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Abstract

Minimum Bayes Risk (MBR) decoding has001
seen renewed interest as an alternative to tradi-002
tional generation strategies. While MBR has003
proven effective in machine translation, where004
the variability of a language model’s outcome005
space is naturally constrained, it may face chal-006
lenges in more open-ended tasks such as dia-007
logue or instruction-following. We hypothesise008
that in such settings, applying MBR with stan-009
dard similarity-based utility functions may re-010
sult in selecting responses that are broadly rep-011
resentative of the model’s distribution, yet sub-012
optimal with respect to any particular group-013
ing of generations that share an underlying la-014
tent structure. In this work, we introduce three015
lightweight adaptations to the utility, designed016
to make MBR more sensitive to structural vari-017
ability in the outcome space. To test our hypoth-018
esis, we curate a dataset capturing three repre-019
sentative types of latent structure: dialogue act,020
emotion, and response structure. We also pro-021
pose two metrics to evaluate the structural opti-022
mality of MBR. Our analysis demonstrates that023
common utility functions fall short by these024
metrics. In contrast, our proposed adaptations025
considerably improve structural optimality. Fi-026
nally, we evaluate our approaches on real-world027
instruction-following benchmarks, AlpacaEval028
and MT-Bench, and show that increased struc-029
tural sensitivity improves generation quality by030
up to 13.7 percentage points in win rate.031

1 Introduction032

Once a language model has been trained, one fun-033

damental problem remains: determining how to034

select an output sequence from the model’s learned035

probability distribution over possible continuations.036

Traditional approaches such as beam search decod-037

ing and majority voting aim to select a high prob-038

ability continuation under the model distribution.039

However, a growing body of research has shown040

model probability to not reliably align with human041

preferences (Stahlberg and Byrne, 2019; Zhang042

Figure 1: The choice of utility function can consider-
ably impact the Minimum Bayes Risk (MBR) optimum.
When the outcome space is structured or multimodal,
the MBR optimum may settle between modes, landing
in a region of low probability. Here, we present a contin-
uous example featuring a bimodal Gaussian distribution
and show the MBR optima (vertical lines) of two utility
functions with markedly different behaviours.

et al., 2021) and, in response, Minimum Bayes Risk 043

(MBR; Kumar and Byrne, 2004; Eikema and Aziz, 044

2020) decoding has emerged as a more robust alter- 045

native. MBR casts decoding as a decision-theoretic 046

problem, selecting the output that minimises risk 047

with respect to a task-specific utility function, un- 048

der the uncertainty over continuations represented 049

by the language model. This utility typically re- 050

flects the degree of agreement between a candi- 051

date and the broader set of outcomes, penalising 052

those that diverge significantly from the consensus. 053

By integrating both model probabilities and inter- 054

candidate consistency, MBR yields generations that 055

are better aligned with human preferences, regu- 056

larly outperforming conventional methods (Freitag 057

et al., 2022; Wu et al., 2025). 058

MBR decoding has gained significant attention 059

in neural machine translation, where utility is of- 060

ten measured by task-agnostic sentence similarity 061

scores. This corresponds to selecting the sequence 062

which, in expectation and under the lens of a par- 063

ticular similarity score, most closely matches the 064

broader distribution of sequences prescribed by the 065
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model. While this decoding strategy works well066

