
An LLM-Powered Tool for Enhancing Scientific Open-Source Repositories

Nikolay O. Nikitin 1 Andrey Getmanov 1 Zakhar Popov 1 Ekaterina Ulyanova 1 Yaroslav Aksenkin 1

Ilya Sokolov 1 Alexander Boukhanovsky 1

Abstract
We present OSA (Open Source Advisor), an
open-source tool that uses large language models
(LLMs) to improve scientific repositories. OSA
uses an agent-based architecture to automate tasks
such as generating README files, docstrings,
and documentation, configuring CI/CD pipelines,
creating tag annotations, and analyzing reposito-
ries to provide recommendations on best practice.
Unlike code-generation tools, OSA focuses on
enhancing existing repositories. We have vali-
dated OSA’s effectiveness across diverse scientific
repositories in multiple domains. OSA is avail-
able in https://github.com/aimclub/
OSA.

1. Introduction
In recent years, the scientific community has witnessed
unprecedented growth in the production and sharing of re-
search outputs (Bornmann et al., 2021), facilitated by the
growing acceptance of open-source principles (McKiernan
et al., 2016). Scientific repositories have emerged as vital
infrastructures that allow researchers to store, share, and
collaborate on datasets, algorithms, and trained models (Be-
nureau & Rougier, 2018). However, despite their impor-
tance, many scientific repositories face challenges related to
usability and reproducibility (Trisovic et al., 2022; Färber,
2020).

The scientific code is difficult to read, there is no documen-
tation, and sometimes not even trivial README files are
available. Libraries and frameworks often lack basic CI/CD
settings: linters, autotests, etc. That is why it turns out to
be very hard to reproduce the formally open-sourced results
(Ivie & Thain, 2018). There are many initiatives to increase
the quality of scientific code (Thimbleby, 2024). However,

1NSS Lab, AI Institute, ITMO University, Saint-
Petersburg, Russia. Correspondence to: Nikolay O. Nikitin
<nnikitin@itmo.ru>.

Proceedings of the ICML 2025 Workshop on Championing Open-
source Development in Machine Learning (CODEML ’25). Copy-
right 2025 by the author(s).

it is hard to motivate scientists to do a large amount of
routine software engineering work.

The involvement of LLM-based agents can be a useful solu-
tion to this problem. It is widely considered a valuable tool
for the improvement of both scientific research (Nejjar et al.,
2025) and software development (He et al., 2024). The
current state-of-the-art LLM-driven tools can even generate
complex scientific code from the text of the paper (Seo et al.,
2025). However, the more common case in the scientific
workflow is the need to improve the existing scientific code
prior to publication.

To reduce the amount of routine work involved in preparing
scientific repositories, we propose an open-source tool that
leverages large language model (LLM) agents to enhance
the preparation process. By integrating LLM agents into
scientific workflows, we aim to achieve a more intuitive and
user-friendly experience for reproducible research.

The proposed tool focuses on several key functionalities:
(1) preparation of basic documentation for existing code
(README, docstrings); (2) analysis of the compliance of
existing repository with best practices; (3) improving the
structure and configuration of CI/CD pipelines in repository;

This paper describes the architecture of the OSA ((Open
Source Advisor) - open source tool, details the underlying
LLM-based tools, and presents preliminary results for case
studies that demonstrate its potential to improve the usabil-
ity and effectiveness of scientific repositories. We believe
that this approach not only enhances the experience of re-
searchers but also contributes to the broader goal of making
scientific knowledge more accessible and reproducible.

2. Related Works
2.1. Code generation and improvement

LLMs are already widely used for code generation in scien-
tific applications (Nejjar et al., 2025). They are also applica-
ble to the improvement of existing code quality (Trofimova
et al., 2024).

Tools such as GitHubGPT demonstrate the potential of
LLMs for analyzing and synthesizing code for GitHub repos-
itories, while utilities like pipreqs automate dependency

1

https://github.com/aimclub/OSA
https://github.com/aimclub/OSA
https://github.com/zeelsheladiya/GitHubGPT
https://github.com/bndr/pipreqs


An LLM-Powered Tool for Enhancing Scientific Open-Source Repositories

management by inferring requirements from Python im-
ports. While these systems streamline code creation and de-
pendency resolution, they primarily target generative tasks
rather than systematic improvement of existing repositories..
This distinction highlights a critical gap in tools designed
to audit and refine established codebases — which is the
central focus of OSA.

