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Abstract

Minimum Bayes Risk (MBR) decoding has
seen renewed interest as an alternative to tradi-
tional generation strategies. While MBR has
proven effective in machine translation, where
the variability of a language model’s outcome
space is naturally constrained, it may face chal-
lenges in more open-ended tasks such as dia-
logue or instruction-following. We hypothesise
that in such settings, applying MBR with stan-
dard similarity-based utility functions may re-
sult in selecting responses that are broadly rep-
resentative of the model’s distribution, yet sub-
optimal with respect to any particular group-
ing of generations that share an underlying /a-
tent structure. In this work, we introduce three
lightweight adaptations to the utility, designed
to make MBR more sensitive to structural vari-
ability in the outcome space. To test our hypoth-
esis, we curate a dataset capturing three repre-
sentative types of latent structure: dialogue act,
emotion, and response structure. We also pro-
pose two metrics to evaluate the structural opti-
mality of MBR. Our analysis demonstrates that
common utility functions fall short by these
metrics. In contrast, our proposed adaptations
considerably improve structural optimality. Fi-
nally, we evaluate our approaches on real-world
instruction-following benchmarks, AlpacaEval
and MT-Bench, and show that increased struc-
tural sensitivity improves generation quality by
up to 13.7 percentage points in win rate.

1 Introduction

Once a language model has been trained, one fun-
damental problem remains: determining how to
select an output sequence from the model’s learned
probability distribution over possible continuations.
Traditional approaches such as beam search decod-
ing and majority voting aim to select a high prob-
ability continuation under the model distribution.
However, a growing body of research has shown
model probability to not reliably align with human
preferences (Stahlberg and Byrne, 2019; Zhang
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Figure 1: The choice of utility function can consider-
ably impact the Minimum Bayes Risk (MBR) optimum.
When the outcome space is structured or multimodal,
the MBR optimum may settle between modes, landing
in a region of low probability. Here, we present a contin-
uous example featuring a bimodal Gaussian distribution
and show the MBR optima (vertical lines) of two utility
functions with markedly different behaviours.

et al.,2021) and, in response, Minimum Bayes Risk
(MBR; Kumar and Byrne, 2004; Eikema and Aziz,
2020) decoding has emerged as a more robust alter-
native. MBR casts decoding as a decision-theoretic
problem, selecting the output that minimises risk
with respect to a task-specific utility function, un-
der the uncertainty over continuations represented
by the language model. This utility typically re-
flects the degree of agreement between a candi-
date and the broader set of outcomes, penalising
those that diverge significantly from the consensus.
By integrating both model probabilities and inter-
candidate consistency, MBR yields generations that
are better aligned with human preferences, regu-
larly outperforming conventional methods (Freitag
et al., 2022; Wu et al., 2025).

MBR decoding has gained significant attention
in neural machine translation, where utility is of-
ten measured by task-agnostic sentence similarity
scores. This corresponds to selecting the sequence
which, in expectation and under the lens of a par-
ticular similarity score, most closely matches the
broader distribution of sequences prescribed by the



model. While this decoding strategy works well
in translation—where outcome space variability
is inherently constrained by the task—it risks be-
ing less effective for tasks with a broader range of
contextually plausible latent structures, and thus
greater variability in realisations, such as dialogue
or instruction-following (Giulianelli et al., 2023).
Consider, for instance, the following dialogue ex-
change: A: The mountains would be a great place
for the lab retreat. B: That’s a wonderful choice.
In response, speaker A could follow up with a state-
ment (The mountains offer many outdoor team-
building activities.), a question (Which aspects of
the mountains are you most excited about?), an
instruction (Please check out different venues on-
line to finalise the decision.), or an offer (Shall
I make the necessary arrangements?). Similarly,
when given an instruction like Please summarise
Godel, Escher, Bach, valid responses could range
from a single-sentence summary, to a paragraph
with more detail, a multi-paragraph narrative, or
even a list of key topics. In such settings, applying
MBR with a standard similarity-based utility func-
tion may result in selecting an output that is broadly
representative of the model’s outcome distribution,
but suboptimal with respect to any one plausible
latent structure (we illustrate this in Fig. 1 using a
continuous distribution as a simplified example).

In this work, we propose adapting utility func-
tions for MBR such that they are able to explicitly
account for a language model’s uncertainty over
latent structures. We adopt a broad interpretation
of structure, treating it as a latent variable that in-
fluences the form a generation takes—for example,
a dialogue act, the level of detail in a response, or
the emotion conveyed by an utterance. To examine
how reliably MBR selects the highest-consistency
candidate within clusters of generations that share
a latent structure—what we call cluster-optimality,
we semi-automatically construct a dataset of 3,000
curated outcome spaces, for a total of 350,000
candidate generations. These are conditioned on
naturally occurring conversational and instruction-
following contexts, but present controlled uncer-
tainty over three types of structure: dialogue act,
emotion, and response structure (i.e., a single sen-
tence, a paragraph, a list, or a table). Our anal-
ysis of this dataset shows that, under commonly
used utility functions, MBR solutions are cluster-
optimal in fewer than half of the cases. To ad-
dress this, we introduce three new approaches—

Clustering, Structure Embeddings, and Utility Cut-
off—that adapt utility functions to account for a
candidate’s (soft) membership in structure-specific
candidate groups, while preserving the decision-
theoretic foundation of risk minimisation.

Our experiments confirm that adapting the util-
ity function to account for latent structural vari-
ability substantially improves MBR solutions. On
our curated dataset with controlled uncertainty
over dialogue act, emotion, and response struc-
ture, our three proposed methods achieve markedly
higher cluster optimality than standard MBR with
BERTScore or BLEURT utilities. We also observe
gains on real-world instruction-following bench-
marks, despite the absence of explicit structure
annotations. In particular, our methods improve
generation quality on AlpacaEval and MT-Bench,
with win rates against GPT-4o increasing by up to
13.7 percentage points on the latter. These findings
support our central claim: structure-aware utility
functions enable MBR to more reliably select high-
quality outputs in tasks where structural variability
is inherent to the generation space.