in translation—where outcome space variability067

is inherently constrained by the task—it risks be-068

ing less effective for tasks with a broader range of069

contextually plausible latent structures, and thus070

greater variability in realisations, such as dialogue071

or instruction-following (Giulianelli et al., 2023).072

Consider, for instance, the following dialogue ex-073

change: A: The mountains would be a great place074

for the lab retreat. B: That’s a wonderful choice.075

In response, speaker A could follow up with a state-076

ment (The mountains offer many outdoor team-077

building activities.), a question (Which aspects of078

the mountains are you most excited about?), an079

instruction (Please check out different venues on-080

line to finalise the decision.), or an offer (Shall081

I make the necessary arrangements?). Similarly,082

when given an instruction like Please summarise083

Gödel, Escher, Bach, valid responses could range084

from a single-sentence summary, to a paragraph085

with more detail, a multi-paragraph narrative, or086

even a list of key topics. In such settings, applying087

MBR with a standard similarity-based utility func-088

tion may result in selecting an output that is broadly089

representative of the model’s outcome distribution,090

but suboptimal with respect to any one plausible091

latent structure (we illustrate this in Fig. 1 using a092

continuous distribution as a simplified example).093

In this work, we propose adapting utility func-094

tions for MBR such that they are able to explicitly095

account for a language model’s uncertainty over096

latent structures. We adopt a broad interpretation097

of structure, treating it as a latent variable that in-098

fluences the form a generation takes—for example,099

a dialogue act, the level of detail in a response, or100

the emotion conveyed by an utterance. To examine101

how reliably MBR selects the highest-consistency102

candidate within clusters of generations that share103

a latent structure—what we call cluster-optimality,104

we semi-automatically construct a dataset of 3,000105

curated outcome spaces, for a total of 350,000106

candidate generations. These are conditioned on107

naturally occurring conversational and instruction-108

following contexts, but present controlled uncer-109

tainty over three types of structure: dialogue act,110

emotion, and response structure (i.e., a single sen-111

tence, a paragraph, a list, or a table). Our anal-112

ysis of this dataset shows that, under commonly113

used utility functions, MBR solutions are cluster-114

optimal in fewer than half of the cases. To ad-115

dress this, we introduce three new approaches—116

Clustering, Structure Embeddings, and Utility Cut- 117

off—that adapt utility functions to account for a 118

candidate’s (soft) membership in structure-specific 119

candidate groups, while preserving the decision- 120

theoretic foundation of risk minimisation. 121

Our experiments confirm that adapting the util- 122

ity function to account for latent structural vari- 123

ability substantially improves MBR solutions. On 124

our curated dataset with controlled uncertainty 125

over dialogue act, emotion, and response struc- 126

ture, our three proposed methods achieve markedly 127

higher cluster optimality than standard MBR with 128

BERTScore or BLEURT utilities. We also observe 129

gains on real-world instruction-following bench- 130

marks, despite the absence of explicit structure 131

annotations. In particular, our methods improve 132

generation quality on AlpacaEval and MT-Bench, 133

with win rates against GPT-4o increasing by up to 134

13.7 percentage points on the latter. These findings 135

support our central claim: structure-aware utility 136

functions enable MBR to more reliably select high- 137

quality outputs in tasks where structural variability 138

is inherent to the generation space. 139

2 Language Modeling and Decision Rules 140

A language model P is a distribution over strings 141

Σ∗, where Σ is an alphabet, i.e., a finite, non-empty 142

set of symbols, and Σ∗ its Kleene closure, i.e., the 143

set of all strings formed by concatenating symbols 144

in Σ, including the empty string ε. We define Y as 145

a random variable over sequences within Σ∗. Every 146

language model can be expressed in autoregressive 147

form by decomposing the probability of a string 148

as the product of conditional probabilities of each 149

symbol, followed by an end-of-string event EOS: 150

P (Y = y) = P (EOS | y)
|y|∏
t=1

P (yt|y<t), (1) 151

where each conditional distribution P (Yt | y<t) 152

is a probability distribution over Σ ∪ {EOS}. This 153

formulation underlies most modern autoregressive 154

language models, where each conditional probabil- 155

ity is produced by a learned parametric model. We 156

will assume an implicit conditioning on some set 157

of neural network parameters θ estimated during 158

neural network training on some dataset. Further- 159

more, a language model is commonly conditioned 160

on an input, or a prompt, x. We are then interested 161

only in the conditional probability distribution over 162

responses P (Y |x). In the rest of this work, we 163
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will always assume the presence of such an input164

x, e.g., an instruction or dialogue history.165

2.1 Decision Rules166

In order to obtain a generation from a trained lan-167

guage model P given some input x, it is neces-168

sary to decide on a single “best” outcome in Σ∗.169

Formally, this requires a decision rule that defines170

a mapping from a distribution P to such an out-171

come y∗. A common choice is to output the highest172

probability outcome under P (Y |x), a decision rule173

known as maximum-a-posteriori, typically approx-174

imated using beam search or majority voting.175

y∗MAP = argmax
h∈Σ∗

P (Y = h|x) (2)176

However, studies have shown that model probabil-177

ity does not reliably align with human preferences178

(Stahlberg and Byrne, 2019; Zhang et al., 2021),179

and Minimum Bayes Risk (MBR) has become a180

popular alternative. MBR stems from the prin-181

ciple of maximisation of expected utility (Berger,182

1985). It requires choosing a utility function u(h, r)183

that measures the benefit of choosing hypothesis184

h given an ideal decision r. In natural language185

generation, u is typically chosen to be a strong sen-186

tence similarity metric such as BLEURT (Sellam187

et al., 2020; Freitag et al., 2022), COMET (Rei188

et al., 2020; Fernandes et al., 2022) or BERTScore189

(Zhang et al., 2020; Suzgun et al., 2023). MBR190

then selects the outcome maximising utility in ex-191

pectation under the model distribution:192

y∗MBR = argmax
h∈Σ∗

E
P (Y |x)

[u(h, Y )] (3)193

Recently, a sampling-based approximation to194

MBR has become popular that approximates ex-195

pected utility by obtaining a set of unbiased sam-196

ples from the model and re-ranking them using197

Monte Carlo estimates of their expected utility198

(Eikema and Aziz, 2020, 2022). In this work, we199

will focus on this sampling-based approximation.200

2.2 Structural Variation in Language Models201

The importance of modelling uncertainty in natural202

language generation systems has received growing203

attention in recent years (Baan et al., 2023). Cru-204

cially, uncertainty extends beyond surface-form205

variations in outcome space to encompass deeper206

variation in latent space. To capture such varia-207

tion, metrics like semantic entropy (Kuhn et al.,208

2024) and similarity-sensitive entropy (Cheng and209

Vlachos, 2024) have been proposed, primarily to 210

identify when high uncertainty may signal poten- 211

tial model errors. Complementary work has ex- 212

amined similar measures with a different aim: to 213

assess whether the uncertainty exhibited by lan- 214

guage models aligns with the natural variability 215

found in human-generated responses (Deng et al., 216

2022; Giulianelli et al., 2023; Ilia and Aziz, 2024). 217

Recent applications of MBR have largely fo- 218

cused on neural machine translation—a relatively 219

constrained task where, nonetheless, models have 220

been shown to capture less variation than what 221

human annotators consider plausible (Giulianelli 222

et al., 2023). Extending beyond translation, a few 223

studies have applied MBR to other generation tasks. 224

For example, Suzgun et al. (2023) successfully use 225

BERTScore-based MBR for summarisation, data- 226

to-text generation, textual style transfer, and image 227

captioning. However, these tasks also tend to in- 228

volve a limited range of plausible outputs. More re- 229

cently, Wu et al. (2025) applied MBR to instruction- 230

following tasks using an LLM-as-a-judge as a util- 231

ity function. While this method yields strong re- 232

sults, it relies on a distillation step to approximate 233

the utility, as directly querying an LLM judge dur- 234

ing decoding is computationally prohibitive. In this 235

work, we propose three lightweight adaptations to 236

standard similarity-based utility functions, specifi- 237

cally designed for open-ended tasks characterised 238

by high variability in latent structure. 239

3 Structure-Conditional Optimality 240

The central question addressed in this paper is 241

how commonly employed utility functions for 242

MBR decoding behave when complex structural 243

variation is present. In Fig. 1, we illustrate the 244

problem with a simplified example to highlight 245

how the choice of utility function can influence 246

decision-making—particularly when the outcome 247

space contains multiple distinct modes. In this ex- 248

ample, the outcome space is modelled as a bimodal 249

Gaussian, and the decision problem is to select a 250

single “best” outcome on the real line. If we use the 251

negative squared error as our utility function,1 the 252

theoretical optimum corresponds to the mean of the 253

bimodal distribution (the light blue line in Fig. 1). 254

This solution may be undesirable as the mean lies 255

in a region of low probability mass and is unlikely 256

to be sampled in practice. If we apply a sampling- 257

1Equivalently, one may frame this as minimising the risk
under a squared error loss function.
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based approximation to the decision rule, as is258

