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ABSTRACT

As model context lengths continue to grow, concerns about whether models effec-
tively use the full context length have persisted. While several carefully designed
long-context evaluations have recently been released, these evaluations tend to
rely on retrieval from one or more sections of the context, which allows nearly all
of the context tokens to be disregarded as noise. This represents only one type of
task that might be performed with long context. We introduce OOLONG, a bench-
mark of long-context reasoning tasks that require analyzing individual chunks of
text on an atomic level, and then aggregating these analyses to answer distribu-
tional questions. OOLONG is separated into two task sets: OOLONG-synth, a
set of naturalistic synthetic tasks, where we can easily ablate components of the
reasoning problem; and OOLONG-real, a downstream setting which requires rea-
soning over real-world conversational data. OOLONG requires models to reason
over large quantities of examples, to perform both classification and counting in-
context, and to reason over temporal and user relations. Even frontier models
struggle on OOLONG, with the best model, GPT-5, achieving less than 50% ac-
curacy on both splits at 128K. We release the benchmark examples, code to con-
struct additional evaluation examples for OOLONG-synth, and full outputs and
task-specific evaluation results for all models tested to enable further development
of models that can reason over large quantities of text. The data and evaluation
harness for OOLONG will be released to the research community to build on.

1 INTRODUCTION

In the last several years, the exponentially increasing context lengths of LLMs have enabled many
new applications, including reasoning models (Guo et al., 2025), many-shot prompting (Bertsch
et al., 2024), and repository-level code generation (Jimenez et al., 2023). However, despite the rapid
improvement in this area, measuring effective use of long context windows for complex reasoning
tasks remains a challenge. The majority of evaluation datasets involve only simplistic needle-in-a-
haystack or retrieval challenges. The few tasks that require aggregation over the input, such as text
summarization, require evaluation over long-form model responses. Such evaluations are subjec-
tive and often expensive to include in an evaluation benchmark. A recent line of work, including
tasks that require counting frequent words (RULER; Hsieh et al. (2024)), or identifying the N th
occurrence of a particular needle (MRCR; Vodrahalli et al. (2024); OpenAI (2025)), are useful but
insufficient measures of information aggregation, only distantly related to real aggregation tasks.1

In this work, we focus on information aggregation over long inputs. We break down the information
aggregation task into a multi-step problem. Each individual subtask is easy to perform for both
humans and LLMs. The key challenge is to break down the task into individual subtasks and to
aggregate the results of these subtasks. For example, consider the two information aggregation tasks
presented in Figure 1. The LM must identify parts of the input relevant to the question, perform
a subtask at each relevant part (e.g. a simple classification) and then pool the results from all the
subtasks to generate the final answer. A strong long-context reasoning model should be able to do
this task in a single pass. Such abilities are useful in many real-world tasks, such as identifying
trends in a corpus, building a timeline of medical treatment for a patient, or tracking state in a long

1For more discussion of current long-context benchmarks and their limitations, see§ 5.
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Figure 1: OOLONG poses questions that require performing a multi-step information aggregation
process to determine the solution. OOLONG-synth uses ICL-based tasks, which could be easily
decomposed and solved iteratively, as a proxy for real-world aggregation tasks over long inputs.
OOLONG-real poses challenging information aggregation questions over transcripts from live-action
Dungeons & Dragons shows, which can not be easily decomposed into component pieces.

narrative. However, to the best of our knowledge, there are no benchmarks that evaluate LM’s ability
to perform information aggregation at scale.

We propose OOLONG, a benchmark that requires multi-hop reasoning over long inputs to produce
easily verifiable outputs. OOLONG is separated into two task sets. OOLONG-synth (§2) is a set
of naturalistic synthetic tasks constructed from existing in-context learning datasets. These tasks
require implicitly labeling the examples in-context to reason over distributional properties of the
labels (counting tasks), over user-specific patterns (user tasks), and over changes in the data over
time (temporal tasks). OOLONG-real (§3) poses the same types of questions over real data that is
not so easily separable into component parts– asking challenging questions about character states
and campaign statistics from live-play Dungeons & Dragons roleplaying transcripts, using human-
annotated gold answers.

Each task requires identifying the relevant segments of the input; this ranges from only a handful of
instances or lines of dialogue to questions that require the use of every line of the input. The relevant
segments must be classified or categorized, and these individual decisions must be aggregated to
produce a final answer. By framing the benchmark around problems that are simple individually,
we ensure that we are measuring capability on long context reasoning and not accuracy on the
underlying task. By requiring identification of relevant context, classification decisions over that
context, and numeracy skills to produce statistics about the input, OOLONG requires models to
perform multi-step reasoning over long inputs.

Although these component capabilities have been well studied and the frontier models demonstrate
strong performance in each (Yen et al. (2024),Agarwal et al. (2024), inter alia), we find that models
struggle with information aggregation as the input length grows. None of the models benchmarked
score higher than 50% on OOLONG at 128K context. We study why this task is so challenging using
the more flexible OOLONG-synth, ablating settings that decrease context length dramatically and
remove the line-by-line classification task, and find that identification and aggregation of information
is the bottleneck, not labeling (§4.1). WWe believe OOLONG is a usefully challenging evaluation of
long-context reasoning abilities.

2 OOLONG-SYNTH

We aim to construct a synthetic information aggregation task that allows fine-grained control over
the types of information and number of steps necessary to solve the task. To do this, we need building
blocks: simple, short-context documents to build into a longer collection. We construct OOLONG-
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Dataset Task # Labels Input Len

Spam (Almeida et al., 2011) SMS spam classification 2 57
TREC-QC-coarse (Li & Roth, 2002; Hovy et al., 2001) Question type classification 6 39

AGNews (Zhang et al., 2015) Headline topic classification 4 90
App Reviews (Zur, 2017) Review sentiment classification 2† 49
Pavlick Formality (Lahiri, 2015; Pavlick & Tetreault, 2016) Formality classification 2† 51
IMDB reviews (Maas et al., 2011) Sentiment analysis 2† 376
HiTZ Negation (Garcı́a-Ferrero et al., 2023) Verify claims about definitions 2 45
Yahoo Topics (Zhang et al., 2015) Question topic classification 10 74
MultiNLI (Williams et al., 2018) Entailment 3 70
Metaphors (Bizzoni & Lappin, 2018) Metaphor meaning validation 2 51

Table 1: Datasets used for OOLONG-synth. † indicates cases where we combined similar labels to
produce a smaller label-set for OOLONG. The input length is the average per-instance length (in
Llama 2 tokens), including our added date and user metadata.

synth by constructing challenging corpus-level questions over existing in-context learning (ICL)
datasets.

