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Abstract

This paper introduces a federated learning frame-
work tailored for online combinatorial optimiza-
tion with bandit feedback. In this setting, agents
select subsets of arms, observe noisy rewards
for these subsets without accessing individual
arm information, and can cooperate and share
information at specific intervals. Our frame-
work transforms any offline resilient single-agent
(α− ϵ)-approximation algorithm—having a com-
plexity of Õ

(
ψ
ϵβ

)
, where the logarithm is omit-

ted, for some function ψ and constant β—into
an online multi-agent algorithm with m commu-
nicating agents and an α-regret of no more than
Õ
(
m− 1

3+β ψ
1

3+β T
2+β
3+β

)
. Our approach not only

eliminates the ϵ approximation error but also en-
sures sublinear growth with respect to the time
horizon T and demonstrates a linear speedup
with an increasing number of communicating
agents. Additionally, the algorithm is notably
communication-efficient, requiring only a sublin-
ear number of communication rounds, quantified
as Õ

(
ψT

β
β+1

)
. Furthermore, the framework has

been successfully applied to online stochastic sub-
modular maximization using various offline algo-
rithms, yielding the first results for both single-
agent and multi-agent settings and recovering spe-
cialized single-agent theoretical guarantees. We
empirically validate our approach to a stochastic
data summarization problem, illustrating the ef-
fectiveness of the proposed framework, even in
single-agent scenarios.

1Computer, Electrical and Mathematical Science and Engineer-
ing Division, King Abdullah University of Science and Technology
(KAUST), Thuwal, KSA. 2School of Industrial Engineering, Pur-
due University, West Lafayette, IN 47907, USA. Correspondence
to: Fares Fourati <fares.fourati@kaust.edu.sa>.

Proceedings of the 41 st International Conference on Machine
Learning, Vienna, Austria. PMLR 235, 2024. Copyright 2024 by
the author(s).

1. Introduction
The Multi-Armed Bandits (MAB) (Slivkins et al., 2019; Lat-
timore & Szepesvári, 2020) model online decision-making,
where at every time step, an agent plays an arm and ob-
serves its associated reward. In combinatorial MAB, the
agent can play a set of arms, instead of one arm, at each
time step and receive a reward for that selection. When
the agent only learns about the reward linked to the played
set, it is known as full-bandit feedback or bandit feedback.
If the agent gains additional insights into how each arm
contributes to the overall reward, it is called semi-bandit
feedback. Dealing with bandit feedback is more challenging
since agents have less knowledge than in the semi-bandit
feedback setting. In this work, we consider bandit feed-
back (Fourati et al., 2023a; Nie et al., 2023; Fourati et al.,
2024), which has several applications, such as recommender
systems, revenue maximization (Fourati et al., 2023a), influ-
ence maximization (Nie et al., 2023; Fourati et al., 2024),
and data summarization, as shown in this work.

Federated learning (FL), an emerging machine learning
paradigm, involves collaborative learning among multiple
agents. In this process, selected agents share their local
updates with a central server, which then aggregates these
updates and sends the consolidated output back to each
participating agent (Konečnỳ et al., 2016; McMahan et al.,
2017; Li et al., 2020; Hosseinalipour et al., 2020; Elgabli
et al., 2022; Fourati et al., 2023b). While the problem has
been studied in the context of continuous optimization, we
address combinatorial optimization (Korte et al., 2011) in
a federated online stochastic setting with bandit feedback.
For example, the multi-agent setting under consideration
can be applied to recommender systems, where each agent
aims to recommend a set of products and then shares its
findings with a server. We provide a general FL framework
to adapt combinatorial offline single-agent approximation
algorithms to online multi-agent settings, presenting the first
results for the regret bounds in this setup.

We consider a setting withm′ ≥ 1 agents connected through
a network. Among them, only a randomly selected subset of
m ≤ m′ agents can cooperate and share information in com-
munication rounds, possibly through a server. This setup
accommodates scenarios of partial participation, which are
more practical in some real-world settings due to inherent
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availability and communication constraints. When m = m′,
the scenario reverts to a full-participation setting. All agents
aim to solve the same online stochastic combinatorial prob-
lem within a time horizon of T . They conduct local explo-
ration and then, if selected, share local estimations. Each
agent i can play any subset of arms in parallel with others
and receives noisy rewards for that set. In a combinatorial
setting, the number of possible actions becomes exponen-
tially large with the number of base arms, making sharing
estimations for all possible actions prohibitive. Therefore,
we consider a more practical approach wherein, in each
communication round, selected agents share only a single
action (subset) estimation.

Our work is the first to provide a general multi-agent frame-
work for adapting combinatorial offline single-agent ap-
proximation algorithms to a FL setting to solve stochastic
combinatorial multi-agent MAB (C-MA-MAB) problems
with only bandit feedback. The proposed approach provably
achieves a regret of at most Õ(m− 1

3+β ψ
1

3+β T
2+β
3+β ), which

is sub-linear in the time horizon T and decreases with an
increasing number of agents m, for some constant β and
some function ψ that govern the complexity of the con-
sidered offline approximation algorithm. The framework
does not require the agents to communicate every step; in-
stead, it only needs Õ(ψT

β
β+1 ) communication times. Our

proposed framework can serve to solve online combinato-
rial problems for both single-agent (m

′
= m = 1) and

multi-agent (m
′
> 1) scenarios. Notably, our framework

enjoys a linear speedup with an increasing number of agents,
translating to decreased regrets.

We note that for a single agent, under bandit feedback, vari-
ous offline-to-online transformations have been proposed for
submodular maximization (Nie et al., 2022; Fourati et al.,
2023a; 2024). Additionally, Nie et al. (2023) studied a
framework for general combinatorial optimization in which
any resilient offline algorithm with an α-approximation guar-
antee can be adapted to an online algorithm with sublinear
α-regret guarantees. Similarly, an offline resilient (α− ϵ)-
approximation algorithm can provide sublinear (α − ϵ)-
regret guarantees for an online algorithm for any ϵ ≥ 0.
This approach leads to a linear α-regret online algorithm
when ϵ > 0. Recently, Fourati et al. (2024) addressed this
issue of linear regret in the case of monotone submodular
optimization with a cardinality constraint. They adapted
a sub-optimal offline (1 − 1/e − ϵ)-approximation algo-
rithm—whose complexity grows with log( 1ϵ )—to a sub-
linear (1 − 1/e)-regret online algorithm with bandit feed-
back, successfully eliminating the ϵ approximation error
while ensuring sub-linearity with respect to the horizon T .

In this work, we generalize and extend the results previously
established by Nie et al. (2023) and Fourati et al. (2024).
We demonstrate that any sub-optimal single-agent offline

approximation algorithm, with an approximation factor of
(α−ϵ) where ϵ ≥ 0, and ensuring resilience, can be adapted
to a multi-agent setting with bandit feedback. This adap-
tation provides sub-linear α-regret guarantees, in contrast
to the sub-linear (α− ϵ)-regret guarantees provided by Nie
et al. (2023). This approach eliminates the ϵ error while
maintaining sub-linearity with respect to T across any com-
binatorial problem, any reward, and under any constraints.

We note that in contrast to previous works that dealt with spe-
cific assumptions about reward functions and constraints on
actions—such as assuming stochastic submodular rewards
(Fourati et al., 2023a) or monotone rewards with cardinal-
ity constraints (Nie et al., 2022; Fourati et al., 2024)—our
work considers general reward functions without making
any assumptions about the reward type or constraints. Fur-
thermore, our work explores the use of any offline algorithm
A(ϵ) as a subroutine with complexity in the general form
of O

(
ψ
ϵβ

)
or O

(
ψ
ϵβ

log
(
1
ϵ

))
, where ψ is a function of the

problem characteristics, β ≥ 0 some constant, and ϵ is an
approximation error factor, ensuring that our results apply
to any algorithm with these characteristics.

In addition, unlike previous works that focused on combina-
torial single-agent scenarios (Fourati et al., 2023a; 2024; Nie
et al., 2022; 2023), we address a combinatorial multi-agent
setting where collaboration is permitted, possibly with par-
tial participation, and optimize the worst-case regret for any
agent, thereby recovering and generalizing the single-agent
setting. Additionally, although our proposed algorithm has
parameters, such as ϵ⋆ and r⋆, none are considered hyperpa-
rameters. We derive closed-form values for these parameters
as functions of the problem parameters, such as the range T ,
the number of available agentsm, and the subroutine-related
value of the constant β, and the function ψ, to minimize the
expected cumulative α-regret.

Contributions: We introduce a novel FL framework for
online combinatorial optimization, adapting single-agent of-
fline algorithms to tackle online multi-agent problems with
bandit feedback. The paper demonstrates the adaptability of
any single-agent sub-optimal offline (α− ϵ)-approximation
algorithm, ensuring resilience, for a C-MA-MAB with α-
regret guarantees of Õ(m− 1

3+β T
2+β
3+β ), lifting the ϵ error,

providing sub-linearity in the horizon T , and ensuring lin-
ear speedup with an increasing number of agents m. The
framework only requires sub-linear communication rounds
of Õ

(
T

β
β+1

)
, which becomes at most logarithmic with

respect to T when β = 0. Furthermore, we leverage our the-
oretical results to address online submodular maximization,
present the first specialized regret for the non-monotone car-
dinality constraint case, and recover bounds for different of-
fline algorithms, demonstrating tighter regrets than previous
specialized works. Finally, we showcase the applicability of
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our framework to both single-agent and multi-agent stochas-
tic data summarization problems against MAB baselines,
highlighting its effectiveness in practical scenarios.

2. Problem Statement
We formally present the problem as follows. We denote
Ω as the ground set of n base arms. We consider a set A′

with m′ ≥ 1 agents, where only a randomly selected subset
A of m ≥ 1 agents communicates in the communication
rounds. We examine decision-making problems within a
fixed period T , where, at every time step t, agent i chooses
a subset Si,t ⊆ Ω. Let S ⊆ 2Ω represent the set of all
permitted subsets, depending on the problem constraints.

In each time step t, agent i plays an action Si,t ∈ S and
acquires a noisy reward ft(Si,t). We assume that the reward
ft is a realization of a stochastic function with a mean of f ,
bounded in [0, 1] 1, and i.i.d. conditioned on a given action.
Thus, over a horizon T , agent i achieves a cumulative reward
of
∑T
t=1 ft(Si,t). We define the expected reward function

for a given action S as f(S) = E[ft(S)], hence S⋆ =
argmaxS⊆S f(S) denote the optimal set in expectation.

