

OOLONG: EVALUATING LONG CONTEXT REASONING AND AGGREGATION CAPABILITIES

000
001
002
003
004
005 **Anonymous authors**
006 Paper under double-blind review
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053
054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
559
560
561
562
563
564
565
566
567
568
569
569
570
571
572
573
574
575
576
577
578
579
579
580
581
582
583
584
585
586
587
588
589
589
590
591
592
593
594
595
596
597
598
599
599
600
601
602
603
604
605
606
607
608
609
609
610
611
612
613
614
615
616
617
618
619
619
620
621
622
623
624
625
626
627
628
629
629
630
631
632
633
634
635
636
637
638
639
639
640
641
642
643
644
645
646
647
648
649
649
650
651
652
653
654
655
656
657
658
659
659
660
661
662
663
664
665
666
667
668
669
669
670
671
672
673
674
675
676
677
678
679
679
680
681
682
683
684
685
686
687
688
689
689
690
691
692
693
694
695
696
697
698
699
699
700
701
702
703
704
705
706
707
708
709
709
710
711
712
713
714
715
716
717
718
719
719
720
721
722
723
724
725
726
727
728
729
729
730
731
732
733
734
735
736
737
738
739
739
740
741
742
743
744
745
746
747
748
749
749
750
751
752
753
754
755
756
757
758
759
759
760
761
762
763
764
765
766
767
768
769
769
770
771
772
773
774
775
776
777
778
779
779
780
781
782
783
784
785
786
787
788
789
789
790
791
792
793
794
795
796
797
798
799
799
800
801
802
803
804
805
806
807
808
809
809
810
811
812
813
814
815
816
817
818
819
819
820
821
822
823
824
825
826
827
828
829
829
830
831
832
833
834
835
836
837
838
839
839
840
841
842
843
844
845
846
847
848
849
849
850
851
852
853
854
855
856
857
858
859
859
860
861
862
863
864
865
866
867
868
869
869
870
871
872
873
874
875
876
877
878
879
879
880
881
882
883
884
885
886
887
888
889
889
890
891
892
893
894
895
896
897
898
899
899
900
901
902
903
904
905
906
907
908
909
909
910
911
912
913
914
915
916
917
918
919
919
920
921
922
923
924
925
926
927
928
929
929
930
931
932
933
934
935
936
937
938
939
939
940
941
942
943
944
945
946
947
948
949
949
950
951
952
953
954
955
956
957
958
959
959
960
961
962
963
964
965
966
967
968
969
969
970
971
972
973
974
975
976
977
978
979
979
980
981
982
983
984
985
986
987
988
989
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1098
1099
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1198
1199
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1298
1299
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1398
1399
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1498
1499
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1598
1599
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1698
1699
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1798
1799
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1898
1899
1899
1900
1901
1902
1903
1904
1905
1906
1907
1

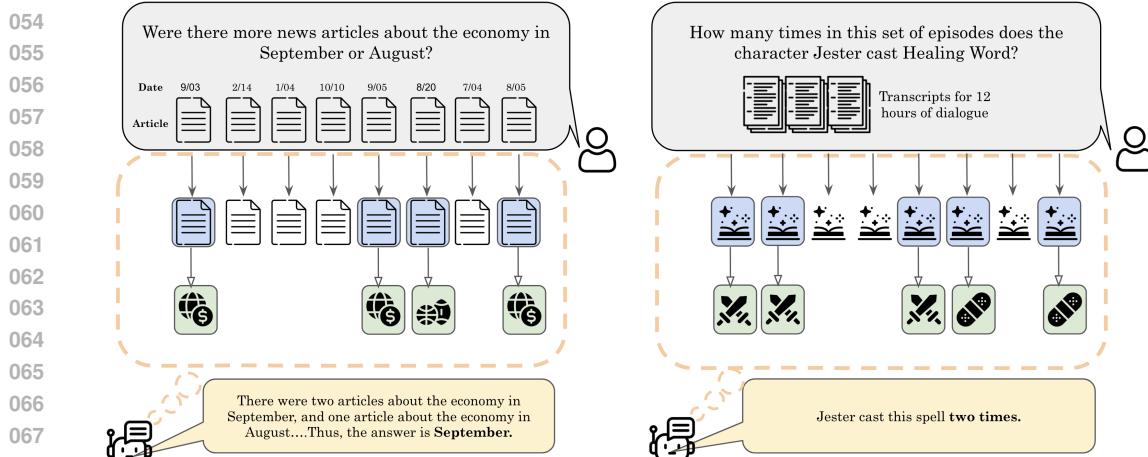


Figure 1: OOLONG poses questions that require performing a multi-step information aggregation process to determine the solution. OOLONG-synth uses ICL-based tasks, which could be easily decomposed and solved iteratively, as a proxy for real-world aggregation tasks over long inputs. OOLONG-real poses challenging information aggregation questions over transcripts from live-action Dungeons & Dragons shows, which can not be easily decomposed into component pieces.

questions about character states and campaign statistics from live-play Dungeons & Dragons role-playing transcripts, using human-annotated gold answers.

Each task requires identifying the relevant segments of the input; this ranges from only a handful of instances or lines of dialogue to questions that require the use of *every* line of the input. The relevant segments must be classified or categorized, and these individual decisions must be aggregated to produce a final answer. By framing the benchmark around problems that are *simple individually*, we ensure that we are measuring capability on long context reasoning and not accuracy on the underlying task. By requiring identification of relevant context, classification decisions over that context, and numeracy skills to produce statistics about the input, OOLONG requires models to perform multi-step reasoning over long inputs.

Although these component capabilities have been well studied and the frontier models demonstrate strong performance in each (Yen et al. (2024), Agarwal et al. (2024), *inter alia*), we find that models struggle with information aggregation as the input length grows. None of the models benchmarked score higher than 50% on OOLONG at 128K context. We study why this task is so challenging using the more flexible OOLONG-synth, ablating settings that decrease context length dramatically and remove the line-by-line classification task, and find that identification and aggregation of information is the bottleneck, not labeling (§4). We also study the role of reasoning behavior and identify consistent error cases in reasoning models that limit their performance in this type of task (§4). We believe OOLONG is a usefully challenging evaluation of long-context reasoning abilities.

2 OOLONG-SYNTH

We aim to construct a synthetic information aggregation task that allows fine-grained control over the types of information and number of steps necessary to solve the task. To do this, we need building blocks: simple, short-context documents to build into a longer collection. We construct OOLONG-synth by constructing challenging corpus-level questions over existing in-context learning (ICL) datasets.

2.1 DATA

We collect 10 common text classification datasets with between 2 and 10 labels. We select for tasks that are possible for the authors to perform without difficulty (and validate that these tasks are similarly simple for models during our dataset filtering). Table 1 describes the datasets in more

108	Dataset	Task	# Labels	Input Len
109	Spam (Almeida et al., 2011)	SMS spam classification	2	57
110	TREC-QC-coarse (Li & Roth, 2002; Hovy et al., 2001)	Question type classification	6	39
111	AGNews (Zhang et al., 2015)	Headline topic classification	4	90
112	App Reviews (Zur, 2017)	Review sentiment classification	2 [†]	49
113	Pavlick Formality (Lahiri, 2015; Pavlick & Tetreault, 2016)	Formality classification	2 [†]	51
114	IMDB reviews (Maas et al., 2011)	Sentiment analysis	2 [†]	376
115	HiTZ Negation (García-Ferrero et al., 2023)	Verify claims about definitions	2	45
116	Yahoo Topics (Zhang et al., 2015)	Question topic classification	10	74
117	MultiNLI (Williams et al., 2018)	Entailment	3	70
	Metaphors (Bizzoni & Lappin, 2018)	Metaphor meaning validation	2	51

118
119 Table 1: Datasets used for OOLONG-synth. [†] indicates cases where we combined similar labels to
120 produce a smaller label-set for OOLONG. The input length is the average per-instance length (in
121 Llama 2 tokens), including our added date and user metadata.

122
123 detail. We split the data into two validation tasks and eight test tasks. The validation tasks are
124 selected to avoid underlying task overlap with test tasks (in the style of Min et al. (2022)), and
125 so that there is both a 2-label and a multi-label (6-label) validation task. For the sentiment and
126 formality datasets with more than two labels, we reduce the label space to a single positive and a
127 single negative label, to reduce the difficulty of the task.

128
129 **Data filtering** In a normal in-context learning task, if a few examples are unusually hard or even
130 mislabeled, this has a small impact on the overall score. Because we intend to require aggregation
131 across many ICL examples at once, one particularly difficult example can affect the score on many
132 questions downstream. However, many ICL datasets are known to contain mislabelings (Ying &
133 Thomas, 2022; Chong et al., 2022; Klie et al., 2023).

134
135 We perform an additional screening step to remove mislabeled or unusually hard examples. We
136 select two models that we do not expect to be substantially stronger than the models we are eval-
137 uating: GPT-4.1 nano and Llama 4 Maverick. We perform zero-shot ICL with a minimal instruction
138 that provides the label space and type of task. We then exclude all examples that *both* models get
139 incorrect, for exclusion rates ranging from 0% to 0.635% by dataset. We report the percentage of
140 examples screened out by dataset and provide examples of excluded and validated datapoints for
141 each dataset in Appendix A. Many of the excluded instances are clearly mislabeled; the remainder
142 generally represent challenging cases.

143 2.2 CONTEXT WINDOW CONSTRUCTION

144
145 We determine the number of examples in the context window by using an estimate of the number
146 of tokens required for each example, for the general task instructions, and for the specific question.
147 Following Yen et al. (2024), we compute these averages using the Llama 2 tokenizer, and use ap-
148 proximately 500K tokens of context for each estimate. We then estimate the number of examples
149 to use by determining how many average-length examples would reach 95% of the target context
150 length.

151
152 We sample a distribution over the label classes so that the model cannot use any information about
153 the true distribution over labels (e.g., by guessing that most sentiment classification datasets are
154 balanced). Then, we sample examples to fill this distribution; if there are less total examples than
155 required, we sample with replacement. For each instance, we sample a date and user ID. User IDs
156 are drawn such that 80% of instances have an ID in the 20% of IDs that are most common. Dates
157 are drawn uniformly with replacement from an approximately 40-month range.

158
159 Once a context window is constructed, we use it for 25 questions; reusing the same context window
160 allows for prompt caching, reducing the time to evaluate local models and the cost to evaluate on
161 most APIs. At each context length, we sample two context windows per dataset, for a total of
50 questions per dataset or 400 total questions in the test split per context length. We construct
OOLONG-synth questions for every power of 2 from 1K to 4M.

162 **Questions** We construct three types of OOLONG-synth questions, in order of increasing complexity. *Counting* questions concern simple statistical properties of the label distribution, ranging from identifying the most frequent label to determining the number of examples with each label class. If the label distribution was provided, all tasks in this set should be trivial; these tasks can be seen implicitly as the task of labeling every example and reporting summary statistics. *User information* questions require additional cross-reference with the *user ID* field. *Timeline* questions ask about changes in distribution before or after a certain date, between years, or between months across years. This is more challenging than user information questions because it requires reasoning about *before* or *after* a date, rather than matching a list of IDs (see §B.1 in Appendix for questions).

171 **Instructions** For each dataset, we provide a brief (one-sentence) description of the task and label space, as well as the number of examples in-context. We provide instructions at the start and end of the input, as suggested by OpenAI’s long context prompting guide.¹ However, we provide the question only at the end, to enable prompt caching.

172 2.3 EVALUATION

173 **Baseline** A random baseline is non-trivial for these tasks, because the output space for each question varies. We construct an algorithm for a random baseline with the following rules: (1) in cases where there is an n -way choice (e.g. choosing between n labels or choosing a month where some criteria occurs), we select an answer from the set of valid answers at random; (2) if the question requires a numerical answer, we return $N/|L|$, where N is the number of data points in context and L is the labelset; (3) if the question requires a date or user ID, we sample this from the list of dates/IDs in context at random. We compute the random baseline performance as the expected value of this procedure over the dataset.

174 **Parsing answers** The task prompts specify an output format. We make a best-effort attempt to parse answers using this format; if this template is not present in the output, we take the candidate answer to be the last substring in the output that appears to match the desired answer type (e.g. a comparison or a number). Generally, this occurs if the model runs out of output token budget before providing an answer.

