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Abstract

Generative dialogue models suffer from seri-001
ous generic response problems, limiting their002
applications to a few toy scenarios. Recently,003
an interesting approach, namely negative train-004
ing, has been proposed to alleviate this prob-005
lem by reminding the model not to gener-006
ate high-frequency responses during training.007
However, its performance is hindered by two008
issues, ignoring low-frequency but generic re-009
sponses and bringing low-frequency but mean-010
ingless responses. In this paper, we propose a011
novel negative training paradigm, called nega-012
tive distillation, to keep the model away from013
the undesirable generic responses while avoid-014
ing the above problems. First, we introduce a015
negative teacher model that can produce query-016
wise generic responses, and then the student017
model is required to maximize the distance018
with multi-level negative knowledge. Em-019
pirical results show that our method outper-020
forms previous negative training methods sig-021
nificantly.022

1 Introduction023

In the past few years, data-driven response gen-024

eration (Vougiouklis et al., 2016; Vinyals and Le,025

2015; Shang et al., 2015) has achieved impressive026

performance, drawing continuously increasing at-027

tention from academic and industry. Convention-028

ally, with the guidance of maximum likelihood029

estimation (MLE), neural dialogue models are ex-030

pected to maximize the probability of generating031

the corresponding reference given any query. Un-032

fortunately, due to the many-to-one phenomenon033

(see Table 1), a characteristic of the dialogue task034

(Csáky et al., 2019), these models are prone to pro-035

duce safe but generic responses (e.g., I don’t know036

(Li et al., 2016)), which sets an obstacle for the037

generative dialogue system to be deployed widely.038

Some researchers tried to redesign the objective039

of models to meet the requirement of diverse re-040

sponses instead of MLE, such as MMI (Li et al.,041

2016), AdaLabel (Wang et al., 2021), and IAT 042

(Zhou et al., 2021). Besides, several studies (Holtz- 043

man et al., 2020; Kulikov et al., 2019) proposed 044

more advanced decoding strategies to alleviate the 045

problem of generic responses. Indeed, the above 046

methods boost the diversity of responses by remind- 047

ing the model what should be said. 048

However, inspired by negative training (Kim 049

et al., 2019; Ma et al., 2021), we argue that it is also 050

necessary to tell the dialogue model what not to say. 051

To alleviate the problem of generic responses, He 052

and Glass (2020) negatively updates the parameters 053

when identifying the high-frequency responses. Li 054

et al. (2020a) punishes the behaviors of generating 055

repetitive or high-frequency tokens by using the 056

unlikelihood objective (Welleck et al., 2020). 057

Although the negative-training based methods 058

enhance the diversity of responses, there still exists 059

two drawbacks: First, they regard high-frequency 060

tokens or utterances as negative candidates. How- 061

ever, the high-frequency response problem is only 062

a sub-problem of the generic response problem (He 063

and Glass, 2020). It means that the responses that 064

are low-frequency but generic will escape from pun- 065

ishment. Even worse, we have observed that some 066

generic responses are followed by a low-frequency 067

but meaningless subsequence to avoid being identi- 068

fied as high-frequency, which inevitably sacrifices 069

the fluency of responses (see Analysis). Second, 070

these methods ignore the implicit negative knowl- 071

edge in neural networks that characterizes negative 072

candidates at multiple levels. We contend that it is 073

more effective to conduct negative training using 074

richer information (e.g., hierarchical representa- 075

tion). 076

To tackle the above problems and further im- 077

prove the diversity of responses, we propose a 078

novel negative training paradigm called Negative 079

Distillation (ND). Conventional knowledge distil- 080

lation (KD) (Hinton et al., 2015; Jiao et al., 2020) 081

takes the teacher as a positive role model and in- 082
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Query Response Entropy Score

1: Oh, honey, you made a mistake. I don’t know how to do it. 8.61

2: Would you like regular car wash package ? I don’t know what you mean. 8.75

3: I’m looking for the airport. No, sorry. I don’t know. 10.69
Can you tell me how to get there?

4: That’s cathy. She is pretty, isn’t she? Well, I don’t know. 12.14
She likes dancing. Ask her to dance.