2 Language Modeling and Decision Rules

A language model P is a distribution over strings
>*, where X is an alphabet, i.e., a finite, non-empty
set of symbols, and * its Kleene closure, i.e., the
set of all strings formed by concatenating symbols
in %, including the empty string . We define Y as
arandom variable over sequences within ¥*. Every
language model can be expressed in autoregressive
form by decomposing the probability of a string
as the product of conditional probabilities of each
symbol, followed by an end-of-string event EOS:

[yl

P(Y =y) = P(E0S | y) Hp(yt|y<t)a ey
t=1

where each conditional distribution P(Y; | y<¢)
is a probability distribution over ¥ U {EOS}. This
formulation underlies most modern autoregressive
language models, where each conditional probabil-
ity is produced by a learned parametric model. We
will assume an implicit conditioning on some set
of neural network parameters 6 estimated during
neural network training on some dataset. Further-
more, a language model is commonly conditioned
on an input, or a prompt, . We are then interested
only in the conditional probability distribution over
responses P(Y|x). In the rest of this work, we



will always assume the presence of such an input
x, e.g., an instruction or dialogue history.

2.1 Decision Rules

In order to obtain a generation from a trained lan-
guage model P given some input z, it is neces-
sary to decide on a single “best” outcome in 3*.
Formally, this requires a decision rule that defines
a mapping from a distribution P to such an out-
come y*. A common choice is to output the highest
probability outcome under P(Y|z), a decision rule
known as maximum-a-posteriori, typically approx-
imated using beam search or majority voting.

ymap = argmax P(Y = hlx) (2)
heX*

However, studies have shown that model probabil-
ity does not reliably align with human preferences
(Stahlberg and Byrne, 2019; Zhang et al., 2021),
and Minimum Bayes Risk (MBR) has become a
popular alternative. MBR stems from the prin-
ciple of maximisation of expected utility (Berger,
1985). It requires choosing a utility function u(h, r)
that measures the benefit of choosing hypothesis
h given an ideal decision r. In natural language
generation, u is typically chosen to be a strong sen-
tence similarity metric such as BLEURT (Sellam
et al., 2020; Freitag et al., 2022), COMET (Rei
et al., 2020; Fernandes et al., 2022) or BERT Score
(Zhang et al., 2020; Suzgun et al., 2023). MBR
then selects the outcome maximising utility in ex-
pectation under the model distribution:

yK/IBR:aI;ngaX E [u(h,Y)] (3)

exx  P(Ylz)

Recently, a sampling-based approximation to
MBR has become popular that approximates ex-
pected utility by obtaining a set of unbiased sam-
ples from the model and re-ranking them using
Monte Carlo estimates of their expected utility
(Eikema and Aziz, 2020, 2022). In this work, we
will focus on this sampling-based approximation.

2.2 Structural Variation in Language Models

The importance of modelling uncertainty in natural
language generation systems has received growing
attention in recent years (Baan et al., 2023). Cru-
cially, uncertainty extends beyond surface-form
variations in outcome space to encompass deeper
variation in latent space. To capture such varia-
tion, metrics like semantic entropy (Kuhn et al.,
2024) and similarity-sensitive entropy (Cheng and

Vlachos, 2024) have been proposed, primarily to
identify when high uncertainty may signal poten-
tial model errors. Complementary work has ex-
amined similar measures with a different aim: to
assess whether the uncertainty exhibited by lan-
guage models aligns with the natural variability
found in human-generated responses (Deng et al.,
2022; Giulianelli et al., 2023; Ilia and Aziz, 2024).

Recent applications of MBR have largely fo-
cused on neural machine translation—a relatively
constrained task where, nonetheless, models have
been shown to capture less variation than what
human annotators consider plausible (Giulianelli
et al., 2023). Extending beyond translation, a few
studies have applied MBR to other generation tasks.
For example, Suzgun et al. (2023) successfully use
BERTScore-based MBR for summarisation, data-
to-text generation, textual style transfer, and image
captioning. However, these tasks also tend to in-
volve a limited range of plausible outputs. More re-
cently, Wu et al. (2025) applied MBR to instruction-
following tasks using an LLM-as-a-judge as a util-
ity function. While this method yields strong re-
sults, it relies on a distillation step to approximate
the utility, as directly querying an LLM judge dur-
ing decoding is computationally prohibitive. In this
work, we propose three lightweight adaptations to
standard similarity-based utility functions, specifi-
cally designed for open-ended tasks characterised
by high variability in latent structure.

3 Structure-Conditional Optimality

The central question addressed in this paper is
how commonly employed utility functions for
MBR decoding behave when complex structural
variation is present. In Fig. 1, we illustrate the
problem with a simplified example to highlight
how the choice of utility function can influence
decision-making—particularly when the outcome
space contains multiple distinct modes. In this ex-
ample, the outcome space is modelled as a bimodal
Gaussian, and the decision problem is to select a
single “best” outcome on the real line. If we use the
negative squared error as our utility function,! the
theoretical optimum corresponds to the mean of the
bimodal distribution (the light blue line in Fig. 1).
This solution may be undesirable as the mean lies
in a region of low probability mass and is unlikely
to be sampled in practice. If we apply a sampling-

"Equivalently, one may frame this as minimising the risk
under a squared error loss function.



based approximation to the decision rule, as is
common in language generation applications of
MBR, the approximation selects an outcome near
this theoretical optimum, which typically resides at
the boundary of one of the clusters. Alternatively,
if we adopt a different utility function—such as
a radial basis function kernel—the theoretical opti-
mum shifts to the mode of the largest cluster (Fig. 1,
dark blue line). This outcome, being more repre-
sentative of a high-probability region, may be more
desirable than either the low-probability intermodal
mean or an outcome near the edge of a cluster.