2.2. Documentation generation

Documentation generation has seen notable innovation, with
frameworks like docstring-gen leveraging Codex to produce
structured docstrings, and readme-ai employing repository
analysis to generate README templates. There is a lot of
researches on further improvement of README generation
quality (Koreeda et al., 2023).

Specialized tools such as ts-readme-generator and
mermaidjs-github-svg-generator further automate API doc-
umentation and UML diagram integration. However, these
efforts often operate in isolation, addressing single compo-
nents (e.g., docstrings or READMEs) without unified work-
flows. OSA advances this paradigm by integrating multi-
level documentation synthesis—from inline docstrings to
repository-wide guides—through a cohesive LLM-driven
pipeline.

2.3. Repository maintenance and analysis

Infrastructure tools like SonarQube and CodeClimate en-
able continuous code quality inspection, while gitinspec-
tor and repo-analyzer provide statistical insights into con-
tributor activity and repository health. Emerging solu-
tions such as repo-map employ LLMs to generate ar-
chitectural summaries, yet lack actionable recommenda-
tions for improvement. OSA extends these capabilities
by combining static analysis with context-aware best prac-
tices, automating CI/CD configuration, tag annotation, and
repository-specific optimizations. This agentic approach dis-
tinguishes OSA from passive analysis tools, enabling proac-
tive, end-to-end repository enhancement. The other similar
tool is RepoAgent https://github.com/OpenBMB/
RepoAgent, which is an LLM-powered repository agent
designed to generate documentation and analyze reposito-
ries. Also, tools like (Phan et al., 2024) and (Yang et al.,
2024) allow achieve better interaction with the repository.

2.4. Benchmarks

There are many benchmarks for code generation
and its accompanying documentation. For exam-
ple, ML-Bench (Tang et al., 2023) evaluates code
generation quality at the repository level. As a
benchmark for documentation, generate-readme-
eval (https://huggingface.co/datasets/

patched-codes/generate-readme-eval) can
be considered. EnvBench (Eliseeva et al., 2025) focuses on
the task of automated environment setup. However, there
are currently no benchmarks available that directly evaluate
the quality of scientific repository improvement across
various aspects.

3. OSA: approach for improvement of
scientific repositories

3.1. Motivation

Scientific code often operates within specialized domains
such as chemistry, physics, or climate modeling, requiring
a deep understanding of both the underlying scientific prin-
ciples and the computational methods used to model them.
This complexity results in code that is not only intricate but
also heavily dependent on specific libraries, frameworks,
and data formats that may be unfamiliar to many users. As
a result, scientific code can present significant barriers to
entry for researchers from other disciplines or those new to
the field.

Various tasks related to improving open source reposito-
ries can be addressed using LLM, including: retrieval-
augmented generation (RAG) for documentation, code re-
view, automated bug fixes, updating examples, analysis of
test results, and Q&A about code and documentation. We
aim to automate the solution of these tasks in OSA as much
as possible.

3.2. Workflow, agents and tools

The structure of the OSA workflow is presented in Figure 1.
It consists of several tools and planner agent that automates
the selection of appropriate tool.

There are several self-implemented tools implemented in
OSA: (1) tool for README generation; (2) tool for doc-
strings generation; (3) tool for generation of reports; (4) tool
for CI/CD scripts generation.

The integrated automatic scheduler in OSA operates in three
distinct modes: basic, automatic, and advanced, selected at
runtime. In the basic mode, the tool performs a minimal set
of predefined improvements without additional user inter-
action. The advanced mode provides full manual control,
allowing the user to manage all operations directly. In auto-
matic mode, the scheduler employs an LLM to analyze the
repository structure and the existing README file. Based
on this analysis, it generates a set of proposed enhancements
that the user may accept or decline.