2.1 DATA

We collect 10 common text classification datasets with between 2 and 10 labels. We se-
lect for tasks that are possible for the authors to perform without difficulty (and validate that
these tasks are similarly simple for models during our dataset filtering). Table 1 describes the
datasets in more detail. We split the data into two validation tasks and eight test tasks. The
validation tasks are selected to avoid underlying task overlap with test tasks (in the style of
Min et al. (2022)), and so that there is both a 2-label and a multi-label (6-label) validation
task. For the sentiment and formality datasets with more than two labels, we reduce the la-
bel space to a single positive and a single negative label, to reduce the difficulty of the task.

Dataset % Removed
Spam 0.635%
TREC-Q-coarse 0.048%

AGNews 0.026%
App Reviews 0.051%
Formality 0.108%
IMDB 0.042%
Metaphors 0.000%
MultiNLI 0.109%
Negation 0.016%
Yahoo Topics 0.188%

Table 2: Only a small fraction of ex-
amples are removed during validation
for each source dataset.

Data filtering In a normal in-context learning task, if a
few examples are unusually hard or even mislabeled, this
has a small impact on the overall score. Because we intend
to require aggregation across many ICL examples at once,
one particularly difficult example can affect the score on
many questions downstream. However, many ICL datasets
are known to contain mislabelings (Ying & Thomas, 2022;
Chong et al., 2022; Klie et al., 2023).

We perform an additional screening step to remove misla-
beled or unusually hard examples. We select two models
that we do not expect to be substantially stronger than the
models we are evaluating: GPT-4.1 nano and Llama 4 Mav-
erick. We perform zero-shot ICL with a minimal instruction
that provides the label space and type of task. We then ex-
clude all examples that both models get incorrect. We re-
port the percentage of examples screened out by dataset in
Table 1, and Appendix A analyzes excluded and validated
datapoints for each dataset. Many of the excluded instances
are clearly mislabeled; the remainder generally represent challenging cases.

2.2 CONTEXT WINDOW CONSTRUCTION

We determine the number of examples in the context window by using an estimate of the number
of tokens required for each per example, for the general task instructions, and for the specific ques-
tion. Following Yen et al. (2024), we compute these averages using the Llama 2 tokenizer, and use
approximately 500K tokens of context for each estimate. We then estimate the number of examples
to use by determining how many average-length examples would reach 95% of the target context
length.

3
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We sample a distribution over the label classes so that the model cannot use any information about
the true distribution over labels (e.g., by guessing that most sentiment classification datasets are
balanced). Then, we sample examples to fill this distribution; if there are less total examples than
required, we sample with replacement. For each instance, we sample a date and user ID. User IDs
are drawn such that 80% of instances have an ID in the 20% of IDs that are most common. Dates
are drawn uniformly with replacement from an approximately 40-month range.

Once a context window is constructed, we use it for 25 questions; reusing the same context window
allows for prompt caching, reducing the time to evaluate local models and the cost to evaluate on
most APIs. At each context length, we sample two context windows per dataset, for a total of
50 questions per dataset or 400 total questions in the test split per context length. We construct
OOLONG-synth questions for every power of 2 from 1K to 4M.

Questions We construct three types of OOLONG-synth questions, in order of increasing complex-
ity. Counting questions concern simple statistical properties of the label distribution, ranging from
identifying the most frequent label to determining the number of examples with each label class.
If the label distribution was provided, all tasks in this set should be trivial; these tasks can be seen
implicitly as the task of labeling every example and reporting summary statistics. User information
questions require additional cross-reference with the user ID field. Timeline questions ask about
changes in distribution before or after a certain date, between years, or between months across
years. This is a more challenging than user information questions because it requires reasoning
about before or after a date, rather than matching a list of IDs (see §B.1 in Appendix for questions).

Instructions For each dataset, we provide a brief (one-sentence) description of the task and label
space, as well as the number of examples in-context. We provide instructions at the start and end
of the input, as suggested by OpenAI’s long context prompting guide.2 However, we provide the
question only at the end, to enable prompt caching.

2.3 EVALUATION

Baseline A random baseline is non-trivial for these tasks, because the output space for each ques-
tion varies. We construct an algorithm for a random baseline with the following rules: (1) in cases
where there is an n-way choice (e.g. choosing between n labels or choosing a month where some
criteria occurs), we select an answer from the set of valid answers at random; (2) if the question re-
quires a numerical answer, we return N/|L|, where N is the number of data points in context and L
is the labelset; (3) if the question requires a date or user ID, we sample this from the list of dates/IDs
in context at random. We compute the random baseline performance as the expected value of this
procedure over the dataset.

Parsing answers The task prompts specify an output format. We make a best-effort attempt to
parse answers using this format; if this template is not present in the output, we choose the end of
the input as the candidate answer and mark this as a low-confidence parse. Generally, this occurs if
the model runs out of output tokens before providing an answer.

Scoring For questions that require a label, date, user ID, or comparison (e.g. “greater than” or
“less than”), we score on exact match. For questions that require a numerical answer, we set the
score to be

score(ŷ) = 0.75|y−ŷ|

This allows for partial credit for answers close to the exact value.

3 OOLONG-REAL

Although OOLONG-synth allows for a high degree of control over the types of input, these inputs are
composed of independent examples from the source dataset. An iterative setup could complete these

2https://cookbook.openai.com/examples/gpt4-1_prompting_guide#
prompt-organization
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Counting

Total number of rolls in this episode?
What is the count of Crits? (natural rolls of value 1 or 20)?
How many {spell type} spells were cast during this episode?
How many characters cast {spell name} spell all across episodes?
What is the second spell cast in the episode {episode index}?

Enumeration

What are the first {count} spells cast in this episode? Return a comma separated list.
List the last spell cast in each episode? Return a comma separated list.

Indexing

What is the cummulative total of rolls by the end of episode {episode index}? Count the number
of rolls and not the values of the rolls.
What is the second spell cast in the episode {episode index}?
List the last spell cast in each episode? Return a comma separated list.

Table 3: Question types covered in OOLONG-real dataset.

tasks by calling a model to label each individual example and then deterministically aggregating
the resulting labels. We note that this is true for many capability evaluation tasks; for instance,
Needle-in-a-Haystack tasks could be solved almost trivially by asking a model if each of the N
input sentences individually contains the needle. Although we believe tasks like these still have
merit as capability evaluations, OOLONG-synth does not answer the question of why information
aggregation is a useful capability. For this, we must turn to a more realistic setting.

