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Abstract

Data-driven models learned often struggle to generalize due to widespread subpopu-
lation shifts, especially the presence of both spurious correlations and group imbal-
ance (SC-GI). To learn models more powerful for defending against SC-GI, we pro-
pose a Correlation-Oriented Disentanglement and Augmentation (CODA) mod-
eling scheme, which includes two unique developments: (1) correlation-oriented
disentanglement and (2) strategic sample augmentation with reweighted consis-
tency (RWC) loss. In (1), a bi-branch encoding process is developed to enable the
disentangling of variant and invariant correlations by coordinating with a decoy
classifier and the decoder reconstruction. In (2), a strategic sample augmentation
based on disentangled latent features with RWC loss is designed to reinforce the
training of a more generalizable model. The effectiveness of CODA is verified by
benchmarking against a set of SOTA models in terms of worst-group accuracy and
maximum group accuracy gap based on two famous datasets, ColoredMNIST and
CelebA.

1 Introduction

One grand challenge that impedes the generalization of machine learning models is ’Subpopulation
shifts’, the alterations in the relative proportions of subpopulations between training and testing
datasets [19]. In reality, one frequently encountered scenario is that specific groups in data are
underrepresented, which we tag as the group imbalance (GI), contributed by class imbalance (CI),
attribute imbalance (AI), or their combination [29, 15]. Due to GI, models trained to minimize
average loss tend to favor the majority groups and thus fail to generalize across minority groups [25].

Another widely discussed issue in subpopulation shifts is the spurious correlations (SC), the incidental
correlations between non-causal features and labels during training time that do not hold in the real
world. SC can significantly compromise the efficacy of a model [1] and has been observed in various
applications, such as speech recognition [10], medical imaging [27], object recognition [25, 8], image
captioning [7], etc. For instance, object recognition models that classify animal species have been
shown to generalize poorly to new environments since their classifications mistakenly favor image
backgrounds over biological characteristics of animals [2, 28]. Learning such correlations can result
in degraded performance on data breaking these spurious patterns, e.g., when animals are moved
indoors or to an uncommon context, such as cows on a beach instead of in a pasture.

Prior research has extensively explored the developments of robust models performing uniformly well
across subpopulations. Reported studies have varied from attempts of developing models without
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Figure 1: (a) ∼ (c): Same bird embedded in different backgrounds. A robust model is expected to
predict consistently well on objects in all images. (d) ∼ (f): The feature extraction and exchange
process of COD. Z represents spurious correlations, and T represents causal correlations.

Figure 2: Overview of the CODA Framework on ColoredMNIST dataset. In ColoredMNIST, samples
with digit less than 5 are negative samples (Y = 0), and the rest are positive samples (Y = 1). Each
sample is either painted red (A = 1) or green (A = 0), with color spuriously correlated with the
label in training set. In stage one, CODA first learns to encode and disentangle causal correlations
from spurious ones. The decoder reconstructs the input data from the two encodings, while the decoy
classifier is employed to lure the spurious information flowing towards the variance encoder. In stage
two, CODA further enhances robustness by creating synthesized samples through the recombination
of encoded features from different inputs, ensuring that the resultant samples maintain original
class information but vary in spurious attributes. Finally, a robust classifier is trained with a novel
reweighted consistency loss to deliver consistent performance across both original and synthetic
samples, thereby reinforcing its resilience to spurious correlations.

pre-identified spurious attributes [21, 23, 26, 20] to methods leveraging knowledge of these spurious
attributes to inform and guide training processes [25, 13, 30, 14, 15]. A critical observation in [21]
unveiled that methods trained without utilizing spurious attributes still rely on them in the model
selection; otherwise, a significant performance drop would be observed. The potential of better
utilizing spurious attributes to further strengthen models in defending subpopulation shifts has yet
to be fully explored, especially in terms of more innovations in utilizing spurious attributes model
selection, addressing SC by mixing, or tackling GI via reweighting. Meanwhile, it is also of great
interest to explore the utilization of spurious attributes as a means to enhance model performance
rather than as impediments to be overcome.

This paper thus aims to develop a novel method of learning models for better defending the SC-GI
type of subpopulation shifts from the aspect of innovating the mechanism of dealing with spurious
attributes. Considering the object recognition task with backgrounds, addressing SC can be translated
to a more straightforward question - Can we design a model capable of reliably recognizing the same
object across a range of spurious attributes, such as diverse backgrounds? To answer this question
implies that the developed model needs to focus on the invariant and causal features pertinent to
object identification, as conceptually illustrated in Figures 1a∼1c. Conducting such a study leads to
two further pivotal technical questions:

Q1: How to synthesize samples that vary in spurious attributes yet retain accurate class information?
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Q2: Based on the synthesized samples, how to design a learning mechanism for developing models
more powerful for addressing the SC-GI subpopulation shifts?

To make a response, a novel framework, the Correlation Oriented Disentanglement and Aug-
mentation (CODA), is developed in this work to develop machine learning models better handling
the SC-GI subpopulation shifts by disentangling variant and invariant features, coordinated with a
strategic sample augmentation process. The overview of the CODA framework is shown in Figure 2.
Two unique developments in CODA are briefed as follows:

Correlation-Oriented Disentanglement (COD) To facilitate the disentangling between class
information and spurious information, a novel bi-branch encoding process called Correlation-Oriented
Disentanglement (COD) is developed in this paper. As shown in Figures 1d∼1f, COD operates
through a ’trap and disentangle’ mechanism. The variance encoder, coordinated with a decoy classifier
that predicts the spurious attribute and a novel design of disentangling loss, extracts only the necessary
information about the spurious attributes. The decoder and a reconstruction loss then simultaneously
regularize the invariance encoder to capture distinct and complementary information (including
invariant features and label-irrelevant features). These bi-branch encoders, coupled with the learned
decoder, facilitate the generation of a rich and diverse synthetic dataset.

Strategic Sample Augmentation with Reweighted Consistency Loss Building on insights from
recent studies [29, 13], which highlight the effectiveness of upweighting sampling probabilities or
losses for minority groups, we extend this concept by strategically generating additional synthetic
samples for these groups. By integrating variant and invariant features extracted from different
samples, the decoder can generate realistic synthetic data that exhibit different spurious information
while preserving class fidelity, aligning with the insight shown in Figures 1a∼1c. To complement this,
we introduce a novel weighted consistency loss designed to prompt the classifier to deliver uniform
predictions across both the original and synthetic samples. Our experimental results affirm that
CODA harmonizes effectively with pre-existing robust classification methodologies by integrating
the proposed weighted consistency objective.

To the best of our knowledge, the work most akin to ours from the conceptual aspect is CAMEL [9],
which applies CycleGAN for learning image transformations. CODA clearly differs from CAMEL in
the following aspects: (1) CycleGAN is deterministic and yields a single fixed output for a given input
sample, while CODA introduces substantially more flexibility in synthetic data by mixing variant
features from multiple samples. (2) CycleGAN is limited to one-to-one transformations, necessitating(
n
2

)
models to cover all potential mappings for n attribute values within one spurious attribute. In

contrast, CODA can simultaneously learn multiple transformations and can be readily extended to
accommodate multiple spurious attributes by incorporating additional decoy classifiers. (3) GANs
are notoriously challenging to train with instability issues. In contrast, CODA offers a more stable
and expedient training process.