The main tool implemented in OSA automates the gener-
ation of README files, offering two formats: a standard
README style and an article style, selectable via a hyper-

2

https://github.com/airtai/docstring-gen
https://github.com/eli64s/readme-ai
https://github.com/LinusU/ts-readme-generator
https://github.com/SimonKenyonShepard/mermaidjs-github-svg-generator
https://github.com/SonarSource/sonarqube
https://codeclimate.com/
https://github.com/ejwa/gitinspector
https://github.com/ejwa/gitinspector
https://brosg.github.io/repo-analyzer/
https://github.com/cyanheads/repo-map
https://github.com/OpenBMB/RepoAgent
https://github.com/OpenBMB/RepoAgent
https://huggingface.co/datasets/patched-codes/generate-readme-eval
https://huggingface.co/datasets/patched-codes/generate-readme-eval


An LLM-Powered Tool for Enhancing Scientific Open-Source Repositories

Planner

Docs
Generation

<Repo URL>
 <Fixes and

recommendations>

API for app

User

Code and
Docs

Analysis

Agent-
validator

Agent-
validator

Tool usage

Agent external
communication

Legend:

Tool

Planner

Agent

Existing
open

repository

Improved
open

repository with
documentation

Report on
repository

quality

Run
action

Obtain
analytics

Obtain pull
request
with changes

Figure 1. Architecture of OSA with description of main agents and tools.

parameter. The process begins by identifying key repository
files, prioritizing those containing core business logic and
project descriptions, and incorporating the repository file
structure and any existing README when available.

For standard style, the tool extracts core features from the
existing README, source files, and metadata, which form
the basis for a comprehensive overview. It also generates
a Getting Started section when example scripts or demon-
stration files are noted, providing practical guidance for
users.

In article mode, the tool produces a summary of the ac-
companying scientific paper and extracts summaries from
key files. These are combined to create an Overview outlin-
ing the project objectives, a Content section describing the
main components and their interactions, and an Algorithms
section explaining the role of implemented methods within
the research context. This ensures that the documentation
remains scientifically grounded and accessible to a broad
audience.

All prompts used for agents and LLM-based tools are pro-
vided in the Appendix A. We intentionally avoided using
complicated third-party tools (e.g. Cursor) to make the
solution more straightforward and interpretable.

3.3. Use cases

OSA is a package that runs through the CLI. It can also be
deployed locally in Docker so that by specifying the API key

to any LLM, you can interact with the tool via the console.
Also, it is available as a Streamlit-based web application.
There are several use cases for OSA:

Author of the paper processes a repository with a draft pro-
gram code for experiments and scientific articles describing
this library or algorithm. The article is uploaded as a sep-
arate file and used by OSA to generate a better README.
OSA creates a fork of the repository and offers a pull request
with all the changes. It remains for the developer to look at
the suggestions and fix what seems wrong.

Scientific developer uses OSA For more complicated li-
braries and frameworks, OSA generates CI/CD scripts and
docstrings, and improves project structure. It also generates
supplementary files such as a contributing guide, pull re-
quests, and issue templates to simplify the involvement of
external collaborators.

In addition, OSA provides reports on possible improve-
ments. It also indicates the presence of the main compo-
nents of the repository: README, license, documentation,
usage examples, tests, and a brief description.

4. Experimental studies
The experimental part is focused on the generation of
README for repositories. We prepared a small benchmark
to compare the quality of OSA (the list is provided in Ap-
pendix A.1. It includes the subsets of repositories referred
to as Common (common-purpose projects) and Scientific

3



An LLM-Powered Tool for Enhancing Scientific Open-Source Repositories

Table 1. Metrics for OSA against LLM-based baseline and ReadmeAI. The General subset represents general-purpose projects and the
Common subset represents scientific and educational projects. All represents the metrics for the full benchmark. The quality metric is
evaluated using the GPT4 model. The best results are highlighted in bold.

Repository
type

LLM type
GPT 4.1 Claude 4 Sonnet Gemma3 27b

LLM
baseline

Readme
AI OSA

LLM
baseline OSA

LLM
baseline OSA

Common 0.31 0.72 0.76 0.17 0.79 0.35 0.75
Scientific 0.40 0.77 0.80 0.33 0.82 0.25 0.78

All 0.36 0.75 0.78 0.25 0.81 0.30 0.77

(scientific and educational projects).