In offline settings, attention is on the algorithm’s complexity
and worst-case expected output approximation guarantees.
Conversely, in the online setting, attention is on cumulative
rewards, where agents seek to minimize their expected cu-
mulative regrets over time. One standard metric to assess
the algorithm’s online performance is to contrast the agent
to an ideal learner that knows and consistently plays the best
choice in expectation S⋆. However, the significance of such
a comparison becomes questionable if the optimization of f
over S is NP-hard, if the horizon is not exponentially large
in the problem parameters (Fourati et al., 2023a; 2024; Nie
et al., 2023). Hence, if a polynomial time offline algorithm
A(ϵ), happen to be an (α − ε)-approximation2 algorithm,
for a given error ϵ ≥ 0, and an approximation ratio of
(α − ϵ) ≤ 1, for specific combinatorial objectives, a com-
mon approach involves comparing the agent’s cumulative
reward to

∑T
t=1(α− ϵ)f(S⋆) and denoting the difference

as the (α − ϵ)-regret (Nie et al., 2023). In this work, we
compare the learner’s cumulative reward to a (tighter) agent
that achieves

∑T
t=1 αf(S

⋆), and we denote the difference
as the α-regret, which is defined for every agent i as follows:

Ri(T ) =
T∑
t=1

(αft(S
⋆)− ft(Si,t)). (1)

1Results can be directly extended to a general function f(·)
with a minimum value fmin and a maximum value fmax by consid-
ering a normalized function g(·) = (f(·)−fmin)/(fmax−fmin).

2An algorithm A(ϵ) is an (α− ϵ)-approximation algorithm for
maximizing a deterministic function f : S → R after N oracle
calls to f satisfies E[f(Θ)] ≥ (α−ϵ)f(S⋆), where S⋆ the optimal
subset under f and the expectation is over the randomness of A(ϵ).

The cumulative α-regretRi(T ) is random, given that it is a
sum of α-regrets, which are functions of stochastic rewards
and depend on the chosen subsets. In this work, we aim to
minimize the expected cumulative α-regret, where the ex-
pectation encompasses the oracle noise and the randomness
of the series of actions.

3. Related Work
In Table 1, we provide a comprehensive overview com-
paring our α-regret guarantees with existing ones across
various adaptations of offline approximations for different
combinatorial problems. Each row corresponds to a case
involving an offline algorithm or a general class of algo-
rithms with a specified complexity form, offline approxi-
mation factor, and target online regret factor α. The last
two columns present previously established α-regret bounds
and our own for adapting the proposed offline algorithm
or class of algorithms as a subroutine to the online setting.
The third row presents the GENERAL transformation, which
generalizes the previous two cases, with a complexity of
the form O(ψ) for any function ψ. The fifth row presents
the MORE GENERAL case, with a complexity of the form
O(ψ logγ( 1ϵ )), where γ ∈ {0, 1}, further generalizing the
previous cases. The last row, presenting the MOST GEN-
ERAL, encompasses all previous rows, with a complexity
of the form O( ψ

ϵβ
logγ( 1ϵ )), where β ≥ 0, including the

GENERAL when β = γ = 0, the MORE GENERAL when
β = 0, and the example in the sixth row.

Combinatorial Single-Agent Examples: We note that on-
line submodular optimization with bandit feedback has been
considered in (Nie et al., 2022; Fourati et al., 2023a; 2024).
These results are differentiated from our work in Table 1.
For single-agent non-monotone submodular rewards (See
Section 6) under bandit feedback, Fourati et al. (2023a)
adapts the RANDOMIZEDUSM in (Buchbinder et al., 2015),
achieving sub-linear 1

2 -regret. Additionally, for single-agent
monotone submodular rewards under bandit feedback with a
cardinality constraint k, Nie et al. (2022) adapts the GREEDY
in (Nemhauser et al., 1978), and Fourati et al. (2024) adapts
the STOCHASTIC-GREEDY in (Mirzasoleiman et al., 2015),
with both achieving sub-linear (1 − 1

e )-regret. Our work
not only recovers all the results above in the single-agent
setting but also generalizes them to the multi-agent setting,
showing a decreasing regret with a factor of m− 1

3 .

Multi-Agent: Previous works have proposed solutions for
solving offline distributed submodular maximization. For
example, partitioning the arms among the agents and run-
ning a greedy algorithm on each agent was proposed in
previous works (Barbosa et al., 2015; Mirzasoleiman et al.,
2013). While this is practical in some settings, it is de-
signed for deterministic objectives and leads to lower ap-
proximation guarantees (half the ratio for monotone sub-
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Offline Algorithm Offline
Complexity

Offline
Factor

Online
Factor α Prior α-regret Our α-regret Bound

RANDOMIZEDUSM
(Buchbinder et al., 2015) O (n) 1/2 1/2 Õ

(
nT

2
3

)∗
Õ

(
m− 1

3 nT
2
3

)
GREEDY

(Nemhauser et al., 1978) O (nk) 1− 1
e

1− 1
e

Õ
(
kn

1
3 T

2
3

)∗∗
Õ

(
m− 1

3 kn
1
3 T

2
3

)
GENERAL

Excluding the next rows O(ψ) α α Õ
(
δ

2
3ψ

1
3 T

2
3

)∗∗
Õ

(
m− 1

3 δ
2
3ψ

1
3 T

2
3

)
STOCHASTIC-GREEDY

(Mirzasoleiman et al., 2015) O
(
n log( 1

ϵ
)
)

1− 1
e
− ϵ 1− 1

e
Õ

(
k

2
3 n

1
3 T

2
3

)†
Õ

(
m− 1

3 k
2
3 n

1
3 T

2
3

)
MORE GENERAL

Excluding the next rows O(ψ logγ( 1
ϵ
)) α− ϵ α None Õ

(
m− 1

3 δ
2
3ψ

1
3 T

2
3

)
RANDOMSAMPLING

(Buchbinder et al., 2017) O
(
n
ϵ2

log( 1
ϵ
)
)

1
e
− ϵ 1

e
None Õ

(
m− 1

5 k
2
5 n

1
5 T

4
5

)
MOST GENERAL

Including the previous rows O( ψ
ϵβ

logγ( 1
ϵ
)) α− ϵ α None Õ

(
m

− 1
3+β δ

2
3+β ψ

1
3+β T

2+β
3+β

)
Table 1: The table summarizes the results of combinatorial optimization under bandit feedback. We use Õ to simplify expressions. Key
parameters include horizon T , number of communicating agents m, base arm count n, and cardinality constraint k. Each row presents a
specific offline algorithm or a class transformation with a given complexity, offline approximation factor, and a target online factor α. For
the general rows, we consider classes of offline algorithms, with an approximation error factor ϵ, with general complexity forms, with
general constants, ψ ≥ 0, β ≥ 0, γ ∈ {0, 1}, and δ ≥ 0. ∗ (Fourati et al., 2023a), ∗∗ (Nie et al., 2023), † (Fourati et al., 2024).

modular maximization). Moreover, regret analysis for (non-
combinatorial) multi-agent MAB (MA-MAB) problems has
been investigated (Chawla et al., 2020; Wang et al., 2020;
Agarwal et al., 2022). In (Chawla et al., 2020), gossip style
communication approach is used between agents to achieve
Õ(( nm + 2)

1
3T

2
3 ) regret. Wang et al. (2020) present an al-

gorithm for a distributed bandit setting where all the agents
communicate with a central node, which is shown to achieve
a regret of Õ(

√
nT/m). Agarwal et al. (2022) propose an-

other algorithm, which splits the arms among the different
agents, such that each learner plays arms only within a sub-
set of arms and the best-communicated arm indices from
other agents in the previous round. This achieves a regret of
Õ(
√
( nm +m)T ) while reducing the communication sig-

nificantly. We note that these works do not directly extend to
combinatorial bandits since the confidence-bound based ap-
proaches here cannot work for combinatorial bandits since
O(2n) sets cannot be explored. Recent works have con-
sidered FL for contextual bandits (Li & Wang, 2022; He
et al., 2022; Li et al., 2023); however, these works do not
apply to our setting. Our work is the first to present an FL
framework for general combinatorial multi-agent MAB with
bandit feedback.

Combinatorial Single-Agent Frameworks: Previous
frameworks have been proposed for combinatorial single-
agent MAB problems (Niazadeh et al., 2021; Nie et al.,
2023). Niazadeh et al. (2021) proposes a framework aiming
to adjust an iterative greedy offline algorithm into an online
version within an adversarial bandit setting. However, their
approach requisites the offline algorithm to possess an it-
erative greedy structure. In contrast, our framework treats
the offline algorithm as a black-box algorithm. Furthermore,
unlike our work, Niazadeh et al. (2021) imposes a condition

known as Blackwell reproducibility on the offline algorithm,
in addition to the resilience property. A closely related work
is the single-agent framework by Nie et al. (2023) called
C-ETC, which adapts offline algorithms with robustness
guarantees to stochastic combinatorial single-agent MAB,
generalizing some previous works for submodular maxi-
mization (Nie et al., 2022; Fourati et al., 2023a). However,
C-ETC fails to generalize the more recent work of Fourati
et al. (2024). Our framework generalizes and outperforms
the results of Nie et al. (2023) in many ways. First, it extends
to the multi-agent scenario involvingm ≥ 1 communicating
agents, including the single-agent scenario. Additionally,
while the C-ETC framework cannot replicate the results of
Fourati et al. (2024) for submodular maximization, ours
not only recovers all these previous works, including the
framework, but also achieves even tighter regret guarantees
that decrease with an increasing number of selected agents.

4. Combinatorial MA-MAB Framework
We first define resilient approximation algorithms and then
present our proposed offline-to-online framework.

4.1. Offline Resilient-Approximation

We introduce the concept of resilient approximation, a met-
ric that allows us to evaluate how an offline approximation
algorithm reacts to controlled variations in function eval-
uations. We demonstrate that this specific characteristic
alone can ensure that the offline algorithm can be modified
to tackle stochastic C-MA-MAB settings, with only bandit
feedback and achieving a sub-linear regret. Moreover, this
adaptation does not rely on the algorithm’s structure but
treats it as a black-box algorithm.
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We define the ξ-controlled-estimation f̄ of a reward function
f to deal with controlled variations.
Definition 4.1 (ξ-controlled-estimation). For a set function
f : S → R defined over a finite domain S ⊆ 2Ω, a set
function f̄ : S→ R, for a ξ ≥ 0, is a ξ-controlled estimation
of f if |f(S)− f̄(S)| ≤ ξ for all S ∈ S.