The primary contributions of this paper are as follows: (1) The potential of better utilizing spurious
attributes, rather than treating them as impediments to be overcome, is explored. A novel correlation-
oriented disentanglement and augmentation framework for handling the SC-GI type of subpopulation
shifts is thus developed. (2) A bi-branch encoder network architecture coordinated with a decoy
classifier and subsequent decoder is designed to realize disentangled representation learning for
handling SC. (3) A strategic sample augmentation with a novel weighted consistency loss proposed
for upweighting samples predicted with low confidence is developed to better handle the SC-GI. The
proposed CODA framework can operate synergistically with existing robust classification methods.
(4) Extensive experiments conducted confirm that CODA can drive the learning to focus on causal
rather than spurious features and uplift the performance on defending extreme SC-GI subpopulation
shifts.

2 Preliminaries

2.1 Formulation of learning models defending subpopulation shifts

Consider classification tasks in which we aim to predict a label y ∈ Y based on an input x ∈ X .
Each instance in the dataset is also characterized by an attribute a ∈ A, which may influence the
prediction. We define a group by a tuple g = (y, a) ∈ G, where each group has its own distribution Pg .
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Then the training and testing data distributions can be expressed as mixtures of these subpopulation
distributions: Ptrain =

∑|G|
i=1 αiPi and Ptest =

∑|G|
i=1 βiPi, where α, β ∈ ∆|G| represent the mixture

weights. Subpopulation shifts occur when the mixture weights for training and testing differ, i.e.,
α ̸= β. If the mixture weights of specific groups dominate, group imbalance occurs, potentially
leading to a spurious correlation between the attribute and the label.

Given a loss function ℓ, our objective is to identify a function f : X → Y that minimizes the
worst-case expected loss over all possible mixtures [25], formally defined as:

f∗ = argmin
f

sup
γ∈∆|G|

E
(x,y)∼

∑|G|
i=1 γiPi

[ℓ(y, f(x))]. (1)

2.2 Benchmarks for defending subpopulation shifts

Empirical Risk Minimization (ERM) Consider a training dataset D = {(xi, yi, ai)}Ni=1 compris-
ing N samples. Let P̂train denote the empirical training distribution. Then common machine learning
practice applying ERM aims to find a function f that minimizes the average empirical loss:

f∗ERM = argmin
f

E(x,y)∼P̂train
[ℓ(y, f(x))]. (2)

However, ERM typically fails in scenarios with subpopulation shifts due to group imbalance and
learning spurious correlations that do not hold in testing data.

Reweighting Groups (RWG) Given the highly imbalanced nature of subpopulation shifts, Idrissi
et al. [13] studied the efficacy of data balancing techniques, especially RWG. RWG adopts a group-
balanced sampling strategy to upweight minority groups, as shown in Eq. (3):

pg =
1

|G| ×Ng
, (3)

where Ng is the number of training samples in group g, and pg represents the probability of sampling
an instance from group g. Despite its simplicity, RWG achieves competitive performance and serves
as a strong baseline in studying subpopulation shifts.

Group Distributionally Robust Optimization (GDRO) The study [25] showed that optimizing
Eq. (1) is equivalent to minimizing the maximum expected loss over all groups. The empirical
optimization objective in GDRO is expressed as:

f∗GDRO = argmin
f

max
g∈G

E(x,y)∼P̂g [ℓ(y, f(x))]. (4)

2.3 Disentangled representation learning

Disentangled representation learning targets extracting data representations that separate the distinct
sources of variation and serves as the base of the COD development in this work. This section
explores relevant models that have generated significant impacts on such a topic.

Variational Autoencoder (VAE) and its variant Kingma and Welling [18] postulated that the
data generative process is governed by an unobserved vector of latent codes z with prior distribution
p(z). The Vanilla Variational Autoencoder (VAE) is introduced to approximate the intractable true
posterior with a variational posterior qϕ(z|x) and to learn a decoder pθ(x|z), with parameters ϕ and
θ respectively. VAE’s objective is to maximize:

LVAE(θ, ϕ) = Epdata(x)[Eqϕ(z|x)[log(pθ(x|z)]− KL(qϕ(z|x)∥p(z))] (5)

β-VAE [11] incorporated a hyperparameter β to the KL term in Eq. (5) to control the trade-off
between the reconstruction quality and the independence intensity between latent variables. When
β > 1, the model prioritizes learning independent latent factors.

The study [12] showed that the KL term in Eq. (5) can be decomposed into two components:

Epdata(x)[KL(qϕ(z|x)∥p(z))] = I(x; z) + KL(qϕ(z)||p(z)), (6)
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in which qϕ(z) = Epdata(x)[qϕ(z|x)], and I(x; z) represents the mutual information between x and z
under the distribution of pdata(x)q(z|x). A higher value of β enforces a closer approximation of the
latent codes to the factorized prior p(z), leading to more independent latent codes. However, this
also imposes a stronger penalty on the mutual information I(x; z), which may reduce the amount of
information about x retained in z and potentially worsen the reconstruction quality.

Flexibly Fair VAE (FFVAE) FFVAE [3] aimed to learn feature representations t that achieve
subgroup fairness and z targeted for sensitive attributes, with the following objective:

LFFVAE(θ, ϕ, ψ) = Epdata(x)[Eqϕ(z,t|x)[log pθ(x|z, t) + α log pψ(a|z)]

− KL(qϕ(z, t|x)∥p(z, t))]− γKL(q(z, t)∥q(t)
∏
j

q(zj)), (7)

in which pψ(a|z) models the prediction of sensitive attributes. The γ-weighted KL divergence term
encourages the latent variables zj to be independent of both t and zi for all i ̸= j.

Due to the intractability of the second KL term in Eq. (7), FFVAE employs adversarial density
ratio estimation [16]. If an estimator cannot differentiate whether a sample pair (z, t) comes from
q(z, t) or the factorized distribution q(t)

∏
j q(zj), the second KL term is minimized, suggesting

the independence of z and t. However, this approach inevitably introduces a new density estimator
component, along with a GAN training objective, which can be challenging and unstable to train.

3 Correlation-Oriented Disentanglement and Augmentation (CODA)

This section explains the novel mechanism of CODA on utilizing spurious attributes for defending
the SC-GI subpopulation shifts, which is composed of two parts, disentangling variant and invariant
features as well as a strategic sample augmentation with a reweighted consistency loss based on the
disentangled features.

3.1 Correlation-Oriented Disentanglement (COD)

Given a sample (x, y, a, g), we aim to learn encodings z ∈ RK1 and t ∈ RK2 , defined by stochastic
parametric encoders qψ(z|x) = N (z|µz(x), σ2

z(x)) and qϕ(t|x) = N (t|µt(x), σ2
t (x)) respectively.

