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Abstract

One highly promising direction for enabling flex-
ible real-time on-device image editing is utiliz-
ing data distillation by leveraging large-scale
text-to-image diffusion models to generate paired
datasets used for training generative adversarial
networks (GANs). This approach notably allevi-
ates the stringent requirements typically imposed
by high-end commercial GPUs for performing im-
age editing with diffusion models. However, un-
like text-to-image diffusion models, each distilled
GAN is specialized for a specific image editing
task, necessitating costly training efforts to obtain
models for various concepts. In this work, we
introduce and address a novel research direction:
can the process of distilling GANs from diffusion
models be made significantly more efficient? To
achieve this goal, we propose a series of innova-
tive techniques. First, we construct a base GAN
model with generalized features, adaptable to dif-
ferent concepts through fine-tuning, eliminating
the need for training from scratch. Second, we
identify crucial layers within the base GAN model
and employ Low-Rank Adaptation (LoRA) with
a simple yet effective rank search process, rather
than fine-tuning the entire base model. Third, we
investigate the minimal amount of data necessary
for fine-tuning, further reducing the overall train-
ing time. Extensive experiments show that we
can efficiently empower GANs with the ability to
perform real-time high-quality image editing on
mobile devices with remarkably reduced training
and storage costs for each concept.
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Proceedings of the 41 st International Conference on Machine
Learning, Vienna, Austria. PMLR 235, 2024. Copyright 2024 by
the author(s).

1. Introduction
Recent development of diffusion-based image editing mod-
els has witnessed remarkable progress in synthesizing con-
tents containing photo-realistic details full of imagina-
tion (Saharia et al., 2022; Rombach et al., 2022; Ramesh
et al., 2021; 2022). Albeit being creative and powerful,
these generative models typically require a huge amount
of computation even for inference and storage for saving
weights. For example, Stable Diffusion (Rombach et al.,
2022) has more than one billion parameters and takes 30
seconds to conduct an iterative denoising process to get one
image on T4 GPU. Such low-efficiency issue prohibits their
real-time application on mobile devices (Li et al., 2023).

Existing works try to tackle the problem through two main
directions. One is accelerating the diffusion models by de-
signing efficient model architecture or reducing the number
of denoising steps (Salimans & Ho, 2022; Meng et al., 2022;
Li et al., 2022; Kim et al., 2023). However, these efforts
still struggle to obtain models that can run in real-time on
mobile devices (Li et al., 2023). Another area focuses on
data distillation, where diffusion models are leveraged to
create datasets to train other mobile-friendly models, such
as generative adversarial networks (GANs) for image-to-
image translation (Zhao et al., 2021; Parmar et al., 2023).
Nevertheless, although GAN is efficient for on-device de-
ployment, each new concept still asks for the costly training
of a GAN model from scratch.

In this work, we propose and aim to address a new research
direction: can the GAN models be trained efficiently under
the data distillation pipeline to perform real-time on-device
image editing?

To tackle the challenge, we introduce E2GAN, powered
with the following techniques for the Efficient training and
Efficient inference of GAN models with the help of diffu-
sion models:

• First, we construct a base GAN model trained from
various concepts and the corresponding edited images
obtained from diffusion models. It enables efficient
transfer learning for different new concepts by fine-
tuning, rather than training models from scratch, to
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Figure 1: Overview of E2GAN. Left: Training Comparison. Conventional GAN training, such as pix2pix (Isola et al.,
2017) and pix2pix-zero-distilled that distills Co-Mod-GAN (Zhao et al., 2021) using data from a diffusion model (Parmar
et al., 2023), requires all the weights trained from scratch, while our efficient training significantly reduces the training cost
by only fine-tuning 1% weights with only portion of training data. Right: Mobile Inference Comparison. Our efficient
on-device model can achieve real-time (30FPS, iPhone 14) runtime and is faster than pix2pix and diffusion model, while the
pix2pix-zero-distilled model (Co-Mod-GAN) is not supported on device.

reduce the training cost. Meanwhile, the base GAN
model achieves fast inference with fewer parameters
on mobile devices (as in Fig. 1 Right), and maintains
high performance.

• Second, we identify that only partial layers are nec-
essary to be fine-tuned for new concepts. LoRA is
applied on these layers with a simple yet effective rank
search process, eliminating the need to fine-tune the
entire base model (as in Fig. 1 Left). It brings two ad-
vantages – both the training cost and storage for each
new concept are significantly reduced.

• Third, we investigate the amount of data for fine-tuning
the base model for various concepts. Reducing the
amount of training data helps reduce the training cost
and time for adapting the base model to new concepts.

We show extensive experimental results to demonstrate that
by using our approach, we can efficiently distill the image
editing capability from a large-scale text-to-image diffusion
model into GAN models via data distillation (examples
in Fig. 5). The distilled GAN model showcases real-time
image editing capabilities on mobile devices. We hope our
work can shed light on how to democratize the diffusion
models into efficient on-device computing.

2. Related Works
Generative Models. Generative models learn the joint data
distribution to generate new samples, such as VAEs (Kingma
& Welling, 2013; Rezende et al., 2014), GANs (Goodfel-
low et al., 2020; Zhu et al., 2017; Park et al., 2019), auto-
regressive models (Van Den Oord et al., 2016; Salimans

et al., 2017; Van Den Oord et al., 2016; Menick & Kalch-
brenner, 2018; Yu et al., 2022), and diffusion models (Sohl-
Dickstein et al., 2015; Ho et al., 2020; Nichol & Dhari-
wal, 2021; Song et al., 2020a;b; Dhariwal & Nichol, 2021).
Among these, diffusion models demonstrate a strong capa-
bility of generating images with high-fidelity (Ramesh et al.,
2022; Rombach et al., 2022), at the cost of bulky model
size and numerous sampling steps during inference. Several
studies try to accelerate the image generation process of
the diffusion models (Salimans & Ho, 2022; Meng et al.,
2022; Li et al., 2022). However, they still struggle to achieve
real-time on-device generation. On the contrary, GANs are
more efficient in terms of model size and inference speed
for image editing (Li et al., 2020; Jin et al., 2021; Wang
et al., 2020). To this end, we leverage the approach of data
distillation to transfer knowledge from diffusion models
to lightweight GANs that are compatible with real-time
inference on mobile devices.