We complement OOLONG-synth with questions derived from real conversational data. OOLONG-
real is compiled from the transcripts of a Dungeons and Dragons (D&D) role-playing game, where
a group of players collaboratively build a story through in-character actions and success depends on
rolling dice. Stories unfold over narratives (“campaigns”) that span dozens to hundreds of episodes,
with each episode generally lasting 4-5 hours of play. Compiling aggregate statistics from real
conversational data is not simple to reframe as an iterative task. These transcripts involve several
levels of conversion, from out-of-character discussion to rules discussion to in-character actions and
speech. Though lightly edited for readability, they reflect naturalistic speech instead of carefully
planned written text. Because the conversation is unscripted and can involve tangents or side chan-
nels, conversational turns require variable amounts of prior context to resolve. In some instances,
the same event (e.g. casting a spell) is discussed for many turns, or brought up again after a long
interlude; in other cases, a prior event is “retconned” or revised post hoc.

In Dungeons and Dragons, there are limitations to how frequently characters can take certain actions
(e.g., cast certain types of spells). Additionally, fans are often interested in metadata of the play (e.g.,
whether a certain person is particularly unlucky with their dice rolls or if a character uses a signature
spell more or less as the campaign progresses). Because these shows are extremely long and wide-
ranging and improvised live, the creators do not plan for or provide this type of information. In lieu
of an official source, this information is often annotated, meticulously, and with multiple levels of
verification, by dedicated fans of the work.

We take this as an example of an information aggregation task in the wild. We consider the series
Critical Role and the data compiled by CritRoleStats,3 a fan project that tracked per-episode statistics
for the first several campaigns of Critical Role. We devise questions related to characters, dice rolls,
and spells cast during episodes and use human-labeled CritRoleStats to compute gold answers.

3.1 DATASET COMPILATION

For OOLONG-real, we consider two campaigns from the Critical Role TV series. We used episode
transcripts from the Critical Role Dungeons and Dragons Dataset (CRD3) (Rameshkumar & Bailey,
2020), which includes full episode transcripts from the first two campaigns of the Critical Role TV

3https://www.critrolestats.com/
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series. For our testbed, we used the first campaign, which consists of 115 episodes. Each line in the
transcript includes an utterance with the player name labeled.

QA pairs We use the game statistics compiled by the authors of CritRoleStats. Specifically, we
utilize statistics about dice rolls and spells cast in each episode. We design a set of questions that
cover a variety of information aggregation tasks; see Table 3 for some examples. We include ques-
tions that require processing of single- or multiple-episode transcripts. For multi-episode questions,
we concatenate transcripts and use delimiters to highlight the start and end of each transcript. See
Table 18 and Table 19 of the Appendix for a full list of OOLONG-real questions. We include varying
context windows to evaluate the model’s ability to use long-context reasoning and aggregation ca-
pabilities. Using a single episode transcript as a context unit, we include context windows ranging
from one to 24 episode transcripts. This covers input lengths of 55K to 1.3M tokens.

3.2 EVALUATION

Parsing Our task prompt requires the model to place the answer in \boxed{}. If the answer cannot
be extracted successfully, we attempt to extract the answer for a given question using GPT-5-nano.

Scoring OOLONG-real contains three types of answers: numeric, string, and a list of strings. For
numerical answers, we use the same scoring scheme as OOLONG-synth. We use exact match for
string answer types and set overlap for answers of a type list.

4 RESULTS AND ANALYSIS

On OOLONG, we benchmark a strong suite of frontier models to study their information aggregation
capabilities over long context. We include GPT-5, GPT o-series, Claude, DeepSeek R1, and Llama
4. We include a mix of models of varying sizes, levels of reasoning, and long-context capabilities.

4.1 OOLONG – LEADERBOARD

In Table 4, we report the results for both OOLONG-synth and OOLONG-real. Following prior long-
context benchmarks, we measure model performance at increasing context window sizes and report
a task average. For OOLONG-synth, we use the standard context window sizes of up to 128K tokens.
For OOLONG-real, we report scores at increasing number of episode transcripts (up to 3 episodes).
GPT-5 performs the best in both subsets, followed by o3, GPT-5-mini and Claude-Sonnet-4. No-
tably, at 128K context window size all our evaluated models obtain a score under 50. DeepSeek R1
does well on OOLONG-real, but struggles to perform well on OOLONG-synth (see §4.2. Llama-4-
Maverick fails in both subsets.

OOLONG-synth OOLONG-real
Model Avg. 8K 16K 32K 64K 128K Avg. 55K 118K 175K

GPT-5 67.6 80.6 80.0 71.8 60.0 45.7 47.0 58.7 45.7 36.5
o3 61.1 82.3 76.0 61.6 47.6 37.8 36.7 50.6 33.6 26.0
GPT-5 mini 62.0 80.1 73.7 62.5 51.4 42.2 34.5 49.9 29.9 23.9
Claude Sonnet 4 55.3 70.2 60.3 51.1 48.6 46.2 36.8 50.6 33.0 26.7
o4-mini 54.7 77.8 62.4 51.1 44.4 37.9 27.1 41.7 21.8 17.9
GPT-5 nano 49.1 68.0 53.8 43.2 42.7 38.0 31.0 43.1 26.8 23.2
Deepseek R1 0528 11.5 12.4 12.7 11.6 11.6 9.1 32.0 47.9 27.3 20.8
Llama 4 Maverick 14.3 12.3 14.5 12.9 16.5 15.4 2.1 2.5 2.1 1.6

Table 4: OOLONG results on a number of strong models. All models we test support at least 200K
context; thus, we report OOLONG scores as an average over scores on 8K-175K inputs. OOLONG-
synth is a more information-dense task than OOLONG-real; while the best model remains the same,
the ranking of other models shifts slightly between the two settings. Models are sorted by the average
between the two benchmarks.
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Figure 2: Scores by context window length for OOLONG-synth and OOLONG-real.
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Figure 3: Comparison across reasoning levels.

In Figure 2, we visualize the model performance for context windows up to 512K tokens. As ex-
pected, we see a significant drop in performance at higher context windows. The two splits are of
similar difficulty at the same context length, although direct comparison is challenging because real
data do not necessarily align with fixed context window buckets.4

4.2 IMPACT OF REASONING LEVEL

We compare “high” and “low” reasoning effort for GPT-5-nano. Figure 3 shows the results for
both the splits of OOLONG. Although OOLONG is a reasoning-intensive task, specifying a higher
reasoning effort is only useful for short contexts; after 64k, there is little discernible difference
between reasoning levels, with the “high” reasoning setting even slightly underperforming “low”
reasoning at 256k on OOLONG-synth. Although it is difficult to draw firm conclusions without the
ability to view the reasoning trace, we hypothesize that at context lengths where there is sufficient
remaining room in the context window to enumerate labels for each example in-context, adding
more reasoning effort may encourage the model to take this strategy. However, since the default
routing for this model performs reasonably well at all lengths and especially for longer inputs, we
do not explicitly specify a reasoning level for the remainder of the runs.