In probability distributions over natural lan-
guage, multiple such “modes” may also be present,
albeit more difficult to define and detect. Gener-
ations might cluster around various semantically
distinct plausible answers to a question, differing
intended dialogue acts in a response, or varying re-
sponse structure. Depending on the utility function
used, this can result in behaviour analogous to that
shown in Fig. 1. Whether this is desirable depends
on the decision-maker; for instance, it may be ap-
propriate if the model assigns probability mass to
responses like The answer could be either [A] or
[B], but in other cases, it could lead to suboptimal
decisions. In this work, we investigate this phe-
nomenon and propose simple adaptations to utility
functions that encourage behaviour more similar to
that of the RBF utility in the continuous example.

3.1 Evaluating Structural Sensitivity in MBR

To quantify the extent to which the MBR solu-
tion with commonly used utility functions respects
structural variability in outcome spaces over nat-
ural language, we introduce two complementary
metrics. These metrics evaluate whether MBR solu-
tions align with, or differ from, solutions obtained
when conditioning on latent structures.

Cluster Optimality. This metric quantifies
the proportion of cases, over a test set, in which
the MBR solution under the distribution P(Y|z)
matches the MBR solution under the conditional
distribution P(Y'|z,s), where s denotes an
annotated structure (e.g., a dialogue act) that we
additionally condition on. Formally, let

7; = argmax E  [u(h,Y)] 4)

h o P(Yl|zi)

be the MBR solution for input ¢, and

Qi(s):argmax E  [u(h,Y)] 5)

h P(Y|zis)

the MBR solution conditioned on s. The cluster
optimality metric is then defined, for test set D, as

1 s
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=
where 1{-} is the indicator function.

Cluster-Optimal Rank Correlation. In addition
to the top-ranked solution, we also examine the
full rankings produced by MBR. For each input
1, consider a fixed set of hypothesis generations

Hi = {h1,...,h,} corresponding to structure s.
Define the rankings:
R;; =rankof h; by E |u(h;,Y (7
j pby L E [ulhy )
R = rank of h; by ol oY) ®)

The cluster-optimal rank correlation is then the
average Spearman’s rank correlation coefficient p
between these two rankings over the test set:

CORC = Ill?l S p(Ri, R )

1€D

4 Standard Utility Functions are Not
Structure-Conditionally Optimal

We now demonstrate that MBR solutions de-
rived using standard utility functions, such as
BERTScore or BLEURT, often diverge from those
obtained when conditioning on latent structural rep-
resentations. While this divergence may be accept-
able from the perspective of the decision-maker,
our analysis adopts a different premise. We assume
a production process in which the speaker first se-
lects a latent structure—implicitly or explicitly—
and then realises it through an utterance. Under this
assumption, a generation should be optimal with
respect to some latent structure, specifically the one
selected by the speaker. Note that we do not model
the initial stage of this process, i.e., the selection
or planning of the latent structure. Instead, we take
it as given and focus on the requirement that the
resulting generation be optimal within plausible
realisations of the chosen structure.

To investigate how sensitive the MBR solution
is to structural uncertainty in the outcome space,
we consider three representative types of latent
structure—dialogue act, emotion, and response
structure—each of these defines a plausible axis
of variation in generated text (see §4.1). For each



structure, we construct a dataset that reflects the
outcome space of a hypothetical model with un-
certainty over its possible instantiations. We then
compute the standard MBR solution over the entire
space, and assess its optimality using the evaluation
criteria introduced in §3.1. The results of this analy-
sis are summarised in Tab. 1 and presented in §4.2.

4.1 Constructing Outcome Spaces with
Controlled Structural Uncertainty

We ground our analysis in three types of latent
structure. This section introduces each structure
type and describes how we construct datasets to
model uncertainty over their possible instantiations.

4.1.1 Latent Structure Types

We examine three types of latent structure that are
representative of structural variability in the out-
come spaces of open-ended generation tasks.

Dialogue Act. A dialogue act represents the com-
municative function or intent of an utterance within
the context of a conversation. Following the taxon-
omy proposed by Amanova et al. (2016), we focus
on four dialogue act types: INFORM, QUESTION,
COMMISSIVE, and DIRECTIVE. Each of the four
example utterances presented in the introduction
exemplifies one of these categories.

Emotion. Another latent factor that shapes the
form of an utterance in conversation is the emotion
the speaker aims to express. In this work, we adopt
Ekman’s six basic emotions (Ekman, 1992): HAP-
PINESS, SADNESS, FEAR, ANGER, SURPRISE, and
DISGUST. These emotional states influence both
lexical choice and broader stylistic features.

Response Structure. This structure type cap-
tures how information is organised within an
instruction-following response. We consider four
ad-hoc categories: BRIEF, a single-sentence reply;
PARAGRAPH, a more developed, single-paragraph
answer; LIST, a bullet-pointed set of items; and
TABLE, a structured tabular presentation.

4.1.2 Dataset Construction

For each type of latent structure, we construct a
dataset that simulates the outcome space of a hy-
pothetical model with uncertainty over possible
instantiations of that structure. As generation con-
texts, we randomly sample conversational contexts
from the DailyDialog corpus (Li et al., 2017)—
1,000 each for dialogue act and emotion—and take
the first 1,000 instructions from the Alpaca dataset

Metric  Utility Dial. Act Emotion Resp. Str. All (Avg)

o BERTScore  0.370 0.330 0.390 0.363
BLEURT 0.410 0.510 0.530 0.483

CORC BERTScore  0.081 0.084 0.080 0.082
BLEURT 0.144 0.155 0.123 0.141

Table 1: Cluster Optimality (CO) and Cluster-Optimal
Rank Correlation (CORC) of MBR solutions obtained
using BERTScore and BLEURT utility functions over
constructed outcome spaces.

(Taori et al., 2023) for response structure. We then
prompt the instruction-tuned, 13 billion parameter
variant® of the OLMo 2 model suite (OLMo et al.,
2025) to generate outputs for each category within
each structure type, using hand-curated prompts
(see App. A for details). For every context, we
generate 25 responses per structure category (e.g.,
25 BRIEF, 25 PARAGRAPH, 25 LIST, and 25 TA-
BLE responses). This procedure results in 3,000
distinct outcome spaces, corresponding to 350,000
candidate generations in total.?