Efficient GANs. Existing works actively explore the reduc-
tion of the inference runtime for GANs by using various
model compression techniques, such as efficient architecture
design (Li et al., 2020; Jin et al., 2021), network pruning
and quantization (Wang et al., 2020; 2019), and neural ar-
chitecture search (Wang et al., 2020; Fu et al., 2020). For
instance, representative works like GAN Compression (Li
et al., 2020) and GAN Slimming (Wang et al., 2020) mainly
focus on the efficient model construction for the inference
stage with reduced latency and model size, without consid-
ering the training cost. Specifically, GAN Compression (Li
et al., 2020) decouples the model training and architecture
search process for the obtaining of compressed weight val-
ues for inference, which leads to more computations during
the training process. On the other hand, the research about

2



Efficient Training of Efficient GANs for Image-to-Image Translation

Table 1: Comparison of model size, FLOPs, and latency
for different works (Li et al., 2023; Isola et al., 2017; Parmar
et al., 2023). Co-Mod-GAN (Zhao et al., 2021) is trained
following the pipeline in pix2pix-zero (Parmar et al., 2023).
Reported latency is averaged over 100 runs on iPhone 14
Pro. The training time of pix2pix and Co-Mod-GAN is
measured on a single NVIDIA H100 GPU.

Model Param
num FLOPs Latency Train

time
SnapFusion 861M >1T 1956 ms 7680 hours
Pix2pix with 9 RB 11.4M 56.9G 21.0 ms 16 min
Co-Mod-GAN 79.2M 98.2G not supported 110 min

training cost savings for GANs is quite limited, as most
works typically train all the parameters of a GAN model
from scratch for the image-to-image translation task, involv-
ing large computing efforts. This work aims to fine-tune
a very small portion, i.e. 1%, of the pre-trained models
with the partial training data to reduce the training cost.
Thus, the training of GAN can be tiny in terms of both
parameters and data. There are many efforts on efficient
training (Huang et al., 2019; Köster et al., 2017), in partic-
ular the sparse training (Evci et al., 2020; Lee et al., 2019;
Yuan et al., 2022). However, these methods rely on the
mask of trainable parameters, which in turn are determined
during training with a huge bunch of data. In contrast, our
method adopts pre-defined learnable components and only
fine-tunes on a small fragment of data to make the transfer
learning progress efficient and effective.

3. Motivation
The huge model size, high computation cost, and numerous
sampling steps pose significant challenges to the imple-
mentation of diffusion models on widely adopted mobile
platforms with limited capacities. Even recent attempts at
accelerating diffusion models, such as SnapFusion (Li et al.,
2023), still require nearly 2 seconds to generate a single im-
age on an iPhone 14 Pro, as shown in Tab. 1. This efficiency
issue strictly hinders their real-time application, e.g., image
editing with 30 frames per second (FPS), on widely adopted
edge platforms such as mobile devices.

In contrast, various efficient and mobile-friendly GAN de-
signs exist. For instance, the pix2pix model with 9 ResNet
Blocks (RBs) takes only 21 ms to generate an edited image
on an iPhone 14 Pro. Recognizing the inefficiency in directly
accelerating diffusion models and the lightweight nature of
certain GANs, researchers have explored data distillation
as an alternative research direction. This approach involves
transferring the knowledge of diffusion models to GANs.
Latest work pix2pix-zero (Parmar et al., 2023) creates train-
ing data to train Co-Mod-GAN for model acceleration, yet
it is not supported on mobile devices. Furthermore, the

training time to obtain the Co-Mod-GAN for a new concept
is still costly, which takes 110 min as shown in Tab. 1.

To overcome the above-mentioned limitations, the objective
of this work is to achieve efficient distillation of diffusion
models to mobile-friendly real-time GANs. Specifically,
efficient distillation refers to minimizing the training efforts
needed to obtain the GAN model for a new concept. Fur-
thermore, when deployed on a mobile device after efficient
distillation, the mobile-friendly real-time GANs should ex-
hibit low latency (<33.3 ms) and demand minimal storage
for a new concept.

4. Methods
In this section, we first give an overview of our knowledge
transfer pipeline (Sec. 4.1). Then, we study efficient training
strategies to get on-device models with reduced training
and storage costs, while maintaining high-quality image
generation ability (Sec. 4.2).

4.1. Overview of Knowledge Transfer Pipeline

Pipeline for Dataset Creation. To enable the data distil-
lation, we use the diffusion models to edit real images to
obtain the edited images, forming pairs of data along with
the used text prompts for the concept to create the training
datasets, which can then be utilized to train the image-to-
image GAN model. The real images come from FFHQ (Kar-
ras et al., 2019) and Flickr-Scenery (Cheng et al., 2022), cov-
ering diverse content and are challenging for content editing.
For diffusion models, we choose the recent works for image
editing, such as Stable Diffusion (Rombach et al., 2022),
Instruct-Pix2Pix (IP2P) (Brooks et al., 2022), Null-text In-
version (NI) (Mokady et al., 2022), ControlNet (Zhang &
Agrawala, 2023), and InstructDiffusion (Geng et al., 2023).

Training Objectives. With paired images and the associ-
ated prompts for the concept, we train the efficient GANs
for image translation by using the conventional adversar-
ial loss. Specifically, given the original image x and the
editing prompt of the concept c, the image generator G and
discriminator D are jointly optimized as follows:

min
θg

max
θd

λEx,x̃c,z,c

[
∥x̃c − G(x, z, c; θg)∥1

]︸ ︷︷ ︸
ℓ1 loss

+

Ex,x̃c
[
logD(x, x̃

c
; θd)

]
+ Ex,z,c [log(1 − D(x,G(x, z, c; θg); θd))]︸ ︷︷ ︸

conditional GAN loss

,

(1)

where x̃c denotes images generated by the diffusion model
conditioned on the text prompt of the concept c, G andD de-
note the generator and discriminator function parameterized
by θg and θd, respectively, z is a random noise introduced
to increase the stochasticity of output, and λ can be used to
adjust the relative importance between two loss terms.
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Figure 2: FID comparison of applying TBs in image generators trained on two datasets (Left: forest during
autumn, Right: forest in the dusk). The vertical axis shows the position of inserting TBs. Pix2pix-zero-distilled
uses pix2pix-zero for creating datasets to train Co-Mod-GAN (Ramesh et al., 2021).
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Figure 3: Overview of E2GAN model architecture. The generator is composed of down/up-sampling layers, 3 RBs, and 1
TB. The base generator is trained on multiple representative concepts. New concepts are achieved by fine-tuning LoRA
parameters on crucial layers.