common in language generation applications of259

MBR, the approximation selects an outcome near260

this theoretical optimum, which typically resides at261

the boundary of one of the clusters. Alternatively,262

if we adopt a different utility function—such as263

a radial basis function kernel—the theoretical opti-264

mum shifts to the mode of the largest cluster (Fig. 1,265

dark blue line). This outcome, being more repre-266

sentative of a high-probability region, may be more267

desirable than either the low-probability intermodal268

mean or an outcome near the edge of a cluster.269

In probability distributions over natural lan-270

guage, multiple such “modes” may also be present,271

albeit more difficult to define and detect. Gener-272

ations might cluster around various semantically273

distinct plausible answers to a question, differing274

intended dialogue acts in a response, or varying re-275

sponse structure. Depending on the utility function276

used, this can result in behaviour analogous to that277

shown in Fig. 1. Whether this is desirable depends278

on the decision-maker; for instance, it may be ap-279

propriate if the model assigns probability mass to280

responses like The answer could be either [A] or281

[B], but in other cases, it could lead to suboptimal282

decisions. In this work, we investigate this phe-283

nomenon and propose simple adaptations to utility284

functions that encourage behaviour more similar to285

that of the RBF utility in the continuous example.286

3.1 Evaluating Structural Sensitivity in MBR287

To quantify the extent to which the MBR solu-288

tion with commonly used utility functions respects289

structural variability in outcome spaces over nat-290

ural language, we introduce two complementary291

metrics. These metrics evaluate whether MBR solu-292

tions align with, or differ from, solutions obtained293

when conditioning on latent structures.294

Cluster Optimality. This metric quantifies295

the proportion of cases, over a test set, in which296

the MBR solution under the distribution P (Y |x)297

matches the MBR solution under the conditional298

distribution P (Y |x, s), where s denotes an299

annotated structure (e.g., a dialogue act) that we300

additionally condition on. Formally, let301

ŷi = argmax
h

E
P (Y |xi)

[u(h, Y )] (4)302

be the MBR solution for input i, and303

ŷ
(s)
i = argmax

h
E

P (Y |xi,s)
[u(h, Y )] (5)304

the MBR solution conditioned on s. The cluster 305

optimality metric is then defined, for test set D, as 306

CO =
1

|D|
∑
i∈D

1{ŷi = ŷ
(s)
i } (6) 307

where 1{·} is the indicator function. 308

Cluster-Optimal Rank Correlation. In addition 309

to the top-ranked solution, we also examine the 310

full rankings produced by MBR. For each input 311

i, consider a fixed set of hypothesis generations 312

Hi = {h1, . . . , hn} corresponding to structure s. 313

Define the rankings: 314

Rij = rank of hj by E
P (Y |xi)

[u(hj , Y )] (7) 315

316

R
(s)
ij = rank of hj by E

P (Y |xi,s)
[u(hj , Y )] (8) 317

The cluster-optimal rank correlation is then the 318

average Spearman’s rank correlation coefficient ρ 319

between these two rankings over the test set: 320

CORC =
1

|D|
∑
i∈D

ρ
(
Ri, R

(s)
i

)
(9) 321

4 Standard Utility Functions are Not 322

Structure-Conditionally Optimal 323

We now demonstrate that MBR solutions de- 324

rived using standard utility functions, such as 325

BERTScore or BLEURT, often diverge from those 326

obtained when conditioning on latent structural rep- 327

resentations. While this divergence may be accept- 328

able from the perspective of the decision-maker, 329

our analysis adopts a different premise. We assume 330

a production process in which the speaker first se- 331

lects a latent structure—implicitly or explicitly— 332

and then realises it through an utterance. Under this 333

assumption, a generation should be optimal with 334

respect to some latent structure, specifically the one 335

selected by the speaker. Note that we do not model 336

the initial stage of this process, i.e., the selection 337

or planning of the latent structure. Instead, we take 338

it as given and focus on the requirement that the 339

resulting generation be optimal within plausible 340

realisations of the chosen structure. 341

To investigate how sensitive the MBR solution 342

is to structural uncertainty in the outcome space, 343

we consider three representative types of latent 344

structure—dialogue act, emotion, and response 345

structure—each of these defines a plausible axis 346

of variation in generated text (see §4.1). For each 347
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structure, we construct a dataset that reflects the348

outcome space of a hypothetical model with un-349

certainty over its possible instantiations. We then350

compute the standard MBR solution over the entire351

space, and assess its optimality using the evaluation352

criteria introduced in §3.1. The results of this analy-353

sis are summarised in Tab. 1 and presented in §4.2.354

4.1 Constructing Outcome Spaces with355

Controlled Structural Uncertainty356

We ground our analysis in three types of latent357

structure. This section introduces each structure358

type and describes how we construct datasets to359

model uncertainty over their possible instantiations.360

4.1.1 Latent Structure Types361

We examine three types of latent structure that are362

representative of structural variability in the out-363

come spaces of open-ended generation tasks.364

Dialogue Act. A dialogue act represents the com-365

municative function or intent of an utterance within366

the context of a conversation. Following the taxon-367

omy proposed by Amanova et al. (2016), we focus368

on four dialogue act types: INFORM, QUESTION,369

COMMISSIVE, and DIRECTIVE. Each of the four370

example utterances presented in the introduction371

exemplifies one of these categories.372

Emotion. Another latent factor that shapes the373

form of an utterance in conversation is the emotion374

the speaker aims to express. In this work, we adopt375

Ekman’s six basic emotions (Ekman, 1992): HAP-376

PINESS, SADNESS, FEAR, ANGER, SURPRISE, and377

DISGUST. These emotional states influence both378

lexical choice and broader stylistic features.379

Response Structure. This structure type cap-380

tures how information is organised within an381

instruction-following response. We consider four382

ad-hoc categories: BRIEF, a single-sentence reply;383

PARAGRAPH, a more developed, single-paragraph384

answer; LIST, a bullet-pointed set of items; and385

TABLE, a structured tabular presentation.386

4.1.2 Dataset Construction387

For each type of latent structure, we construct a388

dataset that simulates the outcome space of a hy-389

pothetical model with uncertainty over possible390

instantiations of that structure. As generation con-391

texts, we randomly sample conversational contexts392

from the DailyDialog corpus (Li et al., 2017)—393

1,000 each for dialogue act and emotion—and take394

the first 1,000 instructions from the Alpaca dataset395

Metric Utility Dial. Act Emotion Resp. Str. All (Avg)

CO
BERTScore 0.370 0.330 0.390 0.363
BLEURT 0.410 0.510 0.530 0.483

CORC
BERTScore 0.081 0.084 0.080 0.082
BLEURT 0.144 0.155 0.123 0.141

Table 1: Cluster Optimality (CO) and Cluster-Optimal
Rank Correlation (CORC) of MBR solutions obtained
using BERTScore and BLEURT utility functions over
constructed outcome spaces.