4.2 Structural Sensitivity of Standard MBR
Utility Functions

Tab. 1 presents cluster optimality (CO, Eq. 6) and
cluster-optimal rank correlation (CORC, Eq. 9)
scores for MBR solutions under two standard
utility functions across our three latent structure
types. These metrics quantify how often the
MBR-selected response is optimal with respect to
the latent structure (CO), and how well it aligns
with the structure-optimal ranking (CORC).

Across all structure types, we observe a con-
sistent degree of suboptimality. The CO scores
indicate that in fewer than half of the cases, the
MBR solution is optimal with respect to its under-
lying structure (36.3% using BERTScore, 48.3%
with BLEURT). This misalignment persists across
dialogue act, emotion, and response structure,
with no evident correlation to the number of clus-
ters involved, suggesting that the failure to re-
cover structure-optimal responses is not merely
due to increased structural granularity. While
slight differences are present between BLEURT
and BERTScore, both utility functions consistently
select suboptimal generations and demonstrate rel-
atively weak ranking correlation. Overall, this anal-
ysis shows that standard utility functions possess
low sensitivity to structural uncertainty.

’allenai/OLMo-2-1124-13B-Instruct
3The full dataset is included as Supplementary Material
and will be released publicly upon acceptance.



5 Structure-Conditional MBR Decoding

To address the limitations of MBR decoding with
standard utility functions in the presence of struc-
tural variability, we propose three structure-aware
decoding approaches.

Utility Cut-off. Standard utility functions may
implicitly penalise structural mismatches, but they
do not prevent structurally dissimilar candidates
from influencing the ranking of outputs. To miti-
gate this, we introduce a simple utility cut-off mech-
anism that filters out low-utility comparisons when
computing expected utility. Specifically, we mod-
ify the utility function u(y, ) as follows:

’LLcut(?/a y,) = {U(y’ y/)

” N>
i U(y,y) Z7 10
1) otherwise

where 7 is a threshold fixed across the dataset, and
¢ is a small constant (or zero). This limits the in-
fluence of distant or structurally irrelevant samples,
aligning the MBR solution more closely with local
modes in the outcome distribution.

Clustering. A more explicit approach to
structure-aware decoding is to first partition the
outcome space into clusters—each corresponding
to a distinct latent structure—and then apply MBR
within the dominant cluster. We implement this by
clustering candidate generations using sequence
embeddings ¢(y) derived from a model fine-tuned
to detect particular structures of interest (e.g., dia-
logue act, response structure, or affective content).
Formally, let H = {h1,...,h,} be the set of
candidates, and let C', . . . , C}, denote the resulting
clusters, with H = U?Zl Cj. At inference time,
we restrict MBR decoding to the members of the
largest cluster C* = argmaxc, |C}| such that

[w(h,Y)|Y €C*. 1)

o B
To recover a full ranking over candidates (e.g.,
for evaluation), we first rank clusters by size, and
then rank candidates within each cluster based on
expected utility. This two-stage process prioritises
high-utility responses as judged against structurally
consistent pseudo-references, reducing the risk of
inter-modal averaging in the selected outputs.

This procedure could also theoretically be for-
mulated as an adaptation of the utility function:

ua(y,y') =1{C(y) = C(y')} x
xu(y,y’) x I{C(y) = C*}, (12)

where C'™* represents the cluster with highest proba-
bility mass under P(Y'|z). Decoding then becomes
standard MBR maximisation of expected utility un-
der the adapted utility function.

Structure Embeddings. As an alternative to ex-
plicit clustering, we propose incorporating struc-
tural sensitivity into the utility function by leverag-
ing structure-aware sequence embeddings. Specif-
ically, we fine-tune a sequence embedding model
to encode the structural property of interest and
redefine the utility function to weight candidate
comparisons by their similarity in this embedding
space. Formally, for a candidate y and a reference
y', we compute the modified utility as:

Uemb (Y, ') = u(y,y') - cos ((y), d(y')), (13)

where u(y,y’) is the original utility and cos(-)
denotes the cosine similarity between structure-
sensitive embeddings ¢. To further reduce the influ-
ence of structurally mismatched samples, we also
experiment with a threshold on cosine similarity:
values below the threshold are set to zero, remov-
ing the contribution of the utility comparison to the
expected utility altogether. This approach allows us
to softly bias the MBR solution toward structurally
coherent outputs, without requiring hard clustering
or explicit structure labels at inference time.

6 Experiments

To evaluate the effectiveness of the proposed meth-
ods, we conduct a series of experiments on the
dataset we constructed in §4, as well as two real-
world instruction-following datasets. All our exper-
iments use either BERTScore or BLEURT as the
base utility function, two commonly employed util-
ity functions in natural language generation (Fre-
itag et al., 2022; Suzgun et al., 2023).

6.1 Cluster Optimality Under Controlled
Structural Uncertainty

We first assess our methods on the three datasets
constructed in §4, which contain generations con-
sisting of various types of structural uncertainty:
over dialogue acts, emotions, and response struc-
tures. Recall that we treat these generations as
hypothetical outcome spaces of a language model.
That is, we consider all generations for a given con-
text to be unbiased samples from a language model
that we wish to perform MBR decoding with. We
split the 1,000 contexts in each dataset into training,
validation, and test sets using an 800/100/100 split.
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Figure 2: Cluster Optimality and Cluster-Optimal Rank Correlation on the constructed outcome spaces of §4.1. We
compare standard BERTScore and BLEURT MBR with the three adaptations to the utility functions proposed in §5.