4.2. Efficient Training of GAN Models

Diffusion-based generative models can perform image edit-
ing on the fly while lightweight GAN-based networks typ-
ically require training to be adapted to the new concept.
The training of GAN models for various concepts requires
substantial computation costs. Additionally, there is a high
storage demand for saving the trained weights. To mitigate
such training and storage costs, we introduce three main
techniques to reduce the number of trainable parameters and
the demanded data for model fine-tuning: First, we estab-
lish a base GAN model equipped with generalized features
and representations, ready to be leveraged for new concepts
(Sec. 4.2.1). Second, starting from the base model, we
identify key parameters to optimize during fine-tuning for
a new concept, bolstered by the application of LoRA (Hu
et al., 2021) to further reduce the number of parameters
(Sec. 4.2.2). Third, we explore the possibility of tiny fine-
tuning where the training data are first clustered and only
those near the cluster centers are used (Sec. 4.2.3).

4.2.1. BASE GAN MODEL CONSTRUCTION

To obtain model weights for a new target concept with as
few training efforts as possible, we explore transfer learning
from a pre-trained base GAN model, instead of training

from scratch. The base model should possess the capability
of more general features and representations, which can
be learned from multiple image translation tasks, allowing
the new concept to leverage existing knowledge. Thus, we
opt to train the base model on a mixed dataset comprising
diverse concepts.

The construction of the image-to-image model G serves as
the first step in obtaining such a base model. This model
should fulfill three key criteria: (1) the ability to learn mul-
tiple concepts; (2) achievement of real-time inference on
mobile devices; and (3) strong image generation capabil-
ities. We start from the classic ResNet generator with 9
RBs that is widely adopted (Isola et al., 2017; Zhu et al.,
2017; Park et al., 2020). To incorporate the text information
of the concept and facilitate a more holistic understanding
of global shapes and structure, we introduce Transformer
Blocks (TBs) with self-attention and cross-attention mod-
ules into the architecture. For expedited inference purposes,
we reduce the number of RBs from 9 to 3. The subsequent
steps involve determining the number and position of TBs.

Number of TBs. We train models with different architec-
ture designs, e.g. different numbers of TBs, and evaluate
both the efficiency (in terms of model size, FLOPs, and
latency) and image generation capability (in terms of the
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Table 2: The model size, FLOPs, and latency of E2GAN.
The reported latency is an average of 100 runs measured on
the GPU of an iPhone 14 Pro.

Model Param num FLOPs Latency
3RB+1TB 7.1M 23.6G 15.5 ms
3RB+2TB 10.1M 26.6G 21.0 ms
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Figure 4: Crucial weights analysis via freezing partial
weights in the base model. (a) Number of parameters for
each part of the base model; (b) Averaged FID across 10
different concepts on the Flicker-Scenery dataset when freez-
ing partial weights of base model. ‘-’ indicates fine-tuning
all the weights; (c) The generated images when freezing
each part of the base model.

FID (Heusel et al., 2017) between the images generated by
GANs and diffusion models). The results are presented in
Tab. 2 and Fig. 2, respectively. Interestingly, we find that
one TB is enough to generate high-quality images. Introduc-
ing more TBs does not further improve the performance yet
brings in more computation cost. Notice that to reduce the
inference cost of the introduced TB, we apply a downsam-
pling operation to halve the feature map size before sending
it into the TB, and use an upsampling layer to recover the
feature map size for the following operations.

Position of TBs. Additionally, we find that the position
of the TB is important for the final performance of the
image generation. First, the TB should be placed between
the last downsample layers and the first upsample layers
to avoid high computations on mobile devices, due to the
high resolution of features. Second, we apply attention to
different positions of the network bottleneck. Particularly,
the TB can be inserted between one of the following: (1)
before the first RB; (2) after the first RB; (3) after the second
RB; and (4) after the third RB. As evident in Fig. 2, all these
options lead to a generator with better performance than the

conventional CONV-only networks used in pix2pix (Isola
et al., 2017) and pix2pix-zero-distilled (Parmar et al., 2023).
For our model, we place the TB after the second RB.

Thus, our architecture is finalized with an overall architec-
ture in Fig. 3. It achieves faster inference speeds, reduces
the number of parameters, and lowers computational costs
compared to existing image-to-image models, as shown
in Tab. 2 and Fig. 2. With the architecture determined,
the base model is trained on a subset of concepts denoted
as C = {c1, · · · , cK}, where each concept ck is selected
among different concepts by K-means clustering (Lloyd,
1982) based on the average of the CLIP image embed-
ding (Radford et al., 2021) of uniformly sampled images.

4.2.2. CRUCIAL WEIGHTS FOR FINE-TUNING

To save the training and storage costs, we reduce the num-
ber of trainable parameters during fine-tuning. Specifically,
we pre-define trainable layers that occupy a small portion
of weights from the base model. Then, we apply LoRA
on top of the trainable layers. In this way, we only op-
timize 1.29% of the weights from the base model during
fine-tuning, greatly reducing the training and storage costs
for a new concept.

Inspired by the recent work of customized diffusion (Ku-
mari et al., 2022), which demonstrates that a pre-trained
diffusion model can be fine-tuned to a personalized version
by updating only a subset of its weights, we explore the
feasibility of identifying the minimal set of tunable weights
for GANs. Our objective is to determine a set of weights
that is sufficient for fine-tuning the base model to adapt to
a new concept. To this end, we analyze the components of
the GAN model, which mainly consist of three parts: (1)
sampling layers (SL) with downsampling and upsampling;
(2) transformer block (TB); and (3) intermediate RB.

Identifying Crucial Layers. We systematically and empiri-
cally study the impact of each part in the image-to-image
task by freezing each part in the model individually, with
results provided in Fig. 4. Combining Fig. 4(b) & (c), we
see that SL plays a more crucial role in maintaining the qual-
ity of generated images, identified by the high FID score
value and low image quality. SL might be more crucial
for constructing the desired output texture, yet intermediate
RB might contain lower-level information that are com-
mon among styles. Meanwhile, compared to RB, TB has a
fewer amount of parameters (1.58M v.s. 3.54M in Fig. 4(a)),
while it is more important in keeping performance (123.6 v.s.
111.3 in Fig. 4(b)). Considering the situation with a limited
training budget, RB has a lower priority to be optimized.