5: It doesn’t matter. You gotta find what she’s I don’t know . . . 6.82
interested in and go with that.

Table 1: The many-to-one phenomenon in DailyDialog. All the above five queries have the same I don’t know-like
responses. The corresponding source entropy (Csáky et al., 2019) scores are much higher than the median score
(0.92) of the whole training set. This phenomenon will lead to the generic response problem.

duces the student to imitate. Differing from that,083

we train the teacher as a negative role model and084

remind the student to get rid of those bad behaviors.085

Specifically, we first collect a negative training086

set by using a filtering method called Source En-087

tropy (Csáky et al., 2019). This filtering method can088

retrieve all many-to-one cases of the raw dataset.089

Note that the “one” is usually a generic response.090

Then, we train a dialogue model on the above sub-091

set as the negative teacher. Given queries, the nega-092

tive teacher can provide a set of negative candidates093

(i.e., generic and dull responses) that the student094

is prone to generate, which avoids the first draw-095

back mentioned before. Therefore, the student ob-096

tains query-wise bad behaviors for Negative Distil-097

lation. To conduct the negative update holistically,098

we design two negative objectives, including soft099

unlikelihood loss on the prediction layer and re-100

verse square error on the intermediate layer. In this101

way, the negative distillation fully exploits multi-102

level negative knowledge to force the student to103

generate non-generic responses.104

Our contributions are summarized as follows:105

• We propose a novel and effective negative106

training paradigm called Negative Distillation.107

It constructs query-wise generic responses as108

the negative candidates.109

• We design two negative objectives to utilize110

multi-level information to further boost the111

performance of negative distillation.112

• We perform extensive experiments and de-113

tailed analysis to verify the effectiveness of114

the negative distillation framework and the115

superiority compared with previous negative 116

training methods. 117

2 Method 118

In this section, we first introduce the negative 119

teacher, then describe the negative distillation on 120

the prediction layer and the intermediate layer, re- 121

spectively, and finally present the progressive opti- 122

mization objective. Algorithm 1 shows the whole 123

training details. 124

2.1 Background 125

Dialogue Generation with MLE Take Q = 126

{q1, q2, ..., qTq} and R = {r1, r2, ..., rTr} as the 127

(query, response) pair, where Tq and Tr represent 128

the length of query and response, respectively. The 129

generative dialogue model aims to learn a condi- 130

tional probability distribution pθ(R|Q). The maxi- 131

mum likelihood estimation (MLE) is usually used 132

to train the model, which can also be expressed as 133

minimizing the negative log-likelihood: 134

LMLE = −
Tr∑
i=1

log pθ (ri | r<i, Q) . (1) 135

Considering one characteristic of the dialogue task, 136

i.e., allowing the response to be varied, the many- 137

to-one phenomenon occurs in the dialogue corpora 138

frequently. However, with the MLE-based training, 139

this phenomenon will cause the model to produce 140

generic responses. 141

Unlikelihood Training Unlikelihood (UL) loss 142

(Welleck et al., 2020) is proposed for the model to 143

address the problem of undesirable behaviors (e.g., 144

repetitive or high-frequency tokens). It forces the 145
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model to minimize the probability of generating146

negative candidates, which is formulated as:147

LUL = −
Tr∑
i=1

∑
rc∈Ct

log (1− pθ (rc | r<i, Q)) ,

(2)148

where Ct consists of negative candidates (e.g.,149

overuse frequent words) that are also a sub-set of150

the vocabulary.151

Knowledge Distillation The traditional knowl-152

edge distillation (KD) usually transfers useful153

knowledge from a large and strong teacher net-154

work T to a small student network S. The distilla-155

tion loss is used to align the soften predictions of156

the teacher and the student, denoted as fT (x) and157

fS(x):158

LKD =
∑
x∈D

L
(
fT (x), fS(x)