Hyperparameter Selection. For each method
proposed in §5, we use the training and validation
splits to select hyperparameters and train the se-
quence embedding models. Determining the thresh-
old in the Utility Cut-off approach is conducted sep-
arately for BERTScore and BLEURT, resulting in
different thresholds. We base our sequence embed-
ding models on the al1-mpnet-base-v2* Sen-
tence Transformer (Reimers and Gurevych, 2019),
which we further fine-tuned using a triplet loss and
gold annotations of underlying structure to enhance
sensitivity to the structural variation present in our
datasets. We use the same sequence embedding
models for our Clustering and Structure Embed-
dings approaches. We find that jointly fine-tuning
and selecting thresholds on the combination of all
three types of latent structure leads to the most ro-
bust performance in terms of CO, and we use these
models for the experiments below. Further details
on the hyperparameter selection and fine-tuning
procedures can be found in App. B.

Results. We compare each of our proposed meth-
ods against standard sampling-based MBR decod-
ing using either BERTScore or BLEURT as the
utility function, and measure both cluster optimal-
ity (CO, Eq. 6) and cluster optimal ranking cor-
relation (CORC, Eq. 9). Results are shown in

*https://huggingface.co/
sentence-transformers/all-mpnet-base-v2

3 Generally, we find CO and CORC in validation proce-
dures to align reasonably well.

Fig. 2. All the methods we proposed improve
cluster optimality compared to the baseline ver-
sions of BERTScore and BLEURT. Utility Cut-
off yields the smallest improvement over stan-
dard BERTScore and BLEURT MBR, on aver-
age increasing CO by 11.7% and 5.6%, respec-
tively, and CORC by 0.091 and 0.002, respec-
tively. The Clustering and Structure Embeddings
approaches perform considerably better than base-
line MBR. Clustering improves CO on average by
37.3%/27.7% and CORC by 0.382/0.320 CORC
over standard BERTScore and BLEURT MBR, re-
spectively. Similarly, Structure Embeddings im-
prove CO on average by 38.7%/29.3% CO and
CORC by 0.354/0.287 over standard BERTScore
and BLEURT MBR, respectively. We note again
that higher CO does not always correspond with
higher CORC, indicating that achieving the cluster-
optimal MBR solution is generally easier than re-
covering the entire ranking accurately. Addition-
ally, we observe that some types of latent structure
are more difficult to capture effectively than others.

6.2 Instruction-Following

Next, we evaluate our methods on two real-world
instruction-following datasets: AlpacaEval (Li
et al., 2023) and MT-Bench (Zheng et al., 2023).
In this case, we do not have access to any labelling
of potential latent structure. We use the same
hyperparameters and sequence embedding mod-
els from the previous set of experiments, tuned
on the combination of all three datasets from §4.
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Benchmark MBR Cut-off Cluster Embeddings
AlpacaEval 96.5% 96.1%  97.0% 96.1%
MT-Bench (single) 76.3% 90.0%  80.0% 78.8%
MT-Bench (multi) 71.3% 70.0%  72.5% 74.4%

Table 2: AlpacaEval and MT-Bench Prometheus win
rates versus text-davinci-003 (AlpacaEval) /
GPT-40 (MT-Bench). We compare standard BERTScore
MBR with the approaches introduced in §5: Utility Cut-
off, Clustering and Structure Embeddings.

As a language model, we select OLMo 2 (13B)
(OLMo et al., 2025), and obtain 30 unbiased sam-
ples per prompt for use in MBR decoding. To
measure task performance, we use Prometheus®
(Kim et al., 2024) as a judge, conducting relative
grading against text-davinci-003 and GPT-
40 (OpenAl, 2024) for AlpacaEval and MT-Bench,
respectively.” All experiments employ BERTScore
as the base utility. Further details on the generation
and evaluation procedures are provided in App. C.

Results. Tab. 2 reports win rates against
text-davinci-003 and GPT-40 for standard
MBR decoding with a BERTScore utility, along-
side our structure-conditional utilities from §5. On
AlpacaEval, the Clustering method outperforms
standard BERTScore MBR. In the single-turn MT-
Bench setting, both Clustering and Utility Cut-off
surpass standard MBR, with Utility Cut-off achiev-
ing a notable 13.7 percentage point improvement
and reaching a 90% win rate over GPT-40. This
indicates responses are often judged clearer, more
helpful, accurate, and fully aligned with the in-
tended purpose of the instruction. Performance
declines across the board in the more challenging
multi-turn MT-Bench setting. However, both clus-
tering and structure embeddings still outperform
standard MBR, demonstrating improved structural
sensitivity also in extended interactions. Smaller
gains here may stem from reduced uncertainty
as conversational context accumulates, resulting
in less diverse outcome spaces. In such cases,
structure-conditional utilities likely yield results
similar to standard MBR, reducing the relative ben-
efit of structural adaptations. We also observe that
structure embeddings tend to outperform clustering,
possibly because soft partitioning better captures
subtle structural differences, whereas hard cluster-
ing might inadvertently exclude partially similar

6prometheusfeval /prometheus-7b-v2.0

"We did not find any available multi-turn system genera-
tions for the full MT-Bench dataset. Therefore, we generated
our own from OpenAl’s GPT-40 using greedy decoding.

candidates. Nonetheless, the overall lower MBR
performance in multi-turn tasks indicates these
settings are inherently more challenging, beyond
just reduced variability. Overall, the consistent
improvements of structure-aware MBR methods
over standard MBR suggest that incorporating la-
tent structural information not only enhances the
theoretical optimality of MBR solutions but also
improves generation quality in practical settings.

