instances given image-level
labels as supervision signals. Early researches (RR et al., 2013) segmented the instances from selected
proposals using activation maps (Ge et al., 2019). For example, PRM (Zhou et al., 2018) produced a
peak response map to select proper proposals. Class activation map (CAM) (Zhou et al., 2016) locate
objects by mapping the class score back to the previous convolution layer. BESTIE (Kim et al., 2022)
transferred instance heat-maps, e.g. center and offset maps, from weakly supervised segmentation
results and refined the maps for accurate segmentation. This line of methods experience difficulty to
represent diverse semantics of object parts.

Pointly Supervised Instance Segmentation. This task predicts an instance mask for each object
using a single point (within object extent) as supervision. Compared to weakly supervised methods,
pointly supervised ones provide coarse instance location prompt, while only increasing annotation
cost by about 10% (Chen et al., 2022). Recently, PSPS (Fan et al., 2022) generated pseudo mask
labels by minimizing traversing distance between each pair of pixel and point label. Point2Mask (Li
et al., 2023) improved this idea and proposed a transport cost upon ground-truth points and both of
high-level semantics and low-level boundaries, which achieves the SOTA performance on panoptic
segmentation. Nevertheless, a single point can be placed on any object parts, which correspond to
diverse semantics. Training a model using such diverse semantics leads poor instance segmentation
performance. While AttnShift (Liao et al., 2023) estimates fine-grained semantics using a clustering
method, it experiences difficulty to elaborate stable part semantics across objects.

Using a large number of mask labels as supervision and point labels as prompt, SAM (Kirillov
et al., 2023) greatly improved the generalization capacity of transformer segmentation models.
However, SAM lacks a mechanism to handle various object parts, which causes the challenging
over-segmentation and/or under-segmentation issues. By defining a part-based ViT model, this study
has the potential to be integrated with SAM to enhance the capacity of segmenting object parts.

3 METHODOLOGY

3.1 PRELIMINARY

Each input image is split to W × H patch tokens M = {µi,j ∈ R1×D, i = 1, 2, ...,W, j =
1, 2, ...,H}, where D is the feature dimension of tokens. To activate object of interests, a set of query
tokens are randomly initialized and concatenated with the patch tokens, Fig. 2. Features of query
tokens are extracted by the cascaded self-attention mechanism in ViTs, which enables query tokens
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Figure 2: Diagram of DMPT, which utilizes the self-attention map generated by ViT to allocate part
tokens with deformation constraint and matches them with the part classifiers to learn fine-grained
part semantics. (Best viewed in color)

capturing feature dependency across all patch tokens. Following the self-attention operation (Abnar
& Zuidema, 2020; Gao et al., 2021; Liao et al., 2023), we multiply the self-attention maps from
shallow to the deep layers to produce a self-attention map A ∈ RW×H for each query token, and
Ai,j denotes the attention value between the patch token µi,j and the query token. 1

To activate objects, query tokens are respectively passed through two multi-layer perception (MLP)
branches to predict a point with class probabilities and coordinates, Fig. 2. The predicted points are
assigned to the supervision points or background using a bipartite matching loss

Lobj = Lloc + Lcls, (1)

where Lloc is the L1-norm loss (Carion et al., 2020) defined upon coordinates of the predicted point
and the supervision point. Lcls is the focal loss (Lin et al., 2017) defined upon the point classification
probability and the category label. This loss restraints each object can only be assigned to one query
token. According to the assigning results, we can obtain the self-attention A for each object/query.
Considering that A is a coarse activation map that suffers from background noise and/or object
part missing, Fig 1(c). We propose to decompose each object into multiple parts for fine-grained
segmentation.

3.2 PART TOKEN ALLOCATION

Each object part is expected to be represented with an optimal part token. To this end, the mean-
shift method (Comaniciu & Meer, 2002) is employed to group object parts to clusters within the
feature space, Fig. 1(e). Let P = {Pk ∈ R1×D, k = 1, ...,K} denotes the part tokens, and
C = {Ck ∈ R1×D, k = 1, ...,K} the cluster centers. Each cluster center Ck is computed by
averaging the features of patch tokens belonging to the cluster. The k-th part token Pk is estimated as

Pk = argmax
µi,j∈M+

σ(µi,j , Ck). (2)

where M+ indicates patch tokens within the foreground region of attention map A. Note that
we determine foreground region by a empirical threshold on confidence of A. And σ(a, b) is for
calculating cosine similarity of vector a and b.