175 **Scoring** For questions that require a label, date, user ID, or comparison (e.g. “greater than” or “less than”), we score on exact match. For questions that require a numerical answer, we set the score to be

$$\text{score}(\hat{y}) = 0.75^{|y - \hat{y}|}$$

176 This allows for partial credit for answers close to the exact value.

177 **On iterative solutions** Although OOLONG-synth allows for a high degree of control over the types of input, these inputs are composed of independent examples from the source dataset. An iterative setup could complete these tasks by calling a model to label each individual example and then deterministically aggregating the resulting labels. We note that this is true for many capability evaluation tasks; for instance, Needle-in-a-Haystack tasks could be solved almost trivially by asking a model if each of the N input sentences individually contains the needle.

178 **Aside from its merits as a capability evaluation, this setting reflects the way many real-world users interact with language models.** Real user queries tend to be underspecified and rarely use prompt engineering strategies (Sarkar et al., 2025; Xue et al., 2025). When users do edit prompts, they are more likely to add additional context or more detailed instructions, rather than removing or subdividing tasks (Desmond & Brachman, 2024). This is further exacerbated by recent systems supporting uploads of arbitrary size files for analysis (Google, 2025; Anthropic, 2025). We argue posing questions over a large block of context represents a realistic use scenario. To further motivate the information aggregation problem, we turn to a setting where the input cannot be so trivially decomposed.

1^{https://cookbook.openai.com/examples/gpt4-1_prompting_guide#prompt-organization}

216	<i>Counting</i>
217	Total number of rolls in this episode?
218	What is the count of Crits? (natural rolls of value 1 or 20)?
219	How many {spell type} spells were cast during this episode?
220	How many characters cast {spell name} spell all across episodes?
221	What is the second spell cast in the episode {episode index}?
222	
223	<i>Enumeration</i>
224	What are the first {count} spells cast in this episode? Return a comma separated list.
225	List the last spell cast in each episode? Return a comma separated list.
226	
227	<i>Indexing</i>
228	What is the cumulative total of rolls by the end of episode {episode index}? Count the number of rolls and not the values of the rolls.
229	What is the second spell cast in the episode {episode index}?
230	List the last spell cast in each episode? Return a comma separated list.
231	

Table 2: Question types covered in OOLONG-real dataset.

3 OOLONG-REAL

We complement OOLONG-synth with questions derived from real conversational data. OOLONG-real is compiled from the transcripts of a Dungeons and Dragons (D&D) role-playing game, where a group of players collaboratively build a story through in-character actions and success depends on rolling dice. Stories unfold over narratives (“campaigns”) that span dozens to hundreds of episodes, with each episode generally lasting 4-5 hours of play. These transcripts involve several levels of conversation, from out-of-character chitchat to rules discussion to in-character actions and speech. Though lightly edited for readability, they reflect naturalistic speech instead of carefully planned written text. Because the conversation is unscripted and can involve tangents or side channels, conversational turns require variable amounts of prior context to resolve. In some instances, the same event (e.g. casting a spell) is discussed for many turns, or brought up again after a long interlude; in other cases, a prior event is “retconned” or revised post hoc.

In Dungeons and Dragons, there are limitations to how frequently characters can take certain actions (e.g., cast certain types of spells). Additionally, fans are often interested in metadata of the play (e.g., whether a certain person is particularly unlucky with their dice rolls or if a character uses a signature spell more or less as the campaign progresses). Because these shows are extremely long and wide-ranging and improvised live, the creators do not plan for or provide this type of information. In lieu of an official source, this information is often annotated meticulously, and with multiple levels of verification, by dedicated fans of the work.

We take this as an example of an information aggregation task in the wild that is *not* simple to reframe as an iterative task. We consider the series Critical Role and the data compiled by CritRoleStats,² a fan project that tracked per-episode statistics for the first several campaigns of Critical Role. We devise questions related to characters, dice rolls, and spells cast during episodes and use human-labeled CritRoleStats to compute gold answers.

3.1 DATASET COMPILATION

For OOLONG-real, we consider two campaigns from the Critical Role TV series. We used episode transcripts from the Critical Role Dungeons and Dragons Dataset (CRD3) (Rameshkumar & Bailey, 2020), which includes full episode transcripts from the first two campaigns of the Critical Role TV series. For our testbed, we used the first campaign, which consists of 115 episodes. Each line in the transcript includes an utterance with the player name labeled.

²<https://www.critrolestats.com/>

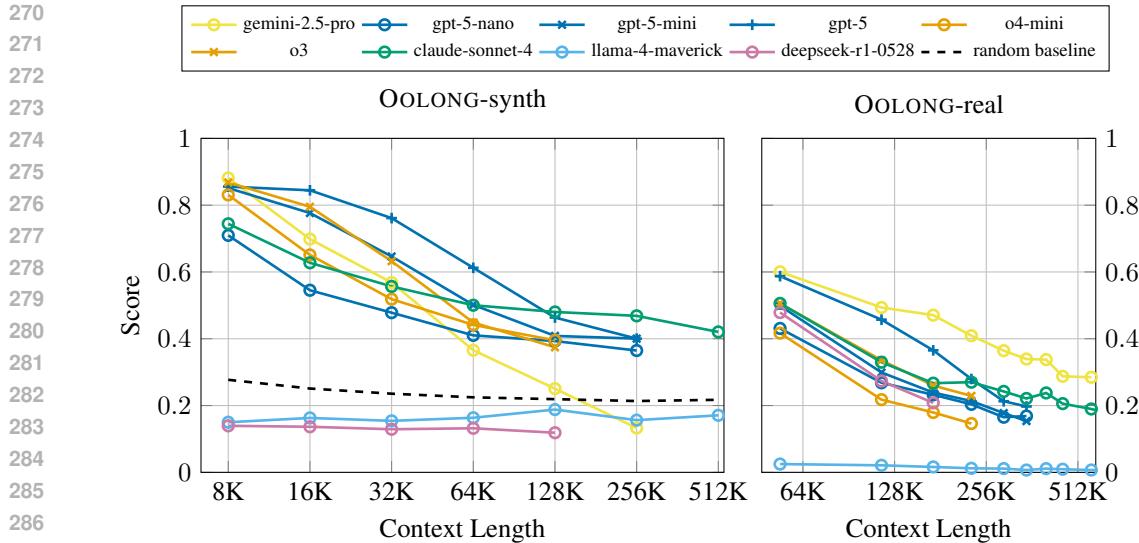


Figure 2: Scores by context window length for OOLONG-synth and OOLONG-real.

QA pairs We use the game statistics compiled by the authors of CritRoleStats. Specifically, we utilize statistics about dice rolls and spells cast in each episode. We design a set of questions that cover a variety of information aggregation tasks; see Table 2 for some examples. We include questions that require processing of single- or multiple-episode transcripts. For multi-episode questions, we concatenate transcripts and use delimiters to highlight the start and end of each transcript. See Table 19 and Table 20 of the Appendix for a full list of OOLONG-real questions. We include varying context windows to evaluate the model’s ability to use long-context reasoning and aggregation capabilities. Using a single episode transcript as a context unit, we include context windows ranging from one to 24 episode transcripts. This covers input lengths of 55K to 1.3M tokens.

3.2 EVALUATION

We closely follow the evaluation setup from OOLONG-synth.

Parsing Our task prompt requires the model to place the answer in `\boxed{}`. If the answer cannot be extracted successfully, we attempt to extract the answer for a given question using GPT-5-nano.

Scoring OOLONG-real contains three types of answers: numeric, string, and a list of strings. For numerical answers, we use the same scoring scheme as OOLONG-synth to allow partial credit. We use exact match for string answer types and set overlap for answers of a type list.

4 RESULTS AND ANALYSIS

On OOLONG, we benchmark a strong suite of frontier models to study their information aggregation capabilities over long context. We include a mix of models of varying sizes, levels of reasoning, and long-context capabilities.

In Figure 2, we visualize the model performance for context windows up to 512K tokens. As expected, we see a significant drop in performance at higher context windows. The two splits are of similar difficulty at the same context length, although direct comparison is challenging because real data do not necessarily align with fixed context window buckets.³ A breakdown of results with an aggregate rating over the two datasets is available in the Appendix (Table 4).

³While performance on OOLONG-real starts lower, this is because the shortest inputs in this dataset are a single episode, with an average length of 55K tokens; models perform similarly on OOLONG-synth around the same context length.

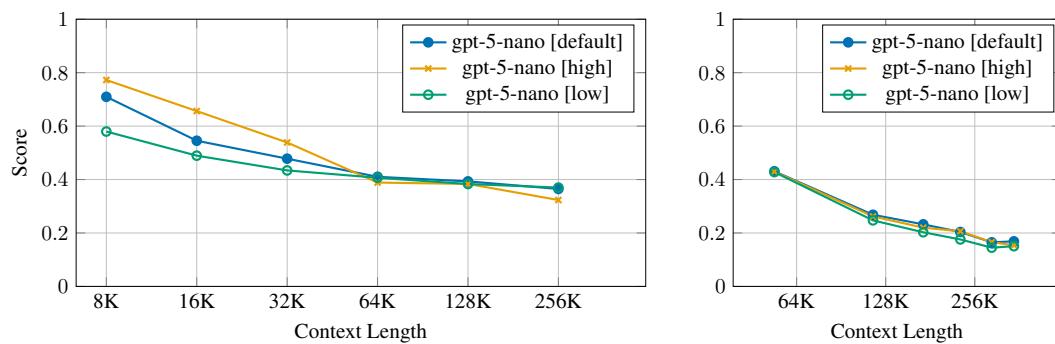


Figure 3: Comparison across reasoning levels.

4.1 IMPACT OF REASONING LEVEL

We compare “high” and “low” reasoning effort for GPT-5-nano. Figure 3 shows the results for both the splits of OOLONG. Although OOLONG is a reasoning-intensive task, specifying a higher reasoning effort is only useful for short contexts; after 64k, there is little discernible difference between reasoning levels, with the “high” reasoning setting even slightly underperforming “low” reasoning at 256k on OOLONG-synth. Although it is difficult to draw firm conclusions without the ability to view the reasoning trace, we hypothesize that at context lengths where there is sufficient remaining room in the context window to enumerate labels for each example in-context, adding more reasoning effort may encourage the model to take this strategy. However, since the default routing for this model performs reasonably well at all lengths and especially for longer inputs, we do not explicitly specify a reasoning level for the remainder of the runs.

4.2 WHAT TYPES OF QUESTIONS ARE CHALLENGING?

On OOLONG-synth, we further break down results by question type (counting, user, or temporal) and answer type (the expected format of the answer, e.g. as a label or number or date) in Figure 7. Consistently, temporal questions are the most challenging for models, highlighting the difficulty of temporal reasoning. Figure 7 shows that temporal questions are challenging for models; this is reflected in both the performance by task type and the distribution of score by answer type. Questions that require a date or month/year (e.g. “January 2021”) as an answer show generally lower performance for the same model, and show greater spread in model capabilities than the other answer categories. For instance, the gap between GPT-5 and GPT-5-nano performance is more than 4x larger for questions that require outputting a date than for questions that require outputting a label. Relative model performance is mostly stable across answer types, although Claude-Sonnet-4 is relatively much stronger on numerical reasoning and comparisons than the GPT series models.

On OOLONG-real, we divide the questions into ten categories: counting, enumeration, frequency, indexing, player, character, roll type/value, spell level/type (Table 19, Table 20). Across models, we find ‘frequency’ to be the hardest and ‘spell type’ the easiest (Figure 8). Except for Gemini-2.5-Pro and GPT-5, all models struggle with enumeration and indexing questions. Gemini-2.5 Pro and GPT-5 also make effective use of the player-character mapping provided in the system prompt.

4.3 DIFFERENCES BETWEEN OOLONG-SYNTH AND OOLONG-REAL

For most models, the performance trends are consistent across the two datasets. We examine two notable exceptions in more detail.