)
, (3)159

where L(·) is a measurement function that calcu-160

lates the distance of different probability distribu-161

tions, x is the input text, andD denotes the training162

set.163

In this work, we replace the positive teacher in164

vanilla KD with a negative teacher, aiming to pro-165

vide negative knowledge for the student to conduct166

negative training and avoid undesirable behaviors.167

2.2 Negative Teacher168

To improve the diversity of responses, the dialogue169

model should be told which responses are generic.170

For negative distillation, a negative teacher is re-171

quired to produce possible generic responses given172

any query. In this work, we adopt the widely used173

Transformer (Vaswani et al., 2017) as the underly-174

ing model for both teacher and student. We intro-175

duce the Source Entropy filtering method (Csáky176

et al., 2019) to identify and collect the many-to-177

one cases for the negative training set. The source178

entropy is defined as:179

Hsrc(r,D) = −
∑

(qi,r)∈D

p(qi|r) log p(qi|r), (4)180

where p(qi|r) is the conditional probability calcu-181

lated based on the relative frequency of (query,182

response) pairs, r is a response, qi is the query183

corresponding to the response r, and D represents184

the raw training set. A higher source entropy in-185

dicates that the response r corresponds to more186

queries, i.e., the many-to-one problem is serious.187

We select the top 50% dialogue pairs (q, r) with 188

a high source entropy as the negative training set 189

DN , which contains a much higher proportion of 190

generic responses than the raw training set. 191

After that, we train the teacherN on the negative 192

training set DN by Equation 1. The teacher will 193

naturally produce generic responses for any input 194

query. More importantly, it will provide richer 195

negative knowledge for the student, including soft 196

logits in the prediction layer and implicit features 197

in the intermediate layers. 198

2.3 Negative Distillation 199

In this section, we conduct the negative distillation 200

for the student based on the multi-level negative 201

knowledge. 202

ND for Prediction Layer The soften logits in 203

the prediction layer contain more information than 204

the ground-truth labels, such as the similarity be- 205

tween labels (Wang et al., 2021). Therefore, con- 206

ventional KD transfers knowledge by narrowing 207

the gap between the probability distributions of the 208

teacher T and the student S: 209

LKD = −
Tr∑
i=1

|V|∑
k=1

pT (ri = k | r<i, Q) 210

· log pS (ri = k | r<i, Q) . (5) 211

As for negative distillation, the extra knowledge in 212

soften logits of the negative teacher reflects how to 213

generate dull responses based on the input query. 214

Therefore, we propose a soft unlikelihood loss to 215

maximizing the distance between the predictions 216

of the negative teacher N and the student S: 217

Lpred =−
Tr∑
i=1

|V|∑
k=1

pN (ri = k | r<i, Q) 218

· log (1− pS (ri = k | r<i, Q)) , (6) 219

where pN and pS are calculated by: 220

pi =
exp (zi/t)∑
j exp (zj/t)

, (7) 221

where t is a temperature coefficient that is used to 222

soften the probability distribution over words. 223

It should be emphasized that previous nega- 224

tive training methods only use the high-frequency 225

words or phrases with one-hot representation as 226

the targets, which ignores the rich information ex- 227

isting in the soften logits (e.g., the generic words 228
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have similar probabilities). In the Analysis section,229