An estimation f̄ is a ξ-controlled-estimation for a set func-
tion f if it consistently stays within a small positive range ξ
of the actual values across all possible sets in S. Given such
a ξ-controlled-estimation for a set function f , we define
(α, β, γ, ψ, δ)-resilient-approximation as follows:
Definition 4.2 ((α, β, γ, ψ, δ)-resilient approximation). For
any ϵ ≥ 0, an algorithm A(ϵ) is an (α, β, γ, ψ, δ)-resilient
approximation for maximizing a function f : S ⊆ 2Ω →
R if, after making a number of calls N(β, γ, ψ, ϵ) to a ξ-
controlled estimator f̄ , its output Θ satisfies the following
condition: E[f(Θ)] ≥ (α − ϵ)f(S⋆) − δξ, where S⋆ is
the optimal set under f , and the expectation is over the
randomness of A(ϵ). Here, N(β, γ, ψ, ϵ) is defined as ψ
when ϵ = 0, and as ψ 1

ϵβ
logγ( 1ϵ ) otherwise.

Remark 4.3. Several offline approximation algorithms are
designed to solve specific combinatorial problems under par-
ticular reward and constraint assumptions. In Appendix E,
we study various ones and demonstrate their resilience,
characterizing each by their corresponding parameters:
α, β, γ, ψ, and δ. Given the resilience of an offline algo-
rithm, one can directly apply Theorem 5.3 to ascertain the
corresponding worst-case online guarantees when extending
that offline algorithm to online settings.
Remark 4.4. An equivalent definition to resilient approxima-
tion was proposed by Nie et al. (2023) as a robust approxi-
mation. However, the resilient approximation provides more
information about the algorithm’s complexity. Specifically,
an (α− ϵ, δ)-robust-approximation algorithm that requires
a number of oracle calls equal to ψ

ϵβ
logγ( 1ϵ ), then it is an

(α, β, γ, ψ, δ)-resilient-approximation algorithm. Further-
more, an (α, β, γ, ψ, δ)-resilient-approximation algorithm
is an (α− ϵ, δ)-robust-approximation algorithm, with ϵ ≥ 0.

Generally, the offline algorithms are designed for determin-
istic (noiseless) functions. However, in real-world applica-
tions, access to a noiseless reward function is not always
possible, often due to the inherently stochastic nature of
the problem. For example, recommending the same set of
products to different people, or even to the same person
at different times, may not yield consistent outcomes and
rewards. This noise could also stem from using a stochastic
approximation of the oracle function for computational effi-
ciency, as seen in the case of stochastic data summarization
discussed in Section 7. Therefore, in such cases, resilience
against noisy rewards is necessary.

We demonstrate in Theorem 5.3 that resilience is, in fact, suf-
ficient to ensure that the offline algorithm can be adjusted to

Algorithm 1 C-MA-MAB

Input: Horizon T , actions S, agents A′, number m,
(α, β, γ, ψ, δ)-resilient-approximation algorithm A(ϵ)

Initialize r⋆i ←

m−1

(
δ
√
log(T )

(
Tm
ψ

) 1
β+1

) 2+2β
3+β


Initialize ϵ⋆ ← (

ψr⋆i
T )

1
β+11{β>0 OR γ>0}.

# Multi-Agent Exploration Time
Server starts running A(ϵ⋆), j ← 0
while A(ϵ⋆) queries the value of some A ⊆ S do

Server broadcasts action A to the agents, j ← j + 1
Server randomly selects a set A ⊆ A′ of m agents
for agent i in A′ in parallel do

For r⋆i times, play action A
If i ∈ A, agent tracks & upload local mean f̄i

end for
Server calculates the mean f̄ and feeds it to A(ϵ⋆)

end while

# Multi-Agent Exploitation Time
Server broadcasts Θ, the final output of A(ϵ⋆)
for agent i in A′ in parallel do

for remaining time of the agent i do
Play action Θ

end for
end for

achieve online sub-linear regret guarantees. In what follows,
we explain how we use a resilient approximation algorithm
A(ϵ) as a subroutine in our proposed framework.

4.2. Offline-to-Online Multi-Agent Framework

We present our proposed C-MA-MAB Framework; see Al-
gorithm 1. This framework is applicable for both single-
agent and multi-agent settings, wherein the design of our
algorithm ensures that the single-agent setting is simply a
special case of the multi-agent scenario. For a set S of pos-
sible actions, a set of m′ ≥ 1 agents A′, a number m ≥ 1 of
communicating agents, and a time horizon T , our algorithm
can adapt any off-the-shelf, offline single-agent combinato-
rial (α, β, γ, ψ, δ)-resilient-approximation algorithm A(ϵ)
to the C-MA-MAB setting. This adaptation comes with the-
oretical guarantees, as detailed in Theorem 5.3, applicable
under any reward type or action constraint.

While the offline algorithm may be a function of some vari-
able ϵ ≥ 0, which trades off its complexity and approxi-
mation guarantees, our proposed algorithm finds ϵ⋆ which
optimizes this trade-off based on the problem parameters
and its complexity to minimize regret and uses A(ϵ⋆) for
exploration instead. Furthermore, in the exploration time,
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whenever the offline algorithm A(ϵ⋆) requests the value
oracle for action A, each agent of the m′ ≥ 1 agents plays
the action A for r⋆i = r⋆/m times, where r⋆ is another
parameter chosen based on the setting and the subroutine
complexity to minimize regret, with

r⋆ = m

m−1

(
δ
√

log(T )

(
Tm

ψ

) 1
β+1

) 2+2β
3+β

 . (2)

Furthermore, we choose ϵ⋆ as follows:

ϵ⋆ = (
ψr⋆

Tm
)

1
β+11{β>0 OR γ>0}. (3)

Only the randomly selected m agents track and broadcast
their local estimations to the server, i.e., each agent i ∈ A
sends its local estimation f̄i, then the server aggregates these
estimations in one global estimation f̄ of rewards for A and
then returns f̄ to A(ϵ⋆). Finally, in the exploitation phase,
all the agents in A′ play Θ, the output from algorithmA(ϵ⋆),
for the remaining time.
Remark 4.5. C-MA-MAB has low storage complexity. In
every step, an agent needs to store, at most, n indices and
a real value representing the empirical mean of one action.
Only the action Θ is stored during exploitation time, and no
additional computation is required. During exploration time,
each agent needs to store only the proposed action A and
update its associated empirical mean; everything is deleted
once the server proposes another action. Furthermore, the
proposed framework does not require the combinatorial of-
fline algorithm A(ϵ) to have any particular structure and
employs A(ϵ⋆) as a black-box algorithm. Consequently, it
shares the same complexity as the subroutine A(ϵ⋆). More-
over, A(ϵ⋆) is executed on the server, alleviating the com-
putational overhead for the agents.
Remark 4.6. In the multi-agent setting, we assume that the
server can either be a separate entity or one of the agents
playing the role of the server. In the single-agent setting,
without loss of generality, the sole agent can be considered
as the server. The server orchestrates communication by se-
lecting clients and recommending which actions to explore,
based on the offline subroutine, in a synchronized manner.
Recent studies have explored federated linear and kernelized
contextual bandits with asynchronous communication (Li &
Wang, 2022; He et al., 2022; Li et al., 2023). Future research
might investigate general combinatorial optimization with
asynchronous communication.
Remark 4.7. The proposed C-MA-MAB uses the time hori-
zon T to compute r⋆ and ϵ⋆. When the exact time horizon
is unknown, the results can be enhanced by employing the
concept of an anytime algorithm through the use of the
geometric doubling trick by establishing a geometric se-
quence of time intervals, denoted as Ti, where Ti = T02

i

for i ∈ N, where T0 is a sufficiently large value to ensure

proper initialization. From Theorem 4 in (Besson & Kauf-
mann, 2018), it follows that the regret bound preserves the
T

2+β
3+β dependence with only changes in constant factors.

5. Theoretical Analysis
We upper-bound the required communication rounds, we
lower-bound the probability of the empirical mean being
ξ-controlled-estimation of the expectation (good event), and
upper-bound the expected cumulative α-regret.

5.1. Communication Analysis

By the design of the algorithm, the m randomly selected
agents, after locally estimating the quality of a suggested ac-
tion A, communicate only one value, representing the local
estimation f̄i. The agents exploit the decided set Θ during
the exploitation phase without further communication. Dur-
ing exploration, the selected agents must communicate their
local estimation for every requested action A. Therefore,
the number of communication rounds is upper-bounded by
the number of requested actions, i.e., the required oracle
callsN(β, γ, ψ, ϵ⋆),which we upper-bound in the following
lemma, which we prove in Appendix B.
Lemma 5.1. The number of communication times, i.e., the
number of oracle queries N(β, γ, ψ, ϵ⋆) of the subroutine
(α, β, γ, ψ, δ)-resilient-approximation algorithm A(ϵ⋆) sat-
isfies: N(β, γ, ψ, ϵ⋆) ≤ O(ψT

β
β+1 logγ(T )).

From Lemma 5.1 it follows that for cases where β = 0,
which applies to several offline algorithms (Nemhauser et al.,
1978; Khuller et al., 1999; Sviridenko, 2004; Buchbinder
et al., 2015; Mirzasoleiman et al., 2015; Yaroslavtsev et al.,
2020), the communication rounds are at most Õ(ψ), scaling
at most logarithmically with T . For example, as shown
in Corollary 6.1, with n arms and using RandomizedUSM
(Buchbinder et al., 2015) as a subroutine (where ψ is n, β
is zero, and γ is zero), our framework guarantees a commu-
nication complexity of O(n), not scaling with T .

By design of the C-MA-MAB algorithm, after every action
queried by the subroutine, the agents have to explore and
estimate the values of the proposed action. To do that, each
agent has to play the proposed action for r⋆i times. There-
fore, using the result from Lemma 5.1 on the number of
required communication rounds and by the definition of r⋆i ,
we can derive that the required exploration steps for every
agent, i.e., O(r⋆i ψT

β
β+1 logγ(T )), which is decreasing with

an increasing number of agents m.

5.2. Estimation Analysis

In C-MA-MAB, every agent plays each action queried by
the subroutine A(ϵ⋆) the same number of times. These
repetitions provide an estimation of the action values. We
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define a good event E when the empirical mean estima-
tion f̄ is a ξ-controlled-estimation of the reward expec-
tation f , on the played actions during exploration time,
with ξ :=

√
log(T )/r⋆. For every communication round

j, each action Aj queried by the (α, β, γ, ψ, δ)-resilient-
approximation A(ϵ⋆), where j ∈ {1, · · · , N(β, γ, ψ, ϵ⋆)},
we define the event Ej as:

Ej ≜ {
∣∣f̄(Aj)− f(Aj)∣∣ ≤ ξ}. (4)

Therefore, the good event E , which considers the em-
pirical mean estimation f̄ is a ξ-controlled estimate of
the reward expectation f for every communication round
j, i.e., considers the realization of Ej for every j ∈
{1, · · · , N(β, γ, ψ, ϵ⋆)}, which is expressed as follows:

E = E1 ∩ · · · ∩ EN(β,γ,ψ,ϵ⋆). (5)

Each action A queried by the offline algorithm have been
explored for r⋆ number of times among the agents. These
r⋆ rewards are i.i.d. with expectation f(A) and confined
within the [0, 1] range. Consequently, we can bound the
deviation of the empirical mean f̄(Aj) from the expected
value f(Aj) for every action undertaken. Thus, we upper
bound the probability of the good event in the following
lemma, which we prove in Appendix C.