Gemini 2.5 Pro Gemini 2.5 Pro is the strongest model on OOLONG-real, but exhibits performance dropoff at longer contexts on OOLONG-synth. We observe that the model increasingly exceeds its maximum output length during reasoning for long OOLONG-synth inputs. Unlike the other APIs used in benchmarking, the Gemini API does not return any tokens if the max token count is exceeded during reasoning; this results in an automatic score of 0 for any cases of overlong reasoning, whereas

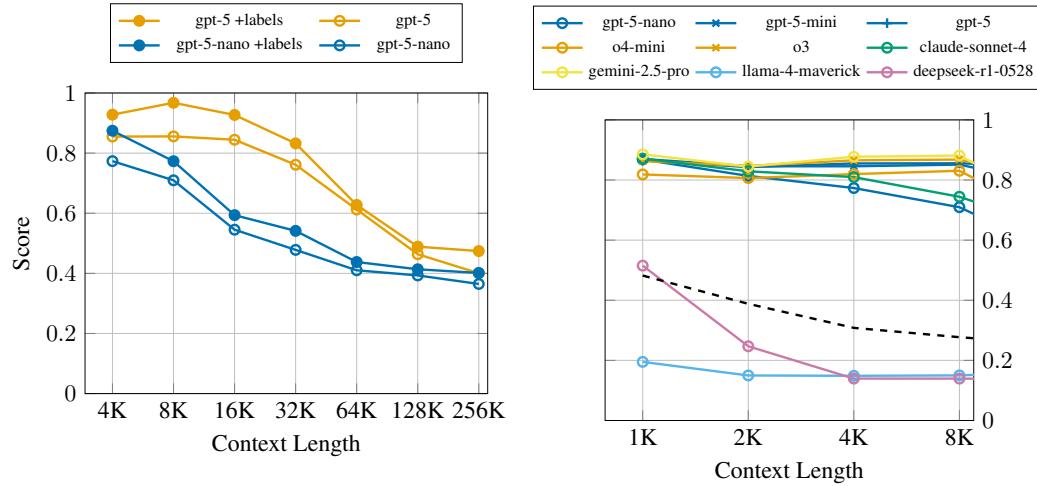


Figure 4: Comparison on OOLONG-synth: (a) we provide the gold labels in the input. This leads to a consistent but small improvement, (b) short context performance; while the top models have similar short-context performance, differences emerge as the context length grows.

a truncated output returned from another model might still score partial credit. Gemini also will return an empty output if the “recitation” filter (indicating substantial regurgitation of pretraining data) is triggered. Because copies of some parts of these inputs (e.g. the IMDB movie reviews) are prevalent on the web, this filter is occasionally triggered when running OOLONG-synth, particularly at longer contexts. We do not observe either of these behaviors on OOLONG-real, and as a result Gemini maintains its strong performance at longer context lengths on this split.

Deepseek R1 Deepseek R1 is a strong reasoning model and outperforms GPT-5 nano and o4-mini on OOLONG-real. However, on OOLONG-synth, it achieves performance below the random baseline. What causes this discrepancy?

In manual inspection of the traces, we observe pathologies in the reasoning traces for OOLONG-synth that are not present in traces for OOLONG-real and appear only occasionally in traces from other models. We identify these behaviors through discussion between the authors, then prompt GPT-5 nano to label 2,400 randomly selected traces from Deepseek-R1 with a yes/no classification about whether an identified behavior is present in this trace. Many traces (60%) do not provide an answer at all. We hypothesize that, because OOLONG-synth is such an information-dense task, the model’s apparent strategy of labeling each example before deciding which are relevant results in running out of context tokens. 64% of traces end in an incomplete sentence.⁴ In 17% of cases, the model spends at least some time debating whether the task is impossible or intractable given the length of the input, and in 4% of cases it refuses to respond completely. Appendix C shows example traces for Deepseek-R1 from both OOLONG-synth and OOLONG-real.

4.4 SIMPLER SETTINGS FOR OOLONG-SYNTH

Shorter context Most models show declining performance with context length. We consider a short-context version of OOLONG-synth, with inputs between 1k and 4k tokens, in Figure 4. While models perform better on this task, several still struggle, showing that even short-context aggregation remains challenging. Performance differences between the top models are difficult to distinguish in the short-context regime, suggesting that these models have the ability to perform the task at some context length. However, no model exceeds 85% performance at any context length.

⁴Note that some of these incomplete traces do contain an answer: in a small number of cases, the model provides a candidate answer, then begins to double-check the answer and then exceeds the maximum output length.

432 **Aggregation without classification** For OOLONG-synth, we can construct an easier version of
 433 the task by providing the label for each ICL example in-context. This reduces the task for most
 434 questions to simply identifying the relevant instances and summing the occurrence of each label
 435 type. Figure 4 shows the behavior of GPT-5 and GPT-5-nano with and without labels provided in-
 436 context. As expected, adding labels improves accuracy; however, this improvement ranges from
 437 10.9 points to only 0.79 points. We do not see consistently higher gains from providing labels in
 438 longer inputs, which suggests that the lower performance at longer context lengths is not primarily
 439 due to an accumulation of mislabeling errors.

440 Additionally, the improvement is not larger for GPT-5-nano than it is for the more powerful GPT-5,
 441 suggesting that the performance difference observed between these models is not due to differing
 442 ability to perform the classification task. This is by design; our classification task validation was
 443 designed to eliminate overly challenging or misleading examples, as the ability to aggregate infor-
 444 mation is the main capability we aim to measure.

445 5 RELATED WORK

446 **Long-context benchmarks** A variety of long-context benchmarks have included some type of
 447 aggregation or reasoning-focused task. RULER (Hsieh et al., 2024) benchmark includes synthetic
 448 retrieval tasks at varying context lengths. It includes multi-hop tracing and aggregation tasks. HEL-
 449 MET (Yen et al., 2024) expands the tasks in RULER to include tasks related to the downstream use
 450 of LMs (reranking, ICL, LongQA, summarization). This includes a set of long-context question-
 451 answering tasks from Zhang et al. (2024). LongMemEval (Wu et al., 2025) and multi-round core-
 452 ference resolution tasks (MRCR) evaluate long-context capabilities with conversational data. MRCR
 453 was first introduced in Gemini (Vodrahalli et al., 2024) and was further extended in OpenAI’s MRCR
 454 (OpenAI, 2025). Unlike the standard NIAH task, the needles and the distractors in MRCR are sam-
 455 pled from the same distributions. OpenAI’s MRCR includes variants of 2, 4, and 8 needles, and the
 456 task involves retrieving the i th instance of one of the needles. The documents in MRCR are syn-
 457 synthetic conversations generated using GPT-4o. BABILong (Kuratov et al., 2024) tests long-context
 458 reasoning by placing BABI (Weston et al., 2015) reasoning tasks within a long context and eval-
 459 uating performance as the amount of distractor text increases; however, this cannot vary the amount
 460 of information needed to perform the reasoning task, only the amount of distraction present, and
 461 thus could be solved by a filter-then-reason approach. TLDM (Hamilton et al., 2025) includes two
 462 related tasks about character location and time passed in a narrative setting, but only considers
 463 public-domain novels, which likely suffer from data contamination from online discussion of the
 464 texts Palavalli et al. (2024). ZeroSCROLLS (Shaham et al., 2023) introduces a task of identifying
 465 the percentage of reviews on Amazon for a product that are positive, which is the closest conceptual
 466 ancestor of our work; OOLONG-synth encompasses this type of task along with other aggregation
 467 tasks. GSM-infinite (Zhou et al., 2025) stress tests long-context reasoning through an adaptable
 468 framework for varying task difficulty and length; our work is complementary, as their focus is pri-
 469 marily on increasingly difficult mathematical reasoning through synthetically generated problems,
 470 while we focus on a more noisy, naturalistic text setting with less challenging mathematical rea-
 471 soning required. MoNaCo (Wolfson et al., 2025) considers challenging information seeking queries
 472 that require retrieval and aggregation; their emphasis is on retrieval of the necessary documents
 473 for intermediate reasoning steps in an agentic setting, a setting completely disjoint from OOLONG.
 474 Finally, procedural generation benchmarks (Ye et al., 2025) measure a different type of reasoning
 475 task by evaluating the ability to plan and produce coherent long outputs. **Table 3 summarizes the**
 476 **distinctions between OOLONG and the most similar prior long-context reasoning benchmarks across**
 477 **a range of desiderata.**

478 **Dungeons & Dragons data** Several prior works consider D&D as a potential testbed for model ca-
 479 pabilities; for instance, we use a version of the Critical Role transcripts preprocessed by Rameshku-
 480 mar & Bailey (2020), who proposed an episode summarization task using fan-written summaries.
 481 D&D data has also been used to study theory of mind (Zhou et al., 2023), user assistant development
 482 Zhu et al. (2023b), and dialogue generation, with game state either inferred from forum-based games
 483 (Callison-Burch et al., 2022) or captured through an external tool (Zhu et al., 2023a); to the best of
 484 our knowledge, we are the first to use fan annotations of gold labels and to consider the generation
 485 of these statistics as a task in its own right.

Dataset	Real vs synthetic data			Aggregation capabilities		Measurability	
	Realistic inputs	Realistic questions	Relevant text matches distractors	Multi-step reasoning	Numeracy	Must use full input	Easy to eval
MRCR	✓	✗	✓	✓	✓	✗	✓
BABILong	✗	✓	✗	✓	✗	✗	✓
RULER	✗	✗	✗	†	†	†	✓
HELMET Summ	✓	✓	✓	✓	✗	✓	✗
HELMET LongQA	✓	✓	✓	✓	✗	†	✓
Oolong-synth	✗	✓	✓	✓	✓	✓	✓
Oolong-real	✓	✓	✓	✓	✓	†	✓

Legend: ✓ = yes, ✗ = no, † = in some cases

Table 3: Comparing long-context reasoning benchmarks. OOLONG measures aggregation capabilities in controllable, realistic, and simple-to-evaluate settings.

Aggregation as an NLP concept Goldman et al. (2024) argue for the definition of long context tasks in terms of the information dispersion and input scope required to find the answer; under this taxonomy, OOLONG is high dispersion (because relevant info is distribution over the full context length) and high scope (because most of the input is necessary for the task, particularly for OOLONG-synth). DeYoung et al. (2024) measure synthesis in multi-document summarization by asking if summaries convey the consensus opinion of the input documents; this is a related task to the counting tasks in OOLONG-synth, but framed as a measure of summarization capabilities instead of long context capabilities, and thus requires different affordances related to evaluating generated outputs.

6 CONCLUSION

We introduce OOLONG, a challenging long-context information aggregation benchmark in two parts. OOLONG-synth uses synthetic aggregation tasks over ICL data to enable finer-grained control of the benchmark settings, while OOLONG-real poses questions over real long-context conversational data and human-annotated labels. On both splits, models struggle, with performance dropping with increasing context length even when controlling for the potential compounding of mislabeling errors.

The low performance on OOLONG suggests more work is necessary in developing both reasoning abilities and more general long context abilities. Even in short context regimes (8K tokens or less), strong models cannot perfectly perform the multi-step reasoning tasks in OOLONG-synth. However, in longer context regimes, many models perform roughly equivalently on OOLONG-synth and OOLONG-real at the same context length, despite the much higher information density in OOLONG-synth. This suggests that better length generalization, regardless of reasoning ability, may also improve performance on this type of challenging long context aggregation task.

However, some models behave differently in extremely information-dense regimes. In particular, both Gemini-2.5-Pro and Deepseek-R1-0528 are strong models that perform well on OOLONG-real but fail in OOLONG-synth because of an over-reasoning phenomenon. This highlights a direction for future work. While prior work on reasoning chains has focused on over-reasoning for adversarial (Kumar et al., 2025) or overly simple problems (Chiang & yi Lee, 2024; Sui et al., 2025), OOLONG indicates that even strong models may struggle to plan the reasoning quantity for information-dense inputs, where it may be desirable to accept a less optimal or more error-prone reasoning strategy (e.g. double-checking less frequently) in order to avoid running into the maximum reasoning tokens. Future models that are aware of the maximum reasoning token budget may be able to more carefully plan reasoning strategies according to the allowed budget.

We see substantial headroom between strong open weights models and API-based models on this task. Overall, our results suggest that there is still a long way to go in designing robust long-context aggregation capabilities for LLMs.