1Please refer to the supplementary materials for more details.
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Due to object deformation, object parts of the same categories from different images might be falsely
grouped. This leads to a certain deviation between representing semantics of object parts with cluster
centers and their actual counterparts. To solve this issue, we introduce a well-defined part deformation
constraint to optimize part tokens.

Part Deformation Constraint. This is defined on the assumption that patch tokens close to cluster
centers are more likely to be part tokens. Denote the coordinates of part tokens (cluster centers)
estimated by Equ. 2 as q = {qk = (xk, yk), k = 1, 2, ...,K}, where {xi = 1, 2, ...,W, yi =
1, 2, ...,H}. q are termed as anchor points, according to which we define the part deformation
constraint. Assume the newly estimated part token Pk is located at (xi, yi) within the k-th cluster, its
deformation constraint is defined as

dk(xi, yi) = lk ·∆(qk, (xi, yi)), (3)
where deformation features ∆(qk, (xi, yi)) ∈ R1×4 is defined as

∆(qk, (xi, yi)) = (dxk, dyk, dx
2
k, dy

2
k) =

(
|xk − xi|, |yk − yi|, |xk − xi|2, |yk − yi|2

)
, (4)

where lk represents learnable parameters output by an 1×1 convolutional layer, Fig. 2. We initialize
lk = (0, 0, 1, 1) to represent the squared distance between the location of a part token and its anchor
position. Part deformation indicates that the token far from its anchor has a lower probability of being
an object part, and vice versa.

To learn stable part semantics across objects, the model should not only leverage clustering
mechanisms to explore semantic extremes but also learns a discriminative part semantic model,
i.e., part classifiers (introduced in the next subsection). Given the part classification score
sk = {sk(xi, yi) ∈ [0, 1]} for each patch token µxi,yi

in the k-th cluster, the part token Pk in
Equ. 2 is updated as

Pk = argmax
µxi,yi

∈MCk

(sk(xi, yi)− αd̂k(xi, yi)), (5)

where MCk
denotes the set of patch tokens belonging to the k-th cluster. α is an experimentally

determined factor, and d̂k(xi, yi) ∈ R1×1 the summation of displacements in dk(xi, yi). Equ. 5
indicates that part token allocation essentially seeks a balance between the part classification scores
and part deformation constraint, controlled by learnable parameters lk. It guarantees that the allocated
part token has a high classification score while being close to the anchor point.

3.3 TOKEN-CLASSIFIER MATCHING

Note that Equ. 5 is defined upon the part classification score s for patch tokens. Nevertheless, s is
unavailable during training as there is only a single point supervision for each instance. Using the
attention map A as s is a possible way, but the appearance variation issue remains.

Matching with Constraint. We introduce a set of part classifiers f = {fn, n = 1, 2, ..., N}, where
N is the number of parts for an object. Each part classifier is implemented by a single fully connected
layer, Fig. 2. sn is then predicted by the n-th part classifier as sn(xi, yi) = fn(µxi,yi

). Assume that
the part classification score of n-th part token Pn is estimated by n-th part classifier fn. To learn the
part classifiers, we define an instance classification loss for each point supervision as

Ldmpt = CE

(
N∑

n=1

(
fn(Pn)− αd̂n(xn, yn)

)
, Y

)
, (6)

where Y is the ground-truth label of the object and CE(·) the cross-entropy loss (Deng et al., 2009).

In fact, the pair-wise relation between part classifier fn and part token Pk is unknown. To construct
the relation, a token-classifier matching indicator is added to the instance classification loss. Let
m = {mn,k, n = 1, 2, ...N, k = 1, 2, ...K} denote the matching matrix, where mn,k ∈ {0, 1}
indicates whether fn and Pk are matched or not. The loss defined in Equ. 6 is updated as

Ldmpt = argmin
m

CE

(
N∑

n=1

K∑
k=1

mn,k

(
fn(Pk)− αd̂k(xk, yk)

)
, Y

)
, (7)

s.t. ∀k,
N∑

n=1

mn,k ≤ 1, ∀n,
K∑

k=1

mn,k ≤ 1. (8)
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Figure 3: Comparison of single point prompt and DMPT prompt in segment anything model (SAM).