Lemma 5.2. The probability of the good event E , (5), when
using an (α, β, γ, ψ, δ)-resilient-approximation algorithm
A(ϵ⋆) as a subroutine satisfies:

P(E) ≥ 1− 2N(β, γ, ψ, ϵ⋆)T−2.

Combining both results of Lemma 5.1 and Lemma 5.2 it
follows that the bad event happens with a probability of at
most Õ(ψT

β
β+1−2), decreasing as T increases.

5.3. Regret Analysis

We analyze the expected cumulative α-regret for the C-MA-
MAB (Algorithm 1), with m communicating agents.

Theorem 5.3. For the sequential combinatorial decision-
making problem defined in Section 2, with T ≥
max{ψm,ψm

1+β
2 /δβ+1}, the expected cumulative α-

regret of the C-MA-MAB presented in Algorithm 1 using an
(α, β, γ, ψ, δ)-resilient-approximation algorithm A(ϵ⋆) as

subroutine is at most Õ
(
m− 1

3+β δ
2

3+β ψ
1

3+β T
2+β
3+β

)
.

The above theorem implies that an offline algorithm does not
need to have an α-approximation guarantee to be adapted to
achieve sublinear α-regret guarantees. In fact, an (α− ϵ)-
approximation algorithm, denoted as A(ϵ) with ϵ > 0, if it
is a (α, β, γ, ψ, δ)-resilient-approximation, can be extended
to a sub-linear α-regret algorithm. Later, in Section 6, we
apply the above theorem to special combinatorial cases.

Remark 5.4. Linear speedup is evident in our ap-
proach, as the collective regret across m agents is
Õ
(
δ

2
3+β ψ

1
3+β (Tm)

2+β
3+β

)
. This mirrors the regret one

would observe if allm agents collaborated, sharing a total of
Tm time for the central agent. Consequently, the distributed
setup incurs no loss, with each agent interacting with the
environment T times, and the combined regret reflects that
of a single agent allocated Tm time for interaction.
Remark 5.5. The δ function depends on the offline algorithm
and refers to a general function of the combinatorial problem
parameters, such as the number of main arms, n, or the cardi-
nality constraint, k. This function serves as the scaling factor
for the radius ξ in the lower bound on the expected reward,
as given by (E[f(Θ)] ≥ (α− ϵ)f(S⋆)− δξ), as defined in
Definition 4.2 for (α, β, γ, ψ, δ)-resilient-approximation al-
gorithms. In some offline algorithms, we have demonstrated
that this scaling function depends on the cardinality con-
straint k. For example, Lemma E.4 shows that δ equals 4k
for RANDOMSAMPLING. In other cases, the function may
depend solely on the number of main arms n. For instance,
Lemma E.1 establishes that δ is 5

2n for the RANDOMIZE-
DUSM. Our analysis accommodates any δ function defined
in terms of the problem parameters.
Remark 5.6. When algorithm approximations do not de-
pend on ϵ, it implies that their complexity is of the form
Õ(ψ), hence β = γ = 0. It follows that using such an
(α, 0, 0, ψ, δ)-resilient-approximation algorithm as a sub-
routine achieves a regret of at most Õ

(
m− 1

3 δ
2
3ψ

1
3T

2
3

)
.

Remark 5.7. A lower bound remains an open question for
general combinatorial stochastic rewards under bandit feed-
back. A lower bound is missing even for the special cases
of stochastic submodular rewards under bandit feedback.
Some lower bounds have been proposed in restrictive spe-
cial settings. For example, Niazadeh et al. (2021) showed
a Ω̃(T

2
3 ) lower bound for adversarial submodular rewards,

where the reward could only be observed in user-specified
exploration rounds. Moreover, Tajdini et al. (2023) demon-
strated that for monotone stochastic submodular bandits
with a cardinality constraint, for small time horizon T , a
regret scaling like T

2
3 is inevitable when compared to the

greedy algorithm in (Nemhauser et al., 1978). However, it
does not provide a lower bound on (1− 1/e)-regret.

In the following, we provide a sketch of the proof and leave
a detailed one in Appendix D. We separate the proof into
two cases. One case when the good event E happens, which
we show in Lemma 5.2 happens with high probability and
then we generalize the result under any event.

5.3.1. REGRET OF AN AGENT UNDER THE GOOD EVENT

We upper-bound the expected α-regret conditioned on the
good event E . However, for simplicity in notation, we em-
ploy E[·] rather than E[·|E ] in certain instances. We de-
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compose and then bound the expected α-regret into two
components: one addressing the regret stemming from ex-
ploration (P1) and the other from exploitation (P2).

E[Ri(T )|E ] =
T∑
t=1

(αf(S⋆)− E[f(Si,t)]) (6)

=

N(β,γ,ψ,ϵ⋆)∑
j=1

r⋆i (αf(S
⋆)− E[f(Aj)])︸ ︷︷ ︸

α-regret from exploration (P1)

+

T∑
t=TN(β,γ,ψ,ϵ⋆)+1

(αf(S⋆)− E[f(Θ)]) .

︸ ︷︷ ︸
α-regret from exploitation (P2)

(7)

We begin with bounding regret from exploration and using
that the rewards are within the interval [0, 1],

P1 ≤
N(β,γ,ψ,ϵ⋆)∑

j=1

r⋆

m
α ≤ N(β, γ, ψ, ϵ⋆)

r⋆

m
. (8)

When the good event E occurs, we know that |f̄(A) −
f(A)| ≤ ξ for all considered action A. Using an
(α, β, γ, ψ, δ)-resilient-approximation A(ϵ⋆), with output
Θ, we have

αf(S⋆)− E[f(Θ)] ≤ δξ + ϵ⋆f(S⋆). (9)

Therefore, with f(S⋆) < 1, we have:

P2 ≤
T∑

t=TN(β,γ,ψ,ϵ⋆)+1

(δξ + ϵ⋆) ≤ T (δξ + ϵ⋆). (10)

Therefore, using Eq. (8) and Eq. (10), the total expected
cumulative regret in Eq. (7) can be bounded as:

E[Ri(T )|E ] ≤ N(β, γ, ψ, ϵ⋆)
r⋆

m
+ T (δξ + ϵ⋆). (11)

Using the confidence radius ξ =
√
log(T )/r⋆ and

N(β, γ, ψ, ϵ⋆) = ψ 1
ϵ⋆β

logγ( 1
ϵ⋆ ), we have

E[Ri(T )|E ] ≤
ψr⋆ logγ( 1

ϵ⋆ )

ϵ⋆βm
+ T (

√
δ2 log(T )

r⋆
+ ϵ⋆).

We note that the above inequality is correct for all values of
r⋆ ≥ m and ϵ⋆ ≥ 0 with the convention that 00 = 1. In our
algorithm, we choose the values of r⋆ and ϵ⋆ as functions of
the problem parameters and on the subroutine complexity
parameters. We choose r⋆ as defined in Eq. (2) and ϵ⋆ as
defined in Eq. (3).

Recall that β ≥ 0 and γ ∈ {0, 1}. Therefore, we consider
all the possible cases, the first when β = γ = 0, the second

when β = 0 and γ = 1, and the third when β > 0. For all
the cases, when the good event E happens, the expected α-
regret of our C-MA-MAB with an (α, β, γ, ψ, δ)-resilient-
approximation as subroutine we have

E[Ri(T )|E ] ≤ Õ
(
δ

2
3+β ψ

1
3+βm− 1

3+β T
2+β
3+β

)
. (12)

5.3.2. REGRET OF AN AGENT UNDER ANY EVENT

Given that the reward ft(·) is upper bound by 1, the ex-
pected cumulative α-regret when the event Ē happens over
a range T is upper-bounded as follows: E[Ri(T )|Ē ] ≤ T.
Combining the results when good event happens and does
not happen, using the law of total expectation, and using Eq.
(12), Lemma 5.1, Lemma 5.2, and T ≥ mψ:

E[Ri(T )] = E[Ri(T )|E ] · P(E) + E[Ri(T )|Ē ] · P(Ē)

≤ Õ
(
δ

2
3+β ψ

1
3+βm− 1

3+β T
2+β
3+β

)
.

This establishes the result in Theorem 5.3.

6. Application to Submodular Maximization
We use our C-MA-MAB framework to address scenarios
involving stochastic submodular3 rewards, with bandit feed-
back. Submodular maximization (SM) is an NP-hard prob-
lem (Nemhauser et al., 1978; Feige et al., 2011), which
recently has shown growing interest in studying combina-
torial MAB (Chen et al., 2018; Niazadeh et al., 2021; Nie
et al., 2022; Fourati et al., 2023a; 2024). In the following, we
present our results for SM for monotone4 and non-monotone
rewards with and without a cardinality constraint and leave
the knapsack constraint in Appendix E.4.

For unconstrained SM (USM), Buchbinder et al. (2015) pro-
posed RANDOMIZEDUSM, achieving a 1

2 -approximation.
In Lemma E.1 in Appendix E, we generalize Corollary 2 in
(Fourati et al., 2023a) to show its resilience and present the
following corollary, which recovers the guarantees of the
online algorithm in (Fourati et al., 2023a) for a single agent
and generalizes it for multi-agent setting.

Corollary 6.1. C-MA-MAB, using the RANDOMIZEDUSM
as a subroutine, needs at most O(n) communication times

and its 1
2 -regret is at most Õ

(
m− 1

3nT
2
3

)
for USM.

For SM under a cardinality constraint k (SMC) with mono-
tone rewards, the GREEDY in (Nemhauser & Wolsey, 1978)
achieves 1− 1/e. In contrast, the STOCHASTIC-GREEDY

3A function f : 2Ω → R, over a finite set Ω, is considered
submodular if it discloses the characteristic of diminishing returns:
for any A ⊆ B ⊂ Ω and v ∈ Ω\B, the inequality f(A ∪ {v})−
f(A) ≥ f(B ∪ {v})− f(B) is verified.