Factorial priors p(z) for z and p(t) for t are assumed. Our model includes a decoder, denoted by
pθ(x|z, t), and a decoy classifier pω(a|z), which predicts the spurious attribute a.

In this paper, we propose the following training objective for disentangled representation learning:

LCOD(θ, ϕ, ψ, ω) = Epdata(x)[Eqψ(z|x)qϕ(t|x)[log pθ(x|z, t) + α log pω(a|z)]
− γKL(qψ(z|x)∥p(z))− KL(qϕ(t|x)∥p(t))]. (8)

By applying Eq. (6), Eq. (8) can be re-written as:

LCOD(θ, ϕ, ψ, ω) = Epdata(x)[Eqψ(z|x)qϕ(t|x)[log pθ(x|z, t)︸ ︷︷ ︸
reconstruction loss

+α log pω(a|z)︸ ︷︷ ︸
classification loss

]]

− [γ I(x; z) + I(x; t)︸ ︷︷ ︸
mutual information

]− [γ KL(qψ(z)||p(z)) + KL(qϕ(t)||p(t))︸ ︷︷ ︸
KL divergence losses

]. (9)

To clarify, Eq. (8) is the practical training objective for implementation, while the equivalent Eq. (9)
offers justification for motivation of the proposed COD. The objective function in Eq. (9) consists
of four components: (1) a reconstruction loss to ensure z and t collectively encode the information
in x, (2) a classification loss that encourages z to predict spurious attributes accurately, (3) mutual
information terms that limit the extent to which encoders capture relevant information from x, and
(4) KL divergence terms that penalize the encoders if they diverge from the factorial priors.

The working mechanism of the four components in Eq. (9) is described as follows: The classification
loss term rewards z to be maximally predictive of the spurious attribute. By assigning heavy weight
(γ > 1) on minimizing I(x; z), we limit the expressive power of z, ensuring it encodes only the
necessary information about the spurious attributes. In contrast, we place a relatively low limit on
minimizing I(x; t), thus ensuring that the reconstruction quality of the decoder is not degraded. While
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the reconstruction loss term ensures that z and t collectively capture all the information contained in
x, t is expected to carry distinct and complementary information. Furthermore, the two KL terms
regularize the variational marginals to match the factorial priors, thus facilitating disentangling within
each feature representation. A preliminary theoretical exploration of the performance guarantee of
the decoder training has been conducted with a mathematical proof, which is offered in Appendix A.

We emphasize that our goal is to separate spurious and variant correlations from those that are
causal and invariant, rather than to seek disentanglement within each individual representation, i.e.,
imposing each ti to be independent of tj (for all j ̸= i). Consequently, a lower weight on the final
KL divergence term is both justified and sufficient, as it supports our objective without imposing
unnecessary constraints on the independence within the invariant feature space. Our proposed method
circumvents the need for density estimation, thus avoiding the complexities and instabilities associated
with training objectives based on the GAN-like density estimator.

3.2 Strategic sample augmentation with reweighted consistency loss

Strategic sample augmentation Through the disentanglement of variant and invariant features, as
outlined in the previous section, we can now strategically generate synthetic samples for augmentation
by leveraging the trained decoder. For a given batch of B samples {(xi, yi, ai, gi)}Bi=1, we begin
by extracting feature representation pairs {(zi, ti)}Bi=1, where zi = qψ(z|xi) and ti = qϕ(t|xi).
With hyperparameters L, which controls the number of synthetic samples per batch instance, we
randomly select L indices from {1, ..., B} for each instance, yielding mixing set {{hi,j}Lj=1}Bi=1. By
combining features from different instances, we create the set of synthetic samples {{x̂i,j}Lj=1}Bi=1,
where x̂i,j = pθ(x|zhi,j , ti). These samples exhibit varied spurious information but retain their
original class information. A model trained to perform well across augmented samples is likely to
learn robust decision-making rules that do not depend on spurious correlations.

Reweighted consistency loss A natural intuition to prevent the final model fξ from utilizing
spurious correlations is to enforce the model to deliver consistent predictions on the original samples
xi and the set of synthesized samples x̂i = {x̂i,j}Lj=1. To realize, we propose the following
reweighted consistency loss:

ℓRC(xi, x̂i, yi) =
1

2
[
1

L

L∑
i=1

(1− fξ(x̂i,j)yi)βKL(fξ(x̂i,j)∥m̃i) + KL(fξ(xi)∥m̃i)], (10)

in which fξ(x̂i,j)yi is the predicted probability of the true class for x̂i,j , and m̃i =

Normalize( 1
L

∑L
j=1 fξ(x̂i,j)

β
yifξ(x̂i,j)) is the weighted mean prediction for the synthesized sam-

ples, normalized to ensure that the probabilities sum to one.

In Eq. (10), we downweight the synthesized samples with low confidence in predicting the right
class to mitigate its effect in jeopardizing m̃i. Conversely, we upweight their KL losses to penalize
inconsistencies with other samples that have greater confidence in the ground-truth class.

At last, given loss function ℓ, we formulate our final optimization objective as follows:

ℓCODA(xi, x̂i, yi) = ℓ(yi, fξ(xi)) + λℓRC(xi, x̂i, yi). (11)

Pseudo codes of training and deployment of the proposed CODA are offered in Appendix B.

4 Experiments

In this section, we evaluate the efficacy of the proposed CODA methodology. Specifically, we aim to
answer two questions: (1) Can CODA learn disentangled encodings that extract spurious and causal
correlations, respectively? (Section 4.2); (2) Does CODA enhance robustness in addressing SC-GI
subpopulation shifts, and what are the critical factors contributing to its effectiveness? (Section 4.3)

4.1 Setup

Dataset description Experiments are conducted on the ColoredMNIST and CelebA datasets [22].
Here we provide a brief introduction, with comprehensive details available in Table 1 and Appendix C:
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Table 1: Dataset statistics. SC indicates spurious correlations, GI indicates group imbalance, and
DGPS indicates the degree of group proportion shifts between training and testing sets.

Group 1 Group 2 Group 3 Group 4 SC GI DGPS

ColoredMNIST
Training 21330 (42.26%) 3776 (7.55%) 3724 (7.45%) 21370 (42.74%)

✓ ✓ HighValidation 2510 (25.1%) 2526 (25.3%) 2474 (24.7%) 2490 (24.9%)
Testing 761 (7.61%) 4378 (43.8%) 4122 (41.2%) 739 (7.39%)

CelebA
Training 71629 (44.01%) 22880 (14.06%) 66874 (41.08%) 1387 (0.85%)

✓ ✓ LowValidation 8535 (42.96%) 2874 (14.47%) 8276 (41.66%) 182 (0.92%)
Testing 9767 (48.93%) 2480 (12.42%) 7535 (37.75%) 180 (0.90%)

(a) ColoredMNIST (b) CelebA

Figure 3: Visualization of the synthesized samples. Images from the top-row and the leftmost
column are real samples, while the remaining images are reconstructions. Each reconstructed image
is generated by combining t extracted from the corresponding leftmost sample and z from the
corresponding top-row sample. The main diagonal images represent same sample reconstructions.