4While performance on OOLONG-real starts lower, this is because the shortest inputs in this dataset are a
single episode, with an average length of 55K tokens; models perform similarly on OOLONG-synth around the
same context length.
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Figure 4: Comparison on OOLONG-synth: (a) we provide the gold labels in the input. This leads
to a consistent but small improvement, (b) short context performance; while the top models have
similar short-context performance, differences emerge as the context length grows.

4.3 WHAT HAPPENED TO DEEPSEEK R1?

Deepseek R1 is a strong reasoning model and outperforms GPT-5 nano and o4-mini on OOLONG-
real. However, on OOLONG-synth, it achieves performance below the random baseline. What causes
this discrepancy?

In manual inspection of the traces, we observe two pathologies in the reasoning traces for OOLONG-
synth that are not present in traces for OOLONG-real. First, the traces for the synthetic split often
end mid-sentence, without outputting an answer at all. We hypothesize that, because OOLONG-
synth is such an information-dense task, the model’s apparent strategy of labeling each example
before deciding which are relevant results in running out of context tokens. Second, many traces
use a substantial number of tokens deciding whether or not the model should label the examples
in-context. Appendix C shows example traces from both settings.

4.4 SIMPLER SETTINGS FOR OOLONG-SYNTH

Shorter context Most models show declining performance with context length. We consider a
short-context version of OOLONG-synth, with inputs between 1k and 4k tokens, in Figure 4. While
models perform better on this task, several still struggle, showing that even short-context aggregation
remains challenging. Performance differences between the top models are difficult to distinguish in
the short-context regime, suggesting that these models have the ability to perform the task at some
context length. However, no model exceeds 85% performance at any context length.

Aggregation without classification For OOLONG-synth, we can construct an easier version of
the task by providing the label for each ICL example in-context. This reduces the task for most
questions to simply identifying the relevant instances and summing the occurrence of each label
type. Figure 4 shows the behavior of GPT-5 and GPT-5-nano with and without labels provided in-
context. As expected, adding labels improves accuracy; however, this improvement ranges from
10.9 points to only 0.79 points. We do not see consistently higher gains from providing labels in
longer inputs, which suggests that the lower performance at longer context lengths is not primarily
due to an accumulation of mislabeling errors. Additionally, the improvement is not larger for GPT-
5-nano than it is for the more powerful GPT-5, suggesting that the performance difference observed
between these models is not due to differing ability to perform the classification task. This is by
design; our classification task validation was designed to eliminate overly challenging or misleading
examples, as the ability to aggregate information is the main capability we aim to measure.

8
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5 RELATED WORK

Long-context benchmarks A variety of long-context benchmarks have included some type of
aggregation or reasoning-focused task. RULER (Hsieh et al., 2024) benchmark includes synthetic
retrieval tasks at varying context lengths. It includes multi-hop tracing and aggregation tasks. HEL-
MET (Yen et al., 2024) expands the tasks in RULER to include tasks related to the downstream use
of LMs (reranking, ICL, LongQA, summarization). LongMemEval (Wu et al., 2025) and multi-
round coreference resolution tasks (MRCR) evaluate long-context capabilities with conversational
data. MRCR was first introduced in Gemini (Vodrahalli et al., 2024) and was further extended in
OpenAI’s MRCR (OpenAI, 2025). Unlike the standard NIAH task, the needles and the distrac-
tors in MRCR are sampled from the same distributions. OpenAI’s MRCR includes variants of 2,
4, and 8 needles, and the task involves retrieving the ith instance of one of the needles. The docu-
ments in MRCR are synthetic conversations generated using GPT-4o. TLDM (Hamilton et al., 2025)
includes two related tasks that query about a character last known location and time passed in a nar-
rative setting, but only considers public-domain novels, which likely suffer from data contamination.
ZeroSCROLLS (Shaham et al., 2023) introduces a task of identifying the percentage of reviews on
Amazon for a product that are positive, which is the closest conceptual ancestor of our work; OO-
LONG-synth encompasses this type of task along with other aggregation tasks. GSM-infinite (Zhou
et al., 2025) stress tests long-context reasoning through an adaptable framework for varying task
difficulty and length; our work is complementary, as their focus is primarily on increasingly difficult
mathematical reasoning through synthetically generated problems, while we focus on a more noisy,
naturalistic text setting with less challenging mathematical reasoning required. Finally, procedural
generation benchmarks (Ye et al., 2025) measure a different type of reasoning task by evaluating the
ability to plan and produce coherent long outputs.

In addition to the long-context benchmarks above, prior work has also shown that LM performance
on downstream tasks deteriorates at longer context lengths. Levy et al. (2024) and Shi et al. (2023)
studied the adverse effects of adding irrelevant context to the model input.

Dungeons & Dragons data Several prior works consider D&D as a potential testbed for model ca-
pabilities; for instance, we use a version of the Critical Role transcripts preprocessed by Rameshku-
mar & Bailey (2020), who proposed an episode summarization task using fan-written summaries.
D&D data has also been used to study theory of mind (Zhou et al., 2023), user assistant development
Zhu et al. (2023b), and dialogue generation, with game state either inferred from forum-based games
(Callison-Burch et al., 2022) or captured through an external tool (Zhu et al., 2023a); to the best of
our knowledge, we are the first to use fan annotations of gold labels and to consider the generation
of these statistics as a task in its own right.

Aggregation as an NLP concept Goldman et al. (2024) argue for the definition of long context
tasks in terms of the information dispersion and input scope required to find the answer; under this
taxonomy, OOLONG is high dispersion (because relevant info is distribution over the full context
length) and high scope (because most of the input is necessary for the task, particularly for OOLONG-
synth). DeYoung et al. (2024) measure synthesis in multi-document summarization by asking if
summaries convey the consensus opinion of the input documents; this is a related task to the counting
tasks in OOLONG-synth, but framed as a measure of summarization capabilities instead of long
context capabilities, and thus requires different affordances related to evaluating generated outputs.

6 CONCLUSION

We introduce OOLONG, a challenging long-context information aggregation benchmark in two parts.
OOLONG-synth uses synthetic aggregation tasks over ICL data to enable finer-grained control of
the benchmark settings, while OOLONG-real poses questions over real long-context conversational
data and human-annotated labels. On both splits, models struggle, with performance dropping with
increasing context length even when controlling for the potential compounding of mislabeling errors.
We see substantial headroom between strong open source models and API-based models on this task,
particularly OOLONG-synth, where Deepseek-R1 struggles to plan the reasoning quantity. Overall,
our results suggest that there is still a long way to go in designing robust long-context aggregation
capabilities for LLMs.
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ETHICS STATEMENT

This work is intended to further the evaluation of long-context LLMs. We do not foresee any par-
ticular additional risks introduced by our evaluation, although information aggregation, like nearly
any LM capability, could be useful for both beneficial and harmful actors.