we demonstrates the superiority of soften logits230

compared with hard targets (i.e., one-hot represen-231

tation).232

ND for Intermediate Layer In addition to the233

output knowledge from the prediction layer, there234

is also some implicit knowledge embedded in the235

intermediate layers, such as hidden states and at-236

tention matrices. To keep the student away from237

undesirable behaviors (i.e., producing generic re-238

sponses) more effectively, we further consider the239

above knowledge into negative distillation. Specifi-240

cally, the distance between features of the negative241

teacher and the student should also be increased.242

In this work, we propose a new measurement func-243

tion, called mean reverse square error (MRSE), to244

calculate this distance:245

LMRSE(A,B) =
1

n

n∑
i=1

exp−SE(Ai,Bi), (8)246

where A and B are the feature matrices of the247

negative teacher and the student, respectively, and248

n is the number of elements of each matrix.249

Due to the responses generating in the decoding250

phrase, we only conduct negative distillation on251

the intermediate layers of the decoder. For each252

decoder layer, the negative distillation objective of253

hidden states is defined as:254

Llhid = LMRSE(H
l
N ,H

l
S), (9)255

where H l
N and H l

S are the output hidden states of256

the lth decode layer of N and S, respectively.257

As the attention weights can learn substantial258

linguistic knowledge (Clark et al., 2019), it is ben-259

eficial for the student to further conduct negative260

distillation on the attention matrices, which is com-261

puted as follows:262

A =
QKT

√
dk

, (10)263

264
Attention (Q,K,V ) = softmax(A)V , (11)265

where Q, K, and V are the matrices of queries,266

keys, and values, respectively, and dk is a scaling267

factor. Following Jiao et al. (2020), the attention268

matrix A is chosen to calculate the distance rather269

than its softmax version softmax(A). Similar to270

Equation 9, the negative distillation objective of271

attention matrices is formulated as:272

Llatt = LMRSE(A
l
N ,A

l
S)), (12)273

where Al
N and Al

S are the attention matrices of the 274

lth decoder layer of N and S, respectively. 275

Algorithm 1 Negative Distillation

Input: D: The raw training set; Hsrc : The Source
Entropy filtering method; N and S: The nega-
tive teacher and the student.

1: % Collection of negative training set.
2: [Data_entropy]← Calculate_data_entropy(D,
Hsrc) using Eq.4

3: Index_list← Sort([Data_entropy])
4: DN ← Extract_top_data(D, Index_list, 50%)
5: % Training of negative teacher.
6: repeat
7: Optimize N by minimizing Lmle(N) on

DN using Eq. 1
8: until Convergence
9: % Negative distillation.

10: repeat
11: Optimize S by minimizing L(S) onD using

Eq. 13
12: until Convergence
Output: S : The trained student.

2.4 Progressive Optimization 276

The overall loss, combining the above negative 277

distillation objectives and the MLE objective, is 278

denoted as: 279

L = (1−α)Lmle+α(Lpred+
l∑
Llhid+

l∑
Llatt),

(13) 280

where α is a hyper-parameter that balances the im- 281

portance of supervised learning and negative distil- 282

lation. For negative distillation, it would be better 283

that the student has the ability to say something 284

before it is reminded of what not to say. Thus, we 285

perform a progressive distillation that first warms 286

up the negative distillation ratio and then colds it 287

down gradually. Inspired by the derivative of sig- 288

moid function: 289

σ′(z) = σ(z)(1− σ(z)) = e−z

(e−z + 1)2
, (14) 290

which shows a trend of gradual rise-fall, we define 291

the balance coefficient α as: 292

α = λ ∗ e−z

(e−z + 1)2
, (15) 293

where λ controls the peak value and z is calculated 294

by: 295
z(s) = β ∗ (s− γ), (16) 296
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Datasets Train Valid Test Vocab

DailyDialog 68k 6.8k 6.8k 17,930
OpenSubtitles 200k 20k 10k 21,177

Table 2: Statistics of two dialogue datasets in the exper-
iments.