4A function f : 2Ω → R, over a finite set Ω, is considered
monotone if for any A ⊆ B ⊆ Ω we have f(A) ≤ f(B).
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Figure 1: Cumulative regrets of summarizing images from CI-
FAR10 for different horizons T using our C-MA-MAB framework
with different number of agents m, against C-ETC-N and UCB1.

in (Mirzasoleiman et al., 2015) achieves 1− 1/e− ϵ, where
ϵ is a parameter balancing accuracy and complexity. We
provide the resilience of these two algorithms in Appendix
E and present the following results.

Corollary 6.2. C-MA-MAB, using the GREEDY as a subrou-
tine, needs O(nk) communication times and its (1− 1/e)-

regret is at most Õ
(
m− 1

3 kn
1
3T

2
3

)
for monotone SMC.

Corollary 6.3. C-MA-MAB, using the STOCHASTIC-
GREEDY, needs Õ(n) communication times and its (1− 1

e )-

regret is at most Õ
(
m− 1

3 k
2
3n

1
3T

2
3

)
for monotone SMC.

The STOCHASTIC-GREEDY algorithm has sub-optimal ap-
proximation guarantees of (1− 1/e− ϵ); thus, using the C-
ETC framework from (Nie et al., 2023) can only guarantee
sub-linear (1− 1/e− ϵ)-regret. Consequently, (1− 1/e)-
regret will be linear in T . However, our C-MA-MAB guar-
antees sublinear (1 − 1/e)-regret, recovering the single
agent’s results in (Fourati et al., 2024). Furthermore, the two
corollaries above demonstrate that employing a sub-optimal
approximation algorithm in terms of the approximation fac-
tor, rather than one that achieves optimal approximation
guarantees, does not necessarily imply lower regret guaran-
tees, as shown in (Fourati et al., 2024).

For non-monotone SMC, the RANDOMSAMPLING algo-
rithm in (Buchbinder et al., 2017) achieves 1/e− ϵ, where
ϵ is a parameter balancing accuracy and complexity. We
provide the resilience of this algorithm in Appendix E and
derive the first result for single-agent and multi-agent online
stochastic non-monotone SMC with sublinear regrets.

Corollary 6.4. C-MA-MAB, using the RANDOM SAM-
PLING in (Buchbinder et al., 2017) as a subroutine, needs
Õ(nT 2

3 ) communication times and its ( 1e )-regret is at most

Õ
(
m− 1

5 k
2
5n

1
5T

4
5

)
for non-monotone SMC.

7. Experiments with Data Summarization
We employ our C-MA-MAB on data summarization, a pri-
mary challenge in machine learning (Mirzasoleiman et al.,
2013), mainly when dealing with a large dataset. While this
problem has been widely studied with access to a determinis-
tic oracle (Lin & Bilmes, 2011; Mirzasoleiman et al., 2013;
2015; 2020; Sivasubramanian et al., 2024), this work is the
first to address online data summarization under a stochastic
objective function. We run experiments on FMNIST (Xiao
et al., 2017) and CIFAR10 (Krizhevsky et al., 2009), present
the latter in the main paper, and relegate more details and
results to Appendix F.

In data summarization, an action A consists of a set of at
most k images to summarize a large dataset D. Adding
more images achieves better summarization but follows a
diminishing return property. Thus, it falls in the monotone
SMC (Mirzasoleiman et al., 2015). Evaluating a given ac-
tion A against a dataset D may become expensive with
a large dataset. Thus, we consider a stochastic objective
where the chosen subset is compared only to a random
subset R ⊆ D drawn uniformly at random from D, us-
ing a similarity metric C, resulting in noisier but lower
complexity evaluations. We do not solve the problem
for a given realization R, but we solve it in expectation:
argmax

A⊆D:|A|≤k
ER
[∑

i∈R maxv∈A C(i, v)
]
.

We test our method when using the STOCHASTIC-GREEDY
algorithm as a subroutine (Mirzasoleiman et al., 2015) for
one agent and multiple agents and compare it to the pro-
posed algorithm in C-ETC framework for SMC (C-ETC-N)
(Nie et al., 2023), and the upper confidence bound (UCB1)
algorithm (Auer et al., 2002).

The C-MA-MAB demonstrates sub-linear regret guarantees
as depicted in Fig. 1. Additionally, it is apparent that, for
varying values of m, the C-MA-MAB consistently outper-
forms both C-ETC-N and UCB1, even with a single agent,
exhibiting lower regrets over diverse time horizons. Notably,
an increase in the number of agents correlates with a reduc-
tion in regret for these agents. These observations reinforce
the same conclusions drawn from the theoretical analysis.

Conclusion
We introduce C-MA-MAB, a framework for single-agent
and multi-agent online stochastic combinatorial problems,
which adapts resilient offline (α− ϵ)-approximation algo-
rithms to online algorithms under bandit feedback, achiev-
ing sublinear α-regret bounds with respect to the time hori-
zon T , eliminating the ϵ error, and ensuring a linear speedup.
We also present specialized bounds for SM with and without
constraints and apply C-MA-MAB to online stochastic data
summarization.
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Impact Statement
This paper presents work whose goal is to advance the field
of Machine Learning. There are many potential societal
consequences of our work, none which we feel must be
specifically highlighted here.
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A. Notation
In the following, for a given agent i when we discuss any feasible action denoted as A, we use ft(A) to represent the
realization of the stochastic reward at time t when taking that action. We denote the expectation of the reward of playing
that action as f(A). We also introduce f̄t(A), which is the empirical mean of rewards received from playing action A up to
and including time t.

We omit the subscript t when we write f̄(A), assuming it is clear that action A has been played r⋆ times. We use Aj , with
j ranging from 1 to the total number of the approximation algorithm queries N(β, γ, ψ, ϵ⋆), to refer to the j-th action the
algorithm queries. Additionally, we define Tj , where j also varies from 1 to the total number of the offline algorithm queries
N(β, γ, ψ, ϵ⋆), as the time step when Aj has been played r⋆ times.

B. Communication Rounds Analysis
In this subsection we prove Lemma 5.1 which upperbounds the number of oracle queries N(β, γ, ψ, ϵ⋆) of the offline
algorithm A(ϵ⋆) as follows:

N(β, γ, ψ, ϵ⋆) ≤ O(ψT
β
β+1 logγ(T ))

We provide examples of the resulting number of oracle queries for different offline algorithms or class transformations in
Table 2, as shown in Lemma 5.1.

Proof. Using an (α, β, γ, ψ, δ)-robust approximation as subroutine, we have after N(β, γ, ψ, ϵ) = ψ 1
ϵβ

logγ( 1ϵ ) oracle calls,
for ϵ ≥ 0, β ≥ 0, and γ ∈ {0, 1}.

Recall that ϵ⋆ is as follows:

ϵ⋆ = (
ψr⋆

Tm
)

1
β+11{β>0 OR γ>0}. (13)

Recall that β ≥ 0 and γ ∈ {0, 1}. Therefore, we consider all the possible cases (three), the first when β = γ = 0, the
second when β = 0 and γ > 0, and the third when β > 0.

Case 1: β = γ = 0. Using Eq.(3), ϵ⋆ becomes the following

ϵ⋆ = 0. (14)

N(β, γ, ψ, ϵ⋆) = 2ψ

= O(ψT
β
β+1 logγ(T )) (15)

Case 2: β = 0 and γ ̸= 0. We have γ ̸= 0 and γ ∈ {0, 1}, thus γ = 1.

Using Eq.(3), ϵ⋆ becomes the following

ϵ⋆ =
ψr⋆

Tm
. (16)
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Offline Algorithm Offline
Complexity

C-MA-MAB Resulted
Communication Complexity

RANDOMIZEDUSM
(Buchbinder et al., 2015) O (n) O (n)

GREEDY
(Nemhauser et al., 1978) O (nk) O (nk)

GENERAL
Excluding the next rows O(ψ) O(ψ)

STOCHASTIC-GREEDY
(Mirzasoleiman et al., 2015) O

(
n log( 1

ϵ
)
)

O(n log(T ))

MORE GENERAL
Excluding the next rows O(ψ logγ( 1

ϵ
)) O(ψ logγ(T ))

RANDOMSAMPLING
(Buchbinder et al., 2017) O

(
n
ϵ2

log( 1
ϵ
)
)

O(ψT
2
3 log(T ))

MOST GENERAL
Including the previous rows O( ψ

ϵβ
logγ( 1

ϵ
)) O(ψT

β
β+1 logγ(T ))

Table 2: The table shows the resulted communication complexity with different offline algorithms. We use Õ to simplify expressions.
Key parameters include horizon T , number of communicating agentsm, base arm count n, and cardinality constraint k. Each row presents
a specific offline algorithm or a class transformation with a given offline complexity. For the general rows, we consider classes of offline
algorithms, with an approximation error factor ϵ, with general complexity forms, with general constants, ψ ≥ 0, β ≥ 0, and γ ∈ {0, 1}.

N(β, γ, ψ, ϵ⋆) = 2ψ(
1

ϵ⋆
)β logγ(

1

ϵ⋆
)

= 2ψ log(
1

ϵ⋆
)

= 2ψ log(
Tm

ψr⋆
)

= 2ψ log(
T

ψr⋆i
)

≤ 2ψ log(T )

= O(ψ log(T ))

= O(ψT
β
β+1 logγ(T )) (17)

Case 3: β > 0. Using Eq.(3), ϵ⋆ becomes the following

ϵ⋆ = (
ψr⋆

Tm
)

1
β+1 . (18)

Therefore,

N(β, γ, ψ, ϵ⋆) = 2ψ(
1

ϵ⋆
)β logγ(

1

ϵ⋆
)

= 2ψ(
1

β + 1
)γ(

Tm

ψr⋆
)

β
β+1 logγ(

Tm

ψr⋆
)

= 2ψ(
1

β + 1
)γ(

T

ψr⋆i
)

β
β+1 logγ(

T

ψr⋆i
)

≤ 2ψ(
1

β + 1
)γ(T )

β
β+1 logγ(T )

= O(ψT
β
β+1 logγ(T )) (19)
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C. Estimation Analysis
Hoeffding’s inequality (Hoeffding, 1994) is a powerful technique for bounding probabilities of bounded random variables.
We state the inequality, then we use it to show that E happens with high probability.

Lemma C.1 (Hoeffding’s inequality). Let X1, · · · , Xn be independent random variables bounded in the interval [0, 1], and
let X̄ denote their empirical mean. Then we have for any ξ > 0,

P
(∣∣X̄ − E[X̄]

∣∣ ≥ ξ) ≤ 2exp
(
−2nξ2

)
. (20)

We use the above Lemma to prove Lemma 5.2 which bounds the probability of the good event E as follows:

P(E) ≥ 1− 2N(β, γ, ψ, ϵ⋆)

T 2
.