(Taori et al., 2023) for response structure. We then 396

prompt the instruction-tuned, 13 billion parameter 397

variant2 of the OLMo 2 model suite (OLMo et al., 398

2025) to generate outputs for each category within 399

each structure type, using hand-curated prompts 400

(see App. A for details). For every context, we 401

generate 25 responses per structure category (e.g., 402

25 BRIEF, 25 PARAGRAPH, 25 LIST, and 25 TA- 403

BLE responses). This procedure results in 3,000 404

distinct outcome spaces, corresponding to 350,000 405

candidate generations in total.3 406

4.2 Structural Sensitivity of Standard MBR 407

Utility Functions 408

Tab. 1 presents cluster optimality (CO, Eq. 6) and 409

cluster-optimal rank correlation (CORC, Eq. 9) 410

scores for MBR solutions under two standard 411

utility functions across our three latent structure 412

types. These metrics quantify how often the 413

MBR-selected response is optimal with respect to 414

the latent structure (CO), and how well it aligns 415

with the structure-optimal ranking (CORC). 416

Across all structure types, we observe a con- 417

sistent degree of suboptimality. The CO scores 418

indicate that in fewer than half of the cases, the 419

MBR solution is optimal with respect to its under- 420

lying structure (36.3% using BERTScore, 48.3% 421

with BLEURT). This misalignment persists across 422

dialogue act, emotion, and response structure, 423

with no evident correlation to the number of clus- 424

ters involved, suggesting that the failure to re- 425

cover structure-optimal responses is not merely 426

due to increased structural granularity. While 427

slight differences are present between BLEURT 428

and BERTScore, both utility functions consistently 429

select suboptimal generations and demonstrate rel- 430

atively weak ranking correlation. Overall, this anal- 431

ysis shows that standard utility functions possess 432

low sensitivity to structural uncertainty. 433

2allenai/OLMo-2-1124-13B-Instruct
3The full dataset is included as Supplementary Material

and will be released publicly upon acceptance.
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5 Structure-Conditional MBR Decoding434

To address the limitations of MBR decoding with435

standard utility functions in the presence of struc-436

tural variability, we propose three structure-aware437

decoding approaches.438

Utility Cut-off. Standard utility functions may439

implicitly penalise structural mismatches, but they440

do not prevent structurally dissimilar candidates441

from influencing the ranking of outputs. To miti-442

gate this, we introduce a simple utility cut-off mech-443

anism that filters out low-utility comparisons when444

computing expected utility. Specifically, we mod-445

ify the utility function u(y, y′) as follows:446

ucut(y, y
′) =

{
u(y, y′) if u(y, y′) ≥ τ,

δ otherwise
(10)447

where τ is a threshold fixed across the dataset, and448

δ is a small constant (or zero). This limits the in-449

fluence of distant or structurally irrelevant samples,450

aligning the MBR solution more closely with local451

modes in the outcome distribution.452

Clustering. A more explicit approach to453

structure-aware decoding is to first partition the454

outcome space into clusters—each corresponding455

to a distinct latent structure—and then apply MBR456

within the dominant cluster. We implement this by457

clustering candidate generations using sequence458

embeddings ϕ(y) derived from a model fine-tuned459

to detect particular structures of interest (e.g., dia-460

logue act, response structure, or affective content).461

Formally, let H = {h1, . . . , hn} be the set of462

candidates, and let C1, . . . , Ck denote the resulting463

clusters, with H =
⋃k

j=1Cj . At inference time,464

we restrict MBR decoding to the members of the465

largest cluster C⋆ = argmaxCj
|Cj | such that466

ŷ = argmax
h∈C⋆

E
P (Y |x)

[u(h, Y ) | Y ∈ C⋆]. (11)467

To recover a full ranking over candidates (e.g.,468

for evaluation), we first rank clusters by size, and469

then rank candidates within each cluster based on470

expected utility. This two-stage process prioritises471

high-utility responses as judged against structurally472

consistent pseudo-references, reducing the risk of473

inter-modal averaging in the selected outputs.474

This procedure could also theoretically be for-475

mulated as an adaptation of the utility function:476

ucl(y, y
′) =1{C(y) = C(y′)}×477

× u(y, y′)× 1{C(y) = C∗}, (12)478

where C∗ represents the cluster with highest proba- 479

bility mass under P (Y |x). Decoding then becomes 480

standard MBR maximisation of expected utility un- 481

der the adapted utility function. 482

Structure Embeddings. As an alternative to ex- 483

plicit clustering, we propose incorporating struc- 484

tural sensitivity into the utility function by leverag- 485

ing structure-aware sequence embeddings. Specif- 486

ically, we fine-tune a sequence embedding model 487

to encode the structural property of interest and 488

redefine the utility function to weight candidate 489

comparisons by their similarity in this embedding 490

space. Formally, for a candidate y and a reference 491

y′, we compute the modified utility as: 492

uemb(y, y
′) = u(y, y′) · cos

(
ϕ(y), ϕ(y′)

)
, (13) 493

where u(y, y′) is the original utility and cos(·) 494

denotes the cosine similarity between structure- 495

sensitive embeddings ϕ. To further reduce the influ- 496

ence of structurally mismatched samples, we also 497

experiment with a threshold on cosine similarity: 498

values below the threshold are set to zero, remov- 499

ing the contribution of the utility comparison to the 500

expected utility altogether. This approach allows us 501

to softly bias the MBR solution toward structurally 502

coherent outputs, without requiring hard clustering 503

or explicit structure labels at inference time. 504

6 Experiments 505

To evaluate the effectiveness of the proposed meth- 506

ods, we conduct a series of experiments on the 507

dataset we constructed in §4, as well as two real- 508

world instruction-following datasets. All our exper- 509

iments use either BERTScore or BLEURT as the 510

base utility function, two commonly employed util- 511

ity functions in natural language generation (Fre- 512

itag et al., 2022; Suzgun et al., 2023). 513

6.1 Cluster Optimality Under Controlled 514

Structural Uncertainty 515

We first assess our methods on the three datasets 516

constructed in §4, which contain generations con- 517

sisting of various types of structural uncertainty: 518

over dialogue acts, emotions, and response struc- 519

tures. Recall that we treat these generations as 520

hypothetical outcome spaces of a language model. 521

That is, we consider all generations for a given con- 522

text to be unbiased samples from a language model 523

that we wish to perform MBR decoding with. We 524

split the 1,000 contexts in each dataset into training, 525

validation, and test sets using an 800/100/100 split. 526
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Figure 2: Cluster Optimality and Cluster-Optimal Rank Correlation on the constructed outcome spaces of §4.1. We
compare standard BERTScore and BLEURT MBR with the three adaptations to the utility functions proposed in §5.