We are focused on the quality of README generation since
it can evaluated in quite a straightforward way. To measure
the quality of the README generation, we used geval
library with a custom prompt to evaluate the reliability,
correctness, and validity of generation results using GPT4
model. The exact prompt is provided in Appendix A.2.
There are no repositories from the benchmark that we used
for fine-tuning or few-shot results improvement.

As an alternative solution, we consider a simple base-
line (direct generation of README via LLM) and
open-source ReadmeAI tool (https://github.com/
eli64s/readme-ai). Each was initialized via GPT-4.1,
Claude 4 Sonnet, and Gemma3 27b model. The comparison
of metrics is presented in Table 1. Performance metrics for
DeepSeek-V3 and Gemini 2.5 Flash is not included because
it is comparable to Gemma3 27B

It can be seen that OSA generates README files with
better quality than pure-LLM solutions and widely-used
ReadmeAI tool. Also, the quality of OSA generation is less
affected by the selection of LLM than ReadmeAI. While
results are relatively comparable for Claude 4, the qual-
ity of ReadmeAI decreases dramatically when switching to
Gamme 3 27b. So, we can use relatively lightweight LLM in
OSA without loss in quality. Also, the improvement of met-
rics for scientific and educational repositories is higher than
for general-purpose ones, which confirms the applicability
of OSA for scientific code.

5. Conclusions and future works
In the paper, we propose the OSA tool that allows to simplify
the development of scientific open-source tools. It combines
the advantages of LLMs and existing best practices for open
source software development.

In future we would like to add a RAG system to OSA based
on our repository with the best practices of open source de-
sign. It is assumed that by comparing with the sample, OSA
will determine what exactly is missing from the repository
being checked. Let’s say if he already has a great README,

then it won’t have to be generated.

We are currently working only on GitHub, because there
are more projects there and it is much easier to work with
it. However, scientific developments are often uploaded to
local versions of GitLab or other GitHub analogues, so it is
likely that we will try to be present there as well. Initially,
we focused on Python, but we plan to expand the list of
supported languages. Also, the more extensive and complex
validation outside README generation quality is planned.

Acknowledgments
The Ministry of Economic Development of the Russian Fed-
eration (IGK 000000C313925P4C0002), agreement No139-
15-2025-010.

Software and Data
OSA is available in repository https://github.com/
aimclub/OSA.

Impact Statement
This paper presents work whose goal is to advance the field
of scientific open-source and machine learning. There are
many potential societal consequences of our work, none
which we feel must be specifically highlighted here.

References
Benureau, F. C. and Rougier, N. P. Re-run, repeat, repro-

duce, reuse, replicate: transforming code into scientific
contributions. Frontiers in neuroinformatics, 11:69, 2018.

Bornmann, L., Haunschild, R., and Mutz, R. Growth rates
of modern science: a latent piecewise growth curve ap-
proach to model publication numbers from established
and new literature databases. Humanities and Social
Sciences Communications, 8(1):1–15, 2021.

Eliseeva, A., Kovrigin, A., Kholkin, I., Bogomolov, E.,
and Zharov, Y. Envbench: A benchmark for automated

4

https://github.com/eli64s/readme-ai
https://github.com/eli64s/readme-ai
https://github.com/aimclub/OSA
https://github.com/aimclub/OSA


An LLM-Powered Tool for Enhancing Scientific Open-Source Repositories

environment setup. arXiv preprint arXiv:2503.14443,
2025.

Färber, M. Analyzing the github repositories of research
papers. In Proceedings of the ACM/IEEE joint conference
on digital libraries in 2020, pp. 491–492, 2020.

He, J., Treude, C., and Lo, D. Llm-based multi-agent sys-
tems for software engineering: Literature review, vision
and the road ahead. ACM Transactions on Software Engi-
neering and Methodology, 2024.

Ivie, P. and Thain, D. Reproducibility in scientific com-
puting. ACM Computing Surveys (CSUR), 51(3):1–36,
2018.