• ColoredMNIST: This variant of the MNIST dataset [6] incorporates color (red or green)
into the original grayscale digits. Digits below five are labeled negative, while the rest are
positive. Within the training set, 85% of the negative/positive samples are painted green/red,
introducing color as a spurious correlation. Conversely, in the testing set, this ratio is reduced
to 15%. Following [1], labels are flipped with a probability of 0.25.

• CelebA: The CelebA dataset consists of a large collection of celebrity face images coupled
with 40 binary attributes. The task is to predict hair color (blond or non-blond), which
exhibits a strong spurious correlation with the gender attribute (male or female).

Evaluation protocol In alignment with [25], we evaluate robustness of all methods using worst-
group accuracy, the lowest test accuracy across all groups, as gold-standard. In addition, we also
report the average accuracy and the maximum group accuracy gap. Model selection is based on the
highest worst-group accuracy obtained during validation.

Hyperparameters tuning For COD, we employ Adam optimizer [17] and adopt pre-trained
ResNet-18 and ResNet-50 encoders for ColoredMNIST and CelebA, respectively. For learning the
robust classifier, we train all approaches on both datasets using SGD optimizer [24] with momentum
0.9, and adopt a 3-layer CNN and a pre-trained ResNet-50 for ColoredMNIST and CelebA on all
approaches, respectively. Additional training details are available in Appendix D.

4.2 Disentangling and synthesis abilities of CODA

CODA can generate samples varying in spurious attributes yet retaining accurate class informa-
tion. Generated samples visualized in Figure 3 well justify the superior disentangling and synthesis
capabilities of CODA. It is clear that the generated samples in Figure 3 are visually appealing. It is
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Table 2: Average test accuracy (%), worst-group test accuracy (%), and maximum test group accuracy
gap (%) of the classifiers on the ColoredMNIST dataset. Variance and invariance classifiers take z
and t as inputs, respectively. Results are averaged over three independent trials.

target = Y (digit ≥ 5 or not) target = A (color)
Classifier Avg. Acc. Worst. Acc. Max. Acc. Gap Avg. Acc. Worst. Acc. Max. Acc. Gap

variance classifier 15.00 ± 0.00 0.00 ± 0.00 100.00 ± 0.00 100.00 ± 0.00 100.00 ± 0.00 0.00 ± 0.00
invariance classifier 72.17 ± 0.31 71.29 ± 0.44 2.64 ± 0.83 41.44 ± 0.21 35.73 ± 0.35 35.60 ± 1.24

Table 3: Performance metrics (%) for ColoredMNIST and CelebA. Results are averaged over three
independent trials. Red/blue/green represents the first/second/third highest performance. ↑ indicates
that CODA+X shows improvements over a base method denoted by X in terms of worst-group
accuracy and maximum group accuracy on both datasets, X ∈ {ERM, RWG, GDRO}.

ColoredMNIST CelebA
method Avg. Acc. Worst. Acc. Max. Acc. Gap Avg. Acc. Worst. Acc. Max. Acc. Gap

LfF [23] 67.64 ± 5.19 50.91 ± 2.92 24.36 ± 7.08 89.67 ± 0.44 73.11 ± 1.43 20.72 ± 2.40
JTT [21] 72.11 ± 0.36 71.01 ± 0.50 5.15 ± 1.83 92.10 ± 0.26 76.45 ± 0.75 20.90 ± 0.92

ERM 17.02 ± 0.76 2.08 ± 0.70 92.70 ± 0.71 95.05 ± 0.38 47.78 ± 2.30 51.80 ± 2.45
RWG [13] 72.94 ± 0.45 71.64 ± 0.15 2.70 ± 1.06 92.87 ± 0.23 83.44 ± 1.55 10.78 ± 1.70

GDRO [25] 73.03 ± 0.25 71.08 ± 1.02 3.27 ± 1.13 93.01 ± 0.08 88.22 ± 0.89 4.92 ± 1.11

CODA+ERM ↑ 72.20 ± 0.57 71.74 ± 0.24 2.45 ± 1.02 91.89 ± 0.35 83.65 ± 0.32 9.87 ± 1.08
CODA+RWG ↑ 73.20 ± 0.12 72.11 ± 0.51 2.36 ± 0.67 91.72 ± 0.12 86.56 ± 0.82 7.28 ± 1.01

CODA+GDRO ↑ 73.02 ± 0.23 71.98 ± 0.57 2.37 ± 0.94 90.91 ± 0.24 89.26 ± 0.26 4.01 ± 0.24

Table 4: Performance metrics (%) for ColoredMNIST v2, v3, and v4.
ColoredMNIST v2 ColoredMNIST v3 ColoredMNIST v4

method Worst. Acc. Max. Acc. Gap Worst. Acc. Max. Acc. Gap Worst. Acc. Max. Acc. Gap

LFF 58.99 ± 1.95 12.83 ± 4.38 54.68 ± 7.32 15.32 ± 10.65 49.38 ± 4.23 21.35 ± 9.29
JTT 71.09 ± 0.73 2.59 ± 1.83 69.81 ± 0.79 6.9 ± 0.63 62.07 ± 0.52 12.82 ± 1.84

ERM 9.63 ± 2.94 87.07 ± 3.5 0.02 ± 0.02 99.98 ± 0.02 0.00 ± 0.00 100.00 ± 0.00
RWG 71.33 ± 0.45 2.71 ± 0.46 70.93 ± 1.22 2.8 ± 1.33 68.18 ± 2.59 8.08 ± 1.23

GDRO 71.84 ± 0.65 3.32 ± 0.27 69.65 ± 1.59 3.96 ± 2.05 70.42 ± 0.78 4.17 ± 0.75

CODA+ERM ↑ 71.31 ± 0.84 3.3 ± 0.58 71.12 ± 0.92 3.21 ± 1.91 71.03 ± 0.53 3.59 ± 0.53
CODA+RWG ↑ 71.72 ± 0.95 2.58 ± 1.51 71.91 ± 0.21 2.42 ± 0.32 70.60 ± 1.22 2.42 ± 0.93

CODA+GDRO ↑ 72.05 ± 0.27 1.91 ± 0.44 71.86 ± 0.58 2.09 ± 0.22 71.44 ± 0.69 2.36 ± 0.54

evident that the digit color/gender in the reconstructed images is consistent with the top-row samples,
while the residual features—such as digit, written style, and size/background, posture, hairstyle, and
hair color—are determined by the leftmost samples. This indicates that the variance encoder captures
only the necessary information about the spurious attribute, while the invariance encoder encapsulates
distinct and complementary information, including class-related and irrelevant details. These findings
are in harmony with our training objectives outlined in Section 3.1.