Equ. 8 defines the matching constraint so that a part token is only assigned to a single part classifier,
which avoids semantic aliasing among object parts. During training, the optimal matching problem is
solved by a weight bipartite matching algorithm (et al, 2001), e.g., the Hungarian algorithm (Kuhn,
1995). Optimized by Equ. 7 with a deformation constraint term (d̂k(xk, yk)), DMPT not only learns
stable and various fine-grained semantics but also is robust to object deformation.

3.4 PART-BASED GUIDANCE GENERATION

Once Equ. 7 is optimized, we obtain the matched part tokens P to generate guidance information. As
previously discussed, to enable the self-attention mechanism to activate fine-grained semantics, we
first use part tokens to create a set of part points G = {Gk, k = 1, 2, ...,K}, where Gk = {(xk, yk)}
denotes the part coordinates as Gk = argmaxxi,yi

(sk(xi, yi)− αd̂k(xi, yi)). We then add an MLP
layer atop the self-attention network to predict these part points, denoted as Ĝ = {Ĝk = (x̂k, ŷk), k =
1, 2, . . . ,K}, Fig. 2. This point prediction procedure is driven by updating the bipartite matching loss
defined in Equ. 1 as

Lobj = Lloc + Lcls + Lpart(Ĝ,G), (9)

where Lpart(Ĝ,G) = 1
2K

(∑K
i=1 minj ||(xi, yi)− (x̂j , ŷj)||2 +

∑K
j=1 mini ||(xi, yi)− (x̂j , ŷj)||2

)
is the Chamfer loss defined in (Fan et al., 2017). Through gradient backpropagation during training,
Equ. 9 drives the self-attention mechanism to captures information about these part points, enabling
the model to possess part-level semantic awareness.

3.5 POINTLY SUPERVISED INSTANCE SEGMENTATION

DMPT. Fig. 3(a) shows the PSIS framework with DMPT. The instance segmenter is implemented
upon a Mask R-CNN (He et al., 2017) framework, which consists of a bounding-box detection head
and an instance segmentation head. Our DMPT generates a pseudo bounding-box, which encloses
the maximum connected object area within the self-attention map, indicating the position of M+. For
mask supervision, we regard the pixels which within part tokens and re-estimated ones as foreground.
The background pixels is sampled from pixels with small attention value within the pseudo bounding-
box. DMPT-SAM. Combed with the segment anything model (SAM), DMPT updates the point
prompt learning for instance segmentation, Fig. 3(b). Compared with the conventional point prompt,
Fig. 3(c), DMPT facilities estimating fine-grained semantics related to object parts, and thereby
alleviates the semnatic ambiguity of point prompt learning.

4 EXPERIMENT

4.1 IMPLEMENTATION DETAILS

We implement DMPT upon imTED (Zhang et al., 2022b). When training DMPT, random horizontal
flips and auto-augmentation on multi-scale ranges are used for data augmentation. DMPT is trained
with AdamW optimizer with batch size 16 on 8 Tesla A100 GPUs. The weight decay and training
epoch are 0.05 and 12 respectively. The learning rate is initialized as 0.0001, and reduced by a
magnitude after 9 and 11 epochs. Following BESTIE (Kim et al., 2022), we select the center of
ground-truth bounding-boxes as the supervision point to compare with the state-of-the-art approaches.
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Method Backbone/Params. Supervision mAP25 mAP50 mAP75

Mask R-CNN(ViT) (Zhang et al., 2022a) ViT-S/22.1M M 77.2 68.3 46.0
Label-Penet (Ge et al., 2019) VGG-16/134M I 49.2 30.2 12.9

CL (Hwang et al., 2021) ResNet-50/25.6M I 56.6 38.1 12.3
BESTIE (Kim et al., 2022) HRNet-W48/63.6M I +W 53.5 41.8 24.2

IRNet (Ahn et al., 2019) ResNet-50/25.6M I - 46.7 23.5
WISE-Net (Laradji et al., 2020) ResNet-50/25.6M P 53.5 43.0 25.9

BESTIE (Kim et al., 2022) HRNet-W48/63.6M P +W 58.6 46.7 26.3
Point2Mask (Li et al., 2023) Swin-L/197M P - 55.4 31.2
Point2Mask (Li et al., 2023) ResNet-101/44.5M P - 48.4 22.8
AttnShift (Liao et al., 2023) ViT-S/22.1M P 68.3 54.4 25.4