LoRA on Crucial Layers. From the perspective of main-
taining image-generating quality, it is better to include TB
in training as self-attention modifies the image with a bet-
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ter holistic understanding and the cross-attention module
takes the information from the given target concept. How-
ever, combining SL and TB leads to 3.42M parameters to
be updated, taking up 47.90% of the entire model weights.
To fine-tune the crucial layers with much fewer trainable
parameters, we investigate the best way of incorporating
Low-Rank Adaptation (LoRA) (Hu et al., 2021) into GAN
training, which introduces two trainable low-rank weight
matrices besides the original weight for each layer identified
as crucial. By doing so, not only the training efforts, but
also the storage costs for a new concept are significantly
reduced.

Rank for LoRA. With the leverage of LoRA, when fine-
tuning to a new concept, the weights of the base model are
frozen, while only the two low-rank matrices with much
fewer parameters for each crucial layer are updated to save
computation and storage costs. For instance, for a CONV
layer i with weights θi ∈ Rh×w×kh×kw , we apply two low-
rank matrices with rank ri, i.e. θAi ∈ Rh×ri×kh×kw and
θBi ∈ Rri×w×1×1, to approximate the gradient update∇θi.
Given multiple crucial layers, determining the appropriate
rank for each of them is important. Prior works mostly rely
on manual setting (Hu et al., 2021) for deciding the rank
value, due to a huge search space for the rank. However, in
our task, the rank should be pre-fixed for different concepts
to avoid the rank search process when a new concept comes.
To tackle this challenge, we randomly sample K concepts
and conduct a simple yet effective rank search process. For
each concept, we start by assigning ri as 1 for each crucial
layer i, and upscale the rank for every e epochs by doubling
the rank value, until ri reaches the upper threshold τi for
the layer i. The threshold τi is determined by the size of the
weight. We evaluate the FID performance at the end of each
e training epochs. If the performance saturates, the rank
value from the best FID performance setting is returned
as the rank for the concept. Typically, a larger rank can
provide more model capability. Thus, the largest returned
rank among the K selected concepts is viewed as r∗ for
the future use of a new concept. The overall algorithm is
described in Algorithm 1 in Sec. A in the Appendix.

4.2.3. TRAINING DATA REDUCTION

Reducing the amount of training data can directly result in
a reduction in the training time. Thus, we aim to investigate
data efficiency as a means of decreasing the training cost in
addition to the crucial weight update for E2GAN. We find
not all data are indispensable for reliable training, but only a
small subset is necessary. We obtain this small subset in an
unsupervised manner with a selection of the data crowding
around the clustering center on the whole dataset.

To identify the small subset of essential data, we conduct
unsupervised learning to analyze the structure of the training

data. We first extract an embedding for each image x with an
extractor E . Then, we apply clustering on the embeddings
by the K-Means algorithm (Lloyd, 1982) to obtain K < N
clusters (N is the total number of training images), each
with center µk. The embeddings within the same cluster
have a closer distance from each other, indicating a higher
similarity of the data points. To reduce the data amount
while maintaining data diversity for the good generalization
ability of the model, one data point, which is the closest to
the center µk, is selected for each of the K clusters.

With our data selection method using K clusters, we further
reduce the number of training iterations by N/K times. In
contrast to prior methods involving additional computations
in the training process to shrink the dataset (Yuan et al.,
2021; Wang et al., 2022), our Similarity Clustering (SC)
data reduction is tailored for expediting the training of image
editing tasks. It reduces the training data volume directly
before the training process without incurring any additional
costs during the training.

5. Experiments
In this section, we provide the detailed experimental settings
and results of our proposed method. More details as well as
some ablation studies can be found in the Appendix.

5.1. Experiments Setup

Paired Data Preparation. We verify our method on 1, 000
images from FFHQ dataset (Karras et al., 2019) and Flickr-
Scenery dataset (Cheng et al., 2022) with image resolution
as 256×256. The images in the target domain are generated
with several different text-to-image diffusion models, includ-
ing Stable Diffusion (Rombach et al., 2022), IP2P (Brooks
et al., 2022), NI (Mokady et al., 2022), ControlNet (Zhang
& Agrawala, 2023), and InstructDiffusion (Geng et al.,
2023). The generated images with the best perceptual qual-
ity among diffusion models are selected to form with the
real images into paired datasets. To perform training and
evaluation of GAN models, we divide the image pairs from
each target concept into training/validation/test subsets with
the ratio as 80%/10%/10%. All the concepts to evaluate
for the fine-tuning performance are reserved from the other
concepts.

Baselines. We compare E2GAN with image-to-image trans-
lation methods like pix2pix (Isola et al., 2017) (image gen-
erator with 9 ResNet blocks) and pix2pix-zero-distilled that
distills Co-Mod-GAN (Zhao et al., 2021) using data gener-
ated by pix2pix-zero (Parmar et al., 2023).

Training Setting. We follow the standard approach that
alternatively updates the generator and discriminator (Good-
fellow et al., 2020). The training is conducted from an initial
learning rate of 2e− 4 with mini-batch SGD using Adam
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Figure 5: Qualitative comparisons on various tasks. The leftmost column shows two original images and the remaining
columns present the corresponding synthesized images in the target concept domain, where target prompts are shown at the
bottom row. We provide images generated by various models.

solver (Kingma & Ba, 2014). The total training epochs is
set to 100 for E2GAN, and 200 for pix2pix (Isola et al.,
2017) and pix2pix-zero-distilled (Parmar et al., 2023) for
them to converge well. For SC (Sec. 4.2.3), we choose the
cluster number as 400 and use the feature extractor E as
FaceNet (Schroff et al., 2015) on FFHQ dataset and CLIP
image encoder (Radford et al., 2021) on Flicker Scenery
dataset. To train the base model, we use 20 prepared
tasks/datasets from the FFHQ dataset and 7 from the Flickr
Scenery dataset. The training and training time measure-
ments are conducted on one NVIDIA H100 GPU with 80
GB memory.

Evaluation Metric. We compare the images generated by
E2GAN and baseline methods by calculating Clean FID

proposed by (Parmar et al., 2022) on the test sets.