540
541 **ETHICS STATEMENT**542 This work is intended to further the evaluation of long-context LLMs. We do not foresee any par-
543 ticular additional risks introduced by our evaluation, although information aggregation, like nearly
544 any LM capability, could be useful for both beneficial and harmful actors.545 CritRoleStats, whose data we use as part of constructing gold labels for the OOLONG-real split, ex-
546 plicitly allows the use of their data for statistical analyses in their FAQ, so long as they are credited.⁵
547 We have also notified them of our use of their data.548 In the course of this work, we used LM assistance in the writing of some data preprocessing, analy-
549 sis, and visualization scripts.551
552 **REPRODUCIBILITY STATEMENT**
553554 We release code for dataset construction and evaluation, in addition to the final dataset version. API-
555 based models typically exhibit some small variability across API calls, and versions of each model
556 may be phased out over time by the providers, so exact replication of outputs may be infeasible;
557 however, we will release the model outputs for each model run reported in the paper.559
560 **REFERENCES**

561 Software applications user reviews. 2017.

562 Rishabh Agarwal, Avi Singh, Lei M. Zhang, Bernd Bohnet, Luis Rosias, Stephanie Chan, Biao
563 Zhang, Ankesh Anand, Zaheer Abbas, Azade Nova, John D. Co-Reyes, Eric Chu, Feryal Be-
564 hbahani, Aleksandra Faust, and Hugo Larochelle. Many-shot in-context learning, 2024. URL
565 <https://arxiv.org/abs/2404.11018>.566 Tiago A. Almeida, Jose Maria Gomez Hidalgo, and Akebo Yamakami. Contributions to the study
567 of sms spam filtering: New collection and results. In *Proceedings of the 2011 ACM Symposium
568 on Document Engineering (DOCENG'11)*, 2011.569 Anthropic. What kinds of documents can i upload to
570 claude? <https://support.claude.com/en/articles/8241126-what-kinds-of-documents-can-i-upload-to-claude>, 2025.
571 Accessed: 2025-11-04.572 Amanda Bertsch, Maor Ivgi, Emily Xiao, Uri Alon, Jonathan Berant, Matthew R Gormley, and
573 Graham Neubig. In-context learning with long-context models: An in-depth exploration. *arXiv
574 preprint arXiv:2405.00200*, 2024.575 Yuri Bizzoni and Shalom Lappin. Predicting human metaphor paraphrase judgments with deep
576 neural networks. In Beata Beigman Klebanov, Ekaterina Shutova, Patricia Lichtenstein, Smaranda
577 Muresan, and Chee Wee (eds.), *Proceedings of the Workshop on Figurative Language Processing*,
578 pp. 45–55, New Orleans, Louisiana, June 2018. Association for Computational Linguistics. doi:
579 10.18653/v1/W18-0906. URL <https://aclanthology.org/W18-0906/>.580 Chris Callison-Burch, Gaurav Singh Tomar, Lara Martin, Daphne Ippolito, Suma Bailis, and David
581 Reitter. Dungeons and dragons as a dialog challenge for artificial intelligence. In *Proceedings
582 of the 2022 Conference on Empirical Methods in Natural Language Processing*, pp. 9379–9393.
583 Association for Computational Linguistics, 2022. doi: 10.18653/v1/2022.emnlp-main.637. URL
584 <http://dx.doi.org/10.18653/v1/2022.emnlp-main.637>.585 Cheng-Han Chiang and Hung yi Lee. Over-reasoning and redundant calculation of large language
586 models, 2024. URL <https://arxiv.org/abs/2401.11467>.587 Derek Chong, Jenny Hong, and Christopher D. Manning. Detecting label errors by using pre-trained
588 language models, 2022. URL <https://arxiv.org/abs/2205.12702>.5⁵<https://www.critrolestats.com/faqs>

594 Michael Desmond and Michelle Brachman. Exploring prompt engineering practices in the enter-
 595 prise, 2024. URL <https://arxiv.org/abs/2403.08950>.

596

597 Jay DeYoung, Stephanie C. Martinez, Iain J. Marshall, and Byron C. Wallace. Do multi-document
 598 summarization models synthesize? *Transactions of the Association for Computational Linguistics*,
 599 12:1043–1062, 2024. doi: 10.1162/tacl_a_00687. URL <https://aclanthology.org/2024.tacl-1.58/>.

600

601 Iker García-Ferrero, Begoña Altuna, Javier Alvez, Itziar Gonzalez-Dios, and German Rigau. This
 602 is not a dataset: A large negation benchmark to challenge large language models. In Houda
 603 Bouamor, Juan Pino, and Kalika Bali (eds.), *Proceedings of the 2023 Conference on Empir-
 604 ical Methods in Natural Language Processing*, pp. 8596–8615, Singapore, December 2023.
 605 Association for Computational Linguistics. doi: 10.18653/v1/2023.emnlp-main.531. URL
 606 <https://aclanthology.org/2023.emnlp-main.531>.

607

608 Omer Goldman, Alon Jacovi, Aviv Slobodkin, Aviya Maimon, Ido Dagan, and Reut Tsarfaty. Is it
 609 really long context if all you need is retrieval? towards genuinely difficult long context NLP. In
 610 Yaser Al-Onaizan, Mohit Bansal, and Yun-Nung Chen (eds.), *Proceedings of the 2024 Conference
 611 on Empirical Methods in Natural Language Processing*, pp. 16576–16586, Miami, Florida, USA,
 612 November 2024. Association for Computational Linguistics. doi: 10.18653/v1/2024.emnlp-main.
 613 924. URL <https://aclanthology.org/2024.emnlp-main.924/>.

614

615 Google. Google notebooklm: Ai research tool & thinking partner. [https://notebooklm.
 616 google/](https://notebooklm.google/), 2025. Accessed: 2025-11-04.

617

618 Daya Guo, Dejian Yang, Haowei Zhang, Junxiao Song, Peiyi Wang, Qihao Zhu, Runxin Xu, Ruoyu
 619 Zhang, Shirong Ma, Xiao Bi, et al. Deepseek-r1 incentivizes reasoning in llms through reinforce-
 620 ment learning. *Nature*, 645(8081):633–638, 2025.

621

622 Sil Hamilton, Rebecca M. M. Hicke, Matthew Wilkens, and David Mimno. Too long, didn't model:
 623 Decomposing llm long-context understanding with novels, 2025. URL [https://arxiv.
 624 org/abs/2505.14925](https://arxiv.org/abs/2505.14925).

625

626 Eduard Hovy, Laurie Gerber, Ulf Hermjakob, Chin-Yew Lin, and Deepak Ravichandran. To-
 627 ward semantics-based answer pinpointing. In *Proceedings of the First International Confer-
 628 ence on Human Language Technology Research*, 2001. URL <https://www.aclweb.org/anthology/H01-1069>.

629

630 Cheng-Ping Hsieh, Simeng Sun, Samuel Kriman, Shantanu Acharya, Dima Rekesh, Fei Jia, and
 631 Boris Ginsburg. RULER: What's the real context size of your long-context language models? In
 632 *First Conference on Language Modeling*, 2024. URL [https://openreview.net/forum?
 633 id=kIoBbc76Sy](https://openreview.net/forum?id=kIoBbc76Sy).

634

635 Carlos E Jimenez, John Yang, Alexander Wettig, Shunyu Yao, Kexin Pei, Ofir Press, and Karthik
 636 Narasimhan. Swe-bench: Can language models resolve real-world github issues? *arXiv preprint
 637 arXiv:2310.06770*, 2023.

638

639 Jan-Christoph Klie, Bonnie Webber, and Iryna Gurevych. Annotation error detection: Analyzing
 640 the past and present for a more coherent future. *Computational Linguistics*, 49(1):157–198, 03
 641 2023. ISSN 0891-2017. doi: 10.1162/coli_a_00464. URL https://doi.org/10.1162/coli_a_00464.

642

643 Abhinav Kumar, Jaechul Roh, Ali Naseh, Marzena Karpinska, Mohit Iyyer, Amir Houmansadr, and
 644 Eugene Bagdasarian. Overthink: Slowdown attacks on reasoning llms, 2025. URL <https://arxiv.org/abs/2502.02542>.

645

646 Yuri Kuratov, Aydar Bulatov, Petr Anokhin, Ivan Rodkin, Dmitry Sorokin, Artyom Sorokin, and
 647 Mikhail Burtsev. Babilong: Testing the limits of llms with long context reasoning-in-a-haystack,
 648 2024. URL <https://arxiv.org/abs/2406.10149>.

649

650 Shibamouli Lahiri. SQUINKY! A corpus of sentence-level formality, informativeness, and implica-
 651 ture. *arXiv preprint arXiv:1506.02306*, 2015.

648 Xin Li and Dan Roth. Learning question classifiers. In *COLING 2002: The 19th International Conference on Computational Linguistics*, 2002. URL <https://www.aclweb.org/anthology/C02-1150>.

649

650

651

652 Andrew L. Maas, Raymond E. Daly, Peter T. Pham, Dan Huang, Andrew Y. Ng, and Christopher Potts. Learning word vectors for sentiment analysis. In *Proceedings of the 49th Annual Meeting of the Association for Computational Linguistics: Human Language Technologies*, pp. 142–150, Portland, Oregon, USA, June 2011. Association for Computational Linguistics. URL <http://www.aclweb.org/anthology/P11-1015>.

653

654

655

656

657 Sewon Min, Mike Lewis, Luke Zettlemoyer, and Hannaneh Hajishirzi. Metaicl: Learning to learn in context, 2022. URL <https://arxiv.org/abs/2110.15943>.

658

659

660 OpenAI. OpenAI MRCR: Long context multiple needle in a haystack benchmark, 2025. URL <https://huggingface.co/datasets/openai/mrcr>.

661

662 Medha Palavalli, Amanda Bertsch, and Matthew R. Gormley. A taxonomy for data contamination in large language models, 2024. URL <https://arxiv.org/abs/2407.08716>.

663

664

665 Ellie Pavlick and Joel Tetreault. An empirical analysis of formality in online communication. *Transactions of the Association for Computational Linguistics*, 2016.

666

667 Revanth Rameshkumar and Peter Bailey. Storytelling with dialogue: A Critical Role Dungeons and Dragons Dataset. In Dan Jurafsky, Joyce Chai, Natalie Schluter, and Joel Tetreault (eds.), *Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics*, pp. 5121–5134, Online, July 2020. Association for Computational Linguistics. doi: 10.18653/v1/2020.acl-main.459. URL <https://aclanthology.org/2020.acl-main.459>.

668

669

670

671

672 Rupak Sarkar, Bahareh Sarrafzadeh, Nirupama Chandrasekaran, Nagu Rangan, Philip Resnik, Longqi Yang, and Sujay Kumar Jauhar. Conversational user-ai intervention: A study on prompt rewriting for improved llm response generation, 2025. URL <https://arxiv.org/abs/2503.16789>.

673

674

675

676

677 Uri Shaham, Maor Ivgi, Avia Efrat, Jonathan Berant, and Omer Levy. Zeroscrolls: A zero-shot benchmark for long text understanding, 2023. URL <https://arxiv.org/abs/2305.14196>.

678

679

680 Yang Sui, Yu-Neng Chuang, Guanchu Wang, Jiamu Zhang, Tianyi Zhang, Jiayi Yuan, Hongyi Liu, Andrew Wen, Shaochen Zhong, Na Zou, Hanjie Chen, and Xia Hu. Stop overthinking: A survey on efficient reasoning for large language models, 2025. URL <https://arxiv.org/abs/2503.16419>.

681

682

683

684 Kiran Vodrahalli, Santiago Ontanon, Nilesh Tripuraneni, Kelvin Xu, Sanil Jain, Rakesh Shivanna, Jeffrey Hui, Nishanth Dikkala, Mehran Kazemi, Bahare Fatemi, Rohan Anil, Ethan Dyer, Siamak Shakeri, Roopal Vij, Harsh Mehta, Vinay Ramasesh, Quoc Le, Ed Chi, Yifeng Lu, Orhan Firat, Angeliki Lazaridou, Jean-Baptiste Lespiau, Nithya Attaluri, and Kate Olszewska. Michelangelo: Long context evaluations beyond haystacks via latent structure queries, 2024. URL <https://arxiv.org/abs/2409.12640>.