Proof. Applying the Hoeffding bound in Lemma C.1 to the empirical mean f̄(Ai) of Ai resulted from r⋆ independent
rewards and with ξ =

√
log(T )/r⋆ provides

P(Ēi) = P
[∣∣f̄(Ai)− f(Ai)∣∣ ≥ ξ]

≤ 2exp
(
−2r⋆ξ2

)
= 2exp (−2r⋆(log(T )/r⋆))
= 2exp (−2 log(T ))

=
2

T 2
. (21)

Then, we can bound the probability of the good event as follows:

P(E) = P(E1 ∩ · · · ∩ EN(β,γ,ψ,ϵ⋆))

= 1− P(Ē1 ∪ · · · ∪ ĒN(β,γ,ψ,ϵ⋆)) (De Morgan’s Law)

≥ 1−
N(β,γ,ψ,ϵ⋆)∑

i=1

P(Ēi) (union bounds)

≥ 1− 2N(β, γ, ψ, ϵ⋆)

T 2
. (using (21))

D. regret Analysis
We establish Theorem 5.3 outlined in Section 4.1 of the main paper. This theorem asserts that for the sequential decision-
making scenario delineated in Section 2, the expected cumulative α-regret of the C-MA-MAB, employing an (α, β, γ, ψ, δ)-
resilient-approximation algorithm A(ϵ) as a component, is bounded by Õ

(
δ

2
3+β ψ

1
3+βm− 1+β

3+β T
2+β
3+β

)
.

We separate the proof into two cases. One case when the good event E happens, which we show in Lemma 5.2 happens with
high probability and then we generalize the result under any event.

D.1. regret of an Agent under the Good Event

We upper-bound the expected α-regret given the occurrence of the good event E . All expectations are conditioned on
E throughout this section. However, for the sake of simplicity in notation, we employ E[·] rather than E[·|E ] in certain
instances.

We break down the anticipated α-regret given E into two parts: one dealing with regret arising from exploration and the
other from exploitation. It is crucial to remember that ft(At) denotes the stochastic reward obtained by selecting action At,
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a variable dependent on the historical means of actions in previous rounds.

E[Ri(T )|E ] =
T∑
t=1

(αf(S⋆)− E[ft(Si,t)])

=

T∑
t=1

(αf(S⋆)− E[E[ft(Si,t)|Si,t]]) (22)

=

T∑
t=1

(αf(S⋆)− E[f(Si,t)]) (f(·) defined as expected reward)

=

N(β,γ,ψ,ϵ⋆)∑
j=1

r⋆i (αf(S
⋆)− E[f(Aj)]) +

T∑
t=TN(β,γ,ψ,ϵ⋆)+1

(αf(S⋆)− E[f(At)])

=

N(β,γ,ψ,ϵ⋆)∑
j=1

r⋆i (αf(S
⋆)− E[f(Aj)])︸ ︷︷ ︸

Agent i Exploration regret

+

T∑
t=TN(β,γ,ψ,ϵ⋆)+1

(αf(S⋆)− E[f(Θ)])

︸ ︷︷ ︸
Agent i Exploitation regret

. (23)

We establish distinct bounds for the regret stemming from exploration and exploitation individually.

Bounding the agent i exploration regret:
N(β,γ,ψ,ϵ⋆)∑

j=1

ri (αf(S
⋆)− E[f(Ai)]) ≤

N(β,γ,ψ,ϵ⋆)∑
j=1

r⋆

m
(α− 0) (rewards in [0, 1])

≤ N(β, γ, ψ, ϵ⋆)
r⋆

m
. (24)

Bounding exploitation regret: When the good event E occurs, we know that |f̄(A) − f(A)| ≤ ξ for all considered
action A. For C-MA-MAB framework, with exploitation set Θ, with an (α, β, γ, ψ, δ)-resilient-approximation A(ϵ) as a
subroutine, we have after N(β, γ, ψ, ϵ) = ψ 1

ϵβ
logγ( 1ϵ ) oracle calls, for ϵ ≥ 0, β ≥ 0, and γ ∈ {0, 1},

E[f(Θ)] ≥ (α− ϵ)f(S⋆)− δξ. (25)

Therefore, using ϵ⋆, we have

αf(S⋆)− E[f(Θ)] ≤ δξ + ϵ⋆f(S⋆). (26)

Therefore, we can bound the exploitation regret as follows:

T∑
t=TN(β,γ,ψ,ϵ⋆)+1

(αf(S⋆)− E[f(S)]) ≤
T∑

t=TN(β,γ,ψ,ϵ⋆)+1

(δξ + ϵ⋆f(S⋆)) (using (26))

≤
T∑

t=TN(β,γ,ψ,ϵ⋆)+1

(δξ + ϵ⋆) (rewards are bounded in [0, 1])

≤ T (δξ + ϵ⋆). (27)

Bounding total regret:

E[Ri(T )|E ] =
N(β,γ,ψ,ϵ⋆)∑

i=1

r⋆

m
(αf(S⋆)− E[f(Ai)]) +

T∑
t=TN(β,γ,ψ,ϵ⋆)+1

(αf(S⋆)− E[f(S)]) (copying (23))

≤ N(β, γ, ψ, ϵ⋆)
r⋆

m
+ T (δξ + ϵ⋆) (using (24), (27))
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Using the defined confidence radius ξ =
√
log(T )/r⋆, we have

E[Ri(T )|E ] ≤ N(β, γ, ψ, ϵ⋆)
r⋆

m
+ ϵ⋆T + Tδ

√
log(T )/r⋆

≤ ψ 1

ϵ⋆β
logγ(

1

ϵ⋆
)
r⋆

m
+ ϵ⋆T + Tδ

√
log(T )/r⋆ (28)

We note that the inequality in Eq.(28) is correct for all values of r⋆ ≥ m and ϵ⋆ ≥ 0 with the convention that 00 = 1.

In our algorithm, we choose the following values of r⋆ and ϵ⋆ as functions of the problem parameters such as the range T
and the number of available agents m as well as on the subroutine algorithm approximation resilience parameter guarantees,
that are β, γ, ψ, and δ. Specifically, using an (α, β, γ, ψ, δ)-robust approximation as subroutine, we choose r⋆ as follows:

r⋆ = m

m−1

(
δ
√
log(T )

(
Tm

ψ

) 1
β+1

) 2+2β
3+β

 , (29)

For clarity in the following steps we further define z as follows:

z =

(
δ
√

log(T )

(
Tm

ψ

) 1
β+1

) 2+2β
3+β

, (30)

Moreover, we choose ϵ⋆ as follows:

ϵ⋆ = (
ψr⋆

Tm
)

1
β+11{β>0 OR γ>0}. (31)

Therefore, from Eq. (28),

E[Ri(T )|E ] ≤ ψ(
1

ϵ⋆
)β logγ(

1

ϵ⋆
)
r⋆

m
+ ϵ⋆T + Tδ

√
log(T )/r⋆ (32)

≤ ψ( 1
ϵ⋆
)β logγ(

1

ϵ⋆
)
⌈ z
m

⌉
+ ϵ⋆T + Tδ

√
log(T )/(m

⌈ z
m

⌉
) (33)

≤ ψ( 1
ϵ⋆
)β logγ(

1

ϵ⋆
)
⌈ z
m

⌉
+ ϵ⋆T + Tδ

√
log(T )/(m

z

m
) (Since ⌈z/m⌉ ≥ z/m)

≤ 2ψ(
1

ϵ⋆
)β logγ(

1

ϵ⋆
)
z

m
+ ϵ⋆T + Tδ

√
log(T )/z (Since z ≥ m, ⌈z/m⌉ ≤ 2z)

where the last inequality follows when z ≥ m, which holds for T ≥ ψm
1+β
2

δβ+1 .

Therefore,

E[Ri(T )|E ] ≤ 2ψ(
1

ϵ⋆
)β logγ(

1

ϵ⋆
)
z

m
+ ϵ⋆T + Tδ

√
log(T )/z (34)

Recall that β ≥ 0 and γ ∈ {0, 1}. Therefore, we consider all the possible cases (three), the first when β = γ = 0, the
second when β = 0 and γ > 0, and the third when β > 0.

Case 1: β = γ = 0.

In this case using Eq. (30), z becomes the following

z =

(
δ
√

log(T )

(
Tm

ψ

)) 2
3

. (35)

Moreover, using Eq.(3), ϵ⋆ becomes the following
ϵ⋆ = 0. (36)
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From Eq.(34) we have

E[Ri(T )|E ] ≤
2ψ

m

(
δ
√

log(T )

(
Tm

ψ

)) 2
3

+ Tδ
√

log(T )

(
δ
√

log(T )

(
Tm

ψ

))− 1
3

(37)

≤ 2
ψ

ψ
2
3

m
2
3

m
δ

2
3 log(T )

1
3T

2
3 + T

2
3 δ

2
3 log(T )

1
3m− 1

3ψ
1
3 (38)

= O
(
δ

2
3ψ

1
3m− 1

3T
2
3 log(T )

1
3

)
. (39)

= Õ
(
δ

2
3ψ

1
3m− 1

3T
2
3

)
(40)

= Õ
(
δ

2
3+β ψ

1
3+βm− 1

3+β T
2+β
3+β

)
. (Given that β = 0)

Case 2: β = 0 and γ ̸= 0.