where s is the training step, and β and γ control the297

telescopic and translation transformation, respec-298

tively.299

3 Experiments300

3.1 Datasets301

In our experiments, two widely used dialogue302

datasets are employed to evaluate the proposed303

method: DailyDialog, which collects conversa-304

tions that are similar to human daily communica-305

tion (Li et al., 2017b), and OpenSubtitles, which306

consists of large-scale dialogues extracted from307

movie subtitles (Tiedemann, 2009). In this work,308

we focus on the single-turn dialogue generation,309

thus we pre-process these two datasets into the310

(query, response) pairs. Table 2 provides the statis-311

tics of both datasets.312

3.2 Experimental Settings313

We take the Transformer-based sequence-to-314

sequence model (Vaswani et al., 2017) as the un-315

derlying model for all approaches. Following the316

settings of Transformer in Csáky et al. (2019), both317

encoder and decoder contain 6 layers, in which the318

self-attention module has 8 attention heads and the319

number of feed-forward units is 2048. The size320

of hidden states is set to 512 and the dimension is321

64 for query, key, and value. Dropout (Srivastava322

et al., 2014) is used for the self-attention module,323

the feed-forward layer, and the activation layer, and324

the rate of all three is set to 0.1. We also use label325

smoothing (Szegedy et al., 2016) and the smooth-326

ing value is 0.1. The batch size is set to 256. We use327

the Adam optimizer (Kingma and Ba, 2015) and328

employ the warm-up (He et al., 2016) trick to ad-329

just the learning rate during training. The warm-up330

steps swp are 128000 and 256000 for DailyDialog331

and OpenSubtitles, respectively. The learning rate332

is computed as follows:333

lr =

2 ·min( 1√
s
, s√

s3wp
)√

dmodel
, (17)334

where lr is the learning rate at the sth step of train-335

ing and dmodel is the size of hidden states. We336

implement all approaches with Pytorch 1.7, and 337

conduct all experiments on RTX 3090. 338

For the proposed approach, both the negative 339

teacher network and the student network have the 340

same settings in terms of the network architecture 341

and hyper-parameters. λ in Equation 15 is set to 342

4, making the peak value equal to 1. γ is 25600 343

and β is 6/γ. For the temperature coefficient t, we 344

simply set it to 1. 345

3.3 Baselines 346

We compare the proposed negative distillation 347

(ND) approach with the standard Transformer and 348

two existing negative training approaches: 349

• Standard The vanilla Transformer-based 350

sequence-to-sequence model with the MLE- 351

based training (i.e., the cross-entropy based 352

loss). 353

• NT (Negative Training) (He and Glass, 2020) 354

During training, it first counts the frequency of 355

all generated utterances and then conducts the 356

negative update based on the high-frequency 357

utterances. 358

• UL (Unlikelihood Training) (Li et al., 2020a) 359

Different from NT, it calculates the frequency 360

of all generated words instead of utterances 361

and penalizes the high-frequency words by 362

introducing an unlikelihood loss term. 363

All the baselines are performed with the same 364

architecture and hyper-parameters as ours. For NT, 365

the threshold rthres is set to 1% and the weight co- 366

efficient λPOS is set to 1 as the authors’ suggestion. 367

For UL, we search the mixing hyper-parameter α 368

in [1, 10, 100, 1000] and 1000 is selected for its 369

best performance. Both NT and UL are refined on 370

the well-trained Standard model. Following He 371

and Glass (2020); Li et al. (2020a), we use greedy 372

search as the decoding strategy for all baselines 373

and our method. We also evaluate the performance 374

with beam search (size 5) and obtain similar results 375

(see 3.6 for details). 376

3.4 Automatic Evaluation 377

Metrics To evaluate whether negative distillation 378

can effectively reduce the generic responses, we 379

adopt Dist-{1,2,3} (distinct) (Li et al., 2016) to re- 380

flect the lexical diversity of the generated responses. 381

It is a widely used metric that counts the proportion 382

of unique unigrams/bigrams/trigrams. LF (low- 383

frequency token ratio) (Li et al., 2020b) further 384
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Models Dist-1 ↑ Dist-2 ↑ Dist-3 ↑ LF ↑ KL-1 ↓ KL-2 ↓ BLEU-3 ↑ BLEU-4 ↑

Standard 0.0089 0.0313 0.0576 0.102 0.96 0.53 0.384 0.395
NT 0.0059 0.0293 0.0760 0.070 1.05 1.84 0.226 0.183
UL 0.0062 0.0319 0.0882 0.075 1.07 1.88 0.228 0.187
ND 0.0145 0.0678 0.1447 0.158 0.65 0.26 0.381 0.388

Standard 0.0020 0.0071 0.0147 0.022 2.19 1.40 0.355 0.353
NT 0.0011 0.0045 0.0108 0.014 2.26 2.39 0.255 0.216
UL 0.0015 0.0060 0.0151 0.018 1.85 1.97 0.303 0.269
ND 0.0027 0.0102 0.0218 0.029 2.10 1.23 0.355 0.355

Table 3: Automatic evaluation results using greedy search on DailyDialog (Up) and OpenSubtitles (Down). The
best/second-best results are bold/underlined. "↑" means higher is better. "↓" means lower is better.