685

686

687

688

689

690

691 Jason Weston, Antoine Bordes, Sumit Chopra, Alexander M. Rush, Bart van Merriënboer, Armand Joulin, and Tomas Mikolov. Towards ai-complete question answering: A set of prerequisite toy tasks, 2015. URL <https://arxiv.org/abs/1502.05698>.

692

693

694

695

696

697

698

699

700 Adina Williams, Nikita Nangia, and Samuel Bowman. A broad-coverage challenge corpus for sentence understanding through inference. In *Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long Papers)*, pp. 1112–1122. Association for Computational Linguistics, 2018. URL <http://aclweb.org/anthology/N18-1101>.

701

702 Tomer Wolfson, Harsh Trivedi, Mor Geva, Yoav Goldberg, Dan Roth, Tushar Khot, Ashish Sabharwal, and Reut Tsarfaty. Monaco: More natural and complex questions for reasoning across dozens of documents. *Transactions of the Association for Computational Linguistics*, 2025.

702 Di Wu, Hongwei Wang, Wenhao Yu, Yuwei Zhang, Kai-Wei Chang, and Dong Yu. Longmemeval:
 703 Benchmarking chat assistants on long-term interactive memory. In *The Thirteenth International*
 704 *Conference on Learning Representations*, 2025. URL <https://openreview.net/forum?id=pZiyCaVuti>.

705

706 Haoning Xue, Yoo Jung Oh, Xinyi Zhou, Xinyu Zhang, and Berit Oxley. User prompting strategies
 707 and chatgpt contextual adaptation shape conversational information-seeking experiences, 2025.
 708 URL <https://arxiv.org/abs/2509.25513>.

709

710 Xi Ye, Fangcong Yin, Yinghui He, Joie Zhang, Howard Yen, Tianyu Gao, Greg Durrett, and Danqi
 711 Chen. Longproc: Benchmarking long-context language models on long procedural generation,
 712 2025. URL <https://arxiv.org/abs/2501.05414>.

713

714 Howard Yen, Tianyu Gao, Minmin Hou, Ke Ding, Daniel Fleischer, Peter Izsak, Moshe Wasserblat,
 715 and Danqi Chen. Helmet: How to evaluate long-context language models effectively and thor-
 oughly. *arXiv preprint arXiv:2410.02694*, 2024.

716

717 Cecilia Ying and Stephen Thomas. Label errors in BANKING77. In Shabnam Tafreshi, João Sedoc,
 718 Anna Rogers, Aleksandr Drozd, Anna Rumshisky, and Arjun Akula (eds.), *Proceedings of the*
 719 *Third Workshop on Insights from Negative Results in NLP*, pp. 139–143, Dublin, Ireland, May
 720 2022. Association for Computational Linguistics. doi: 10.18653/v1/2022.insights-1.19. URL
 721 <https://aclanthology.org/2022.insights-1.19/>.

722

723 Xiang Zhang, Junbo Jake Zhao, and Yann LeCun. Character-level convolutional networks for text
 724 classification. In *NIPS*, 2015.

725

726 Xinrong Zhang, Yingfa Chen, Shengding Hu, Zihang Xu, Junhao Chen, Moo Khai Hao, Xu Han,
 727 Zhen Leng Thai, Shuo Wang, Zhiyuan Liu, and Maosong Sun. ∞ bench: Extending long context
 728 evaluation beyond 100k tokens, 2024. URL <https://arxiv.org/abs/2402.13718>.

729

730 Pei Zhou, Andrew Zhu, Jennifer Hu, Jay Pujara, Xiang Ren, Chris Callison-Burch, Yejin Choi, and
 731 Prithviraj Ammanabrolu. I cast detect thoughts: Learning to converse and guide with intents and
 732 theory-of-mind in dungeons and dragons, 2023. URL <https://arxiv.org/abs/2212.10060>.

733

734 Yang Zhou, Hongyi Liu, Zhuoming Chen, Yuandong Tian, and Beidi Chen. Gsm-infinite: How do
 735 your llms behave over infinitely increasing context length and reasoning complexity?, 2025. URL
<https://arxiv.org/abs/2502.05252>.

736

737 Andrew Zhu, Karmanya Aggarwal, Alexander Feng, Lara J. Martin, and Chris Callison-Burch.
 738 FIREBALL: A dataset of dungeons and dragons actual-play with structured game state infor-
 739 mation. In Anna Rogers, Jordan Boyd-Graber, and Naoaki Okazaki (eds.), *Proceedings of the*
 740 *61st Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Pa-
 741 pers)*, pp. 4171–4193, Toronto, Canada, July 2023a. Association for Computational Linguis-
 742 tics. doi: 10.18653/v1/2023.acl-long.229. URL [https://aclanthology.org/2023.acl-long.229/](https://aclanthology.org/2023.acl-long.229).

743

744 Andrew Zhu, Lara Martin, Andrew Head, and Chris Callison-Burch. Calypso: Llms as dungeon
 745 master’s assistants. *Proceedings of the AAAI Conference on Artificial Intelligence and Interac-
 746 tive Digital Entertainment*, 19(1):380–390, Oct. 2023b. doi: 10.1609/aiide.v19i1.27534. URL
 747 <https://ojs.aaai.org/index.php/AIIDE/article/view/27534>.

748

749

750

751

752

753

754

755

Model	Avg.	OOLONG-synth					OOLONG-real			
		8K	16K	32K	64K	128K	Avg.	55K	118K	175K
GPT-5	70.75	85.56	84.45	76.12	61.24	46.36	47.00	58.74	45.72	36.53
Gemini-2.5-Pro	55.29	88.13	69.84	56.83	36.56	25.06	52.16	60.04	49.36	47.07
o3	62.37	86.80	79.52	63.23	44.86	37.45	36.71	50.57	33.57	25.99
GPT-5-mini	63.68	85.13	77.65	64.64	50.14	40.85	34.55	49.86	29.90	23.89
Claude-Sonnet-4	58.18	74.43	62.75	55.67	50.04	48.02	36.75	50.58	32.98	26.70
o4-mini	56.74	83.07	65.10	51.86	44.15	39.53	27.13	41.69	21.77	17.93
GPT-5-nano	50.73	70.96	54.53	47.81	41.02	39.31	31.05	43.09	26.82	23.23
Deepseek-R1	13.11	13.94	13.65	12.91	13.20	11.87	32.00	47.85	27.35	20.81
Llama-4-Maverick	16.37	15.00	16.29	15.42	16.35	18.80	2.07	2.48	2.11	1.62

Table 4: OOLONG results on a number of strong models. All models we test support at least 200K context; thus, we report OOLONG scores as an average over scores on 8K-175K inputs. OOLONG-synth is a more information-dense task than OOLONG-real; the ranking of some models shifts slightly between the two settings. Models are sorted by the average between the two benchmarks.

Dataset	% Removed
Spam	0.635%
TREC-Q-coarse	0.048%
AGNews	0.026%
App Reviews	0.051%
Formality	0.108%
IMDB	0.042%
Metaphors	0.000%
MultiNLI	0.109%
Negation	0.016%
Yahoo Topics	0.188%

Table 5: Only a small fraction of examples are removed during validation for each source dataset.

A ICL LABEL VALIDATION

Table 1 shows the fraction of examples removed by the validation step for each dataset.

For each ICL dataset used to construct OOLONG-synth, we provide example instances that failed validation (and thus were discarded) and that passed validation and were used for constructing context windows. These examples are selected nearly-randomly; many of the instances that fail validation contain sexual content or offensive language, and we screen these out of the examples shown wherever possible. While the instances screened out vary by dataset, we note that the datasets that use labels scraped from web content (i.e. Yahoo Topics, AGNews, IMDB reviews, App Reviews) generally have higher rates of validation failures. Some of these failures appear to be genuine mislabelings, which is likely because of noise in the user behavior (e.g. a user asks a question about Business & Finance but mistakenly posts it in the Sports topic, or a user writes a review with mostly negative text but gives the product 4 stars).

Input	Label	Passed validation?
810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863	810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863	810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863
‘Virtual Girlfriend’ Demands Gifts HONG KONG - She needs to be coddled with sweet talk and pampered with gifts, but you’ll never see her in the flesh. A Hong Kong company has developed a “virtual girlfriend” for new cell phones with video capability...	World	✗
Court Hears Case of Brain Damaged Woman (AP) AP - The Florida Supreme Court questioned lawyers Tuesday about the extent of the power handed to Gov. Jeb Bush under a law that let him order the reinsertion of a brain-damaged woman’s feeding tube.	Sci/Tech	✗
Rooney backs fiercesome threesome (AFP) AFP - Wayne Rooney believes the three-pronged attack of himself, Michael Owen and Jermain Defoe can put England on the fast track to the World Cup finals.	World	✗
From mouths of babes: What’s hot, what’s not How hot are the “Hot Dozen” toys? To find out, The Boston Globe put six toys from the 2004 Toy Wishes magazine Hot Dozen list in front of 13 kids from the Charlestown Boys and Girls Club.	Business	✗
Crematory operator to get 12 years Ray Brent Marsh, who is to enter the plea Friday, had faced up to 8,000 years in a case that shocked the nation two years ago when investigators found hundreds of corpses at his rural northwest facility.	Business	✗
Vending Machines Making Room for Healthy Products WASHINGTON (AP) – The typical vending machine fare consists of chocolate bars and potato chips, leaving few options for people seeking low-calorie or low-salt snacks. That is changing now as companies develop markets for products they expect to satisfy both nutritionists and consumers...	Sci/Tech	✓
Venezuelans Line Up to Vote on Chavez CARACAS, Venezuela - Summoned by bugle calls and the detonations of huge firecrackers, Venezuelans turned out in unprecedented numbers Sunday to vote on whether to force leftist President Hugo Chavez from office. Some lines at polling places extended for 1.25 miles...	World	✓
Singh Snare PGA Title Vijay Singh outlasts Justin Leonard and Chris DiMarco in a three-way playoff to win the PGA Championship on Sunday at Whistling Straits in Haven, Wisconsin.	Sports	✓
China’s Panchen Lama visits Tibet The boy named by the Chinese authorities as the 11th Panchen Lama visits a temple in Tibet.	World	✓
The Region’s Highest-Paid Executives Pay for the Washington area’s top executives rose significantly last year, reversing the downward trend that set in with the recession in 2001.	Business	✓

Table 6: AGNews examples that failed and passed validation.

Input	Label	Passed validation?
Kill Me..	positive	✗
Used to be great app. But since the last 7 updates always get - Authentication failed for: x@gmail.com	positive	✗
App force closing on changing THEME PLZ FIX!	positive	✗
You can't uninstall & I don't like my space being used. But am glad for the blind & deaf	positive	✗
GOOGLE TALKBACK Read carefully & then give at least a good reviews this app is made only for persons who got disability such as a blind person & if you want to get rid this simply just ROOT your device dumb head!!	negative	✗
This thing is great. I am at the bottom of the learning curve but in the few minutes I have played with it it seems like it will be easy to learn and to use. Just what I hoped for.	positive	✓
Crash when set a demodulation! :(negative	✓
doesn't work with rtl-2832 Says it works with rtl devices but doesn't. never displays anything even though the rtl 2832 works with other spectrum analyzers. no help files anywhere so good luck figuring out what's wrong!	negative	✓
Great app! Works really well with Galaxy note 5	positive	✓
Works great I am using HackRF One with this apps.	positive	✓

Table 7: App Reviews examples that failed and passed validation.

B QUESTION TYPES

B.1 OOLONG-SYNTH

Table 16, Table 17, and Table 18 list the questions used for each type of task in OOLONG-synth.

B.2 OOLONG-REAL

Table 19 and Table 20 lists the question types used for single and multi-episode settings in OOLONG-real dataset.