CODA can separate spurious information from causal information. We further evaluate the
ability of CODA to disentangle spurious and causal information through four classification tasks on
ColoredMNIST. In each task, we fix the weights of the learned variance and invariance encoders
and extract the corresponding latent codes (z and t) for each image. Here z and t are expected to
carry color and digit information, respectively. A variance classifier and an invariance classifier, both
structured as simple 3-layer MLPs, are then employed with: one using z as input and the other using
t to predict the digit label (whether the digit ≥ 5) or the spurious attribute (color).

Results are presented in Table 2. We observe that the variance classifier achieved perfect performance
in predicting color. In contrast, it achieved 0% worst-group accuracy and 15% average group
accuracy in predicting digit, which conformed to the color assignment ratio of 15% in the testing set.
Conversely, the invariance classifier exhibited robust label classification capabilities, even without
applying any reweighting or sample augmentation technique. Its poor color classification performance,
comparable to random guessing, justifies the effective disentanglement achieved by CODA.
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Figure 4: Sensitivity analysis on the weight of the reweighted consistency loss. When λ = 0, the
methods degrade to vanilla ERM, RWG, and GDRO.

Table 5: Sensitivity analysis on the number of synthesized samples per instance on MultipleCol-
oredMNIST. When L = 0, the methods degrade to vanilla ERM, RWG, and GDRO.

Methods L Avg. Acc. (std) Worst Acc. (std)

CODA+ERM

0 16.60 ± 1.23 0.00 ± 0.00
1 96.90 ± 0.29 88.78 ± 0.87
2 97.12 ± 0.07 90.36 ± 0.68
4 97.06 ± 0.11 91.85 ± 0.68

CODA+RWG

0 95.54 ± 0.24 85.46 ± 0.44
1 96.92 ± 0.04 90.87 ± 0.93
2 96.66 ± 0.28 91.35 ± 0.70
4 96.94 ± 0.08 91.10 ± 1.16

CODA+GDRO

0 94.99 ± 0.33 82.16 ± 4.60
1 96.68 ± 0.03 89.88 ± 0.50
2 96.70 ± 0.16 90.10 ± 1.10
4 96.85 ± 0.05 90.42 ± 1.39

4.3 Benchmarking studies and analysis

CODA enhances performance and robustness over existing robust classification methods. Ta-
ble 3 illustrates the comprehensive performance metrics for CODA compared with benchmarking
methods. On ColoredMNIST, ERM performed worst in all metrics due to the intense subpopulation
shift and the spurious correlation. While on CelebA, which has a less intense difference in group
proportions, ERM achieved the highest average accuracy but failed in worst-group accuracy due to
group imbalance and the spurious correlation. We observe that CODA consistently offered improved
worst-group accuracy over vanilla ERM, RWG, and GDRO, and significantly curtailed the group
accuracy discrepancy across both datasets. This enhancement in robust accuracy suggests that CODA
can be effectively integrated with prevailing robust classification methodologies. Scalability of CODA
to the multi-classification scenario is further evaluated on a dataset called MultipleColoredMNIST,
which is detailed in Appendix E.1. Experimental results in Table 7 present that CODA can be scaled
up to scenarios with multiple spurious attribute values, demonstrating its great potential in solving
complex subpopulation shifts.

Enhanced robustness of CODA to extreme SC-GI subpopulation shifts. Additional experiments
are conducted to assess the robustness of CODA against varying degrees of subpopulation shifts.
Color bias is introduced with probabilities p and 1 − p in training and testing sets, respectively.
ColoredMNIST v2, v3, and v4 are then created with p = 0.8, 0.9, and 0.95, respectively. A higher
value of p indicates greater differences in group proportions, increased group imbalance, and a more
intense spurious correlation. Other dataset settings are consistent with ColoredMNIST. Experimental
results are shown in Table 4 (complete results are presented in Appendix E.2). As the bias intensity
increased, CODA maintained more consistent performance metrics compared to other methods,
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which suggested that CODA is more robust to extreme subpopulation shifts compared with baseline
methods and can effectively adapt its learning to focus on causal rather than spurious features.

The critical role of the optimal coefficient selection for RWC to the success of CODA. Figure 4
presents a sensitivity analysis of the parameter λ from Eq. (11) on ColoredMNIST dataset. We
observe that an elevated λ value (λ ≥ 100) compromises model performance due to excessive
regularization. Conversely, a diminutive λ value fails to contribute significantly owing to insufficient
regularization intensity. Thus, an optimal λ value is instrumental for the robust learning of the model.

Trade-off between robust classification performance and computational costs. Another critical
hyperparameter in training CODA is the number of synthetic samples per instance controlled by
L. A larger L introduces more variability to synthesized samples, driving the model to "forget" the
spurious attributes in decision-making. A sensitivity analysis of L on the MultipleColoredMNIST
dataset is provided in Table 5. It is observable that increasing L generally improves the worst-group
accuracy. However, a larger L also implies higher computational costs. Furthermore, excess L may
not introduce more variability (depending on the complexity of the dataset), e.g., L greater than
10 in MultipleColoredMNIST can result in redundant synthesized samples. Thus, the value of L
needs to be selected carefully for best handling the trade-off between classification performance and
computational efficiency.

5 Conclusion

In this study, we introduced CODA, a novel approach designed to enhance the robustness of ma-
chine learning models against the SC-GI subpopulation shifts. Our extensive experiments based on
the ColoredMNIST and CelebA datasets provided compelling evidence that CODA could success-
fully disentangle variant and invariant feature representations and, more importantly, utilize these
representations for sample augmentation to significantly improve model robustness.

However, it is important to acknowledge some limitations of CODA, notably its reliance on pre-
identified spurious attributes. This dependency requires a potentially costly labeling effort. Addition-
ally, while CODA incurs no additional computational costs at deployment, the training phase is more
resource-intensive due to the necessity of data augmentation processes.

Despite these limitations, results of this study offered a promising direction for creating machine
learning models that robustly generalize beyond biased training distributions and uphold robustness
across diverse subpopulations.
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A Theoretical exploration

In this section, we provide a theoretical exploration of the reconstruction performance property of
CODA, which is stated in Lemma 1. Lemma 1 shows that the decoder in CODA converges to an
entropy-regularized version of the underlying data distribution.

In the overall model development, the proposed CODA facilitates the robust training of the final
classification model by conducting sample augmentation through a VAE-style generative process.
VAE-style generative models are known to have a stable training procedure, but they tend to generate
blurry images that lack details. To facilitate realistic image generation based on datasets containing
samples of more complicated contents (e.g., CelebA), we adopt the Soft-IntroVAE [4] training
technique in which the encoder and decoder models are jointly trained in an introspective way. No
extra network component like a discriminator is needed in Soft-IntroVAE.

Recall that we aim to learn a factorized variational posterior q = q(z, t|x) = qψ(z|x)qϕ(t|x), and
a decoder d = pθ(x|z, t). A factorized prior p(z, t) = p(z)p(t) is assumed for the latent codes.
Let pdata represent the underlying data distribution. We define pd(x) = Ep(z, t)[pθ(x|z, t)] as the
distribution corresponding to the samples generated by the decoder.