vs. Models Informativeness Kappa Relevance Kappa Fluency KappaWin(%) Tie(%) Lose(%) Win(%) Tie(%) Lose(%) Win(%) Tie(%) Lose(%)

Standard 77.3 18.7 4.0 0.456 48.0 34.7 17.3 0.453 14.7 76.0 9.3 0.491
NT 31.3 38.7 30.0 0.669 54.7 32.0 13.3 0.421 91.3 8.0 0.7 0.497
UL 44.7 28.7 26.7 0.411 66.0 23.3 10.7 0.425 92.7 7.3 0.0 0.614

Table 4: Results of human evaluations on DailyDialog. Our framework has a higher win rate than baselines.

measures the diversity of responses by calculating385

the ratio of low-frequency words in the generated386

responses. The threshold of low frequency is set387

to 100. Besides, it is necessary to verify whether388

the models can ensure consistency while improv-389

ing diversity. So we use KL-{1,2} (KL divergence)390

(Csáky et al., 2019), which measures the distribu-391

tion distance between the generated and the ground-392

truth responses, to reflect how well a model can ap-393

proximate the ground-truth unigrams/bigrams dis-394

tributions. BLEU (Chen and Cherry, 2014) is also395

reported and it measures n-gram overlap between396

the generated and the ground-truth references.397

Results Table 3 shows the results obtained at the398

lowest point of the validation loss. We can see399

that our approach outperforms all baselines in di-400

versity (Dist and LF) by a significant margin on401

both datasets, demonstrating that ND can effec-402

tively alleviate the generic response problem by403

using multi-level negative information. The KL404

and BLEU scores of ND are close to or better405

than Standard, which verifies that our method can406

maintain the consistency of responses while im-407

proving its diversity. To some extent, both NT408

and UL improve the diversity of words, especially409

for trigrams, but the low LF scores indicate that410

they reduce the high-frequency words but fail to411

increase the number of low-frequency’s. What’s412

worse, their BLEU and KL-2 scores sharply de-413

cline. It suggests that previous negative training414

approaches may harm the consistency and fluency415

of responses dramatically, which is not in line with416

the goals of the dialogue system. Our method ob- 417

tains similar results with beam search. Please refer 418

to 3.6 for details. 419

3.5 Human Evaluation 420

Apart from automatic evaluations, we conduct hu- 421

man evaluations to further verify the effectiveness 422

of our method. We randomly select 50 samples 423

from the test set of DailyDialog, and three well- 424

educated annotators are invited to judge which of 425

the responses generated by ND and baselines is 426

better (i.e., win, tie or loss) in terms of informa- 427

tiveness, relevance, and fluency. Informativeness 428

reflects how much the information related to the 429

query is contained in the generated response. Rele- 430

vance reflects how likely the generated response is 431

coherent to its query. Fluency reflects how likely 432

the generated response is produced by human. 433

Table 4 summarizes the human evaluation results. 434

We can see that the proposed approach is overall 435

better than all baselines. Specifically, ND achieves 436

better performance than Standard in terms of infor- 437

mativeness and relevance, and remains competitive 438

in fluency. Compared with both NT and UL, our 439

approach shows significant advantages, especially 440

in fluency. It indicates that their punishment for 441

high-frequency tokens or utterances will lead to 442

a serious non-fluency and inconsistency problem. 443

We use Fleiss’s kappa (Fleiss, 1971) to measure the 444

inter-annotator agreement. 445
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3.6 Experimental Analysis446

We conduct extensive analysis on DailyDialog to447

investigate the effectiveness of the negative distilla-448

tion in more details.449

Models Dist-2 Dist-3 LF KL-2 BLEU-4

ND .0678 .1447 .158 .26 .388
w/o Lpred .0529 .1084 .145 .39 .397
w/o Latt .0517 .1032 .138 .26 .392
w/o Lhid .0365 .0677 .109 .62 .380
w/o Lneg .0313 .0576 .102 .53 .395

Table 5: Ablation studies of different negative distilla-
tion objectives in ND.