Hyperparameter Selection. For each method527

proposed in §5, we use the training and validation528

splits to select hyperparameters and train the se-529

quence embedding models. Determining the thresh-530

old in the Utility Cut-off approach is conducted sep-531

arately for BERTScore and BLEURT, resulting in532

different thresholds. We base our sequence embed-533

ding models on the all-mpnet-base-v24 Sen-534

tence Transformer (Reimers and Gurevych, 2019),535

which we further fine-tuned using a triplet loss and536

gold annotations of underlying structure to enhance537

sensitivity to the structural variation present in our538

datasets. We use the same sequence embedding539

models for our Clustering and Structure Embed-540

dings approaches. We find that jointly fine-tuning541

and selecting thresholds on the combination of all542

three types of latent structure leads to the most ro-543

bust performance in terms of CO,5 and we use these544

models for the experiments below. Further details545

on the hyperparameter selection and fine-tuning546

procedures can be found in App. B.547

Results. We compare each of our proposed meth-548

ods against standard sampling-based MBR decod-549

ing using either BERTScore or BLEURT as the550

utility function, and measure both cluster optimal-551

ity (CO, Eq. 6) and cluster optimal ranking cor-552

relation (CORC, Eq. 9). Results are shown in553

4https://huggingface.co/
sentence-transformers/all-mpnet-base-v2

5Generally, we find CO and CORC in validation proce-
dures to align reasonably well.

Fig. 2. All the methods we proposed improve 554

cluster optimality compared to the baseline ver- 555

sions of BERTScore and BLEURT. Utility Cut- 556

off yields the smallest improvement over stan- 557

dard BERTScore and BLEURT MBR, on aver- 558

age increasing CO by 11.7% and 5.6%, respec- 559

tively, and CORC by 0.091 and 0.002, respec- 560

tively. The Clustering and Structure Embeddings 561

approaches perform considerably better than base- 562

line MBR. Clustering improves CO on average by 563

37.3%/27.7% and CORC by 0.382/0.320 CORC 564

over standard BERTScore and BLEURT MBR, re- 565

spectively. Similarly, Structure Embeddings im- 566

prove CO on average by 38.7%/29.3% CO and 567

CORC by 0.354/0.287 over standard BERTScore 568

and BLEURT MBR, respectively. We note again 569

that higher CO does not always correspond with 570

higher CORC, indicating that achieving the cluster- 571

optimal MBR solution is generally easier than re- 572

covering the entire ranking accurately. Addition- 573

ally, we observe that some types of latent structure 574

are more difficult to capture effectively than others. 575

6.2 Instruction-Following 576

Next, we evaluate our methods on two real-world 577

instruction-following datasets: AlpacaEval (Li 578

et al., 2023) and MT-Bench (Zheng et al., 2023). 579

In this case, we do not have access to any labelling 580

of potential latent structure. We use the same 581

hyperparameters and sequence embedding mod- 582

els from the previous set of experiments, tuned 583

on the combination of all three datasets from §4. 584
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Benchmark MBR Cut-off Cluster Embeddings

AlpacaEval 96.5% 96.1% 97.0% 96.1%
MT-Bench (single) 76.3% 90.0% 80.0% 78.8%
MT-Bench (multi) 71.3% 70.0% 72.5% 74.4%

Table 2: AlpacaEval and MT-Bench Prometheus win
rates versus text-davinci-003 (AlpacaEval) /
GPT-4o (MT-Bench). We compare standard BERTScore
MBR with the approaches introduced in §5: Utility Cut-
off, Clustering and Structure Embeddings.

As a language model, we select OLMo 2 (13B)585

(OLMo et al., 2025), and obtain 30 unbiased sam-586

ples per prompt for use in MBR decoding. To587

measure task performance, we use Prometheus6588

(Kim et al., 2024) as a judge, conducting relative589

grading against text-davinci-003 and GPT-590

4o (OpenAI, 2024) for AlpacaEval and MT-Bench,591

respectively.7 All experiments employ BERTScore592

as the base utility. Further details on the generation593

and evaluation procedures are provided in App. C.594

Results. Tab. 2 reports win rates against595

text-davinci-003 and GPT-4o for standard596

MBR decoding with a BERTScore utility, along-597

side our structure-conditional utilities from §5. On598

AlpacaEval, the Clustering method outperforms599

standard BERTScore MBR. In the single-turn MT-600

Bench setting, both Clustering and Utility Cut-off601

surpass standard MBR, with Utility Cut-off achiev-602

ing a notable 13.7 percentage point improvement603

and reaching a 90% win rate over GPT-4o. This604

indicates responses are often judged clearer, more605

helpful, accurate, and fully aligned with the in-606

tended purpose of the instruction. Performance607

declines across the board in the more challenging608

multi-turn MT-Bench setting. However, both clus-609

tering and structure embeddings still outperform610

standard MBR, demonstrating improved structural611

sensitivity also in extended interactions. Smaller612

gains here may stem from reduced uncertainty613

as conversational context accumulates, resulting614

in less diverse outcome spaces. In such cases,615

structure-conditional utilities likely yield results616

similar to standard MBR, reducing the relative ben-617

efit of structural adaptations. We also observe that618

structure embeddings tend to outperform clustering,619

possibly because soft partitioning better captures620

subtle structural differences, whereas hard cluster-621

ing might inadvertently exclude partially similar622

6prometheus-eval/prometheus-7b-v2.0
7We did not find any available multi-turn system genera-

tions for the full MT-Bench dataset. Therefore, we generated
our own from OpenAI’s GPT-4o using greedy decoding.

candidates. Nonetheless, the overall lower MBR 623

performance in multi-turn tasks indicates these 624

settings are inherently more challenging, beyond 625

just reduced variability. Overall, the consistent 626

improvements of structure-aware MBR methods 627

over standard MBR suggest that incorporating la- 628

tent structural information not only enhances the 629

theoretical optimality of MBR solutions but also 630

improves generation quality in practical settings. 631

7 Conclusion 632

In this work, we examined the limitations of 633

MBR decoding in open-ended generation scenarios, 634

where outcome spaces might exhibit high structural 635

variability. We hypothesised that commonly used 636

utility functions are insufficiently sensitive to latent 637

structural uncertainty, leading to suboptimal gen- 638

eration choices within structurally coherent clus- 639

ters of responses. To evaluate this hypothesis, we 640

constructed a dataset featuring naturally occurring 641

contexts paired with outcome spaces that exhibit 642

controlled variation in dialogue act, emotion, and 643

response structure. Our findings confirm that MBR 644

decoding under standard utilities frequently fails to 645

select cluster-optimal candidates, with suboptimal 646

selections occurring in more than half of the cases. 647

To address this issue, we proposed three ap- 648

proaches to adapt utility functions to be more struc- 649

turally aware. The corresponding approaches— 650

Clustering, Structure Embeddings, and Utility Cut- 651

off—demonstrate significant improvements in both 652

cluster optimality (up to 98% for response struc- 653

ture) and cluster-optimal rank correlation (up to 654

0.89 for response structure). Importantly, these 655

methods incur only modest additional computa- 656

tional cost, requiring only lightweight fine-tuning 657

of a sequence embedding model or performing a 658

hyperparameter search for a threshold value. 659

Based on these results, we recommend adopt- 660

ing structure-aware MBR decoding in tasks char- 661

acterised by medium to high outcome space vari- 662

ability, such as instruction-following and conversa- 663

tional tasks. We encourage future research into the 664

development of structure-sensitive utility functions 665

that build on this work to achieve even greater clus- 666

ter optimality, generation quality, or inference-time 667

efficiency. In addition, we see value in further in- 668

vestigating the relationship between outcome space 669

variability and the effectiveness of structure-aware 670

MBR, as well as the connection between cluster 671

optimality and overall generation quality. 672
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Limitations673