7 Conclusion

In this work, we examined the limitations of
MBR decoding in open-ended generation scenarios,
where outcome spaces might exhibit high structural
variability. We hypothesised that commonly used
utility functions are insufficiently sensitive to latent
structural uncertainty, leading to suboptimal gen-
eration choices within structurally coherent clus-
ters of responses. To evaluate this hypothesis, we
constructed a dataset featuring naturally occurring
contexts paired with outcome spaces that exhibit
controlled variation in dialogue act, emotion, and
response structure. Our findings confirm that MBR
decoding under standard utilities frequently fails to
select cluster-optimal candidates, with suboptimal
selections occurring in more than half of the cases.
To address this issue, we proposed three ap-
proaches to adapt utility functions to be more struc-
turally aware. The corresponding approaches—
Clustering, Structure Embeddings, and Utility Cut-
off—demonstrate significant improvements in both
cluster optimality (up to 98% for response struc-
ture) and cluster-optimal rank correlation (up to
0.89 for response structure). Importantly, these
methods incur only modest additional computa-
tional cost, requiring only lightweight fine-tuning
of a sequence embedding model or performing a
hyperparameter search for a threshold value.
Based on these results, we recommend adopt-
ing structure-aware MBR decoding in tasks char-
acterised by medium to high outcome space vari-
ability, such as instruction-following and conversa-
tional tasks. We encourage future research into the
development of structure-sensitive utility functions
that build on this work to achieve even greater clus-
ter optimality, generation quality, or inference-time
efficiency. In addition, we see value in further in-
vestigating the relationship between outcome space
variability and the effectiveness of structure-aware
MBR, as well as the connection between cluster
optimality and overall generation quality.



Limitations

To test our hypothesis on the sub-optimality of
standard similarity-based MBR utility functions,
we relied on a curated dataset that captures three
representative types of latent structure commonly
found in open-ended natural language generation
tasks. However, this dataset does not exhaustively
cover all possible structural variations present in
natural language. Additionally, our evaluation as-
sumes that language models accurately represent
uncertainty over latent structures—an assumption
that may not always hold in practice (see, e.g., Giu-
lianelli et al., 2023). For example, in a dialogue
setting, a model might assign most of its probability
mass to responses aligned with the INFORM cate-
gory, even if human responses display a broader
range of structural types.

In terms of computational requirements, our
methods introduce minimal overhead beyond stan-
dard MBR decoding. However, it is important
to note that MBR decoding itself is significantly
more computationally demanding than greedy de-
coding or sampling a single generation. Since our
approaches build on MBR, they inherit this higher
computational cost. That said, we believe our meth-
ods stand to benefit from recent advances aimed at
improving the efficiency of MBR decoding (Cheng
and Vlachos, 2023; Vamvas and Sennrich, 2024,
Yang et al., 2024).

Finally, in our evaluation on instruction-
following datasets, we rely on an LLM-as-a-judge:
Prometheus (Kim et al., 2024). These are imper-
fect evaluators, may be biased towards particular
types of responses (Wang et al., 2024; Stureborg
et al., 2024), such as more elaborate ones, and do
not always align with human judgements (Zeng
et al., 2024; Bavaresco et al., 2024). Additionally,
Prometheus relies on a predefined rubric, and its
performance may be sensitive to the specific formu-
lation of that rubric. We did not conduct extensive
experiments with alternative rubric designs, which
may influence the robustness of the results.
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A Data Generation

In §4.1.2 we semi-automatically construct a natural
language dataset of hypothetical outcome spaces
with varying underlying latent structure: dialogue
act, emotion and response structure. Here, we de-
scribe the full generation procedure in more detail.

A.1 Generation Procedure

We use the input prompts from the DailyDialog
dataset (Li et al., 2017) as a basis for the dialogue
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act and emotion subsets, and Alpaca (Taori et al.,
2023) as a basis for the response structure subset.
In order to obtain sampled generations, we use
allenai/OLMo-2-1124-13B-Instruct
(OLMo et al., 2025).

1. Pre-processing. For DailyDialog, we remove
unnecessary white spaces, and filter dialogues
by the number of turns (only dialogues with
> 2 turns are kept). For each of the dialogues,
we also randomly sample the number of turns
which we will use from the dialogue, between
two and the total number of available turns
minus two. We also prepend "A:"” or "B:"
prefixes to each turn to indicate the speaker.
For Alpaca, we only filter out any prompts
that have an additional input field.

Prompt creation. We randomly select
1,000 dialogues twice from the DailyDialog
dataset and the first 1,000 instructions with-
out input field from the Alpaca dataset. We
then fill out the predefined prompt templates
(defined in App. A.2) with the selected exam-
ples, resulting in prompts for each pre-defined
category within every latent structure. In total,
we create 1,000 x 4 = 4,000 inputs for the
dialogue act subset, 1,000 4 = 4,000 inputs
for response structure subset, and 1, 0006 =
6, 000 inputs for the emotion subset to be fed
into OLMo.

. Generation. Using OLMo, we then generate
25 unbiased samples for each of the 14,000
constructed input prompts.

. Post-processing. We finalize the procedure
by removing quotation marks around the gen-
eration and stripping any "A:" or "B:" prefixes
at the start of generations.

A.2 Prompt Templates

To generate prompts covering all categories within
a latent structure, we define three types of prompt
templates - one per latent structure.

A.2.1 Dialogue Act

For the dialogue act subset, we define a
responder as the speaker whose turn it is now
to speak (e.g.if the dialogue excerpt ends at A’s
turn, we define responder B). For each
dialogue from DailyDialog we then iter-
ate through the four defined dialogue acts and pass
each of them as act _name.
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#H## ~+xTypes of Dialogue Actsxx*

Here are common categories of dialogue
acts, though exact categorizations
may vary depending on the framework:

#H### x+1. Inform*x

— The Inform class contains all
statements and questions by which
the speaker shares information
with the listener. The speaker
assumes the information is
correct and believes the
addressee does not know or is not
aware of it yet.

- xxExamplesx*x*:

— "The meeting starts at 3 PM."

- "I’ve already emailed the report."

- "I saw John at the store
yesterday."

- "William Shakespeare wrote it."

— "The Eiffel Tower is in Paris."

#### xx2. Questionxx*

— The Question class includes speech
acts where the speaker seeks
information by asking a question.
These acts are used when the
speaker wants to know something
and believes the listener has the
answer. Questions can take
different forms, including
Propositional Questions (yes/no
questions), Check Questions
(confirming known information),
Set Questions (open—-ended
questions), and Choice Questions
(questions with multiple options).