5.2. Experimental Results

Qualitative Results. The synthesized images in the tar-
get domain obtained by E2GAN and other methods are
shown in Fig. 5. The original images are listed at the left-
most column, and the synthesized images for the target
concept obtained by diffusion models, pix2pix, pix2pix-
zero-distilled, and E2GAN are shown from top to bottom.
The tasks span a wide range, such as changing the age,
artistic styles, and editing the seasons. According to the
results, E2GAN is able to modify the original images to
the target concept domain by updating only the LoRA pa-
rameters. For instance, for the green lantern concept
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Table 3: FID comparison. The FID is calculated between
the images generated by GAN-based approaches and dif-
fusion models. Reported FID is averaged across different
concepts (30 for FFHQ and 10 for Flicker Scenery).

Method
Dataset

FFHQ Landscape

Pix2pix 86.03 114.2
Pix2pix-zero-distilled 87.76 132.6
E2GAN 80.28 109.37

on the FFHQ dataset, the diffusion model fails to modify
the image, pix2pix and pix2pix-zero-distilled add colors to
wrong areas, while E2GAN generates the image that fits the
concept well. As for the add blossoms concept on the
Flicker Scenery dataset, E2GAN preserves the structure of
the original image better than other models while editing
the image as desired.

Quantitative Comparisons. The quantitative comparisons
between E2GAN and other baseline methods on the two
datasets are provided in Tab. 3. Note that for each concept,
pix2pix and pix2pix-zero-distilled are trained on the whole
training dataset of 800 samples. E2GAN begins with a base
model and is fine-tuned with only 400 samples on LoRA
weights to obtain models for different target concepts. The
results demonstrate that E2GAN can reach an even better
FID performance than the conventional GAN training tech-
niques like pix2pix and pix2pix-zero-distilled, indicating
high-fidelity of generated images.

Training Cost Analysis. We show the training cost com-
parisons between E2GAN and other approaches in Fig. 6
in terms of training FLOPs, training time, and number of
parameters that require gradient update. Compared with
pix2pix and pix2pix-zero-distilled, E2GAN greatly saves
the training FLOPs of 14× and 25×, respectively, and ac-
celerates the training time by 4.8× and 33×, respectively.
Moreover, E2GAN only requires updating 0.092M param-
eters for a new concept, greatly saving the storage require-
ment when training models for various tasks/concepts, i.e.
869× less than pix2pix-zero-distilled.

Table 4: Analysis (FID) of various base models on FFHQ.

Concept
Base model Ours 20

random
200 art

concepts
Single

concept
White walker 40.18 53.92 40.32 51.99
Blond person 48.01 52.77 61.50 55.58
Sunglasses 38.49 40.54 41.37 44.12

Vangogh style 71.82 78.58 68.21 78.06

Table 5: Analysis of searching LoRA rank on the Flickr
Scenery dataset. The reported FID values are averaged over
10 different target concepts.

Scheme FID # of Param
Our searched 109.37 0.092M

Upscale 1× 130.98 0.056M
Upscale 4× 111.42 0.164M

Random 129.87 0.100M

Notably, E2GAN requires much fewer trainable parameters,
training data, and training time than other GAN-based ap-
proaches to reach even better generation quality, i.e. E2GAN
has lower FID than pix2pix on FFHQ (80.28 v.s. 86.03).
Furthermore, E2GAN enjoys a faster inference speed on
mobile devices (Tab. 1). The good performance of E2GAN
originates from our effective framework design, including
the efficient model architecture and efficient training strat-
egy that reduces the training parameters and training data
(Sec. 4.2). The results showcase the possibility of democra-
tizing the powerful diffusion models into efficient on-device
computing.

5.3. Ablation Analysis

We provide ablation analysis to understand the impact of
each component in our efficient GAN training pipeline. We
first study the effectiveness of the base model determination.
After that, we provide an analysis of the LoRA rank search.
Finally, we discuss the effect of our data selection.

Analysis of Base Model Determination. We study the
impacts of our base model determination method discussed
in Sec. 4.2.1 by comparing our method with the follow-
ing three settings: (1) train the base model on 20 random
concepts; (2) train the base model on 200 artist concepts;
(3) train the base model on a single concept old person
from the FFHQ dataset. The results are demonstrated in
Tab. 4. Note our method is obtained by training on 20 se-
lected representative concepts. The results indicate our base
model construction outperforms or matches the alternatives
across the evaluated concepts. This underscores the efficacy
of our base model in enhancing performance. In contrast,
the single concept base model generally performs worse.
Furthermore, simply increasing the amount of concepts does
not necessarily lead to better performance as indicated by
training the base model with 200 art concepts.
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Analysis of LoRA on Crucial Layers. Tab. 5 presents an
evaluation of the effectiveness of our LoRA rank search
on the Flicker Scenery dataset. The table reports the FID
averaged across 10 different target concepts, as well as
the number of LoRA parameters for various schemes. We
compare our method with the other three settings: (1) up-
scale the rank 1× for each crucial layer by doubling the
rank from the initialization until the rank reaches the thresh-
old; (2) upscale the rank 4× for each crucial layer from
the initialization; and (3) random assign ranks for the cru-
cial layers. The results indicate that our searched scheme
achieves the lowest FID value of 109.37 while maintaining
a relatively low number of parameters as 0.092M. Though
settings (2) and (3) use more parameters for fine-tuning, the
FID performance is worse than our searched scheme. This
demonstrates the importance of the appropriate rank setting
and the effectiveness of our LoRA rank search approach.

Analysis of Cluster Number of Data Selection. To in-
vestigate our data sampling rule SC for obtaining training
samples (proposed in Sec. 4.2.3 to reduce the number of
training data), we compare it with the random sampling
method. Random sampling is implemented as shuffling the
training data randomly and only accessing the first K ex-
amples as training data. The comparisons are conducted
with different numbers of training samples K. We show the
results in Fig. 7 and can draw the following observations.
First, SC provides better FID performance than random
sampling in all scenarios, indicating the effectiveness of
our sampling method by enriching data diversity. Second,
the cluster number, i.e. the number of target training sam-
ples, influences the SC performance to some extent. More
training examples (clusters) do not necessarily lead to better
performance. For instance, on the old person concept,
a cluster number of 300 provides a better FID performance
than setting the cluster number as 400. Furthermore, SC
can work for a wide range of different number of training
samples by providing models with good FID performance.

6. Conclusion
This paper addresses the growing demand for efficient on-
device image editing by introducing a novel research direc-

tion, that is the efficient training of efficient GAN models
via distilling the large-scale text-to-image diffusion models
with data distillation. The proposed framework, E2GAN,
incorporates a hybrid training pipeline that can efficiently
adapt a pre-trained text-conditioned GAN model, which has
real-time inference speed on mobile devices, to different
concepts, while significantly mitigating computational and
storage demands. The framework includes the construc-
tion of a base GAN model trained from various diffusion
models, enabling fine-tuning for new concepts, an effective
trainable parameter reduction approach, and a similarity
clustering-based training data reduction method. Extensive
experimental results validate the effectiveness of E2GAN.
We hope our work can shed light on how to democratize the
diffusion models into efficient on-device computing.