Koreeda, Y., Morishita, T., Imaichi, O., and Sogawa, Y.
Larch: Large language model-based automatic readme
creation with heuristics. In Proceedings of the 32nd ACM
International Conference on Information and Knowledge
Management, pp. 5066–5070, 2023.

McKiernan, E. C., Bourne, P. E., Brown, C. T., Buck, S.,
Kenall, A., Lin, J., McDougall, D., Nosek, B. A., Ram,
K., Soderberg, C. K., et al. How open science helps
researchers succeed. elife, 5:e16800, 2016.

Nejjar, M., Zacharias, L., Stiehle, F., and Weber, I. Llms
for science: Usage for code generation and data analysis.
Journal of Software: Evolution and Process, 37(1):e2723,
2025.

Phan, H. N., Nguyen, T. N., Nguyen, P. X., and Bui,
N. D. Hyperagent: Generalist software engineering
agents to solve coding tasks at scale. arXiv preprint
arXiv:2409.16299, 2024.

Seo, M., Baek, J., Lee, S., and Hwang, S. J. Paper2code:
Automating code generation from scientific papers in ma-
chine learning. arXiv preprint arXiv:2504.17192, 2025.

Tang, X., Liu, Y., Cai, Z., Shao, Y., Lu, J., Zhang, Y., Deng,
Z., Hu, H., An, K., Huang, R., et al. Ml-bench: Eval-
uating large language models and agents for machine
learning tasks on repository-level code. arXiv preprint
arXiv:2311.09835, 2023.

Thimbleby, H. Improving science that uses code. The
Computer Journal, 67(4):1381–1404, 2024.

Trisovic, A., Lau, M. K., Pasquier, T., and Crosas, M. A
large-scale study on research code quality and execution.
Scientific Data, 9(1):60, 2022.

Trofimova, E., Sataev, E., and Jowhari, A. S. Codere-
fine: A pipeline for enhancing llm-generated code
implementations of research papers. arXiv preprint
arXiv:2408.13366, 2024.

Yang, J., Jimenez, C. E., Wettig, A., Lieret, K., Yao, S.,
Narasimhan, K. R., and Press, O. Swe-agent: Agent-
computer interfaces enable automated software engineer-
ing. In The Thirty-eighth Annual Conference on Neural
Information Processing Systems, 2024.

5



An LLM-Powered Tool for Enhancing Scientific Open-Source Repositories

A. Technical appendix
A.1. Repositories for validation

The following repositories was used in experimental studies:

https://github.com/wkentaro/labelme, https://github.com/AntonOsika/gpt-engineer,
https://github.com/THUDM/ChatGLM-6B, https://github.com/OpenEthan/SMSBoom,
https://github.com/lra/mackup, https://github.com/chenfei-wu/TaskMatrix, https:
//github.com/hacksider/Deep-Live-Cam, https://github.com/google/python-fire, https:
//github.com/stitionai/devika, https://github.com/Pythagora-io/gpt-pilot, https:
//github.com/CorentinJ/Real-Time-Voice-Cloning, https://github.com/encode/httpx,
https://github.com/lss233/kirara-ai, https://github.com/assafelovic/gpt-researcher,
https://github.com/mkdocs/mkdocs, https://github.com/ageitgey/facerecognition,
https://github.com/donnemartin/system-design-primer, https://github.com/
chatanywhere/GPTAPIfree, https://github.com/Asabeneh/30-Days-Of-Python, https:
//github.com/kaixindelele/ChatPaper, https://github.com/twintproject/twint, https:
//github.com/pallets/flask, https://github.com/charlax/professional-programming,
https://github.com/ethereum/EIPs, https://github.com/xai-org/grok-1, https://github.
com/eriklindernoren/PyTorch-GAN, https://github.com/public-apis/public-apis, https:
//github.com/Z4nzu/hackingtool, https://github.com/gto76/python-cheatsheet, https:
//github.com/danielgatis/rembg, https://github.com/bregman-arie/devops-exercises,
https://github.com/Vision-CAIR/MiniGPT-4, https://github.com/Jack-Cherish/
python-spider, https://github.com/openai/chatgpt-retrieval-plugin, https://
github.com/black-forest-labs/flux, https://github.com/sb-ai-lab/EmotiEffLib,
https://github.com/sb-ai-lab/Ride, https://github.com/hse-cs/delPezzo, https:
//github.com/deeppavlov/chatsky, https://github.com/deeppavlov/dialog2graph, https:
//github.com/corl-team/verl-loras, https://github.com/sb-ai-lab/Eco2AI, https:
//github.com/AIRI-Institute/GENALM, https://github.com/AIRI-Institute/eco4cast,
https://github.com/Vishnu-tppr/Camouflage-AI, https://github.com/tbhvishal/
Python-Weather-Info-App, https://github.com/readytensor/rt-repo-assessment, https:
//github.com/DrpidamenteNanjesha/TagGenerator, https://github.com/stephenombuya/
Code-Contribution-Analyzer.