DMPT*(ours) ViT-S/22.1M P 68.6 54.5 27.4
DMPT(ours) ViT-S/22.1M P 69.6 56.4 30.0

DMPT-SAM(ours) ViT-S/22.1M P + S 70.7 59.4 35.5
BESTIE† (Kim et al., 2022) ResNet-50/25.6M P 66.4 56.1 30.2
AttnShift† (Liao et al., 2023) ViT-S/22.1M P 70.3 57.1 30.4

DMPT†(ours) ViT-S/22.1M P 72.3 60.2 32.5

Table 2: Performance on the PASCAL VOC 2012 val set. M denotes pixel-wise mask annotations.
I and P respectively denotes image-level and point-level supervisions. W indicates weakly super-
vision segmentation results as supervision and S prompting SAM with ViT-Base for object mask
annotations. * denotes supervised by pseudo-center points and † applying retraining. Note that the
PSIS performance of Point2Mask is evaluated by its official code.

Method Backbone/Params. Supervision MS-COCO val2017 MS-COCO test-dev

AP AP50 AP75 AP AP50 AP75

Mask R-CNN(ViT) (Zhang et al., 2022a) ViT-S/22.1M M 38.8 61.2 41.3 38.9 61.5 41.7
BESTIE (Kim et al., 2022) HRNet-W48/63.6M I 14.3 28.0 13.2 14.4 28.0 13.5

LIID (Liu et al., 2022) ResNet-101/44.5M I - - - 16.0 27.1 16.5

WISE-Net (Laradji et al., 2020) ResNet-50/25.6M P 7.8 18.2 8.8 - - -
BESTIE (Kim et al., 2022) HRNet-W48/63.6M P +W 17.7 34.0 16.4 17.8 34.1 16.7

Point2Mask (Li et al., 2023) Swin-L/197M P 14.6 29.5 13.0 - - -
Point2Mask (Li et al., 2023) ResNet-101/44.5M P 12.8 26.3 11.2 - - -
AttnShift (Liao et al., 2023) ViT-S/22.1M P 19.1 38.8 17.4 19.1 38.9 17.1

DMPT(ours) ViT-S/22.1M P 20.7 41.7 19.3 20.8 41.5 19.7
DMPT-SAM(ours) ViT-S/22.1M P + S 22.7 45.5 21.5 22.6 45.7 21.4

Table 3: Performance on MS-COCO 2017 val and test-dev set.

We also report the performance trained with pseudo-center points (Chen et al., 2022) which simulates
real annotations. We choose the box-center point as a point prompt for generating object mask.
PASCAL VOC 2012 (Mark et al., 2010) and MS-COCO datasets are used for performance evaluation.

4.2 PERFORMANCE

In Table 2, DMPT is compared with the state-of-the-art methods on the PASCAL VOC 2012 val set.
It outperforms AttnShift (Liao et al., 2023) by a significant margin of 2.0% (56.4% vs 54.4%) upon
mAP50 metric. For mAP75, DMPT achieves 30.0%, 4.4% better than that of AttnShift, demonstrating
the superiority of part-based modeling mechanism than the clustering-based method. Combined with
SAM, DMPT-SAM achieves 59.4% on mAP50, setting the state-of-the-art benchmark for PSIS.

In Table 3, DMPT outperforms AttnShift by 1.6% AP (20.7% vs 19.1%). For the AP50 metric,
DMPT surpasses AttnShift by 2.9% (41.7% vs 38.8%) and 1.9% (19.3% vs 17.4%) for AP75. These
results demonstrate the DMPT’s superiority of handling appearance variances and deformation of
objects with an iterative procedure among part token allocation and token-classifier matching to learn
various fine-grained semantics and part deformation.
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4.3 VISUALIZATION ANALYSIS

Part Token Allocation. Heat-maps in columns 1-3 in Fig 4(a) demonstrate part token allocation by
presenting the part classification score, deformation constraint, and part classification score under
deformation constraint. The part classification score highlights the part regions but is unable to
allocate part tokens. By combining the part classification score with the deformation constraint,
the token with a high part classification score while close to the anchor points (colored cycles) is
allocated as part tokens (colored rectangles and pentagrams).

Token-Classifier Matching. Column 4 of Fig 4(a) shows the token-classifier matching results. Each
matched part token represents a cluster, Fig 4(last row). Using these part tokens as supervision,
DPMT predicts the precise mask for the whole object extent, Fig 4(the second row). Fig. 5 further
shows the effect of token-classifier matching. The self-attention maps (column 2) generated by ViT
and part classifiers without token-classifier matching (columns 3-5) falsely activate backgrounds
and/or object parts. DMPT discriminatively activates fine-grained semantics as well as suppressing
background noise, Fig. 5(columns 6-8).