Impact Statement
Real-time on-device image generation with current large-
scale diffusion models is still challenging. This work pro-
poses an innovative approach to this purpose, especially
in the image domain. We leverage the data distillation ap-
proach to train lightweight GAN models on paired data
prepared by large-scale text-to-image diffusion models. In
addition, we introduce an innovative architecture with atten-
tion blocks that are more efficient and can be easily adapted
to new concepts with higher performance. By saving the re-
quired tunable parameters and selecting only a small portion
of data during fine-tuning, we accelerate the transfer learn-
ing process without sacrificing image quality. Our work pro-
vides an effective way to leverage both the high-generating
quality of large foundation models and the fast-generating
speed of lightweight networks to enable real-time on-device
image generation with high fidelity.

Limitations. Generating high-quality images using diffu-
sion models can be challenging for diverse prompts, which
in turn restricts the expansion of our training datasets. More-
over, utilizing diffusion models for data collection remains
an expensive endeavor. Developing efficient techniques
to rapidly construct well-paired and high-quality datasets
from diffusion models would greatly enhance the training
of E2GAN.

Broader Impacts. Real-time high-quality image generation
can find many fantastic applications including popular en-
tertainment and artistic creation. However, the widespread
availability and power of these tools also pose significant
challenges. Misuse and abuse of image generation models
can lead to issues such as the creation of deepfakes, mislead-
ing media, and other forms of digital deception. Restricting
abuse and misuse of powerful models with more supervision
by the public or legal control will enhance the beneficial
outcomes of these models and maximize the interest we
could gain from them.
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A. Overall Algorithm for LoRA Rank Search

Algorithm 1 LoRA rank search in Sec. 4.2.2
Input: Model with I crucial layers, K sampled concepts, training epochs e, upper threshold {τi}Ii=1.
Output: The rank {r∗i }Ii=1.
Initialize: {r∗i }Ii=1 ← {1}Ii=1

for k = 1, . . . ,K do
Get the concept ck and paired dataset {(x̃ck ,x)} for the concept
fid←∞
new fid←∞
while ∃ri < τi and new fid ≤ fid do
{ri}Ii=1 ← {min(2 ∗ ri, τi)}Ii=1

Train {θAi , θBi }Ii=1 with the rank {ri}Ii=1 for e epochs on the training set of {(x̃ck ,x)}
fid← new fid
Evaluate the FID score new fid with current model weights on the test set of {(x̃ck ,x)}

end
if {ri}Ii=1 > {r∗i }Ii=1 then
{r∗i }Ii=1 ← {ri}Ii=1

end
end

We show the overall algorithm for LoRA Rank Search in Algorithm 1. For each concept in the K sampled concepts, we
start by assigning ri as 1 for each crucial layer i, and upscale the rank for every e epochs by doubling the rank value, until ri
reaches the upper threshold τi for the layer i. We evaluate the FID performance at the end of each e training epochs. If
the performance saturates, the rank value from the best FID performance setting is returned as the rank for the concept.
Typically, a larger rank can provide more model capability. Thus, the largest returned rank among the K selected concepts is
viewed as r∗ for the future use of a new concept.

B. More Implementation Details
B.1. Details for Diffusion Model

We apply most recent diffusion-based image editing models to create paired datasets, which include Stable Diffuison
(SD) (Rombach et al., 2022), Instruct-Pix2Pix (IP2P) (Brooks et al., 2022), Null-text inversion (NI) (Mokady et al., 2022),
ControlNet (Zhang & Agrawala, 2023), and Instruct Diffusion (Geng et al., 2023). For all these models, we use the
checkpoints or pre-trained weights reported from their official websites1.

More specifically, for SD, the strength, guidance scale, and denoising steps are set to 0.68, 7.5, and 50, respectively. For
IP2P, images are generated with 100 denoising steps using a text guidance of 7.5 and an image guidance of 1.5. For NI, each
image is generated with 50 denoising steps and the guidance scale is 7.5. The fraction of steps to replace the self-attention
maps is set in the range from 0.5 to 0.8 while the fraction to replace the cross-attention maps is 0.8. The amplification value
for words is 2 or 5, depending on the quality of the generation. For ControlNet, the control strength, normal background
threshold, denoising steps, and guidance scale are 1, 0.4, 20, and 9, respectively. For Instruct Diffusion, the denoising steps,
text guidance, and image guidance are set as 100, 5.0, and 1.25, respectively.

B.2. Hyperparameters in LoRA Rank Search

During the process of searching LoRA rank, the rank ri for each crucial layer i is upscaled once for every e epochs until ri
reaches the upper threshold τi for the layer i. In the experiments, e is set as 10. The rank threshold τi is determined by the

1SD v1.5: https://huggingface.co/runwayml/stable-diffusion-v1-5, IP2P: http://
instruct-pix2pix.eecs.berkeley.edu/instruct-pix2pix-00-22000.ckp, NI: https://huggingface.
co/CompVis/stable-diffusion-v1-4, ControlNet: https://huggingface.co/lllyasviel/ControlNet/
blob/main/models/control_sd15_normal.pth, InstructDiffusion: https://github.com/cientgu/
InstructDiffusion.
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size of the layer. More specifically, the crucial layers include: (1) four CONV-based upsampling layers with the shape as
[3, 64, 7, 7], [64, 128, 3, 3], [128, 256, 3, 3], and [256, 256, 3, 3]; (2) four corresponding downsampling layers by transpose
CONV with the same set of weight shape as upsampling; and (3) transformer blocks with projection matrices q,k,v with
shape as [256, 256], and multi-layer perceptron (MLP) module with shape as [2048, 256] and [256, 1024]. Based on the
weight size, the rank threshold τ is set as 1, 4, 16, and 32 for the four upsampling/downsampling layers, respectively, and 1
for the layers in the transformer block. After the search process, the suitable rank is determined as 1, 4, 8, 8 for the four
upsampling/downsampling layers.