- xxExamplesx*x*:

- "Did you finish your assignment?"
- "You’ve met Sarah before, haven’t

you?"

— "What time does the meeting
start?"

— "Could you clarify what you meant
by that?"

— "Do you prefer coffee or tea?"

#H### *x3. Directivexx*

— The Directive class includes speech
acts where the speaker wants the
listener to perform an action.
This class covers Requests
(asking someone to do something),
Instructions (giving direct
orders or guidance), Suggestions
(offering recommendations), and
Accepting or Rejecting Offers
(responding to proposals). These
acts differ based on how much
pressure the speaker applies and
their assumptions about the
listener’s willingness and
ability to comply.

- xxExamples*x:

- "Can you send me the file?"

- "Fill out this form before the
appointment."

- "You should try the new Italian
restaurant downtown."
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- "Yes, I’'d love to join you for
dinner!"

- "No, I can’t take on another
project right now."

#### «x4. Commissivexx
— The Commissive class involves
speech acts where the speaker
commits to performing an action
in the future. These acts include
Accepting or Rejecting Requests,
Suggestions, and Offers. By
performing a Commissive act, the
speaker is making a promise or
commitment to carry out the
action requested, suggested, or
offered. These acts reflect the
speaker’s willingness to take
responsibility for fulfilling the
commitment, whether by agreeing
to a proposal or refusing it.
- **xExamplesx*x:
- "Fine, I’'1ll pick you up at 5 PM."
- "Sorry, I can’t do that right
now."
— "That sounds great, I'll take the
promotion."
- "I promise to finish the report
by the end of the day."
— "I’11l make sure to take care of
it this weekend."

### x~+Dialogue Excerptxx

{dialogue from DailyDialog}

### »xInstructions«*x

Please consider the provided dialogue
excerpt and provide a plausible
response (and only a single
response) for {responder} that
reflects the following dialogue
act: {act_name}. Output only
{responder}’s response with no
additional text.<end_of_prompt>

A.2.2 Emotion

For the emotion subset, we again define a
responder in the same way as in App. A.2.1.
For each dialogue from DailyDialog we
then iterate through the six defined emotions and
pass each of them as emot ion_name.

### +»+«Types of Emotionsx*x
Here are seven main categories of
emotions.

#H### +x1. Anger*x
- The Anger category represents
emotions related to feelings of
displeasure, hostility, or
frustration. This emotion often
arises when someone feels wronged
or blocked from achieving their



goal. It can range from mild
irritation to intense rage.

- xxExamplesx*x*:

- "I can’t believe this is
happening!"

- "This is so unfair!"

- "Why does everything always go
wrong for me?"

- "I'm so frustrated with this
situation!"

- "I'm really mad about how things
turned out."

#### ~x2. Disgustsx
— The Disgust category includes

emotions related to a strong
sense of revulsion, disapproval,
or distaste. It often arises when
something is perceived as
offensive, repellent, or morally
objectionable.

- xxExamplesxx:

— "That food looks awful!"

- "I can’t stand how they treat
people."

— "This is disgusting. I can’t
believe they did that."

- "I feel sick just thinking about
it."

- "That’s absolutely revolting!"

— The Sadness category represents
emotions related to feelings of
loss, disappointment, or sorrow.
It often arises when there is a
sense of unmet expectations,
failure, or grief.

- **xExamples*x:

- "I feel so down about what
happened."

- "I can’t stop thinking about it,
it’s just so upsetting.”

- "I'm really sad things turned out
this way."

- "It’s been a tough time, and I
feel heartbroken."

- "I don’t know how to get over
this sadness."

#### *x6. Surprisex*x
— The Surprise category represents
emotions related to unexpected
events or outcomes, ranging from
shock to awe. This emotion can be
positive or negative, depending
on the nature of the surprise.
- **xExamplesx*x:
- "Wow, I didn’t see that coming!"
— "That’s such a surprise, I can’t
believe 1it!"
- "I'm totally shocked by what

happened."
#H## *x+x3. Fearxx - "I wasn’t expecting that at all!"
— The Fear category includes emotions - "I'm so surprised you did that!"
related to anxiety, nervousness,
and concern about possible danger -——=
or harm. Fear can be rational or
irrational and may cause physical ### »xDialogue Excerpt*x
or psychological distress.
- *xxExamplesxx: {dialogue from DailyDialog}
- "I'm really scared about what’s
going to happen." -
— "I don’t know if I can handle
this situation.™" ### *+xInstructionsx*x
— "What if things don’t go as Please consider the provided dialogue
planned?" excerpt and provide a plausible
- "I'm afraid something bad might response (and only a single
happen." response) for {responder} that
- "I'm nervous about the meeting reflects the following emotion:
this morning." {emotion_name}. Output only
{responder}’s response with no
#H### x+4. Happinessxx* additional text.<end_of_prompt>
— The Happiness category includes
emotions related to Jjoy,
contentment, and pleasure. A.2.3 Response Structure
Happiness is often associated
with positive experiences, For the response structure subset, we de-
accomplishments, and satisfying fine four different prompt templates, one per
_ **?E‘.\;i?ni;sl'e Sxx: Category of response structure. For each
- "I'm so excited about this prompt from Alpaca we then append
weekend!" each of these templates, resulting in four differ-
— "This is such a great day!" . . .
- "I feel so happy about my ent pI'OIIlptS, one per category, per 1nput 1nstruction.
progress."
— "That sounds amazing, I'm really BRIEF
looking forward to it!"
- "I'm so glad everything worked {prompt from Alpaca} Give me a brief
out!" sentence with the answer. Make
sure to restrict your response
#### ++x5. Sadnessxx to a single sentence.
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PARAGRAPH

{prompt from Alpaca} Write an
extensive paragraph on the
topic. Restrict your answer to a
single paragraph

LisT

{prompt from Alpaca} In your answer,
make sure to include a bullet
point list of items relevant to
the topic. Keep your answer
brief and make sure it contains
a bullet point list.