CritRoleStats, whose data we use in constructing gold labels for the OOLONG-real split, explicitly
allows the use of their data for statistical analyses in their FAQ, so long as they are credited.5

In the course of this work, we used LM assistance in the writing of some data preprocessing, analy-
sis, and visualization scripts.

REPRODUCIBILITY STATEMENT

We release code for dataset construction and evaluation, in addition to the final dataset version. API-
based models typically exhibit some small variability across API calls, so exact replication of scores
may be infeasible; however, we will release the model outputs for each model run reported in the
paper.
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A ICL LABEL VALIDATION

For each ICL dataset used to construct OOLONG-synth, we provide example instances that failed
validation (and thus were discarded) and that passed validation and were used for constructing con-
text windows. These examples are selected nearly-randomly; many of the instances that fail valida-
tion contain sexual content or offensive language, and we screen these out of the examples shown
wherever possible. While the instances screened out vary by dataset, we note that the datasets that
use labels scraped from web content (i.e. Yahoo Topics, AGNews, IMDB reviews, App Reviews)
generally have higher rates of validation failures. Some of these failures appear to be genuine mis-
labelings, which is likely because of noise in the user behavior (e.g. a user asks a question about
Business & Finance but mistakenly posts it in the Sports topic, or a user writes a review with mostly
negative text but gives the product 4 stars).
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Input Label Passed
validation?

‘Virtual Girlfriend’ Demands Gifts HONG KONG - She
needs to be coddled with sweet talk and pampered with gifts,
but you’ll never see her in the flesh. A Hong Kong company
has developed a “virtual girlfriend” for new cell phones with
video capability...

World ✗

Court Hears Case of Brain Damaged Woman (AP) AP - The
Florida Supreme Court questioned lawyers Tuesday about
the extent of the power handed to Gov. Jeb Bush under
a law that let him order the reinsertion of a brain-damaged
woman’s feeding tube.

Sci/Tech ✗

Rooney backs fiercesome threesome (AFP) AFP - Wayne
Rooney believes the three-pronged attack of himself,
Michael Owen and Jermain Defoe can put England on the
fast track to the World Cup finals.

World ✗

From mouths of babes: What’s hot, what’s not How hot are
the “Hot Dozen” toys? To find out, The Boston Globe put six
toys from the 2004 Toy Wishes magazine Hot Dozen list in
front of 13 kids from the Charlestown Boys and Girls Club.

Business ✗

Crematory operator to get 12 years Ray Brent Marsh, who
is to enter the plea Friday, had faced up to 8,000 years in a
case that shocked the nation two years ago when investigators
found hundreds of corpses at his rural northwest facility.

Business ✗

Vending Machines Making Room for Healthy Products
WASHINGTON (AP) – The typical vending machine fare
consists of chocolate bars and potato chips, leaving few op-
tions for people seeking low-calorie or low-salt snacks. That
is changing now as companies develop markets for products
they expect to satisfy both nutritionists and consumers...

Sci/Tech ✓

Venezuelans Line Up to Vote on Chavez CARACAS,
Venezuela - Summoned by bugle calls and the detonations of
huge firecrackers, Venezuelans turned out in unprecedented
numbers Sunday to vote on whether to force leftist President
Hugo Chavez from office. Some lines at polling places ex-
tended for 1.25 miles...

World ✓

Singh Snares PGA Title Vijay Singh outlasts Justin Leonard
and Chris DiMarco in a three-way playoff to win the PGA
Championship on Sunday at Whistling Straits in Haven, Wis-
consin.

Sports ✓

China’s Panchen Lama visits Tibet The boy named by the
Chinese authorities as the 11th Panchen Lama visits a temple
in Tibet.

World ✓

The Region’s Highest-Paid Executives Pay for the Washing-
ton area’s top executives rose significantly last year, reversing
the downward trend that set in with the recession in 2001.

Business ✓

Table 5: AGNews examples that failed and passed validation.
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Input Label Passed
validation?

Kill Me.. positive ✗

Used to be great app. But since the last 7 updates always get
- Authentication failed for: x@gmail.com

positive ✗

App force closing on changing THEME PLZ FIX! positive ✗

You can’t uninstall & I don’t like my space being used. But
am glad for the blind & deaf

positive ✗

GOOGLE TALKBACK Read carefully & then give at least
a good reviews this app is made only for persons who got
disability such as a blind person & if you want to get rid this
simply just ROOT your device dumb head!!

negative ✗

This thing is great. I am at the bottom of the learning curve
but in the few minutes I have played with it it seems like it
will be easy to learn and to use. Just what I hoped for.

positive ✓

Crash when set a demodulation! :( negative ✓

doesn’t work with rtl-2832 Says it works with rtl devices but
doesn’t. never displays anything even though the rtl 2832
works with other spectrum analyzers. no help files anywhere
so good luck figuring out what’s wrong!

negative ✓

Great app! Works really well with Galaxy note 5 positive ✓

Works great I am using HackRF One with this apps. positive ✓

Table 6: App Reviews examples that failed and passed validation.

B QUESTION TYPES

B.1 OOLONG-SYNTH

Table 15, Table 16, and Table 17 list the questions used for each type of task in OOLONG-synth.

B.2 OOLONG-REAL

Table 18 and Table 19 lists the question types used for single and multi-episode settings in OOLONG-
real dataset.

B.3 FULL RESULTS

In the tables below, we present the full results across both OOLONG-synth and OOLONG-real.

C DEEPSEEK R1 TRACE EXAMPLES

Figure 5 and Figure 6 contrast the behavior of this model on representative examples from the
OOLONG-synth and OOLONG-real splits. See the main text for more discussion.
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Input Label Passed
validation?

The Unit secret agent has signed on to appear in three
episodes as a businessman being shown some houses - and,
presumably, one bedroom in particular - by our randy realtor
heroine.

formal ✗

Barely 12, with large brown eyes and stick-like arms, Fandi
is 3 years older than his brother – in his eyes almost a man.

formal ✗

D-Lister Avril Lavigne appears on the cover of Z-List maga-
zine Savvy this month.

formal ✗

ORHS is going through it now, but from all I can perceive the
district is out for the quick fix, chop off the principal, instead
of really trying to assist the students and dig to the bottom to
find the truth.

formal ✗

Little Sally Draper (Kiernan Shipka) is a ”Patty Duke”-era
girl - indeed, ”Mad Men” is currently set during the month
”The Patty Duke Show” premiered in 1963 - and on a ”Patty
Duke”-like show, she’d just be a lispy Shirley Temple doll
with a crush on Daddy.

formal ✗

I have tried everything possible to attract business. formal ✓

Never heard that one before. informal ✓

”Yup.” informal ✓

That’s how we pass our traits to the next generation: through
DNA

formal ✓

Wedding rituals differ in different regions and communities
in India.

formal ✓

Table 7: Formality examples that failed and passed validation.
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Input Label Passed
validation?