B.3. Details for the Concept Setting

The 20 random concepts in Tab. 4 include Leonardo da Vinci painting, Gouache, Abstract Murals,
Pointillist Portraits, Young person, Op Art, Sand Art, Cubist Makeup, Romanticism,
Futurist Portraits, Hulk, Documentary Photography, Cubist Portraits, Pale person,
Typography Art, Picasso painting, Photorealistic Portraits, Black and White
Photography, Quilting, Batman. The 30 evaluation concepts in Tab. 3 include: Albino person, Angry
person, Blond person, Old person, Grey hair, Put on sunglasses, Tan person, Burning
man, Abstract Expressionist Makeup, Watercolor painting, Screen printing, Silver
Sculpture, Vincent van Gogh style, Paul Gauguin painting, Henri Matisse paintings,
Jacob Lawrence painting, Chinese Ink painting, Oldtime photo, Low Quality photo,
Green Lantern, White Walker, Hercule Poirot, Ghost Rider, Catwoman, Harley Quinn,
Chewbacca from Star Wars, Obi-wan Kenobi, Zombie, Gamora, Draco Malfoy. The concepts selected
by our approach in base generator construction as described in Sec. 4.2.1 include Abstract Art, Bleeding Person,
Burning Person, Comic, Leonardo da Vinci painting, Frida Kahlo painting, Hulk, Joker,
Low Quality photo, Manga, Miro painting, Amedeo Modigliani painting, Monet painting,
Ancient Egypt Monumental, Mummy, Munch art, Picasso painting, Pink hair, Pop art, Sketch,
Sleeping person, Ukiyo-e style, Wax figure, Young person. For the FFHQ dataset, there are 260
concepts in total, where 30 concepts are used for diverse fine-tuning purposes. The selected 20 concepts are obtained by
K-means clustering with the remaining 230 concepts. For the Flickr Scenery dataset, there are 20 concepts in total, where
10 concepts are used for pretraining and the other 10 concepts are for the diverse fine-tuning purpose.

C. More Analysis for the Efficient Image-to-Image Model
C.1. Effectiveness of Model Architecture

Table 6: FID comparison between E2GAN model architecture (3RB+1TB) and pix2pix (9RB) under the setting of training-
from-scratch.

Concept E2GAN (3RB+1TB) Pix2pix (9RB)
Angry person 49.56 55.16
Pale person 42.65 49.14
Tan person 42.47 51.37
Young person 51.27 56.10

Here we further show the effectiveness of our efficient model architecture design in complementary to the results in Sec. 4.2.1.
We compare our 3RB+1TB design against the 9RB design used in pix2pix for several concept settings. The results are
shown in Tab. 6 with both models trained on the entire training set of 800 samples. From this, we can see that the 3RB+1TB
design can reach higher FID with fewer parameters and FLOPs (as in Tab. 1). For instance, a 3RB+1TB model in the target
concept domain of pale person has a FID as 42.65, decreasing the FID value by 6.49 compared to the 9RB model of
pix2pix.

To demonstrate the generalization ability of our model architecture, we further include the results on the AFHQ dataset. We
follow the same pipeline as in the main results. We use 1, 000 images in the AFHQ dataset to generate paired data with
diffusion models. The base generator is trained on three concepts including cat to serval, watercolor painting, and chalk art.
The performance is evaluated on five concepts. We provide quantitative results in Tab. 7 and the generated images in Fig. 8.
The results show that our method performs better than baseline methods, indicating the generalization ability.
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Table 7: Quantitative results (FID) on the AFHQ dataset for different concepts.

Model Pix2pix Co-Mod-GAN Ours
Cat to fox 39.78 42.67 36.60
Cat to ocelot 30.72 33.64 29.51
Vincent van Gogh style 67.11 66.83 64.09
Charcoal drawing 28.01 28.58 25.90
Pop art 112.58 132.78 110.28

Table 8: Quantitative results on conventional benchmarks for paired data.

Model Facades (FID) Cityscapes (mIoU) Edges→ Shoes (FID)
Pix2pix 126.65 42.06 24.18
Co-Mod-GAN 136.72 35.62 38.50
GAN Compression - 41.71 25.76
Ours 121.89 43.20 24.03

We further conduct experiments on other image-to-image translation tasks other than diffusion model distillation to further
show the effectiveness of our model architecture design. We use conventional paired benchmark datasets, including sketch-
¿shoes, facades, cityscapes, and conventional unpaired benchmark dataset, such as horse2zebra. We provide quantitative
results in Tab. 8 and 9. From the results, we can observe that our design achieves better performance with higher FID and
lower mIoU.

C.2. Sampling Operations for Transformer Block

As mentioned in Sec. 4.2.1, we apply a downsampling operation with a CONV layer to halve the feature map size before
sending it into the transformer block, and use an upsampling layer implemented by transpose CONV operation to recover the
feature map size for the following operations to reduce the amount of computations. We conduct another set of experiments
on the Flicker Scenery dataset to see if these sampling operations can be replaced by pooling and unpooling operations, such
that a smaller model size can be reached. We first train these two models on the selected prompts to get the base model.
Then, we fine-tune the entire model with all the training data for a new concept. The comparison results are shown in Tab. 10.
From the results, we can observe that though applying pooling operations can reduce the number of parameters from the
base model by 1.2M, the FID performance becomes much worse. Thus, we use CONV operation instead of pooling to
tackle the feature map reduction and recovery for the transformer block.

D. More Ablation Analysis for the Base Model
D.1. Pre-train with Multiple Concepts for Conventional GAN Training

We investigate if conventional GAN training such as pix2pix can benefit from fine-tuning a pre-trained base model,
as leveraged in E2GAN. To verify this, we follow the same step as E2GAN to pre-train pix2pix with the selected 7
prompts/datasets on the Flicker Scenery dataset. Then, the base model is fine-tuned to adapt to other concepts. The results in
Tab. 11 show that pix2pix does not gain much benefits from pre-training. Moreover, the performance becomes even worse,
such as for the concept Vangogh style (FID degrades from 138.77 to 151.20 with a pre-trained base model). The

Table 9: Quantitative results on the unpaired dataset.

Model Horse2Zebra (FID)
CycleGAN 74.04
CUT 45.76
GAN Compression 64.95
GAN Slimming 86.09
Ours 44.12
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Figure 8: Qualitative comparisons on various tasks. The leftmost column shows original images and the remaining columns
present the corresponding synthesized images in the target concept domain.
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Table 10: FID performance of replacing the downsampling and upsampling layers for the transformer block with Max Pool
and Max Unpool operations.