In the proposed CODA, the ELBO 2 is formulated as:
ELBO(x; q, d) = log pθ(x|z, t)− γKL(qψ(z|x)∥p(z))− KL(qϕ(t|x)∥p(t)) (12)

By applying Soft-IntroVAE, the overall objectives of the variational posterior and the decoder are
formulated in Eq. (13) and Eq. (14), respectively:

Lq(q, d) = Epdata(x)[ELBO(x; q, d)]− Epd [
1

κ
exp(κELBO(x; q, d))], (13)

Ld(q, d) = Epdata(x)[ELBO(x; q, d)] + ηEpd [ELBO(x; q, d)], (14)
in which η ≥ 0 and κ ≥ 1 are hyperparameters for Soft-IntroVAE training.

A Nash equilibrium point (q∗, d∗) satisfies Lq(q∗, d∗) ≥ Lq(q, d∗) and Ld(q∗, d∗) ≥ Ld(q∗, d) for
all q and d. Define d∗ as follows:

d∗ ∈ argmin
d
{KL(pdata(x)∥pd(x)) + ηH(pd(x))}, (15)

in which H(·) denote the Shannon entropy.
Lemma 1. Let d∗ be defined in Eq. (15). Denote q∗ = pd∗(z, t|x). Assume the encoders and the
decoder have infinite capacities. Assume that there exists no region where pdata(x) = 0, and pd∗(x) ≤
pdata(x)

1
κ+1 for all x. Then (q∗, d∗) forms a Nash equilibrium point of the system formulated in Eq.

(13) and Eq. (14).

Proof. Considering the factorized property of the variational posterior and the prior, one can easily
obtain the following:

KL(q(z, t|x)∥p(z, t)) = KL(qψ(z|x)∥p(z)) + KL(qϕ(t|x)∥p(t)). (16)
Based on [4], by applying Eq. (16), Eq. (12) can be reformulated as:

ELBO(x; q, d) = log pd(x)− KL(q(z, t|x)∥pd(z, t|x))− (γ − 1)KL(qψ(z|x)∥p(z)) (17)
By plugging Eq. (17) into Eq. (13), we have:
Lq(q, d) = Epdata(x)[log pd(x)− KL(q(z, t|x)∥pd(z, t|x))− (γ − 1)KL(qψ(z|x)∥p(z))]

− Epd [
1

κ
exp(κ[log pd(x)− KL(q(z, t|x)∥pd(z, t|x))− (γ − 1)KL(qψ(z|x)∥p(z))])].

(18)

Given fixed d, define q∗(d) such that Lq(q∗(d), d) ≥ Lq(q, d) holds for all q, i.e., q∗(d) is
the maximizer of Eq. (18). Now consider the function g(y) = ay − b

κ exp(κy), where
g′(y) = a − b exp(κy), g′′(y) = −κb exp(κy), a = pdata(x) ≥ 0, b = pκ+1

d (x) ≥ 0,
y = −KL(q(z, t|x)∥pd(z, t|x)) − (γ − 1)KL(qψ(z|x)∥p(z)) ≤ 0, and hyperparamter κ ≥ 1. We
have the following observations:

2We ignore the classification loss for simplicity.
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Algorithm 1 Correlation-Oriented Disentanglement
Input: training dataset D = {(xi, yi, ai)}Ni=1, batch size B, encoders qψ(z|x) and qϕ(t|x), decoder
pθ(x|z, t), decoy classifier pω(a|z), variant encoder KL weight γ, classification weight α.
Output: qψ(z|x), qϕ(t|x), and pθ(x|z, t).

1: Randomly initialize ψ, ϕ, θ, and ω.
2: while stopping criterion not met do
3: Randomly select batch {(xi, yi, ai)}Bi=1
4: for i = 1 to B do
5: (µzi , log σ

2
zi)← qψ(z|xi)

6: (µti , log σ
2
ti)← qϕ(t|xi)

7: zi ← Reparameterize(µzi , log σ
2
zi)

8: ti ← Reparameterize(µti , log σ
2
ti)

9: x̂i ← pθ(x|zi, ti)
10: âi ← pω(a|zi)
11: end for
12: Lrecon ← 1

B

∑B
i=1 ℓBCE(xi, x̂i)

13: Lcls ← 1
B

∑B
i=1 ℓCE(ai, âi)

14: LzKL ← γ
B

∑B
i=1[−

1
2

∑dim(zi)
j=1 (1 + log σ2

zi,j
− µ2

zi,j
− exp(log σ2

zi,j
))]

15: LtKL ← 1
B

∑B
i=1[−

1
2

∑dim(ti)
j=1 (1 + log σ2

ti,j
− µ2

ti,j
− exp(log σ2

ti,j
))]

16: Ltotal = Lrecon + αLcls + γLzKL + LtKL
17: ψ, ϕ, θ, ω ← backpropagate(Ltotal)
18: end while
19: return qψ(z|x), qϕ(t|x), and pθ(x|z, t).

• If b = 0 and a > 0, we have g′(y) = a ≥ 0, thus the maximum of g(y) is obtained at y = 0.

• If b = 0 and a = 0, we have g′(y) = 0, thus y = 0 yields a maximizer of g(y).

• If b > 0 and a = 0, we have g′(y) < 0, thus there is no maximizer of g(y).

• If b > 0 and a > 0, we have saddle point y∗ = 1
κ log

a
b . If ab ∈ (0, 1), we have y∗ < 0, thus

the maximum of g(y) is obtained at y∗. If ab ≥ 1, we have y∗ ≥ 0, thus the maximum of
g(y) is obtained at 0.

We have y = 0 if and only if q(z, t|x) = pd(z, t|x) and qϕ(z|x) = p(z). Thus, given the assumption
in Lemma 1, for any fixed d, q∗(d) satisfies q∗(d)(z, t|x) = pd(z, t|x) and q∗ψ(z|x) = p(z). Thus we
have ELBO(x; q∗(d), d) = log pd(x).

Next, we consider

Ld(q∗(d), d) = Epdata(x)[ELBO(x; q∗(d), d)] + ηEpd [ELBO(x; q∗(d), d)]

= Epdata(x)[log pd(x)] + ηEpd [log pd(x)]
= −KL(pdata∥pd) + Epdata [log pdata(x)]− ηH(pd(x)). (19)

Since Epdata [log pdata(x)] is a constant term, we conclude that d∗ ∈ argmind{KL(pdata(x)∥pd(x)) +
ηH(pd(x))}, and (q∗, d∗) forms a Nash equilibrium point of the system formulated in Eq. (13) and
Eq. (14).

B Pseudo codes

This section presents the pseudo-codes for training the proposed CODA framework. The training
process of the CODA framework is comprised of two stages:

• The pseudo-code for training the correlation-oriented disentanglement is detailed in Algo-
rithm 1.
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Algorithm 2 Sample Augmentation
Input: batch size B, number of synthetic samples per instance L, original batch samples {xi}Bi=1,
encoders qψ(z|x) and qϕ(t|x), decoder pθ(x|z, t).
Output: synthesized samples {{x̂i,j}Lj=1}Bi=1.