Good movie, very 70s, you can not expect much from a film
like this. Sirpa Lane is an actress of erotic films, a nice body
but nothing exceptional. Not demand a lot from these films
are light years away from the movies today, the world has
changed incredibly. The plot is simple and the actors not
extraordinary.

positive ✗

This film Evil Breed: The legend of samhain contains very
little thought or effort. It is ridiculed with specs of ultra fast
”slasher” style death and plain disgusting acts of death. The
acting was rated a D as the actors show very little ability, and
the stupidity of them in the film is too questionable.

positive ✗

The movie ”Holly” may make the audience want to donate
money towards organizations that improve the life for these
poor youngsters, but the film’s dramatic weaknesses may re-
duce its chances of being seen by enough people to make a
difference. Overall, I think the concept is better as a docu-
mentary and it was not as touching as a movie.

positive ✗

Although this film put Davis on the map due to her brilliantly
intense performance, this film is strangely unsatisfying to me
as a whole. What I cannot fathom for the life of me is just
how or why Phillip would take the constant abuse this tramp
constantly dishes out towards him.

positive ✗

This film is just plain horrible. John Ritter doing pratt falls,
75% of the actors delivering their lines as if they were read-
ing them from cue cards, poor editing, horrible sound mix-
ing, and a plot that really goes nowhere. If I could sum this
film up in one word, that word would be: Suckotrocity

negative ✓

Zentropa has much in common with The Third Man, another
noir-like film set among the rubble of postwar Europe. Like
TTM, there is much inventive camera work. There is an inno-
cent American who gets emotionally involved with a woman
he doesn’t really understand, and whose naivety is all the
more striking in contrast with the natives. But I’d have to
say that The Third Man has a more well-crafted storyline.
Zentropa is a bit disjointed in this respect. Perhaps this is in-
tentional: it is presented as a dream/nightmare, and making
it too coherent would spoil the effect. This movie is unrelent-
ingly grim–“noir” in more than one sense; one never sees the
sun shine. Grim, but intriguing, and frightening.

positive ✓

Never in my life have I come across a movie as bad as The
Zombie Chronicles. Filmed on a budget of what looks to be
about 20 bucks, TZC is a completely horrible horror movie
that relies on lame, forgettable actors. Simply put, avoid TZC
like a sexually-transmitted disease.

negative ✓

Without wishing to be a killjoy, Brad Sykes is responsible
for at least two of the most dull and clichéd films I’ve ever
seen. The acting is terrible, the print is shoddy, and every-
thing about this film screams ”seriously, you could do better
yourself”.

negative ✓

Table 8: IMDB examples that failed and passed validation. Only eight examples are shown because
of the example length.
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Input Label Passed
validation?

Draupadi’s eyes were diamonds. ↔ Draupadi’s eyes were
beautiful.

correct ✓

The faculty meeting was an easy breeze ↔ The faculty meet-
ing was very easy and relaxing

correct ✓

The house was a tomb. ↔ The house was big. incorrect ✓

I had already planted the idea in her mind. ↔ I had already
scared her about the idea.

incorrect ✓

It is sad to observe the fruits of ignorance. ↔ It is sad to
observe the effects of ignorance.

correct ✓

Table 9: Metaphors examples that passed validation. No examples failed validation for this dataset.

Input Label Passed
validation?

You’re safe. → You have nothing to worry about. neutral ✗

asks Burton, cupping his ear. → Burton wanted to ask what
was going on, but he couldn’t do much of anything while
bound and gagged.

contradiction ✗

I “poison my dearest Emily!” → How could you think I
would poison Emily?

entailment ✗

When he finally succeeded, after a prolonged siege and heavy
losses, he punished the local population by cutting off the
noses and lips of all men except those who played wind in-
struments. → All men who played wind instruments were
tasked with helping cut off people’s noses.

neutral ✗

They died slowly, their eyes bulging and faces turning blue.
→ They died asphyxiated.

neutral ✗

well you see that on television also → You can see that on
television, as well.

entailment ✓

Vrenna and I both fought him and he nearly took us. →
Neither Vrenna nor myself have ever fought him.

contradiction ✓

This analysis pooled estimates from these two studies to de-
velop a C-R function linking PM to chronic bronchitis. →
The analysis proves that there is no link between PM and
bronchitis.

contradiction ✓

He turned and smiled at Vrenna. → He smiled at Vrenna
who was walking slowly behind him with her mother.

neutral ✓

We sought to identify practices that were commonly imple-
mented by the agencies within the past 5 years. → We want
to identify practices commonly used by agencies in the last 5
years

entailment ✓

Table 10: MultiNLI examples that failed and passed validation.
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Input Label Passed
validation?

No care is anything that serves as an enticement. True ✗

No care may be anything that serves as an enticement. True ✗

A loud utterance is an appropriate definition of produce in no
context.

True ✗

Complete attention is an appropriate definition of candidate
in no context.

True ✗

No stress is a message received and understood. True ✗

Action refers to a military engagement. True ✓

Action never stands for a distinguishing quality. True ✓

Action does not stand for a military engagement. False ✓

Action may stand for a military engagement. True ✓

Not a single action is a military engagement. False ✓

Table 11: Negation examples that failed and passed validation.

Input Label Passed
validation?

Go chase after her and run her over while she’s crossing the
street

ham ✗

i want to grasp your pretty booty :) ham ✗

No da if you run that it activate the full version da. ham ✗

i am seeking a lady in the street and a freak in the sheets. Is
that you?

ham ✗

Should i send you naughty pix? :) ham ✗

WINNER!! As a valued network customer you have been
selected to receive a £900 prize reward! To claim call
09061701461. Claim code KL341. Valid 12 hours only.

spam ✓

Had your mobile 11 months or more? U R entitled to Update
to the latest colour mobiles with camera for Free! Call The
Mobile Update Co FREE on 08002986030

spam ✓

I’m gonna be home soon and i don’t want to talk about this
stuff anymore tonight, k? I’ve cried enough today.

ham ✓

SIX chances to win CASH! From 100 to 20,000 pounds
txt¿ CSH11 and send to 87575. Cost 150p/day, 6days, 16+
TsandCs apply Reply HL 4 info

spam ✓

I HAVE A DATE ON SUNDAY WITH WILL!! ham ✓

Table 12: Spam examples that failed and passed validation. The examples that failed validation
were almost exclusively ham messages with sexual content; the selected messages are the least
inappropriate of the examples that failed validation.
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Input Label Passed
validation?