Ablation Study We study the effects of different450

negative distillation objectives by ablating the pre-451

diction layer distillation (w/o Lpred), the attention452

distillation (w/o Latt), the hidden state distillation453

(w/o Lhid), and the whole negative distillation (w/o454

Lneg, i.e. Standard). The results in Table 5 show455

that all three proposed negative distillation objec-456

tives are useful for improving the diversity. The457

significant decline in w/o Lhid indicates that the458

negative information in intermediate layers is very459

important for ND. w/o Latt is better than w/o Lhid,460

attributing to the more abundant information in461

hidden states.462

Does source entropy work? To verify whether463

the source entropy filtering method can collect the464

generic responses, we select the top 50% and the465

bottom 50% of the sorted training set as Dt and466

Db, respectively. Then we train Nt and Nb on the467

corresponding sub-sets. From Table 6, we can see468

that Nb outperforms Nt in all the diversity-related469

metrics, indicating the effectiveness of source en-470

tropy.471

Models Dist-1 Dist-2 Dist-3 LF

Nt 0.0024 0.0078 0.0134 0.0331
Nb 0.0040 0.0121 0.0215 0.0444

Table 6: Effect of the source entropy filtering method.

Can the negative knowledge be transferred?472

We take Nt and Nb as the negative teachers for473

the students St and Sb, respectively. Then we con-474

duct negative distillation on both St and Sb. The475

results in Table 7 demonstrate that St obtains more476

gains in diversity than Sb, indicating St gets rid of477

more negative knowledge. It can be further verified478

by the results of previous analysis that Nt has more 479

negative knowledge than Nb. 480

Models Dist-2 Dist-3 LF KL-2 BLEU-4

St 0.0678 0.1447 0.158 0.26 0.388
Sb 0.0409 0.0844 0.097 0.40 0.386

Table 7: Effect of negative knowledge.

Models Dist-2 Dist-3 LF KL-2 BLEU-4

Standard .0313 .0576 .102 .53 .395
ND (fixed α) .0392 .0793 .123 .42 .386
ND .0678 .1447 .158 .26 .388

Table 8: Effect of progressive distillation.

Models Dist-1 Dist-2 Dist-3 LF

ND (random target) 0.0040 0.0109 0.0170 0.053
ND (hard target) 0.0136 0.0620 0.1344 0.139
ND (soft target) 0.0145 0.0678 0.1447 0.158

Table 9: Comparison of soft targets, hard targets, and
random targets for negative distillation.

Study of soft target To evaluate the superiority 481

of soft targets for negative distillation, we sample 482

responses (i.e., hard target) by greedy search on 483

the predictions of negative teachers for compari- 484

son. The results in Table 9 show that ND with 485

soft targets can diversify the responses more ef- 486

fectively, demonstrating the advantages of richer 487

negative information (e.g., the similarity between 488

labels) in soft targets. What’s more, we randomly 489

select responses from the negative training set DN 490

as negative targets. The sharp decline in perfor- 491

mance proves that the negative teacher can produce 492

targeted generic responses. 493

Effect of progressive distillation In order to ver- 494

ify the effectiveness of progressive negative distil- 495

lation, we conduct negative distillation with fixed 496

α. The value is obtained by calculating the average 497

of α Equation 15 integral of Equation 15 divided 498

by the convergence steps. The results in Table 8 499

demonstrate that the progressive distillation policy 500

can help the student exploit negative knowledge 501

more effectively. Besides, note that ND with fixed 502

α also outperforms the Standard model. 503

Is ND adapted for beam search? He and Glass 504

(2020) and Li et al. (2020a) choose greedy decod- 505

ing due to its simplicity and higher diversity than 506
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Models Dist-1 ↑ Dist-2 ↑ Dist-3 ↑ LF ↑ KL-1 ↓ KL-2 ↓ BLEU-3 ↑ BLEU-4 ↑

Standard 0.0060 0.0238 0.0455 0.068 0.92 0.62 0.375 0.372
NT 0.0077 0.0326 0.0640 0.083 0.76 0.70 0.349 0.334
UL 0.0059 0.0270 0.0570 0.075 0.82 0.95 0.321 0.294
ND 0.0108 0.0427 0.0799 0.120 0.72 0.05 0.386 0.404