We have γ ̸= 0 and γ ∈ {0, 1}, thus γ = 1. In this case using Eq. (30), z becomes the following

z =

(
δ
√

log(T )

(
Tm

ψ

)) 2
3

. (41)

Moreover, using Eq.(3), ϵ⋆ becomes the following

ϵ⋆ =
ψr⋆

Tm
. (42)

From Eq. (34) we have

E[Ri(T )|E ] ≤
2ψ

m
log(

Tm

ψr⋆
)z +

ψr⋆

Tm
T + Tδ

√
log(T )

(
δ
√
log(T )

(
Tm

ψ

))− 1
3

(43)

≤ 2ψ

m
log(

Tm

ψr⋆
)z +

2ψ

m
z + Tδ

√
log(T )

(
δ
√
log(T )

(
Tm

ψ

))− 1
3

(44)

≤ 2ψ

m
log(T )z +

2ψ

m
z + Tδ

√
log(T )

(
δ
√
log(T )

(
Tm

ψ

))− 1
3

(45)

≤ 4ψ

m
log(T )

(
δ
√
log(T )

(
Tm

ψ

)) 2
3

+ Tδ
√
log(T )

(
δ
√
log(T )

(
Tm

ψ

))− 1
3

(46)

= Õ
(
δ

2
3ψ

1
3m− 1

3T
2
3

)
(47)

= Õ
(
δ

2
3+β ψ

1
3+βm− 1

3+β T
2+β
3+β

)
. (Given that β = 0)

Case 3: β > 0. In this case using Eq. (30), z becomes the following

z =

(
δ
√

log(T )

(
Tm

ψ

) 1
β+1

) 2+2β
3+β

. (48)

Moreover, using Eq.(3), ϵ⋆ becomes the following

ϵ⋆ = (
ψr⋆

Tm
)

1
β+1 . (49)

From Eq.(34) we have

E[Ri(T )|E ] ≤
2ψ

m
(
1

ϵ⋆
)β logγ(

1

ϵ⋆
)z + ϵ⋆T + Tδ

√
log(T ) (z)

− 1
2 (50)
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Therefore, with β > 0 it exists a constant C sufficiently large such as:

E[Ri(T )|E ] ≤
2Cψ

m
(
1

ϵ⋆
)βz + ϵ⋆T + Tδ

√
log(T ) (z)

− 1
2 (51)

≤ 2Cψ

m
(
Tm

ψr⋆
)

β
β+1 z + (

ψr⋆

Tm
)

1
β+1T + Tδ

√
log(T ) (z)

− 1
2 (52)

≤ 2Cψ

m
(
Tm

ψz
)

β
β+1 z + (

2ψz

Tm
)

1
β+1T + Tδ

√
log(T ) (z)

− 1
2 (53)

≤ D ψ

m
(
Tm

ψz
)

β
β+1 z + Tδ

√
log(T ) (z)

− 1
2 (54)

= Õ
(
δ

2
3+β ψ

1
3+βm− 1

3+β T
2+β
3+β

)
.

In conclusion, for all the cases, if the bad event E happens, the expected α-regret of our C-MA-MAB with an (α, β, γ, ψ, δ)-
resilient-approximation as a subroutine is upper bounded by as follows:

E[Ri(T )|E ] ≤ Õ
(
δ

2
3+β ψ

1
3+βm− 1

3+β T
2+β
3+β

)
. (55)

D.2. Regret of an Agent under Any Event

By Lemma 5.2, the probability of the bad event is upper-bounded as follows

P(Ē) ≤ 2N(β, γ, ψ, ϵ⋆)

T 2
. (56)

Since the reward function ft(·) is upper bounded by 1, the expected α-regret incurred under Ē for a range T is limited to a
maximum of T ,

E[Ri(T )|Ē ] ≤ T. (57)

Combining the results when bad event happens and does not happen, we have

E[Ri(T )] = E[Ri(T )|E ] · P(E) + E[Ri(T )|Ē ] · P(Ē) (Law of total expectation)

≤ Õ
(
δ

2
3+β ψ

1
3+βm− 1

3+β T
2+β
3+β

)
1 + T · 2N(β, γ, ψ, ϵ⋆)

T 2
(using (55), (56), and (57))

≤ Õ
(
δ

2
3+β ψ

1
3+βm− 1

3+β T
2+β
3+β

)
1 +

2N(β, γ, ψ, ϵ⋆)

T
(58)

≤ Õ
(
δ

2
3+β ψ

1
3+βm− 1

3+β T
2+β
3+β

)
1 +
Õ(ψ

1
3+β ψ

2+β
3+β T

β
β+1 )

T
(using Lemma 5.1)

= Õ
(
δ

2
3+β ψ

1
3+βm− 1

3+β T
2+β
3+β

)
+ Õ(ψ

1
3+β ψ

2+β
3+β T− 1

β+1 ) (59)

= Õ
(
δ

2
3+β ψ

1
3+βm− 1

3+β T
2+β
3+β

)
+ Õ(ψ

1
3+β T

2+β
3+βm− 2+β

3+β T− 1
β+1 ) (using T ≥ mψ)

= Õ
(
δ

2
3+β ψ

1
3+βm− 1

3+β T
2+β
3+β

)
+ Õ(ψ

1
3+βm− 1

3+β−
1+β
3+β T

2+β
3+β−

1
β+1 ) (60)

= Õ
(
δ

2
3+β ψ

1
3+βm− 1

3+β T
2+β
3+β

)
.

This concludes the proof.
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E. Application to Submodular Maximization
We apply our general framework to online stochastic submodular maximization. In the following, we provide examples of
submodular maximization problems. We provide results for unconstrained, under cardinality, and under knapsack constraints,
by showing the resilience of different offline algorithms in these settings.

E.1. Submodular Maximization Examples

Submodularity arises in critical contexts within combinatorial optimization, such as graph cuts (Goemans & Williamson,
1995; Iwata et al., 2001), rank functions of matroids (Edmonds, 2003), and set covering problems (Feige, 1998). Furthermore,
recent works have demonstrated that various real-world problems exhibit submodularity, including data summarization and
coreset selection for model training (Mirzasoleiman et al., 2015; 2020), client participation optimization in FL (Balakrishnan
et al., 2022; Fourati et al., 2023b), recommendation systems (Takemori et al., 2020), crowdsourcing, crowdsensing, and
influence maximization (Fourati et al., 2024).

E.2. Unconstrained Submodular Maximization

Lemma E.1 (Generalization of Corollary 2 of (Fourati et al., 2023a)). RANDOMIZEDUSM (Buchbinder et al., 2015) is a
( 12 , 0, 0, 4n,

5
2n)-resilient-approximation algorithm for unconstrained non-monotone SM.

Proof. The offline RandomizedUSM 1
2 -approximation algorithm proposed in (Buchbinder et al., 2015) requires 4n oracle

calls, thus α = 1/2, ψ = 4n, γ = 0, and β = 0. Furthermore, as shown in Corollary 2 of (Fourati et al., 2023a), using a
ξ-controlled-estimation f̄ of the function f ,

E[f(Xn)] ≥
1

2
E[f(OPT )]− 5

2
n ξ. (61)

Therefore, the RandomizedUSM is an ( 12 , 0, 0, 4n,
5
2n)-resilient-approximation algorithm for unconstrained non-monotone

submodular maximization problem.

E.3. Submodular Maximization with Cardinality Constraint

Lemma E.2 (Generalization of Corollary 4.3 of (Nie et al., 2022)). GREEDY in (Nemhauser et al., 1978) is a (1 −
1
e , 0, 0, nk, 2k)-resilient-approximation algorithm for monotone SM under a cardinality constraint k.

Proof. The offline GREEDY (1− 1/e)-approximation algorithm proposed in (Nemhauser et al., 1978) requires nk oracle
calls, thus α = (1− 1/e), ψ = nk, γ = 0, and β = 0. Furthermore, as shown in Corollary 4.3 of (Nie et al., 2022), using a
ξ-controlled-estimation f̄ of the function f ,

E[f(Xn)] ≥ (1− 1/e)E[f(OPT )]− 2k ξ. (62)

Therefore, the GREEDY is an (1− 1
e , 0, 0, nk, 2k)-resilient-approximation algorithm algorithm for monotone submodular

maximization under a k-cardinality constraint.

Lemma E.3 (Generalization of Corollary 1 of (Fourati et al., 2024)). STOCHASTIC-GREEDY in (Mirzasoleiman et al.,
2015) is a (1− 1

e , 0, 1, n, 2k)-resilient-approximation algorithm for monotone SM under a cardinality constraint k.

Proof. The offline STOCHASTIC-GREEDY (1− 1/e− ϵ)-approximation algorithm proposed in (Mirzasoleiman et al., 2015)
requires n log( 1ϵ ) oracle calls, thus α = (1 − 1/e), ψ = n, γ = 1, and β = 0. Furthermore, as shown in Corollary 1 of
(Fourati et al., 2024), using a ξ-controlled-estimation f̄ of the function f ,

E[f(Xn)] ≥ (1− 1/e)E[f(OPT )]− 2k ξ. (63)

Therefore, the STOCHASTIC-GREEDY is an (1− 1
e , 0, 1, n, 2k)-resilient-approximation algorithm algorithm for monotone

submodular maximization under a k-cardinality constraint.
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Lemma E.4. RANDOMSAMPLING in (Buchbinder et al., 2017) is a ( 1e , 2, 1, n, 4k)-resilient-approximation algorithm for
non-monotone SM under a cardinality constraint k.

Proof. The offline RANDOMSAMPLING (1/e− ϵ)-approximation algorithm proposed in (Buchbinder et al., 2017) requires
n 1
ϵ2 log(

1
ϵ ) oracle calls, thus α = (1/e), ψ = n, γ = 1, and β = 2.

By design of the algorithm, we have

f (Si)− f (Si−1) ≥ f̄ (Si)− f̄ (Si−1)− 2ξ (using ξ-controlled estimation)

= max
{
f̄ (Si−1 ∪ {ui})− f (Si−1) , 0

}
− 2ξ (by algorithm)

Similar to the steps in (Buchbinder et al., 2017), let Ai represent an event encompassing all random decisions made by
the algorithm up to iteration i (excluding it). In the initial segment of the proof, we select a specific iteration 1 ≤ i ≤ k
and an associated event Ai. All probabilities and expectations within this proof portion are implicitly conditioned on Ai.
It is important to note that, when conditioned on Ai, the set Si−1 becomes deterministic. We use v1, v2, . . . , vk to denote
the k elements of N (including Si−1) with the highest marginal contribution to Si−1, arranged in non-increasing order of
marginal contribution. Additionally, let Xj be an indicator for the event ui = vj .

E [f (Si)− f (Si−1)] = E
[
max

{
f̄ (Si−1 ∪ {ui})− f̄ (Si−1) , 0

}]
− 2ξ (64)

≥
k∑
j=1

[
E [Xj ] ·max

{
f̄ (Si−1 ∪ {vj})− f̄ (Si−1) , 0

}]
− 2ξ (65)

≥
∑k
j=1 E [Xj ] ·

∑k
j=1 max

{
f̄ (Si−1 ∪ {vj})− f̄ (Si−1) , 0

}
k

− 2ξ. (66)

Where the last inequality holds by Chebyshev’s sum inequality since max
{
f̄ (Si−1 ∪ {vj})− f̄ (Si−1) , 0

}
is non-

increasing in j by definition and E [Xj ] is non-increasing in j by Lemma 4.2 in (Buchbinder et al., 2017). Therefore,

k∑
j=1

max
{
f̄ (Si−1 ∪ {vj})− f̄ (Si−1) , 0

}
≥

∑
u∈OPT

f̄ (Si−1 ∪ {u})− f̄ (Si−1) (by definition of vj)

≥
∑

u∈OPT
(f (Si−1 ∪ {u})− f (Si−1)− 2ξ) (by ξ-controlled estimation)

≥
∑

u∈OPT
(f (Si−1 ∪ {u})− f (Si−1))− 2kξ (|OPT | ≤ k)

≥ f (OPT ∪ Si−1)− f (Si−1)− 2kξ. (by submodularity of f )

By Lemma 4.1 in (Buchbinder et al., 2017), we have E [Xj ] ≥ 1− ε. Therefore,

E [f (Si)− f (Si−1)] ≥ (1− ε) · f (OPT ∪ Si−1)− f (Si−1)

k
− 4ξ. (67)

First, since the above equation holds for every given event Ai, it also holds in expectation unconditionally. More formally,
we get for every 1 ≤ i ≤ k,

E [f (Si)− f (Si−1)] ≥ (1− ε) · E [f (OPT ∪ Si−1)]− E [f (Si−1)]

k
− 4ξ.