What explosive do you get by mixing charcoal, sulfur and
saltpeter?

entity ✗

What is the procedure called for drilling a hole in your skull
to achieve a higher consciousness?

entity ✗

Name 11 famous martyrs. human being ✓

What’s the Olympic motto? description and
abstract concept

✓

What is the highest waterfall in the United States? location ✓

What does the abbreviation AIDS stand for? abbreviation ✓

How many points make up a perfect fivepin bowling score? numeric value ✓

Table 13: TREC-coarse-Q examples that failed and passed validation. Only two examples failed
validation.

Input Label Passed
validation?

Is there a God? The question to end all questions, and begin
them.

Business & Fi-
nance

✗

why do we need to lie? Health ✗

try to type the word supercalifragilisticexpialidocious. 20
times fast you can only make 10 mistakes? This is for fun!

Education & Ref-
erence

✗

do you think it is okay to tell a lie? Education & Ref-
erence

✗

where can you purchase cesium carbonate? Science & Math-
ematics

✗

What are good sources to find out about new gospel artists?
Is there a site that focuses primarily on gospel?

Entertainment &
Music

✓

How a black hole is formed? I would like to know how a
black hole can possibly be formed. Are there any experi-
mental evidence of such creation?

Science & Math-
ematics

✓

Economics of running a restaurant? Running a restaurant
looks like hard work and long hours. What percentage of
restaurants are profitable?

Business & Fi-
nance

✓

Why doesn’t the NBA implement a minor leagues? I don’t
want to see any more High School kids on the court.

Sports ✓

how does a helicopter fly this is a miracle- I always wanted
to learn to fly one of those. Can someone explain how can it
get airborne?

Science & Math-
ematics

✓

Table 14: Yahoo examples that failed and passed validation. One class of examples that failed
validation, not demonstrated here, are sexually explicit questions labeled as seemingly random cat-
egories (likely from spam posters on the original Yahoo Answers forum).
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Counting

In the above data, which of the labels is the most common? Give your final answer in the form
‘label: answer’ where answer is one of the labels: {label list}.

In the above data, which of the labels is the least common? Give your final answer in the form
‘label: answer’ where answer is one of the labels: {label list}.

In the above data, is label ‘{A}’ more common, less common, or the same frequency as label
‘{B}’? Give your final answer in the form ‘Answer: {A} is [X]{B}’, where [X]is ‘more
common than’, ‘less common than’, or ’same frequency as’.

In the above data, how many data points should be classified as label ‘{label}’? Give your final
answer in the form ‘Answer: number’.

Table 15: Counting questions used in the OOLONG-synth dataset.

User

In the above data, which user is represented most often? Give your final answer in the form
‘User: [X]’, where [X]is the user ID.

In the above data, which user is represented the second most often? Give your final answer in
the form ‘User: [X]’, where [X]is the user ID.

For the following question, only consider the subset of users with IDs {user names}. Among
these users, which user is represented most often? Give your final answer in the form ‘User:
[X]’, where [X]is the user ID.

For the following question, only consider the subset of users with IDs {user names}. Among
these users, which user is represented the second most often? Give your final answer in the
form ‘User: [X]’, where [X]is the user ID.

For the following question, only consider the subset of instances that are associated with user
IDs {user names}. Among instances associated with these users, {any of the Counting ques-
tions above}
For the following question, only consider the subset of users with IDs {user names}. Among
these users, which user has the most instances with the label {label}? Give your final answer
in the form ‘User: [X]’, where [X]is the user ID.

In the above data, which user has the most instances with the label {label}? Give your final
answer in the form ‘User: [X]’, where [X]is the user ID.

In the above data, which user has more instances with the label {label}: User {A} or User {B}?
Give your final answer in the form ‘User: [X]’, where [X]is the user ID.

Table 16: User questions used in the OOLONG-synth dataset.
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Timeline

In the above data, which date is represented most often? Give your final answer in the form
‘Date: [X]’, where [X]is the date in the format MM/DD/YYYY.

In the above data, which date is represented most often? Give your final answer in the form
‘Date: [X]’, where [X]is the date in the format MM/DD/YYYY.

In the above data, which date is represented the second most often? Give your final answer in
the form ‘Date: [X]’, where [X]is the date in the format MM/DD/YYYY.

In the above data, how many dates are represented exactly {n} times? Give your final answer
in the form ‘Answer: [X]’, where [X]is the number of dates represented exactly {n} times.

In the above data, was label ‘{key}’ more common, less common, or the same frequency before
{time}, as compared to after {time}? Give your final answer in the form ‘Answer: {key} is
[X]before {time}’, where [X]is ‘more common’, ‘less common’, or ’the same frequency’.

In the above data, was label ‘{key}’ more common, less common, or the same frequency before
{time}, as compared to after {time}? Give your final answer in the form ‘Answer: {key} is
[X]before {time}’, where [X]is ‘more common’, ‘less common’, or ’the same frequency’.

For the following question, only consider the subset of instances that occur in {month name} of
any year. Among instances occuring in {month name},{any of the Counting questions above}
For the following question, only consider the subset of instances that occur between
{starting date} and {ending date}, inclusive. Among instances occuring in this date range,
{any of the Counting questions above}
In which month did the label ‘{label1} first occur more often than the label ‘{label2}’? Give
your final answer in the form ‘Answer: [month][year]’, where [month]is the name of the month
and [year]is the four-digit year where ‘{label1}’ first occured more often than ‘{label2}.’

For how many months does the label ‘{label1}’ occur more frequently than the label
‘{label2}’? Disregard months where there is a tie. Give your final answer in the form ‘Answer:
[X]’, where [X]is the number of months where ‘{label1}’ occurs more often than ‘{label2}.’

For how many months is the label ‘{label}’ the single most frequently occuring label? Disre-
gard months where there is a tie for the most common label. Give your final answer in the form
‘Answer: [X]’, where [X]is the number of months where ‘{label}’ is the most common label.