Operation CONV +
transpose CONV

Max Pool +
Max Unpool

Concept
Model Size

7.1M 5.9M

Forest in the dark 121.60 190.05
Impressionism painting 88.52 135.96
Forest in the autumn 88.82 141.29

results indicate that with our efficient architecture design, our base model possesses the capability of more general features
and representations when trained on multiple concepts. The transformer block with self-attention modifies the image with a
better holistic understanding and the cross-attention module takes the information from the given target concept. Thus, our
method allows the new concept to better leverage existing knowledge, which is not possessed by prior methods.

Table 11: FID performance of fine-tuning from a pre-trained base model for pix2pix on Flicker Scenery dataset.

Method Pixpix E2GAN

Concept
Pretrain

✓ ✗ ✓

Vangogh style 151.2 138.77 117.41
Add blossoms 157.76 150.96 146.42

Forest in the winter 119.31 122.35 119.15

D.2. Autoencoder as Pre-trained Base Model

Table 12: The FID performance of using autoencoder as the pre-trained base model.

Base model
Concept Angry

person
White
walker

Auto-encoder 110.35 80.43
Old person 54.48 51.99

Ours 54.27 40.18

In E2GAN, we first train the GAN model with multiple diverse concepts to get a pre-trained base model, and then fine-tune
it to other concepts. We have shown multiple base model settings in Sec. 5.3. One may wonder if the pre-trained base model
can be chosen as an auto-encoder, e.g. the base model encodes the input data into a lower-dimensional representation and
then decodes it back into the original data, instead of being trained on other concepts. To verify this, we conduct experiments
by first training an auto-encoder on the original images in the subset of FFHQ (Karras et al., 2019) with only the ℓ1 loss
in Eq. 1, then fine-tune the auto-encoder following the same method as fine-tuning a pre-trained GAN. The results are
compared in Tab. 12. We find that auto-encoder is not comparable as fine-tuning a GAN trained on a single concept as old
person, not to mention our base model that is pre-trained on multiple concepts. For instance, for the target style angry
person, tuning from a base model pre-trained to generate old person can give an FID as low as 54.48, yet tuning from
the auto-encoder results in a much worse FID of 110.35. This might due to the simplicity of the auto-encoder, which only
needs to generate the original image and does not necessarily include other semantic information, either coarse-grained
global features, or fine-grained local details. In contrast, the GAN models include more information like texture or color,
during training. From this observation, in E2GAN, we adopt a model pre-trained on several concepts instead of using
auto-encoder as the base model.

D.3. Removing Cross-Attention During Fine-Tuning

We also considered removing the cross-attention layers during the fine-tuning to save the computation, yet the image
generation ability is degraded obviously. We provide the FID evaluations of removing the cross-attention on the FFHQ
dataset across several different concepts in Tab. 13. The rationale behind the results is that the cross-attention takes both
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Table 13: Quantitative results for different concepts.

Concept Remove Cross-Attention Ours
Vincent van Gogh 90.31 71.82
Blond Person 59.78 48.01
White Walker 55.43 40.18

the text information and image feature information as input to compute the output feature map for the next building block.
Directly removing the cross-attention block from the base model during the fine-tuning phase will make the feature map
have different meanings, thus influencing the image generation quality.

E. Ablation on the Influence of Longer Training Time

Table 14: The FID comparison between training E2GAN for 100 epochs and 200 epochs.

Concept Train 100
epochs

Train 200
epochs

Forest in the dark 115.32 114.17
Oil painting 110.87 111.93

Forest in the spring 122.77 124.91

E2GAN greatly saves training time compared to conventional GAN training while maintaining good image synthesis ability.
To see if training longer can lead to better performance, we add further experiments to increase the training time by doubling
the training epochs. The results can be found in Tab. 14. The reported FID is evaluated on the model weights obtained at the
end of training. The results show that training longer will not bring obvious performance improvements for E2GAN, but
leads to more computation cost. The results indicate that our efficient E2GAN is able to reach good performance with fewer
epochs compared to conventional GAN training.

F. Diffusion Model Data Challenge
Generating data through the diffusion models to transfer the knowledge to lightweight GAN models poses certain challenges.
While text-to-image diffusion models exhibit excellent capabilities in generating high-quality images, they do not consistently
perform well in all scenarios. We illustrate this by presenting some examples below as in Fig.9. For instance, for the concept
A person with red lip in Fig.9, the diffusion model (IP2P) usually turns the entire image into the red color or
modifies the person in the image to a strange shape.

G. Additional Qualitative Results
We provide more example images generated by our approach and other baseline methods in Fig. 10, 11, and 12.
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Figure 9: Examples of the cases that diffusion models do not work. For each group of images, the target concept is shown
on the left, the first row demonstrates the original image, and the second row shows the corresponding synthesized images in
the target concept domain.
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Figure 10: Qualitative comparisons on various tasks. The leftmost column shows two original images and the remaining
columns present the corresponding synthesized images in the target concept domain, where target prompts are shown at the
bottom row. We provide images generated by various models.

20



Efficient Training of Efficient GANs for Image-to-Image Translation

Blond 
person

Oldtime 
photo

Henri 
Matisse 

paintings

Albino 
person

Old person

Origin

Origin

Vangogh

 style

Jacob 
Lawrence 
paintings

Silver 
sculpture

D
iffu

sio
n


M
o

d
el

>
2

0
0

0
 m

s 
2

1 m
s 

15
.5

 m
s

N
ot sup

p
orted

!

P
ix2

P
ix

P
ix2

P
ix-Z

ero
-

d
istilled

O
u

rs
D

iffu
sio

n

M

o
d

el

>
2

0
0

0
 m

s 
2

1 m
s 

15
.5

 m
s

N
ot sup

p
orted

!

P
ix2

P
ix

P
ix2

P
ix-Z

ero
-

d
istilled

O
u

rs

Target

Old person
Silver 

sculpture Blond person
Vangogh 

styleWhite walkerOldtime photo
Chinese ink 

paintings

White walker

Figure 11: Qualitative comparisons on various tasks. The leftmost column shows two original images and the remaining
columns present the corresponding synthesized images in the target concept domain, where target prompts are shown at the
bottom row. We provide images generated by various models.
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Figure 12: Qualitative comparisons on various tasks. The leftmost column shows two original images and the remaining
columns present the corresponding synthesized images in the target concept domain, where target prompts are shown at the
bottom row. We provide images generated by various models.
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