Input	Label	Passed validation?
The Unit secret agent has signed on to appear in three episodes as a businessman being shown some houses - and, presumably, one bedroom in particular - by our randy realtor heroine.	formal	✗
Barely 12, with large brown eyes and stick-like arms, Fandi is 3 years older than his brother – in his eyes almost a man.	formal	✗
D-Lister Avril Lavigne appears on the cover of Z-List magazine Savvy this month.	formal	✗
ORHS is going through it now, but from all I can perceive the district is out for the quick fix, chop off the principal, instead of really trying to assist the students and dig to the bottom to find the truth.	formal	✗
Little Sally Draper (Kiernan Shipka) is a "Patty Duke"-era girl - indeed, "Mad Men" is currently set during the month "The Patty Duke Show" premiered in 1963 - and on a "Patty Duke"-like show, she'd just be a lispy Shirley Temple doll with a crush on Daddy.	formal	✗
I have tried everything possible to attract business.	formal	✓
Never heard that one before.	informal	✓
"Yup."	informal	✓
That's how we pass our traits to the next generation: through DNA	formal	✓
Wedding rituals differ in different regions and communities in India.	formal	✓

Table 8: Formality examples that failed and passed validation.

972 973 974	Input	Label	Passed validation?
975 976 977 978 979 980	Good movie, very 70s, you can not expect much from a film like this. Sirpa Lane is an actress of erotic films, a nice body but nothing exceptional. Not demand a lot from these films are light years away from the movies today, the world has changed incredibly. The plot is simple and the actors not extraordinary.	positive	✗
981 982 983 984 985	This film Evil Breed: The legend of samhain contains very little thought or effort. It is ridiculed with specs of ultra fast "slasher" style death and plain disgusting acts of death. The acting was rated a D as the actors show very little ability, and the stupidity of them in the film is too questionable.	positive	✗
986 987 988 989 990 991	The movie "Holly" may make the audience want to donate money towards organizations that improve the life for these poor youngsters, but the film's dramatic weaknesses may reduce its chances of being seen by enough people to make a difference. Overall, I think the concept is better as a documentary and it was not as touching as a movie.	positive	✗
992 993 994 995 996	Although this film put Davis on the map due to her brilliantly intense performance, this film is strangely unsatisfying to me as a whole. What I cannot fathom for the life of me is just how or why Phillip would take the constant abuse this tramp constantly dishes out towards him.	positive	✗
997 998 999 1000 1001	This film is just plain horrible. John Ritter doing pratt falls, 75% of the actors delivering their lines as if they were reading them from cue cards, poor editing, horrible sound mixing, and a plot that really goes nowhere. If I could sum this film up in one word, that word would be: Suckotrocity	negative	✓
1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012	Zentropa has much in common with The Third Man, another noir-like film set among the rubble of postwar Europe. Like TTM, there is much inventive camera work. There is an innocent American who gets emotionally involved with a woman he doesn't really understand, and whose naivety is all the more striking in contrast with the natives. But I'd have to say that The Third Man has a more well-crafted storyline. Zentropa is a bit disjointed in this respect. Perhaps this is intentional: it is presented as a dream/nightmare, and making it too coherent would spoil the effect. This movie is unrelentingly grim—"noir" in more than one sense; one never sees the sun shine. Grim, but intriguing, and frightening.	positive	✓
1013 1014 1015 1016 1017	Never in my life have I come across a movie as bad as The Zombie Chronicles. Filmed on a budget of what looks to be about 20 bucks, TZC is a completely horrible horror movie that relies on lame, forgettable actors. Simply put, avoid TZC like a sexually-transmitted disease.	negative	✓
1018 1019 1020 1021 1022 1023	Without wishing to be a killjoy, Brad Sykes is responsible for at least two of the most dull and clichéd films I've ever seen. The acting is terrible, the print is shoddy, and everything about this film screams "seriously, you could do better yourself".	negative	✓

Table 9: IMDB examples that failed and passed validation. Only eight examples are shown because of the example length.

1026

1027

1028

1029

1030

1031

1032

1033

1034

1035

1036

1037

1038

1039

1040

1041

1042

1043

1044

1045

1046

1047

Input	Label	Passed validation?
Draupadi's eyes were diamonds. \leftrightarrow Draupadi's eyes were beautiful.	correct	✓
The faculty meeting was an easy breeze \leftrightarrow The faculty meeting was very easy and relaxing	correct	✓
The house was a tomb. \leftrightarrow The house was big.	incorrect	✓
I had already planted the idea in her mind. \leftrightarrow I had already scared her about the idea.	incorrect	✓
It is sad to observe the fruits of ignorance. \leftrightarrow It is sad to observe the effects of ignorance.	correct	✓

Table 10: Metaphors examples that passed validation. No examples failed validation for this dataset.

1048

1049

1050

1051

1052

1053

1054

1055

1056

1057

1058

1059

1060

1061

1062

1063

1064

1065

1066

1067

1068

1069

1070

1071

1072

1073

1074

1075

1076

1077

1078

1079

Input	Label	Passed validation?
You're safe. \rightarrow You have nothing to worry about.	neutral	✗
asks Burton, cupping his ear. \rightarrow Burton wanted to ask what was going on, but he couldn't do much of anything while bound and gagged.	contradiction	✗
I "poison my dearest Emily!" \rightarrow How could you think I would poison Emily?	entailment	✗
When he finally succeeded, after a prolonged siege and heavy losses, he punished the local population by cutting off the noses and lips of all men except those who played wind instruments. \rightarrow All men who played wind instruments were tasked with helping cut off people's noses.	neutral	✗
They died slowly, their eyes bulging and faces turning blue. \rightarrow They died asphyxiated.	neutral	✗
well you see that on television also \rightarrow You can see that on television, as well.	entailment	✓
Vrenna and I both fought him and he nearly took us. \rightarrow Neither Vrenna nor myself have ever fought him.	contradiction	✓
This analysis pooled estimates from these two studies to develop a C-R function linking PM to chronic bronchitis. \rightarrow The analysis proves that there is no link between PM and bronchitis.	contradiction	✓
He turned and smiled at Vrenna. \rightarrow He smiled at Vrenna who was walking slowly behind him with her mother.	neutral	✓
We sought to identify practices that were commonly implemented by the agencies within the past 5 years. \rightarrow We want to identify practices commonly used by agencies in the last 5 years	entailment	✓

Table 11: MultiNLI examples that failed and passed validation.

1080

1081

1082

1083

Input	Label	Passed validation?
No care is anything that serves as an enticement.	True	✗
No care may be anything that serves as an enticement.	True	✗
A loud utterance is an appropriate definition of produce in no context.	True	✗
Complete attention is an appropriate definition of candidate in no context.	True	✗
No stress is a message received and understood.	True	✗
Action refers to a military engagement.	True	✓
Action never stands for a distinguishing quality.	True	✓
Action does not stand for a military engagement.	False	✓
Action may stand for a military engagement.	True	✓
Not a single action is a military engagement.	False	✓

1099

1100

Table 12: Negation examples that failed and passed validation.

1101

1102

1103

1104

1105

1106

1107

Input	Label	Passed validation?
Go chase after her and run her over while she's crossing the street	ham	✗
i want to grasp your pretty booty :)	ham	✗
No da if you run that it activate the full version da.	ham	✗
i am seeking a lady in the street and a freak in the sheets. Is that you?	ham	✗
Should i send you naughty pix? :)	ham	✗
WINNER!! As a valued network customer you have been selected to receive a £900 prize reward! To claim call 09061701461. Claim code KL341. Valid 12 hours only.	spam	✓
Had your mobile 11 months or more? U R entitled to Update to the latest colour mobiles with camera for Free! Call The Mobile Update Co FREE on 08002986030	spam	✓
I'm gonna be home soon and i don't want to talk about this stuff anymore tonight, k? I've cried enough today.	ham	✓
SIX chances to win CASH! From 100 to 20,000 pounds txt CSH11 and send to 87575. Cost 150p/day, 6days, 16+ TsandCs apply Reply HL 4 info	spam	✓
I HAVE A DATE ON SUNDAY WITH WILL!!	ham	✓

1129

1130

1131

1132

1133

Table 13: Spam examples that failed and passed validation. The examples that failed validation were almost exclusively ham messages with sexual content; the selected messages are the least inappropriate of the examples that failed validation.

Input	Label	Passed validation?
What explosive do you get by mixing charcoal, sulfur and saltpeter?	entity	✗
What is the procedure called for drilling a hole in your skull to achieve a higher consciousness?	entity	✗
Name 11 famous martyrs.	human being	✓
What's the Olympic motto?	description and abstract concept	✓
What is the highest waterfall in the United States?	location	✓
What does the abbreviation AIDS stand for?	abbreviation	✓
How many points make up a perfect fivepin bowling score?	numeric value	✓

Table 14: TREC-coarse-Q examples that failed and passed validation. Only two examples failed validation.

Input	Label	Passed validation?
Is there a God? The question to end all questions, and begin them.	Business & Finance	✗
why do we need to lie?	Health	✗
try to type the word supercalifragilisticexpialidocious. 20 times fast you can only make 10 mistakes? This is for fun!	Education & Reference	✗
do you think it is okay to tell a lie?	Education & Reference	✗
where can you purchase cesium carbonate?	Science & Mathematics	✗
What are good sources to find out about new gospel artists? Is there a site that focuses primarily on gospel?	Entertainment & Music	✓
How a black hole is formed? I would like to know how a black hole can possibly be formed. Are there any experimental evidence of such creation?	Science & Mathematics	✓
Economics of running a restaurant? Running a restaurant looks like hard work and long hours. What percentage of restaurants are profitable?	Business & Finance	✓
Why doesn't the NBA implement a minor leagues? I don't want to see any more High School kids on the court.	Sports	✓
how does a helicopter fly this is a miracle- I always wanted to learn to fly one of those. Can someone explain how can it get airborne?	Science & Mathematics	✓

Table 15: Yahoo examples that failed and passed validation. One class of examples that failed validation, not demonstrated here, are sexually explicit questions labeled as seemingly random categories (likely from spam posters on the original Yahoo Answers forum).

1188

1189

1190

1191

1192

1193

Counting

1194

1195

In the above data, which of the labels is the most common? Give your final answer in the form ‘label: answer’ where answer is one of the labels: {label_list}.

1196

1197

In the above data, which of the labels is the least common? Give your final answer in the form ‘label: answer’ where answer is one of the labels: {label_list}.

1198

1199

In the above data, is label ‘{A}’ more common, less common, or the same frequency as label ‘{B}’? Give your final answer in the form ‘Answer: {A} is [X]{B}’, where [X] is ‘more common than’, ‘less common than’, or ‘same frequency as’.

1200

1201

In the above data, how many data points should be classified as label ‘{label}’? Give your final answer in the form ‘Answer: number’.

1202

1203

Table 16: Counting questions used in the OOLONG-synth dataset.

1204

1205

1206

1207

1208

1209

1210

1211

1212

1213

1214

User

1215

1216

In the above data, which user is represented most often? Give your final answer in the form ‘User: [X]’, where [X] is the user ID.

1217

1218

In the above data, which user is represented the second most often? Give your final answer in the form ‘User: [X]’, where [X] is the user ID.

1219

1220

For the following question, only consider the subset of users with IDs {user_names}. Among these users, which user is represented most often? Give your final answer in the form ‘User: [X]’, where [X] is the user ID.

1221

1222

For the following question, only consider the subset of users with IDs {user_names}. Among these users, which user is represented the second most often? Give your final answer in the form ‘User: [X]’, where [X] is the user ID.

1223

1224

For the following question, only consider the subset of instances that are associated with user IDs {user_names}. Among instances associated with these users, {any of the Counting questions above}

1225

1226

For the following question, only consider the subset of users with IDs {user_names}. Among these users, which user has the most instances with the label {label}? Give your final answer in the form ‘User: [X]’, where [X] is the user ID.

1227

1228

In the above data, which user has the most instances with the label {label}? Give your final answer in the form ‘User: [X]’, where [X] is the user ID.

1229

1230

In the above data, which user has more instances with the label {label}: User {A} or User {B}? Give your final answer in the form ‘User: [X]’, where [X] is the user ID.

1231

1232

1233

1234

1235

1236

1237

1238

1239

1240

1241

Table 17: User questions used in the OOLONG-synth dataset.