Table 17: Timeline questions used in the OOLONG-synth dataset.
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Rolls

Total number of rolls in this episode?
Total number of rolls by the character {character name} in this episode?
Total number of rolls by the player {player name} in this episode?
Total number of rolls of type {roll type} in this episode?
Number of rolls of natural value {roll value} in this episode?
In this episode, what percentage of rolls were of value {roll value}? round to the nearest integer.
What is the most common roll type in this episode? Return a comma separated list.
What is the least common roll type in this episode? Only include types with more than one roll.
Return a comma separated list.
What is the most common natural roll value in this episode? Return a comma separated list.
What is the least common natural roll value in this episode? Only include values with more
than one roll. Return a comma separated list.
What is the count of Crits? (natural rolls of value 1 or 20)?
What is the count of Nat20s (natural rolls of value 20)?
What is the count of Nat1s (natural rolls of value 1)?

Spells

How many spells were cast during this episode?
How many spells were cast by the character {character name} in this episode?
How many spells were cast by the player {player name} in this episode?
How many {spell type} spells were cast during this episode?
What are the first {count} spells cast in this episode? Return a comma separated list.
What are the last {count} spells cast in this episode? Return a comma separated list.
Return a comma separated list and retain the order of spells as they appear in the episode.
What is the last spell cast by each character in this episode? Return a comma separated list and
retain the order of spells as they appear in the episode.
How many characters cast {spell name} spell in this episode?
What is the most common spell in this episode? Return a comma separated list.
What is the least common spell in this episode? Only include spells that were cast at least once.
Return a comma separated list.
Which spells were cast by more than one character in this episode? Return a comma separated
list.
What is the total number of cantrip spells cast in this episode?
In this episode, how many times was a spell cast at a level higher than its base level?
In this episode, which spells were cast at a level higher than their base level? Return a comma
separated list of unique spells.

Table 18: Question types used in the OOLONG-real dataset (single episode).
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Rolls

What is the cummulative total of rolls by the end of episode {episode index}? Count the
number of rolls and not the values of the rolls.
What is the cummulative total of rolls by the character {character name} at the end of episode
{episode index}? Count the number of rolls and not the values of the rolls.
Total number of rolls across all the episodes?
Total number of rolls by the character {character name} across all episodes?
Total number of rolls by the player {player name} across all episodes?
Total number of rolls of type {roll type} across all episodes?
Number of rolls of natural value {roll value} across all episodes?
Across all episodes, what percentage of rolls were of value {roll value}? round to the nearest
integer.
What is the most common roll type across all episodes? Return a comma separated list.
What is the least common roll type across all episodes? Only include types with more than one
roll. Return a comma separated list.
What is the most common natural roll value across all episodes? Return a comma separated
list.
What is the least common natural roll value across all episodes? Only include values with more
than one roll. Return a comma separated list.
What is the total count of Crits across all episodes? (natural rolls of value 1 or 20)?
What is the total count of Nat20s across all episodes? (natural rolls of value 20)?
What is the total count of Nat1s across all episodes? (natural rolls of value 1)?

Spells

What is the cummulative total of spells cast by the end of episode {episode index}?
What is the first spell cast in the episode {episode index}?
What is the second spell cast in the episode {episode index}?
What is the third spell cast in the episode {episode index}?
List the first spell cast in each episode? Return a comma separated list.
List the last spell cast in each episode? Return a comma separated list.
List the first spell cast by the character {character name} in each episode? Return a comma
separated list.
List the last spell cast by the character {character name} in each episode? Return a comma
separated list.
How many spells were cast across all episodes?
How many spells were cast by the character {character name} across all episodes?
How many spells were cast by the player {player name} across all episodes?
How many {spell type} spells were cast across all episodes?
How many characters cast {spell name} spell across all episodes?
What is the most common spell across all episodes? Return a comma separated list.
What is the least common spell across all episodes? Only include spells that were cast at least
once. Return a comma separated list.
What is the total number of cantrip spells cast across all episodes?
Across all episodes, how many times was a spell cast at a level higher than its base level?
Across all episodes, which spells were cast at a level higher than their base level? Return a
comma separated list of unique spells.

Table 19: Question types used in the OOLONG-real dataset (multi-episode).
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<think> We are given 21 pairs. We need to classify each pair as one of ‘neutral’, ‘contradic-
tion’, or ‘entailment’. Then, we will count the frequency of ’contradiction’ and ’entailment’
and compare them. Let’s go through each pair one by one: 1. “and then the class uh double A
Dallas Fort Worth Spurs we later uh they went to the Texas league - Dallas Fort Worth Spurs
got into the Texas League.” - The first sentence says they went to the Texas league. The
second says they got into the Texas League. This seems to be the same meaning. So, entail-
ment. 2. “Specifically, although most public companies are required to have a board that is
comprised of a majority of independent directors and certain key committees are required to
be comprised solely of outside directors, a closer look reveals that the independence of many
boards may be more a matter of form than substance. - Public companies can put whoever
they want on their boards.” - The first sentence says that public companies are required to
have independent directors, but the independence might be in form only. The second sen-
tence says they can put whoever they want. This contradicts the requirement mentioned. So,
contradiction. [....authors truncated classifications for space] 19. “And the bureaucratic
approach prevents the section as a whole from taking positions on–or creating–literary issues.
- Bureaucracy makes groups not take positions or a stand on literary issues.” - The second is
a restatement of the first. Entailment. 20. “They are linked not only by geographical location
but also by here are the upmarket and fashionable neighborhoods, with affluent residential
sections, trendy restaurants, and L.A.’s fabulous shopping areas. - They are linked because
they both have very exclusive shoe stores.” - The first says they are linked by upmarket and
fashionable neighborhoods, etc. The second says they are linked because of exclusive shoe
stores. The first does not mention shoe stores. So, the second is a specific reason that is not
stated. This could be neutral. However, note that the first lists shopping areas, which might
include shoe stores, but it doesn’t specify. The second is too

Figure 5: Example reasoning trace for OOLONG-synth. The model fails to complete the task
because it runs out of tokens during the reasoning trace. The majority of the trace (classifying
items 3-18) is omitted for space.
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Based on the provided transcript of Episode 2, the second spell cast is Disintegrate, cast by
Lyra (Felicia Day’s character).
Sequence of Events: 1. First Spell: Vex’ahlia (Laura Bailey) casts Hunter’s Mark on a frost
giant (during her turn in combat). 2. Second Spell: Lyra (Felicia Day) casts Disintegrate on
the same frost giant (during her subsequent turn).
Key Excerpt: Felicia: “I have a spell called Disintegrate. Can I cast that on its wing? [...] I’m
doing Disintegrate. And it’s 10d6 plus a d10, plus 40.” Matt: “Disintegrate is nasty. [...] As
you release the torrent of electrical energy, it courses through the body [...] the giant looks
severely messed up.”
Thus, the second spell in Episode 2 is Disintegrate.
Disintegrate

Figure 6: Example reasoning trace for OOLONG-real. The model completes the task within
a relatively short reasoning trace, despite this task using substantially longer input.
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