TABLE

{prompt from Alpaca} In your answer,
include a table relevant to the
topic. Keep your answer brief
and make sure it contains a
table.

B Hyperparameter Selection

We randomly split our generated datasets (dia-
logue act, emotion and response structure) into
800/100/100 training/validation/testing data points.
All data consists of multiple labelled clusters
with 25 generations per cluster. We compute
BERTScore and BLEURT MBR solutions con-
ditioned on each labelled cluster to get cluster-
optimal rankings and MBR solutions to compare
to. We use the training and validation splits for
fine-tuning sequence embedding models and for
hyperparameter selection. We have performed all
training and hyperparameter selection both on in-
dividual datasets (either dialogue act, emotion or
response structure) as well as on the combination
of all datasets. We find that models trained on all
data perform best overall and thus have used those
in experiments. We proceed here to discuss the
results of hyperparameter selection for each indi-
vidual approach in more detail.

Utility Cut-off. We considered both an absolute
threshold on the utility value as well as a threshold
on the deviation from the highest observed utility
in the sample. We don’t consider any utility com-
parisons with the candidate itself, i.e., we mask out
the diagonal of the utility matrix. Furthermore, we
experiment with both setting utility values below
the threshold to 0 or —1 as well as discarding those
utility comparisons altogether. We test a range of
50 threshold values ranging within reasonable val-
ues for the utility function itself, and order settings
based on cluster optimality on the training data. We
then take the 10 best performing setups and select
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the one that performs best in terms of cluster opti-
mality on the validation data. We tune the threshold
independently for both BLEURT and BERTScore.
We find an absolute value threshold to work supe-
rior for both utilities, as well as to zero out values
below the threshold. We find an optimal threshold
of 0.512 and 0.918 for BLEURT and BERTScore
respectively.

Clustering. We use the Sentence Transformers
all-mpnet-base-v2 model as a basis for ob-
taining sequence embeddings. We further fine-tune
this model using a triplet loss on triplets from our la-
belled datasets. We experiment with learning rates
between 1 x 10~%, 1 x 10~ and 1 x 10~ and find
a learning rate of 1 x 107 to lead to best validation
loss overall. We then use these sequence embed-
dings with the k-means algorithm to obtain clusters.
We select a number of clusters based on the silhou-
ette score for & = [2,6] and set a threshold that
the silhouette scores need to reach, otherwise k is
set to 1 and we consider all generations to come
from a single cluster. This threshold is tuned on
prediction accuracy on the number of clusters for a
range of values in (0, 1) on random subsamples of
the validation data containing a random number of
clusters per subsample.

Structure Embeddings. Here, we use the same
fine-tuned sentence transformer model from the
clustering approach. We shift and compress cosine
similarity values to range between 0 and 1. We
optionally consider a threshold on cosine similarity
and perform an identical selection procedure to that
for the threshold in the Utility Cut-off approach.
We find that a threshold does considerably improve
cluster optimality and end up with a threshold of
0.918.

Fine-Tuned Utilities: BERTScore and BLEURT.
We also attempted fine-tuning BERTScore and
BLEURT directly to be more sensitive to the la-
tent structures we expect in the data. We experi-
mented with fine-tuning BERTScore with a triplet
loss on the sequence embeddings of the underly-
ing roberta—-large model, and used a mean
squared error regression loss to fine-tune BLEURT
to predict comparisons with out-of-cluster gener-
ations as 0 or -1. We attempted a range of hy-
perparameter values, but found that the resulting
utility functions performed poorly across the board.
Hence, we have not included those models in the
main paper.



You are an advanced AI assistant
specializing in clear,
well-reasoned, and articulate
responses. Your goal is to
provide comprehensive and
accurate answers while ensuring
coherence, logical consistency,
and factual correctness. Be
precise, provide evidence-based
explanations, and use
structured reasoning when
appropriate. If a question has
multiple interpretations,
clarify them before answering.
Avoid unnecessary verbosity
while maintaining completeness.
If uncertain, state your level
of confidence and explain why.

Figure 3: System prompt provided to the model for all
decoding methods when generating for AlpacaEval and
MT-Bench.

C Evaluation on AlpacaEval and
MT-Bench

We performed evaluation on AlpacaEval and
MT-Bench using Prometheus as an LLM-as-a-
judge model.® We test the instruction-following
capabilities as follows:

1. Generation. For each instruction from the
dataset, we generate our answers from each
respective decoding method. We use a system
prompt given in Fig. 3. When generating for
single-turn MT-Bench, we only prompt the
model with the first turn and save its output.
When generating for multi-turn MT-Bench,
we first prompt the model with just the first
turn, save its output, and then we prompt it
again with both turns and the reference GPT-
40 generation to the first prompt.® Therefore,
the total number of instructions for multi-turn
MT-Bench is twice the number of instructions
for single-turn MT-Bench.

2. Evaluation. We then pass the instruction,
the reference answer, as well as the genera-
tions of our decoding methods to Prometheus.
The reference answers for AlpacaEval (in-
cluded in the dataset) were generated by
text-davinci-003. We collected refer-
ence answers for multi-turn MT-Bench our-

8We use prometheus—eval/prometheus-7b-v2.0

"We opted to always provide the reference response in
multi-turn MT-Bench, as to not suffer from compounding
errors.
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selves doing greedy decoding from the GPT-
40 through the OpenAl API. We use the
pre-defined RELATIVE_PROMPT_WO_REF
prompt template for Prometheus, as well as
relative grading - for each pair of competing
outputs, Prometheus returns one letter (A or
B) defining which output is preferred. We de-
fine the rubric as “Is the answer clear, helpful,
accurate, and fully aligned with the intended
purpose of the instruction?”

. Final Score. For every decoding method we

then calculate that methods’ win rate over
the set of reference generations according to
Prometheus. In multi-turn MT-Bench, we re-
port the average of the win rates of both turns.