To test our hypothesis on the sub-optimality of674

standard similarity-based MBR utility functions,675

we relied on a curated dataset that captures three676

representative types of latent structure commonly677

found in open-ended natural language generation678

tasks. However, this dataset does not exhaustively679

cover all possible structural variations present in680

natural language. Additionally, our evaluation as-681

sumes that language models accurately represent682

uncertainty over latent structures—an assumption683

that may not always hold in practice (see, e.g., Giu-684

lianelli et al., 2023). For example, in a dialogue685

setting, a model might assign most of its probability686

mass to responses aligned with the INFORM cate-687

gory, even if human responses display a broader688

range of structural types.689

In terms of computational requirements, our690

methods introduce minimal overhead beyond stan-691

dard MBR decoding. However, it is important692

to note that MBR decoding itself is significantly693

more computationally demanding than greedy de-694

coding or sampling a single generation. Since our695

approaches build on MBR, they inherit this higher696

computational cost. That said, we believe our meth-697

ods stand to benefit from recent advances aimed at698

improving the efficiency of MBR decoding (Cheng699

and Vlachos, 2023; Vamvas and Sennrich, 2024;700

Yang et al., 2024).701

Finally, in our evaluation on instruction-702

following datasets, we rely on an LLM-as-a-judge:703

Prometheus (Kim et al., 2024). These are imper-704

fect evaluators, may be biased towards particular705

types of responses (Wang et al., 2024; Stureborg706

et al., 2024), such as more elaborate ones, and do707

not always align with human judgements (Zeng708

et al., 2024; Bavaresco et al., 2024). Additionally,709

Prometheus relies on a predefined rubric, and its710

performance may be sensitive to the specific formu-711

lation of that rubric. We did not conduct extensive712

experiments with alternative rubric designs, which713

may influence the robustness of the results.714
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A Data Generation936

In §4.1.2 we semi-automatically construct a natural937

language dataset of hypothetical outcome spaces938

with varying underlying latent structure: dialogue939

act, emotion and response structure. Here, we de-940

scribe the full generation procedure in more detail.941

A.1 Generation Procedure942

We use the input prompts from the DailyDialog943

dataset (Li et al., 2017) as a basis for the dialogue944

act and emotion subsets, and Alpaca (Taori et al., 945

2023) as a basis for the response structure subset. 946

In order to obtain sampled generations, we use 947

allenai/OLMo-2-1124-13B-Instruct 948

(OLMo et al., 2025). 949

1. Pre-processing. For DailyDialog, we remove 950

unnecessary white spaces, and filter dialogues 951

by the number of turns (only dialogues with 952

≥ 2 turns are kept). For each of the dialogues, 953

we also randomly sample the number of turns 954

which we will use from the dialogue, between 955

two and the total number of available turns 956

minus two. We also prepend "A:" or "B:" 957

prefixes to each turn to indicate the speaker. 958

For Alpaca, we only filter out any prompts 959

that have an additional input field. 960

2. Prompt creation. We randomly select 961

1,000 dialogues twice from the DailyDialog 962

dataset and the first 1,000 instructions with- 963

out input field from the Alpaca dataset. We 964

then fill out the predefined prompt templates 965

(defined in App. A.2) with the selected exam- 966

ples, resulting in prompts for each pre-defined 967

category within every latent structure. In total, 968

we create 1, 000 ∗ 4 = 4, 000 inputs for the 969

dialogue act subset, 1, 000∗4 = 4, 000 inputs 970

for response structure subset, and 1, 000∗6 = 971

6, 000 inputs for the emotion subset to be fed 972

into OLMo. 973

3. Generation. Using OLMo, we then generate 974

25 unbiased samples for each of the 14, 000 975

constructed input prompts. 976

4. Post-processing. We finalize the procedure 977

by removing quotation marks around the gen- 978

eration and stripping any "A:" or "B:" prefixes 979

at the start of generations. 980

A.2 Prompt Templates 981

To generate prompts covering all categories within 982

a latent structure, we define three types of prompt 983

templates - one per latent structure. 984

A.2.1 Dialogue Act 985

For the dialogue act subset, we define a 986

responder as the speaker whose turn it is now 987

to speak (e.g.if the dialogue excerpt ends at A’s 988

turn, we define responder = B). For each 989

dialogue from DailyDialog we then iter- 990

ate through the four defined dialogue acts and pass 991

each of them as act_name. 992
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993
### **Types of Dialogue Acts**994
Here are common categories of dialogue995

acts, though exact categorizations996
may vary depending on the framework:997

#### **1. Inform**998
- The Inform class contains all999

statements and questions by which1000
the speaker shares information1001
with the listener. The speaker1002
assumes the information is1003
correct and believes the1004
addressee does not know or is not1005
aware of it yet.1006

- **Examples**:1007
- "The meeting starts at 3 PM."1008
- "I’ve already emailed the report."1009
- "I saw John at the store1010

yesterday."1011
- "William Shakespeare wrote it."1012
- "The Eiffel Tower is in Paris."1013

1014
#### **2. Question**1015

- The Question class includes speech1016
acts where the speaker seeks1017
information by asking a question.1018
These acts are used when the1019
speaker wants to know something1020
and believes the listener has the1021
answer. Questions can take1022
different forms, including1023
Propositional Questions (yes/no1024
questions), Check Questions1025
(confirming known information),1026
Set Questions (open-ended1027
questions), and Choice Questions1028
(questions with multiple options).1029

- **Examples**:1030
- "Did you finish your assignment?"1031
- "You’ve met Sarah before, haven’t1032

you?"1033
- "What time does the meeting1034

start?"1035
- "Could you clarify what you meant1036

by that?"1037
- "Do you prefer coffee or tea?"1038

1039
#### **3. Directive**1040

- The Directive class includes speech1041
acts where the speaker wants the1042
listener to perform an action.1043
This class covers Requests1044
(asking someone to do something),1045
Instructions (giving direct1046
orders or guidance), Suggestions1047
(offering recommendations), and1048
Accepting or Rejecting Offers1049
(responding to proposals). These1050
acts differ based on how much1051
pressure the speaker applies and1052
their assumptions about the1053
listener’s willingness and1054
ability to comply.1055