Part-based Guidance Generation. Heat-maps in the left of Fig 4(b) show improvement of attention
maps when DMPT performs part-based guidance, where more semantic regions are activated. This
validates DMPT enhances the self-attention mechanism towards accurate instance segmentation.

4.4 DMPT-SAM

In Table 1, DMPT-SAM respectively improves the SAM on PASCAL VOC 2012 11.3%, 19.5% and
16.5% upon mAP25, mAP50 and mAP75 On MS-COCO 2017, DMPT-SAM achieves 3.1%, 8.9%
and 2.6% improvements, showing the potential to reform point prompt learning. Fig. 4(b) in the right
shows that DMPT-SAM generates more complete and accurate masks by prompting with part points.
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Figure 6: Ablation results. (a) Module ablation. (b) Regularization factor α. (c) Number of part
tokens K. (d) Number of part classifiers N . (e) Segmentation accuracy of self-attention map.

4.5 ABLATION STUDY

All results in this section are evaluated on the PASCAL VOC 2012 val set.

Baseline. Following the previous weakly supervised object detection methods (Liao et al., 2022),
we leverage the self-attention maps in ViT to generate pseudo bounding-boxes and use them as
the supervision of the detection head. The baseline method randomly samples points in the high-
confidence area of self-attention attention map as foreground points and low-confidence area as
background ones as the supervision points of the segmentation head. As shown in Fig. 6(a), the
baseline achieves 48.0% mAP50.

Part Anchor. We replace the randomly sampled foreground points with the part “anchor" points
which indicate the center of clusters generated by mean-shift method (i.e. defined in Equ. 2). As
shown in Fig. 6(a), the mAP50 is significantly improved by 2.1% (50.1% vs 48.0%), which indicates
the token located at “anchor" point has high probability to present an object part.

Part Token Allocation. In Fig. 6(a), when using the location of part tokens estimated by the part
classifier with deformation constraint as segmentation supervision, the mAP50 is further improved by
2.0% (52.1% vs 50.1%), demonstrating the part token owns discriminant ability to accurately present
fine-grained semantic. We conduct experiments with different regularization factors α (defined in
Equ.5) in Fig.6(b). α = 5.0 reports the best mAP50 (52.1%). When α = 0, only part classification
score determines whether a patch token should be allocated as the part token, which reduces the
mAP50 by 0.9% (51.2% vs 52.1%). This indicates that introducing deformation constraint to classifier
learning can enhance the discriminate ability to locate object with deformation.

Token-Classifier Matching. In Fig. 6(a), token-classifier matching brings 1.8% (53.9% vs 52.1%)
gain upon mAP50, which implies this mechanism optimally matches part tokens and with classifiers.
When fixing the number of part classifiers (N = 7), we analyze the number of part token K. In
Fig. 6(c), DMPT achieves 53.8% when K = 7. Mismatched number of tokens (K = 3) and
classifiers (N = 7) could result in insufficient optimization on stable fine-grained semantics. We
further conduct experiments with respect to the number of part classifier N in Fig. 6(d), where
we set K = N . It shows that the best performance 53.9% is achieved with N = 5. Insufficient
(N = 3) parts cause less accurate part representation (50.6%). More parts (N = 9) could result in
over-segmenting the objects and reduces the performance to 52.3%.

Part-based Token Guidance Generation. With part-based guidance, DMPT further gains 1.2%
(55.1% vs 53.9%) improvement, Fig. 6(a). In Fig. 6(e), we calculate mIoU between self-attention
maps and ground-truth masks to evaluate the instance segmentation ability. With part-based guidance,
DMPT achieves 0.45 mIoU, 0.1 higher than that without guidance, demonstrating DMPT promotes
self-attention mechanism to capture fine-grained semantics and activate towards full extent of objects.

5 CONCLUSION

We proposed discriminatively matched part tokens (DMPT) to handle object deformation and ap-
pearance variances in pointly supervised instance segmentation. DMPT incorperated part classifiers
and matches them with part tokens to improve token discrimination capacity and avoid semantic
aliasing. Extensive experiments validated that DMPT set a new state-of-the-art performance for
pointly supervised instance segmentation using ViT, as well as demonstrating the potential to reform
point prompt learning.
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