Let us lower bound E [f (OPT ∪ Si−1)]. RANDOMSAMPLING adds each element to its solution with probability at most
(⌈pn⌉/n)/s = 1/k. Hence, each element belongs to Si−1 with probability at most 1 − (1 − 1/k)i−1. Let h(S) =
h(S ∪OPT ). Since h is a nonnegative submodular function, we get by Lemma 2.2,

E [f (OPT ∪ Si)] = E [h (Si)] ≥ (1− 1/k)i · h(∅) = (1− 1/k)i · f(OPT ).
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Combining the two above inequalities yields,

E [f (Si)− f (Si−1)] ≥ (1− ε) · (1− 1/k)i−1 · f(OPT )− E [f (Si−1)]

k
− 4ξ

≥
[
(1− 1/k)i−1 − ε

]
· f(OPT )− E [f (Si−1)]

k
− 4ξ.

We prove by induction the following:

E [f (Si)] ≥
i

k
·
[
(1− 1/k)i−1 − ε

]
· f(OPT )− 4iξ.

For i = 0, the corollary holds since f (S0) ≥ 0 = (0/k) ·
[
(1− 1/k)−1 − ε

]
· f(OPT ) - 0. Assume the corollary holds for

i− 1 ≥ 0, let us prove it for i :

E [f (Si)] ≥ E [f (Si−1)] +

[
(1− 1/k)i−1 − ε

]
· f(OPT )− E [f (Si−1)]

k
− 4ξ

= (1− 1/k) · E [f (Si−1)] +

[
(1− 1/k)i−1 − ε

]
· f(OPT )

k
− 4ξ

≥ (1− 1/k) ·
(
i− 1

k
·
[
(1− 1/k)i−2 − ε

]
· f(OPT )− 4(i− 1)ξ

)
+

[
(1− 1/k)i−1 − ε

]
· f(OPT )

k
− 4ξ

≥ (1− 1/k) ·
(
i− 1

k
·
[
(1− 1/k)i−2 − ε

]
· f(OPT )

)
+

[
(1− 1/k)i−1 − ε

]
· f(OPT )

k
− 4(i− 1)ξ − 4ξ

≥ i

k
·
[
(1− 1/k)i−1 − ε

]
· f(OPT )− 4iξ.

Plugging i = k into the above corollary yields

E [f (Sk)] ≥
[
(1− 1/k)k−1 − ε

]
· f(OPT )− 4kξ ≥

(
e−1 − ε

)
· f(OPT )− 4kξ.

Therefore, the RANDOMSAMPLING is an ( 1e , 2, 1, n, 4k)-resilient-approximation algorithm algorithm for non-monotone
submodular maximization under a k-cardinality constraint.

E.4. Submodular Maximization with Knapsack Constraint

We assume that the cost function c : Ω→ R>0 is both known and linear regarding knapsack constraints. In this framework,
the cost linked with a subset is the total of the costs of its elements, denoted as c(A) =

∑
v∈A c(v). The marginal density is

symbolized as ρ(e|A) = f(A∪e)−f(A)
c(e) for any subset A ⊆ Ω and element e ∈ Ω \A. We don’t consider scenarios with large

budgets B >
∑
v∈Ω c(v) and presume that all items have non-zero costs, meeting 0 < c(v) ≤ B. A cardinality constraint

represents a particular case with unit costs. Additionally, q = B
cmin

.

Lemma E.5 (Generalization of Theorem in (Nie et al., 2023)). PARTIALENUMERATION in (Sviridenko, 2004; Khuller et al.,
1999) is a (1− 1

e , 0, 0, n
5, 4 + 2K̃ + 2q)-resilient-approximation algorithm for monotone SM under a knapsack constraint.

Proof. As shown in (Nie et al., 2023), the PARTIALENUMERATION (Sviridenko, 2004; Khuller et al., 1999) is a (1− 1
e , 4 +

2K̃ + 2q)-robust approximation algorithm for monotone SM under a knapsack constraint. Furthermore, it requires O(n5)
oracle calls, thus it is a (1− 1

e , 0, 0, n
5, 4 + 2K̃ + 2q)-resilient-approximation algorithm.

Corollary E.6. C-MA-MAB using the PARTIALENUMERATION in (Sviridenko, 2004; Khuller et al., 1999) as a subroutine
requires at most Õ(n5) communication times and yields a (1− 1

e )-regret of at most Õ
(
m− 1

3 K̃
2
3 q

2
3n

5
3T

2
3

)
for monotone

SM under a knapsack constraint.
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Lemma E.7 (Generalization of Theorem in (Nie et al., 2023)). GREEDY+MAX in (Yaroslavtsev et al., 2020) is a
( 12 , 0, 0, nK̃,

1
2 + K̃ + 2q)-resilient-approximation algorithm for monotone SM problem under a knapsack constraint.

Proof. As shown in (Nie et al., 2023), GREEDY+MAX (Yaroslavtsev et al., 2020) is a ( 12 ,
1
2 + K̃+2q)-robust approximation

algorithm for monotone SM under a knapsack constraint. Furthermore, it requires at most O(nK̃) oracle calls, thus it is a
( 12 , 0, 0, nK̃,

1
2 + K̃ + 2q)-resilient-approximation algorithm.

Corollary E.8. C-MA-MAB using the GREEDY+MAX in (Yaroslavtsev et al., 2020) as a subroutine requires at most Õ(nK̃)

communication times and yields a (1/2)-regret of at most Õ
(
m− 1

3 q
2
3 K̃n

1
3T

2
3

)
for monotone SM under a knapsack

constraint.
Lemma E.9 (Generalization of Theorem in (Nie et al., 2023)). GREEDY+ in (Khuller et al., 1999) is a ( 12 (1−

1
e ), 0, 0, n

2, 2+

K̃ + q)-resilient-approximation algorithm for monotone SM problem under a knapsack constraint.

Proof. As shown in (Nie et al., 2023), the GREEDY+ (Khuller et al., 1999) is a ( 12 (1−
1
e ), 2+ K̃ + q)-robust approximation

algorithm for monotone SM under a knapsack constraint. Furthermore, it requires at most n2 oracle calls, thus it is a
( 12 (1−

1
e ), 0, 0, n

2, 2 + K̃ + q)-resilient-approximation algorithm.

Corollary E.10. C-MA-MAB using the GREEDY+ in (Khuller et al., 1999) as a subroutine requires at most Õ(n2)
communication times and yields a ( 12 (1−

1
e ))-regret of at most Õ

(
m− 1

3 q
2
3 K̃

2
3n

2
3T

2
3

)
for monotone SM under a knapsack

constraint.

F. Experiments on Data Summarization
We conduct experiments on stochastic data summarization.

F.1. Motivation for Stochastic Data Summarization

Data summarization is a primary challenge in machine learning, mainly when dealing with a large dataset. While this
problem has been extensively studied in the deterministic case, i.e., with access to a deterministic oracle (Mirzasoleiman
et al., 2015; 2020; Sivasubramanian et al., 2024), this work is the first to address online data summarization under a noisy
stochastic objective function.

F.1.1. DETERMINISTIC DATA SUMMARIZATION

In data summarization, agents must play an action A of at most k images to summarize a large dataset D. Based on a
similarity metric C between two images, the deterministic objective is:

argmax
A⊆D:|A|≤k

∑
i∈D

max
v∈A

C(i, v). (68)

Adding more images always increases this objective, and it follows a diminishing return property. Thus, it falls in the
monotone SM under a cardinality constraint k (Mirzasoleiman et al., 2015).

F.1.2. STOCHASTIC DATA SUMMARIZATION

Notice that even evaluating the above deterministic objective for a given action A may become very expensive with a large
dataset D; more precisely, the evaluation for one action has a complexity of O(|A||D|). We propose a stochastic version of
the above optimization problem and solve it through our framework. We consider a stochastic objective where the chosen
subset is compared only to a random subset R ⊆ D drawn uniformly at random from the large dataset D, resulting in a
noisier but lower complexity evaluations of O(|A||R|). We do not solve the problem for a given realizationR, but we solve
it in expectation:

argmax
A⊆D:|A|≤k

ER

[∑
i∈R

max
v∈A

C(i, v)

]
. (69)
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Figure 2: Cumulative regrets of summarizing images from FMNIST for different time horizons T using our framework with different
number of agents against C-ETC framework and UCB.
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(a) CIFAR10
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Figure 3: Compare the instantaneous rewards of summarizing images from CIFAR10 and FMNIST for different time horizons T using
our framework with one, two, four, sixteen, and thirtytwo agents against C-ETC-N, UCB1, and OPT.

F.2. Experimental Details

We test our method when using the STOCHASTIC-GREEDY algorithm as a subroutine (Mirzasoleiman et al., 2015) for
one agent and multiple agents and compare it to the proposed algorithm in C-ETC framework for SMC (C-ETC-N) (Nie
et al., 2023), and the upper confidence bound (UCB1) algorithm (Auer et al., 2002). We consider settings with one, four,
eight, sixteen, and thirty-two agents. We resize the images to have sixteen pixels. We set a cardinality constraint of
k = 5. Our goal is to summarize information from fifteen images, and instead of comparing it to all the images, we
only consider a random batch R of 3 images. We run the experiments 100 times. We test for several time horizons in
{125, 250, 500, 1000, 2000, 4000, 8000, 12000, 16000, 20000}.

F.3. Additional Results

As depicted in Fig. 1, the C-MA-MAB demonstrates sub-linear regret guarantees across different agent scenarios within
a time horizon T . Additionally, it is apparent that, for varying values of m, including the single-agent scenario, the
C-MA-MAB consistently outperforms both C-ETC-N and UCB1, exhibiting lower regrets over diverse time horizons.
Notably, an increase in the number of agents correlates with a reduction in regret for these agents. These observations
reinforce the same conclusions drawn from the theoretical analysis.
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