1: for i = 1 to B do
2: (µzi , log σ

2
zi)← qψ(z|xi)

3: (µti , log σ
2
ti)← qϕ(t|xi)

4: zi ← Reparameterize(µzi , log σ
2
zi)

5: ti ← Reparameterize(µti , log σ
2
ti)

6: end for
7: for i = 1 to B do
8: for j = 1 to L do
9: randomly sample h from {1, ..., B}

10: x̂i,j ← pθ(x|zh, ti)
11: end for
12: end for
13: return {{x̂i,j}Lj=1}Bi=1

Algorithm 3 Robust Classifier with Reweighted Consistency
Input: training datasetD = {(xi, yi, ai)}Ni=1, batch sizeB, number of synthetic samples per instance
L, consistency coefficient λ, reweight coefficient β, encoders qψ(z|x) and qϕ(t|x), decoder pθ(x|z, t),
final classifier fξ.
Output: robust classifier fξ.

1: Randomly initialize ξ.
2: while stopping criterion not met do
3: Randomly select batch {(xi, yi, ai)}Bi=1.
4: Synthesize samples {{x̂i,j}Lj=1}Bi=1 from Algorithm 2.
5: for i = 1 to B do
6: ŷi ← fξ(xi)
7: ℓRC,i ← ℓRC(xi, {x̂i,j}Lj=1, yi) based on Eq. (10).
8: end for
9: Lcls ← 1

B

∑B
i=1 ℓCE(yi, ŷi)

10: Lconsistency ← 1
B

∑B
i=1 ℓRC,i

11: Ltotal ← Lcls + λLconsistency
12: ξ ← backpropagate(Ltotal)
13: end while
14: return robust classifier fξ.

• The pseudo-code for training the robust classifier with the proposed reweighted consistency
loss in Eq. (10) is outlined in Algorithm 3.

C Dataset details

Experiments are conducted on the ColoredMNIST and CelebA datasets. Let DGPS denote the
degree of group proportion shifts between training and testing sets. Denote pTrg and pTeg as the
proportions of group g in training and testing sets, respectively. We then define the average group
proportion shift (AGPS) as 1

|G|
∑
g∈|G| |pTrg −pTeg |. In this paper, for |G| = 4, we categorizeDGPS

as high if AGPS exceeds 25%, low if AGPS is below 5%, and medium else. Key statistics of both
datasets are summarized in Table 1.

C.1 ColoredMNIST

The ColoredMNIST dataset is a variant of the classic MNIST dataset of handwritten digits. In
ColoredMNIST, samples with a digit less than 5 are labeled as negative samples (Y = 0), and those
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with a digit 5 or higher are labeled as positive samples (Y = 1). Additionally, each sample is colored
either red (A = 1) or green (A = 0). To introduce a spurious correlation, 85% of the positive and
negative samples are colored red and green, respectively, in the training set. This bias is adjusted in
the validation set to 50% for a balanced distribution and reversed in the test set to 15% to challenge
the learned correlation.

The training and validation sets are derived from the first 50,000 and last 10,000 samples of the
original MNIST dataset, respectively. An independent test set of 10,000 samples is also provided.
Consistent with the work of [1], label noise is added to the dataset, with a 25% flip rate.

Characteristically, as shown in Table 1, ColoredMNIST presents challenges, such as group imbalance,
significant variation in group proportions between training and testing sets, and strong spurious
correlations between color and label. These features make it an ideal benchmark for testing the
robustness and generalization of machine learning models against subpopulation shifts.

C.2 CelebA

The CelebA dataset is comprised of an extensive collection of celebrity face images, each tagged
with 40 binary attributes. The task is to classify the hair color (blond or not-blond), which is highly
correlated with gender (male or female). We adhere to the standard splits for training (162,770
samples), validation (19,867 samples), and testing (19,962 samples). Like ColoredMNIST, CelebA
also exhibits extreme group imbalance and spurious correlations, though with less variation in group
proportions between the training and testing sets compared to ColoredMNIST. These characteristics
render CelebA a formidable dataset for assessing the robustness and generalization capabilities of
machine learning algorithms.

D Training details

This section outlines the training parameters and computational details for our experiments. The
experiments were conducted on a single NVIDIA L40 GPU.

D.1 Disentangled representation learning in CODA

For the COD training, we utilized the Adam optimizer [17] and used a consistent batch size of 128
across 50 epochs on both datasets. Pre-trained ResNet-18 and ResNet-50 encoders were employed
for the ColoredMNIST and CelebA datasets, respectively. The learning rates were set to 1e − 3
with a corresponding weight decay of 1e− 3 for the decoy classifier on both datasets. The learning
rates for other network components were 1e− 4 for ColoredMNIST and 2e− 5 for CelebA, both
with zero weight decay. To enhance visual quality in the generated images on CelebA, we applied
the Soft-IntroVAE training method [5] with βneg = 1024 during the final 20 epochs (batch size is
reduced to 48). Parameters α = 0.1 and γ = 5 were used in Eq. (9) for both datasets. The training
times were approximately 1 hour and 38 minutes with 14 GB of GPU memory for ColoredMNIST,
and 45 hours and 29.4 minutes consuming 45.13 GB of GPU memory for CelebA, respectively.

D.2 Robust classifier training details

For the robust classifier, we trained all methods using the SGD optimizer [24] with a momentum of
0.9 and used a consistent batch size of 64 across 50 epochs on both datasets. A 3-layer CNN and
a pre-trained ResNet-50 were adopted for ColoredMNIST and CelebA, respectively. The learning
rate was fixed at 1e − 5 with a weight decay of 1e − 1 for CelebA, and both set to 1e − 3 for
ColoredMNIST. The number of augmented samples, denoted by L, was set to 2 for ColoredMNIST
and 4 for CelebA. Training times on the ColoredMNIST dataset were as follows: CODA+ERM
completed in 26.36 minutes, CODA+RWG in 26.28 minutes, and CODA+GDRO in 27.32 minutes,
all with a GPU memory consumption of 488 MB. On the CelebA dataset, the training durations were
11.30 hours for CODA+ERM, 11.46 hours for CODA+RWG, and 19.35 hours for CODA+GDRO,
each utilizing 36.35 GB of GPU memory. We conducted hyperparameter tuning for various robust
classification approaches through a grid search method:

• LfF: We grid searched over q ∈ {0.1, 0.3, 0.5, 0.7, 0.9}.
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Table 6: Average accuracy (%) for ColoredMNIST v2, v3, and v4.
Avg. Acc.