1242
 1243
 1244
 1245
 1246
 1247
 1248
 1249
 1250
 1251
 1252
 1253

Timeline

1254 In the above data, which date is represented most often? Give your final answer in the form
 1255 ‘Date: [X]’, where [X]is the date in the format MM/DD/YYYY.
 1256 In the above data, which date is represented most often? Give your final answer in the form
 1257 ‘Date: [X]’, where [X]is the date in the format MM/DD/YYYY.
 1258 In the above data, which date is represented the second most often? Give your final answer in
 1259 the form ‘Date: [X]’, where [X]is the date in the format MM/DD/YYYY.
 1260 In the above data, how many dates are represented exactly {n} times? Give your final answer
 1261 in the form ‘Answer: [X]’, where [X]is the number of dates represented exactly {n} times.
 1262 In the above data, was label ‘{key}’ more common, less common, or the same frequency before
 1263 {time}, as compared to after {time}? Give your final answer in the form ‘Answer: {key} is
 1264 [X]before {time}’, where [X]is ‘more common’, ‘less common’, or ‘the same frequency’.
 1265 In the above data, was label ‘{key}’ more common, less common, or the same frequency before
 1266 {time}, as compared to after {time}? Give your final answer in the form ‘Answer: {key} is
 1267 [X]before {time}’, where [X]is ‘more common’, ‘less common’, or ‘the same frequency’.
 1268 For the following question, only consider the subset of instances that occur in {month_name} of
 1269 any year. Among instances occurring in {month_name},{any of the Counting questions above}
 1270 For the following question, only consider the subset of instances that occur between
 1271 {starting_date} and {ending_date}, inclusive. Among instances occurring in this date range,
 1272 {any of the Counting questions above}
 1273 In which month did the label ‘{label1}’ first occur more often than the label ‘{label2}’? Give
 1274 your final answer in the form ‘Answer: [month][year]’, where [month]is the name of the month
 1275 and [year]is the four-digit year where ‘{label1}’ first occurred more often than ‘{label2}’.
 1276 For how many months does the label ‘{label1}’ occur more frequently than the label
 1277 ‘{label2}’? Disregard months where there is a tie. Give your final answer in the form ‘Answer:
 1278 [X]’, where [X]is the number of months where ‘{label1}’ occurs more often than ‘{label2}’.
 1279 For how many months is the label ‘{label}’ the single most frequently occurring label? Disre-
 1280 gard months where there is a tie for the most common label. Give your final answer in the form
 1281 ‘Answer: [X]’, where [X]is the number of months where ‘{label}’ is the most common label.

1285
 1286
 1287
 1288
 1289
 1290
 1291
 1292
 1293
 1294
 1295

Table 18: Timeline questions used in the OOLONG-synth dataset.

1296	Rolls
1297	Total number of rolls in this episode? (counting)
1298	Total number of rolls by the character {character name} in this episode? (counting, character)
1299	Total number of rolls by the player {player name} in this episode? (counting, player)
1300	Total number of rolls of type {roll type} in this episode? (counting, roll type)
1301	Number of rolls of natural value {roll value} in this episode? (counting, roll value)
1302	In this episode, what percentage of rolls were of value {roll value}? round to the nearest integer. (counting, roll value)
1303	What is the most common roll type in this episode? Return a comma separated list. (frequency)
1304	What is the least common roll type in this episode? Only include types with more than one roll. Return a comma separated list. (frequency)
1305	What is the most common natural roll value in this episode? Return a comma separated list. (frequency)
1306	What is the least common natural roll value in this episode? Only include values with more than one roll. Return a comma separated list. (frequency)
1307	What is the count of Crits? (natural rolls of value 1 or 20)? (counting, roll value)
1308	What is the count of Nat20s (natural rolls of value 20)? (counting, roll value)
1309	What is the count of Nat1s (natural rolls of value 1)? (counting, roll value)
1310	Spells
1311	How many spells were cast during this episode? (counting)
1312	How many spells were cast by the character {character name} in this episode? (counting, character)
1313	How many spells were cast by the player {player name} in this episode? (counting, player)
1314	How many {spell type} spells were cast during this episode? (counting, spell type)
1315	What is the first spell cast in this episode? (enumeration)
1316	What are the first two spells cast in this episode? (enumeration)
1317	What are the first three spells cast in this episode? (enumeration)
1318	What is the last spell cast in this episode? (enumeration)
1319	What are the last two spells cast in this episode? (enumeration)
1320	What are the last three spells cast in this episode? (enumeration)
1321	What is the first spell cast by each character in this episode? Return a comma separated list and retain the order of spells as they appear in the episode. (enumeration)
1322	What is the last spell cast by each character in this episode? Return a comma separated list and retain the order of spells as they appear in the episode. (enumeration)
1323	How many characters cast {spell name} spell in this episode? (counting, spell type)
1324	What is the most common spell in this episode? Return a comma separated list. (frequency)
1325	What is the least common spell in this episode? Only include spells that were cast at least once. Return a comma separated list. (frequency)
1326	Which spells were cast by more than one character in this episode? Return a comma separated list. (counting, enumeration)
1327	What is the total number of cantrip spells cast in this episode? (counting, spell type)
1328	In this episode, how many times was a spell cast at a level higher than its base level? (counting)
1329	In this episode, which spells were cast at a level higher than their base level? Return a comma separated list of unique spells. (enumeration)
1330	Table 19: Question types used in the OOLONG-real dataset (single episode). For reference, we provide the question types in parentheses.
1331	
1332	
1333	
1334	
1335	
1336	
1337	
1338	
1339	
1340	
1341	
1342	
1343	C DEEPSEEK R1 TRACE EXAMPLES
1344	
1345	Figure 5 and Figure 6 contrast the behavior of this model on representative examples from the OOLONG-synth and OOLONG-real splits. See the main text for more discussion.
1346	
1347	
1348	
1349	

1350	
1351	Rolls
1352	What is the cummulative total of rolls by the end of episode {episode index}? Count the
1353	number of rolls and not the values of the rolls. (counting)
1354	What is the cummulative total of rolls by the character {character name} at the end of episode
1355	{episode index}? Count the number of rolls and not the values of the rolls. (counting, character)
1356	Total number of rolls across all the episodes? (counting)
1357	Total number of rolls by the character {character name} across all episodes? (counting, char- acter)
1358	Total number of rolls by the player {player name} across all episodes? (counting, player)
1359	Total number of rolls of type {roll type} across all episodes? (counting, roll type)
1360	Number of rolls of natural value {roll value} across all episodes? (counting, roll value)
1361	Across all episodes, what percentage of rolls were of value {roll value}? round to the nearest integer. (counting, roll value)
1362	What is the most common roll type across all episodes? Return a comma separated list. (fre- quency)
1363	What is the least common roll type across all episodes? Only include types with more than one roll. Return a comma separated list. (frequency)
1364	What is the most common natural roll value across all episodes? Return a comma separated list. (frequency)
1365	What is the least common natural roll value across all episodes? Only include values with more than one roll. Return a comma separated list. (frequency)
1366	What is the total count of Crits across all episodes? (natural rolls of value 1 or 20)? (counting, roll value)
1367	What is the total count of Nat20s across all episodes? (natural rolls of value 20)? (counting, roll value)
1368	What is the total count of Nat1s across all episodes? (natural rolls of value 1)? (counting, roll value)
1369	
1370	
1371	
1372	
1373	
1374	
1375	
1376	Spells
1377	What is the cummulative total of spells cast by the end of episode {episode index}? (counting, indexing)
1378	What is the first spell cast in the episode {episode index}? (enumeration, indexing)
1379	What is the second spell cast in the episode {episode index}? (enumeration, indexing)
1380	What is the third spell cast in the episode {episode index}? (enumeration, indexing)
1381	List the first spell cast in each episode? Return a comma separated list. (enumeration)
1382	List the last spell cast in each episode? Return a comma separated list. (enumeration)
1383	List the first spell cast by the character {character name} in each episode? Return a comma separated list. (enumeration, character)
1384	List the last spell cast by the character {character name} in each episode? Return a comma separated list. (enumeration, character)
1385	How many spells were cast across all episodes? (counting)
1386	How many spells were cast by the character {character name} across all episodes? (counting, character)
1387	How many spells were cast by the player {player name} across all episodes? (counting, player)
1388	How many {spell type} spells were cast across all episodes? (counting, spell type)
1389	How many characters cast {spell name} spell across all episodes? (counting, spell type)
1390	What is the most common spell across all episodes? Return a comma separated list. (frequency, enumeration)
1391	What is the least common spell across all episodes? Only include spells that were cast at least once. Return a comma separated list. (frequency, enumeration)
1392	What is the total number of cantrip spells cast across all episodes? (counting, spell type)
1393	Across all episodes, how many times was a spell cast at a level higher than its base level? (counting, spell level)
1394	Across all episodes, which spells were cast at a level higher than their base level? Return a comma separated list of unique spells. (enumeration, spell level)
1395	
1396	
1397	
1398	
1399	
1400	
1401	
1402	
1403	

Table 20: Question types used in the OOLONG-real dataset (multi-episode). For reference, we provide the question types in parentheses.

1404

1405

1406

1407

1408

1409

1410

1411

1412

1413

1414

1415

1416

1417

1418

1419

1420

1421

1422

1423

1424

1425

1426

1427

1428

1429

1430

1431

1432

1433

1434

1435

1436

1437

1438

1439

1440

1441

1442

1443

1444

1445

1446

1447

1448

1449

1450

1451

1452

1453

1454

1455

1456

1457

<think> We are given 21 pairs. We need to classify each pair as one of ‘neutral’, ‘contradiction’, or ‘entailment’. Then, we will count the frequency of ‘contradiction’ and ‘entailment’ and compare them. Let’s go through each pair one by one: 1. “and then the class uh double A Dallas Fort Worth Spurs we later uh they went to the Texas league - Dallas Fort Worth Spurs got into the Texas League.” - The first sentence says they went to the Texas league. The second says they got into the Texas League. This seems to be the same meaning. So, entailment. 2. “Specifically, although most public companies are required to have a board that is comprised of a majority of independent directors and certain key committees are required to be comprised solely of outside directors, a closer look reveals that the independence of many boards may be more a matter of form than substance. - Public companies can put whoever they want on their boards.” - The first sentence says that public companies are required to have independent directors, but the independence might be in form only. The second sentence says they can put whoever they want. This contradicts the requirement mentioned. So, contradiction. **[....authors truncated classifications for space]** 19. “And the bureaucratic approach prevents the section as a whole from taking positions on—or creating—literary issues. - Bureaucracy makes groups not take positions or a stand on literary issues.” - The second is a restatement of the first. Entailment. 20. “They are linked not only by geographical location but also by here are the upmarket and fashionable neighborhoods, with affluent residential sections, trendy restaurants, and L.A.’s fabulous shopping areas. - They are linked because they both have very exclusive shoe stores.” - The first says they are linked by upmarket and fashionable neighborhoods, etc. The second says they are linked because of exclusive shoe stores. The first does not mention shoe stores. So, the second is a specific reason that is not stated. This could be neutral. However, note that the first lists shopping areas, which might include shoe stores, but it doesn’t specify. The second is too

Figure 5: Example reasoning trace for OOLONG-synth. The model fails to complete the task because it runs out of tokens during the reasoning trace. The majority of the trace (classifying items 3-18) is omitted for space.

1458

1459

1460

1461

1462

1463

1464

1465

1466

1467

1468

1469

1470

1471

1472

1473

1474

1475

1476

1477

1478

1479

1480

1481

1482

1483

1484

1485

1486

1487

1488

1489

1490

1491

1492

1493

1494

1495

1496

1497

1498

1499

1500

1501

1502

1503

1504

1505

1506

1507

1508

1509

1510

1511

Based on the provided transcript of Episode 2, the second spell cast is Disintegrate, cast by Lyra (Felicia Day's character).