- **Examples**:1056
- "Can you send me the file?"1057
- "Fill out this form before the1058

appointment."1059
- "You should try the new Italian1060

restaurant downtown."1061

- "Yes, I’d love to join you for 1062
dinner!" 1063

- "No, I can’t take on another 1064
project right now." 1065

1066
#### **4. Commissive** 1067

- The Commissive class involves 1068
speech acts where the speaker 1069
commits to performing an action 1070
in the future. These acts include 1071
Accepting or Rejecting Requests, 1072
Suggestions, and Offers. By 1073
performing a Commissive act, the 1074
speaker is making a promise or 1075
commitment to carry out the 1076
action requested, suggested, or 1077
offered. These acts reflect the 1078
speaker’s willingness to take 1079
responsibility for fulfilling the 1080
commitment, whether by agreeing 1081
to a proposal or refusing it. 1082

- **Examples**: 1083
- "Fine, I’ll pick you up at 5 PM." 1084
- "Sorry, I can’t do that right 1085

now." 1086
- "That sounds great, I’ll take the 1087

promotion." 1088
- "I promise to finish the report 1089

by the end of the day." 1090
- "I’ll make sure to take care of 1091

it this weekend." 1092
1093

--- 1094
1095

### **Dialogue Excerpt** 1096
1097

{dialogue from DailyDialog} 1098
1099

--- 1100
1101

### **Instructions** 1102
Please consider the provided dialogue 1103

excerpt and provide a plausible 1104
response (and only a single 1105
response) for {responder} that 1106
reflects the following dialogue 1107
act: {act_name}. Output only 1108
{responder}’s response with no 1109
additional text.<end_of_prompt> 1110

A.2.2 Emotion 1111

For the emotion subset, we again define a 1112

responder in the same way as in App. A.2.1. 1113

For each dialogue from DailyDialog we 1114

then iterate through the six defined emotions and 1115

pass each of them as emotion_name. 1116

### **Types of Emotions** 1117
Here are seven main categories of 1118

emotions. 1119
1120

#### **1. Anger** 1121
- The Anger category represents 1122

emotions related to feelings of 1123
displeasure, hostility, or 1124
frustration. This emotion often 1125
arises when someone feels wronged 1126
or blocked from achieving their 1127

12



goal. It can range from mild1128
irritation to intense rage.1129

- **Examples**:1130
- "I can’t believe this is1131

happening!"1132
- "This is so unfair!"1133
- "Why does everything always go1134

wrong for me?"1135
- "I’m so frustrated with this1136

situation!"1137
- "I’m really mad about how things1138

turned out."1139
1140

#### **2. Disgust**1141
- The Disgust category includes1142

emotions related to a strong1143
sense of revulsion, disapproval,1144
or distaste. It often arises when1145
something is perceived as1146
offensive, repellent, or morally1147
objectionable.1148

- **Examples**:1149
- "That food looks awful!"1150
- "I can’t stand how they treat1151

people."1152
- "This is disgusting. I can’t1153

believe they did that."1154
- "I feel sick just thinking about1155

it."1156
- "That’s absolutely revolting!"1157

1158
#### **3. Fear**1159

- The Fear category includes emotions1160
related to anxiety, nervousness,1161
and concern about possible danger1162
or harm. Fear can be rational or1163
irrational and may cause physical1164
or psychological distress.1165

- **Examples**:1166
- "I’m really scared about what’s1167

going to happen."1168
- "I don’t know if I can handle1169

this situation."1170
- "What if things don’t go as1171

planned?"1172
- "I’m afraid something bad might1173

happen."1174
- "I’m nervous about the meeting1175

this morning."1176
1177

#### **4. Happiness**1178
- The Happiness category includes1179

emotions related to joy,1180
contentment, and pleasure.1181
Happiness is often associated1182
with positive experiences,1183
accomplishments, and satisfying1184
events.1185

- **Examples**:1186
- "I’m so excited about this1187

weekend!"1188
- "This is such a great day!"1189
- "I feel so happy about my1190

progress."1191
- "That sounds amazing, I’m really1192

looking forward to it!"1193
- "I’m so glad everything worked1194

out!"1195
1196

#### **5. Sadness**1197

- The Sadness category represents 1198
emotions related to feelings of 1199
loss, disappointment, or sorrow. 1200
It often arises when there is a 1201
sense of unmet expectations, 1202
failure, or grief. 1203

- **Examples**: 1204
- "I feel so down about what 1205

happened." 1206
- "I can’t stop thinking about it, 1207

it’s just so upsetting." 1208
- "I’m really sad things turned out 1209

this way." 1210
- "It’s been a tough time, and I 1211

feel heartbroken." 1212
- "I don’t know how to get over 1213

this sadness." 1214
1215

#### **6. Surprise** 1216
- The Surprise category represents 1217

emotions related to unexpected 1218
events or outcomes, ranging from 1219
shock to awe. This emotion can be 1220
positive or negative, depending 1221
on the nature of the surprise. 1222

- **Examples**: 1223
- "Wow, I didn’t see that coming!" 1224
- "That’s such a surprise, I can’t 1225

believe it!" 1226
- "I’m totally shocked by what 1227

happened." 1228
- "I wasn’t expecting that at all!" 1229
- "I’m so surprised you did that!" 1230

1231
--- 1232

1233
### **Dialogue Excerpt** 1234

1235
{dialogue from DailyDialog} 1236

1237
--- 1238

1239
### **Instructions** 1240
Please consider the provided dialogue 1241

excerpt and provide a plausible 1242
response (and only a single 1243
response) for {responder} that 1244
reflects the following emotion: 1245
{emotion_name}. Output only 1246
{responder}’s response with no 1247
additional text.<end_of_prompt> 1248

A.2.3 Response Structure 1249

For the response structure subset, we de- 1250

fine four different prompt templates, one per 1251

category of response structure. For each 1252

prompt from Alpaca we then append 1253

each of these templates, resulting in four differ- 1254

ent prompts, one per category, per input instruction. 1255

1256

BRIEF 1257

{prompt from Alpaca} Give me a brief 1258
sentence with the answer. Make 1259
sure to restrict your response 1260
to a single sentence. 1261

13



PARAGRAPH1262

{prompt from Alpaca} Write an1263
extensive paragraph on the1264
topic. Restrict your answer to a1265
single paragraph1266

LIST1267

{prompt from Alpaca} In your answer,1268
make sure to include a bullet1269
point list of items relevant to1270
the topic. Keep your answer1271
brief and make sure it contains1272
a bullet point list.1273