Table 10: Automatic evaluation results using beam search (size 5) on DailyDialog. Our approach (ND) outperform
baselines on all the metrics.

beam decoding. However, we find that both NT507

and UL tend to generate long but non-fluent and508

incoherent responses. So we conduct beam search509

with adding the length penalty. Table 10 summa-510

rizes the results and it shows that both two baselines511

get better KL and BLEU scores than using greedy512

search. ND outperform baselines on all the metrics,513

confirming the effectiveness of our method.514

Input: The phone turns off by itself.

Standard: What’s the problem?
NT: I see. Is a part of the most important things. And I’ll be
happy to keep you there. Is the most important thing for you...
UL: I see. Is not allowed to be a good thing. Birthday. Birth-
day. - hour are very important......
ND: I am calling to tell you that he is in the right desk.

Input: Well, I bought this skirt here yesterday afternoon. But
I got the wrong size. It’s too small for my daughter. I wonder
if I could refund it.

Standard: That’s fine.
NT: That’s fine. Your mind and address number. number. And
date are available. And so on. Is very simple......
UL: I’m sorry, sir. But you’ve got to work overtime before
you leave the contract. Service is very important. Service.
Service usually be late.
ND: I think you have to pay the money.

Table 11: Examples of generated responses.

Case Study Table 11 shows some cases gener-515

ated by the proposed method and baselines. Stan-516

dard prefers generic and meaningless responses.517

Both NT and UL tend to generate a short generic518

sentence followed by a incoherent and non-fluent519

subsequence. In contrast, ND can produce diverse520

and coherent responses.521

4 Related work522

Diversity Dialogue Learning There are two523

lines of work for solving the generic response prob-524

lem: One line promotes the diversity from positive525

view, which is outside of our work. Specially, pre-526

vious work includes MMI (Li et al., 2016), GAN527

(Li et al., 2017a; Zhang et al., 2018), CVAE (Zhao528

et al., 2017), BT (Su et al., 2020), AdaLabel (Wang529

et al., 2021), IAT (Zhou et al., 2021) and Nucleus530

Sampling (Holtzman et al., 2020). The other line 531

alleviates the generic response problem using nega- 532

tive training. He and Glass (2020) regards frequent 533

response problem as a sub-problem of the generic 534

response problem and conduct negative update for 535

the high-frequency responses during training. Li 536

et al. (2020a) focuses on high-frequency tokens 537

rather than tokens and punishes them by using the 538

unlikelihood objective (Welleck et al., 2020). Both 539

of them handle the generic response problem only 540

from the angle of reducing frequency, thus can not 541

capture all the features of generic replies. 542

Negative Training for Dialogue Learning Neg- 543

ative training for retrieval-based dialogue learning 544

has been previously extensively studied (Humeau 545

et al., 2020; Nugmanova et al., 2019), while we 546

focus on the dialogue generation in this work. He 547

and Glass (2020) uses negative training to prevent 548

generic and malicious responses in dialogue mod- 549

els. Li et al. (2020a) generalizes unlikelihood to 550

dialogue generation for improving repetition, speci- 551

ficity and coherence. Lagutin et al. (2021) proposes 552

implicit unlikelihood training to minimizing repe- 553

tition. Our work proposes a new negative training 554

paradigm aimed at improving the diversity of di- 555

alogue responses while avoiding the problem of 556

poor consistency and fluency of previous work. 557

5 Conclusion 558

We present a novel negative training paradigm to 559

improve the diversity of dialogue responses. It 560

formulates the conventional negative training as 561

a knowledge distillation process, which is rarely 562

explored before. The negative teacher can produce 563

the corresponding generic and dull responses given 564

any query, which naturally avoids problems that 565

hinder previous negative training methods. Besides, 566

we further boost the performance of negative distil- 567

lation by exploiting richer information, i.e., multi- 568

level features. Extensive experiments validate the 569

superiority of our proposed method compared with 570

prior negative training work. 571
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