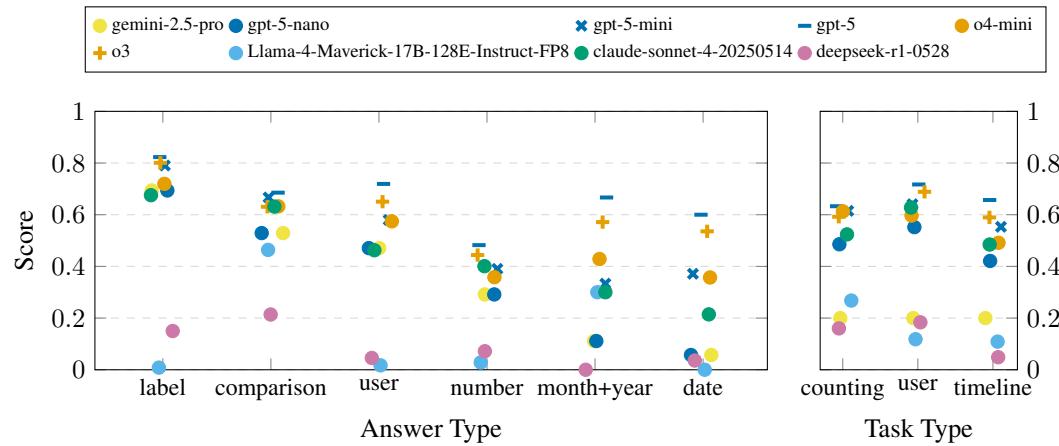
Sequence of Events: 1. First Spell: Vex'ahlia (Laura Bailey) casts Hunter's Mark on a frost giant (during her turn in combat). 2. Second Spell: Lyra (Felicia Day) casts Disintegrate on the same frost giant (during her subsequent turn).

Key Excerpt: Felicia: "I have a spell called Disintegrate. Can I cast that on its wing? [...] I'm doing Disintegrate. And it's 10d6 plus a d10, plus 40." Matt: "Disintegrate is nasty. [...] As you release the torrent of electrical energy, it courses through the body [...] the giant looks severely messed up."

Thus, the second spell in Episode 2 is Disintegrate.

Disintegrate

Figure 6: Example reasoning trace for OOLONG-real. The model completes the task within a relatively short reasoning trace, despite this task using substantially longer input.

1512 **D QUESTION TYPE ANALYSIS**
15131514 **D.1 OOLONG-SYNTH**
15151516 In Figure 7, we report the model performance by question and task types on OOLONG-synth.
15171533 Figure 7: The performance trend for models by type of answer and type of task on OOLONG-synth.
15341535 **D.2 OOLONG-REAL**
15361537 In Figure 8, we report model performance by question type on OOLONG-real.
15381539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565

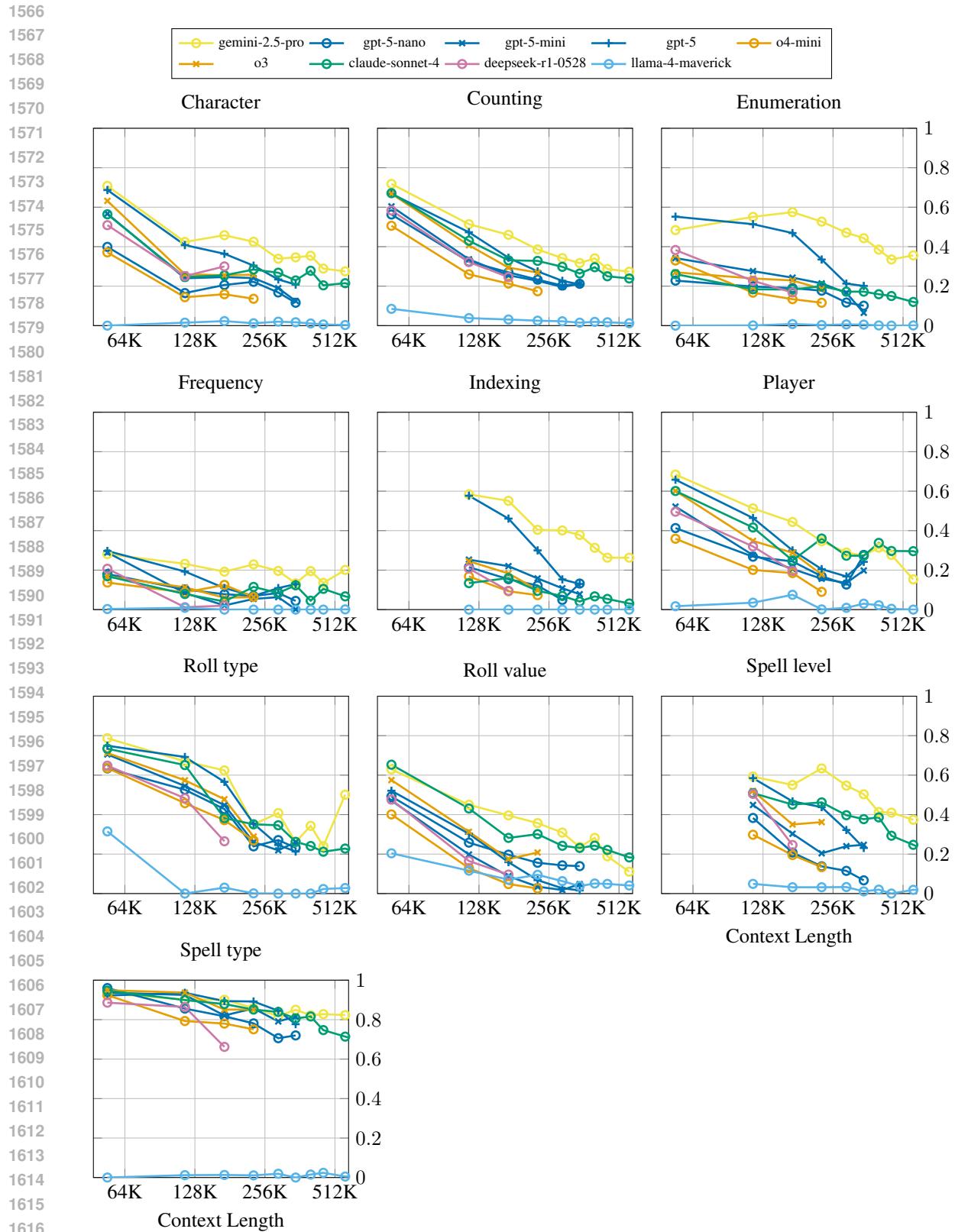


Figure 8: Scores by context window length for various question types in OOLONG-real. Some questions are only relevant for multi-episode settings.

1620 E OOLONG-REAL DATA

1621

1622

1623

1624

1625

1626

1627

1628

1629

E.1 DATA QUALITY AND CURATION

1630

1631

1632

1633

1634

1635

1636

The episode transcripts were first hand-transcribed by members of the fan community, who implemented a multi-step editing process with editorial guidelines. These were then further cleaned by Rameshkumar & Bailey (2020) to resolve any remaining inconsistencies. We refer the reader to the original paper for more details on the curation process. The stats were manually compiled by volunteers and the team at CritRoleStats. While it's not possible to completely eliminate sources of potential error, these types of fan-documentation processes are fastidiously annotated and cross-checked by multiple people— a standard of care far higher than that of a paid annotator with no connection to the task or data domain.

1637

1638

1639

1640

1641

1642

1643

E.2 CHALLENGES OF OOLONG-REAL

1644

1645

1646

1647

In the tables below, we highlight various unique challenges presented by OOLONG-real. Figure 9 covers text that includes in-character, out-of-character and narrative content. Additionally, we show complex discussions surrounding dice rolls (Figure 10, Figure 12) and damage calculation (Figure 11).

1648

1649

1650

1651

1652

1653

1654

1655

1656

1657

Matt: All right. As your smaller friend curls awake, Sam, would you like to describe your character?

Sam: Yeah. Um. I am a little goblin girl. (laughter)

Sam: I am a goblin. So, you know, the green skin, the green hair, the yellow eyes. And she wears not-great clothes, just like her traveling companion there. She hides in the shadows a lot, because she knows goblins aren't welcome in this part, and that's about it. I mean, she's a little skittish, and right now she's probably stirring awake as well, right?

Matt: Well. What's your name?

Sam: Oh. Nott the Brave.

Matt: So Caleb, as you come to consciousness, you glance over and can see, slowly snoring and rousing at about the same time, Nott's eyes blink open, her slowly groaning face looking over towards you.

Sam: (high-pitched Cockney accent) Oh! You're finally awake, I see. Oh yeah, motherfuckers. It's on. You were out for quite some time, there. Rough day, eh?

Liam: (light German accent) Not our best day, no.

Sam: No, I mean, usually you're so good at everything, but yesterday you were just— maybe you needed the sleep, is what you needed.

1672

1673

Figure 9: Example of mixed in-character, out-of-character, and narrative text.

1674
 1675 **Matt:** The old man's body stops quaking, his flesh now grey and mangled like an ancient tree
 1676 trunk. He turns, his eyes blood-red and bulging, his lips curled into a horrifying grimace.
 1677 The two Crown's Guard begin to try and make their way through the panicked crowd, but
 1678 the people, like a wave of chaos, are keeping them at bay. I need everyone to roll initiative.
 1679 (yelling)
 1680 **Liam:** The miniatures come out, guys!
 1681 **Travis:** First map! (yelling)
 1682 **Marisha:** I rolled a natural one.
 1683 **Sam:** That bodes well.
 1684 **Matt:** So you guys, this guy is actually over here. You guys are all up here in the front.
 1685 **Laura:** Oh yeah, we were right in the fucking front row. Look at us! We're so cute!
 1686 **Taliesin:** Oh my god, it's so pretty.
 1687 **Sam:** We're all going to die.
 1688 **Liam:** Probably. But then the third campaign begins.
 1689 **Laura:** Yay.
 1690 **Sam:** I like the tents and donkeys outside. Amazing.
 1691 **Marisha:** Look, Taliesin, it's a bardo. Oh my god!
 1692 **Taliesin:** No, go for it. Oh boy.
 1693 **Matt:** All right, so. 20 to 15?
 1694 **Laura:** 21.
 1695 **Matt:** All right.
 1696 **Laura:** Oh, wait, 22.
 1697 **Matt:** Nice. 15 to ten?
 1698 **Taliesin:** Ten.
 1699 **Sam:** Ten.
 1700 **Travis:** 12.
 1701 **Ashley:** 13.
 1702 **Liam:** 11.
 1703 **Matt:** So 13 and then ten and ten? Sorry, 12. So Yasha got 13, then we have Fjord. And
 1704 then 11. And then we have Nott at ten. And what'd you get?
 1705 **Marisha:** Five. Rolled terribly.

Figure 10: A complex discussion of dice rolls. While many numbers are mentioned, there are actually seven rolls discussed in this segment: one initiative value for each player.

1708
 1709
 1710
 1711
 1712
 1713
 1714
 1715 **Matt:** 16 hits. Go ahead and roll damage.
 1716 **Laura:** Yay. 4d6.
 1717 **Matt:** Yasha, you're almost on deck.
 1718 **Laura:** Ten, 16, 18, and then any attacks in the future– the next attack has advantage.
 1719 **Matt:** How much damage was that? 2d6, 18?
 1720 **Sam:** 4d6, you said.
 1721 **Laura:** Yeah, it was 4d6 radiant damage. So yeah, it was 18. And then I'm going to run the
 1722 opposite direction away from him, but I'm going to keep my duplicate up there.
 1723 **Matt:** Okay, which, for your duplicate, I should go ahead and grab something.

Figure 11: A complex discussion of a damage roll calculation. Many numbers are floated in this discussion; the model must recognize that the discussion refers to a single damage event and the final, resolved damage was 18.

1728

Sam: I thought you just said I had advantage!**Matt:** You had advantage, but you have disadvantage because they're beyond the-**Liam:** It cancelled out your advantage. It's just a straight roll and you lost the sneak attack.**Sam:** Could I run forward and still get the sneak attack?**Matt:** You could try it.**Sam:** That's what I will do. Undo.**Laura:** Roll again, because you might get natural 20!**Sam:** Now I have to roll for stealth, right?**Matt:** You've been stealthed as you crept up on this from the last time, so go for it.**Sam:** I'm rolling to hit?**Matt:** You already hit on that.**Laura:** Roll again for advantage, you might get a 20.**Sam:** Okay. Still 17 plus six.**Matt:** Now you get a sneak attack, go for it.

1733

1734

1735

1736

1737

1738

1739

1740

1741

1742

1743

1744

1745

1746

1747

1748

1749

1750

1751

1752

1753

1754

1755

1756

1757

1758

1759

1760

1761

1762

1763

1764

1765

1766

1767

1768

1769

1770

1771

1772

1773

1774

1775

1776

1777

1778

1779

1780

1781

Figure 12: This discussion highlights an *undo* of a dice roll. To tackle, the models needs to understand the narrative around the original roll and correct its count because of the undo.