TABLE1274

{prompt from Alpaca} In your answer,1275
include a table relevant to the1276
topic. Keep your answer brief1277
and make sure it contains a1278
table.1279

B Hyperparameter Selection1280

We randomly split our generated datasets (dia-1281

logue act, emotion and response structure) into1282

800/100/100 training/validation/testing data points.1283

All data consists of multiple labelled clusters1284

with 25 generations per cluster. We compute1285

BERTScore and BLEURT MBR solutions con-1286

ditioned on each labelled cluster to get cluster-1287

optimal rankings and MBR solutions to compare1288

to. We use the training and validation splits for1289

fine-tuning sequence embedding models and for1290

hyperparameter selection. We have performed all1291

training and hyperparameter selection both on in-1292

dividual datasets (either dialogue act, emotion or1293

response structure) as well as on the combination1294

of all datasets. We find that models trained on all1295

data perform best overall and thus have used those1296

in experiments. We proceed here to discuss the1297

results of hyperparameter selection for each indi-1298

vidual approach in more detail.1299

Utility Cut-off. We considered both an absolute1300

threshold on the utility value as well as a threshold1301

on the deviation from the highest observed utility1302

in the sample. We don’t consider any utility com-1303

parisons with the candidate itself, i.e., we mask out1304

the diagonal of the utility matrix. Furthermore, we1305

experiment with both setting utility values below1306

the threshold to 0 or −1 as well as discarding those1307

utility comparisons altogether. We test a range of1308

50 threshold values ranging within reasonable val-1309

ues for the utility function itself, and order settings1310

based on cluster optimality on the training data. We1311

then take the 10 best performing setups and select1312

the one that performs best in terms of cluster opti- 1313

mality on the validation data. We tune the threshold 1314

independently for both BLEURT and BERTScore. 1315

We find an absolute value threshold to work supe- 1316

rior for both utilities, as well as to zero out values 1317

below the threshold. We find an optimal threshold 1318

of 0.512 and 0.918 for BLEURT and BERTScore 1319

respectively. 1320

Clustering. We use the Sentence Transformers 1321

all-mpnet-base-v2 model as a basis for ob- 1322

taining sequence embeddings. We further fine-tune 1323

this model using a triplet loss on triplets from our la- 1324

belled datasets. We experiment with learning rates 1325

between 1×10−4, 1×10−5 and 1×10−6 and find 1326

a learning rate of 1×10−5 to lead to best validation 1327

loss overall. We then use these sequence embed- 1328

dings with the k-means algorithm to obtain clusters. 1329

We select a number of clusters based on the silhou- 1330

ette score for k = [2, 6] and set a threshold that 1331

the silhouette scores need to reach, otherwise k is 1332

set to 1 and we consider all generations to come 1333

from a single cluster. This threshold is tuned on 1334

prediction accuracy on the number of clusters for a 1335

range of values in (0, 1) on random subsamples of 1336

the validation data containing a random number of 1337

clusters per subsample. 1338

Structure Embeddings. Here, we use the same 1339

fine-tuned sentence transformer model from the 1340

clustering approach. We shift and compress cosine 1341

similarity values to range between 0 and 1. We 1342

optionally consider a threshold on cosine similarity 1343

and perform an identical selection procedure to that 1344

for the threshold in the Utility Cut-off approach. 1345

We find that a threshold does considerably improve 1346

cluster optimality and end up with a threshold of 1347

0.918. 1348

Fine-Tuned Utilities: BERTScore and BLEURT. 1349

We also attempted fine-tuning BERTScore and 1350

BLEURT directly to be more sensitive to the la- 1351

tent structures we expect in the data. We experi- 1352

mented with fine-tuning BERTScore with a triplet 1353

loss on the sequence embeddings of the underly- 1354

ing roberta-large model, and used a mean 1355

squared error regression loss to fine-tune BLEURT 1356

to predict comparisons with out-of-cluster gener- 1357

ations as 0 or -1. We attempted a range of hy- 1358

perparameter values, but found that the resulting 1359

utility functions performed poorly across the board. 1360

Hence, we have not included those models in the 1361

main paper. 1362
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You are an advanced AI assistant
specializing in clear,
well-reasoned, and articulate
responses. Your goal is to
provide comprehensive and
accurate answers while ensuring
coherence, logical consistency,
and factual correctness. Be
precise, provide evidence-based
explanations, and use
structured reasoning when
appropriate. If a question has
multiple interpretations,
clarify them before answering.
Avoid unnecessary verbosity
while maintaining completeness.
If uncertain, state your level
of confidence and explain why.

Figure 3: System prompt provided to the model for all
decoding methods when generating for AlpacaEval and
MT-Bench.

C Evaluation on AlpacaEval and1363

MT-Bench1364

We performed evaluation on AlpacaEval and1365

MT-Bench using Prometheus as an LLM-as-a-1366

judge model.8 We test the instruction-following1367

capabilities as follows:1368

1. Generation. For each instruction from the1369

dataset, we generate our answers from each1370

respective decoding method. We use a system1371

prompt given in Fig. 3. When generating for1372

single-turn MT-Bench, we only prompt the1373

model with the first turn and save its output.1374

When generating for multi-turn MT-Bench,1375

we first prompt the model with just the first1376

turn, save its output, and then we prompt it1377

again with both turns and the reference GPT-1378

4o generation to the first prompt.9 Therefore,1379

the total number of instructions for multi-turn1380

MT-Bench is twice the number of instructions1381

for single-turn MT-Bench.1382

2. Evaluation. We then pass the instruction,1383

the reference answer, as well as the genera-1384

tions of our decoding methods to Prometheus.1385

The reference answers for AlpacaEval (in-1386

cluded in the dataset) were generated by1387

text-davinci-003. We collected refer-1388

ence answers for multi-turn MT-Bench our-1389

8We use prometheus-eval/prometheus-7b-v2.0
9We opted to always provide the reference response in

multi-turn MT-Bench, as to not suffer from compounding
errors.

selves doing greedy decoding from the GPT- 1390

4o through the OpenAI API. We use the 1391

pre-defined RELATIVE_PROMPT_WO_REF 1392

prompt template for Prometheus, as well as 1393

relative grading - for each pair of competing 1394

outputs, Prometheus returns one letter (A or 1395

B) defining which output is preferred. We de- 1396

fine the rubric as “Is the answer clear, helpful, 1397

accurate, and fully aligned with the intended 1398

purpose of the instruction?” 1399

3. Final Score. For every decoding method we 1400

then calculate that methods’ win rate over 1401

the set of reference generations according to 1402

Prometheus. In multi-turn MT-Bench, we re- 1403

port the average of the win rates of both turns. 1404
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