method ColoredMNIST v2 ColoredMNIST v3 ColoredMNIST v4

LFF 65.96 ± 2.0 66.16 ± 0.6 55.02 ± 34.00
JTT 72.68 ± 0.56 72.01 ± 0.25 71.54 ± 1.32

ERM 45.69 ± 18.9 10.13 ± 0.01 5.00 ± 0.00
RWG 72.96 ± 0.14 72.62 ± 0.07 72.03 ± 0.76

GDRO 72.92 ± 0.13 72.58 ± 0.29 72.22 ± 0.19

CODA+ERM 72.87 ± 0.21 72.3 ± 0.14 72.51 ± 0.06
CODA+RWG 73.28 ± 0.12 73.34 ± 0.16 72.59 ± 0.33

CODA+GDRO 73.19 ± 0.11 73.01 ± 0.26 72.98 ± 0.23

Table 7: Performance metrics (%) for MultipleColoredMNIST.
Avg. Acc. (std) Worst Acc. (std)

ERM 16.60 ± 1.23 0.00 ± 0.00
RWG 95.54 ± 0.24 85.46 ± 0.44
GDRO 94.99 ± 0.33 82.16 ± 4.60

CODA+ERM 97.06 ± 0.11 91.85 ± 0.68
CODA+RWG 96.94 ± 0.08 91.10 ± 1.16
CODA+GDRO 96.85 ± 0.05 90.42 ± 1.39

• GDRO: The group adjustment hyperparameter C was selected from {1, 2, 3, 4, 5}.
• JTT: A grid search was performed for the identification epoch T over {1, 2, 5} and for the

upsampling factor λup over {5, 20, 100}.
• CODA: The hyperparameter λ was searched within {10, 50, 100, 200, 300, 400, 500} for

ColoredMNIST and {10, 50, 100} for CelebA.

E Additional experiments and analysis

E.1 Scalability of CODA to the multi-classification scenario

Scalability of CODA to the multi-classification scenario is evaluated on a dataset called Multiple-
ColoredMNIST. In this dataset, the task is to predict the digit y ∈ {0, . . . , 9}, where |Y | = 10. We
define ten RGB colors a ∈ {0, . . . , 9} such that |A| = 10, resulting in a total of 100 groups. In the
training set, each sample is painted with the color corresponding to its digit a = y with a probability
of 85%, and randomly assigned another for the remaining 15%. Labels are flipped with a probability
of 25%, similar to the ColoredMNIST dataset. The training set is highly group imbalanced, with
colors spuriously correlated with labels. The majority group (in a random run) constitutes 9.44% of
the population, while the minority group only 0.13%.

The worst group accuracy of the hypothetical optimal digit classifier f can be as low as 62.07%
(only 62.07% of the samples whose digits match the labels due to randomness in label flipping and
color assignment). Thus, for validation and test sets, we used a different setup, no label flipping and
uniform color assignment. The worst group accuracy of f is 100% for both sets.

Experimental results are presented in Table 7. CODA demonstrates substantially higher performance
compared to benchmark methods, indicating its scalability to scenarios with multiple spurious attribute
values. These results underscore the effectiveness of CODA in addressing complex subpopulation
shifts.

E.2 Robustness of CODA against different degrees of subpopulation shifts

To further assess the robustness of the CODA framework against different degrees of subpopulation
shifts, we conducted a series of additional experiments. These experiments were designed to
simulate extreme subpopulation shifts by introducing color bias into the training and testing datasets
with probabilities p and 1 − p, respectively. Specifically, we generated three new versions of the
ColoredMNIST dataset—versions 2, 3, and 4—with the probabilities p set at 0.8, 0.9, and 0.95,
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Table 8: Performance comparison (%) of different encoders to CODA.
Encoder Type Method Avg. Acc. (std) Worst Acc. (std)

3-CNN-layer Encoders
CODA+ERM 68.89 ± 0.59 67.50 ± 1.08
CODA+RWG 70.89 ± 0.31 69.83 ± 0.38
CODA+GDRO 71.36 ± 0.48 70.51 ± 0.52

Resnet18 Encoders
CODA+ERM 72.20 ± 0.57 71.74 ± 0.24
CODA+RWG 73.20 ± 0.12 72.11 ± 0.51
CODA+GDRO 73.02 ± 0.23 71.98 ± 0.57

(a) 3-CNN-layer Encoders (b) Resnet18 Encoders

Figure 5: Visualization of the synthesized samples. Both encoder architectures can well disentangle
the causal features from the spurious ones.

respectively. For each version, we maintained a fixed validation ratio of 0.5 to ensure consistency in
evaluation across different datasets.

The details of the dataset configurations are fully described in Appendix C.1. The results from these
experiments are detailed in Table 4 and Table 6. The findings consistently show that CODA not
only enhances the performance of baseline methods but also significantly improves the robustness
of the model. Notably, CODA achieved the highest accuracy in the worst-performing groups and
the smallest maximum accuracy gap across groups, regardless of the intensity of the subpopulation
shifts. These results underline the effectiveness of CODA in handling challenging scenarios where
traditional models often falter, further validating its utility in real-world applications with data bias.

E.3 The critical role of the reconstruction quality to robust classification of CODA

The efficacy of CODA relies on its ability to synthesize samples with varied spurious attribute values
alongside the original sample, thereby encouraging the final classifier to focus exclusively on causal
features. This section evaluates the impact of the reconstruction quality on robust classification
performance.

To facilitate this comparison, a simple 3-CNN-layer architecture was employed for encoders, rep-
resenting a less sophisticated alternative to the ResNet18 encoders. Evaluation on the Multiple-
ColoredMNIST dataset revealed that the 3-CNN-layer architecture produced significantly higher
pixel-wise reconstruction losses (0.06451 and 0.05424 for validation and test sets) compared to
ResNet18 (0.00055 and 0.00057). Despite this gap in reconstruction quality, both architectures
achieved similar disentanglement performance (see Fig 5), successfully separating causal and spuri-
ous features.

Table 8 presents the experimental results. The data indicate that the classification performance of
CODA using ResNet18 encoders surpasses that of the 3-CNN-layer encoders. This observation
suggests a positive correlation between reconstruction quality and final classification performance,
with poorer reconstruction quality corresponding to decreased classification accuracy.
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NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: Claims in this paper reflect the paper’s contributions and scope.

Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]

Justification: Limitations are discussed in the conclusion part.

Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [Yes]
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Justification: Full assumptions and proofs are provided in Appendix.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental Result Reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: Training details are available in the Setup section in the main text and Training
details section in the appendix.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
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Answer: [No]

Justification: Data are publicly and easily available.
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• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: Training details are available in the Setup section in the main text and Training
details section in the appendix.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment Statistical Significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: Error bars are reported for all experimental results.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
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• It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

• It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes]
Justification: Compute resources are reported in the Training details section in appendix.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: Research conducted in the paper conform, in every respect, with the NeurIPS
Code of Ethics.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader Impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [NA]
Justification: This paper proposes a method for addressing subpopulation shifts, which has
no potential negative societal impacts.
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.
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• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: The paper poses no such risks.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: All related assets are cited in the paper.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.
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• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [NA]
Justification: The paper does not release new assets.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: the paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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