The ”common” or ”scientific” labels were assigned due to the type of the repository.

A.2. Metric evaluation prompt

Determine whether the AI-generated Readme file (ACUTAL_OUTPUT)
is better than the original one (EXPECTED_OUTPUT).
ACTUAL_OUTPUT contains two fields: ’readme’, which contains generated README itself,
and ’repo_structure’ which is json with repository’s structure.
Generated README’s content must be consistent with provided repository structure.
The ACTUAL_OUTPUT is not neccessary has to be the same as EXPECTED_OUTPUT,
Your goal is to determine which text is better, using provided Evaluations steps.
Readme structure does not matter much as long as it passes evaluation steps.

"Step 1: Does provided structure of the repository addresses README content?",
"Step 2: Does the README provide a clear and accurate overview

of the repository’s purpose?",
"Step 3: Are installation and setup instructions included and easy to follow?",
"Step 4: Are usage examples provided and do they clearly demonstrate functionality?",
"Step 5: Are dependencies or requirements listed appropriately?",
"Step 6: Is the README easy to read, well-structured, and free of confusing language?",

6

https://github.com/wkentaro/labelme
https://github.com/AntonOsika/gpt-engineer
https://github.com/THUDM/ChatGLM-6B
https://github.com/OpenEthan/SMSBoom
https://github.com/lra/mackup
https://github.com/chenfei-wu/TaskMatrix
https://github.com/hacksider/Deep-Live-Cam
https://github.com/hacksider/Deep-Live-Cam
https://github.com/google/python-fire
https://github.com/stitionai/devika
https://github.com/stitionai/devika
https://github.com/Pythagora-io/gpt-pilot
https://github.com/CorentinJ/Real-Time-Voice-Cloning
https://github.com/CorentinJ/Real-Time-Voice-Cloning
https://github.com/encode/httpx
https://github.com/lss233/kirara-ai
https://github.com/assafelovic/gpt-researcher
https://github.com/mkdocs/mkdocs
https://github.com/ageitgey/facerecognition
https://github.com/donnemartin/system-design-primer
https://github.com/chatanywhere/GPTAPIfree
https://github.com/chatanywhere/GPTAPIfree
https://github.com/Asabeneh/30-Days-Of-Python
https://github.com/kaixindelele/ChatPaper
https://github.com/kaixindelele/ChatPaper
https://github.com/twintproject/twint
https://github.com/pallets/flask
https://github.com/pallets/flask
https://github.com/charlax/professional-programming
https://github.com/ethereum/EIPs
https://github.com/xai-org/grok-1
https://github.com/eriklindernoren/PyTorch-GAN
https://github.com/eriklindernoren/PyTorch-GAN
https://github.com/public-apis/public-apis
https://github.com/Z4nzu/hackingtool
https://github.com/Z4nzu/hackingtool
https://github.com/gto76/python-cheatsheet
https://github.com/danielgatis/rembg
https://github.com/danielgatis/rembg
https://github.com/bregman-arie/devops-exercises
https://github.com/Vision-CAIR/MiniGPT-4
https://github.com/Jack-Cherish/python-spider
https://github.com/Jack-Cherish/python-spider
https://github.com/openai/chatgpt-retrieval-plugin
https://github.com/black-forest-labs/flux
https://github.com/black-forest-labs/flux
https://github.com/sb-ai-lab/EmotiEffLib
https://github.com/sb-ai-lab/Ride
https://github.com/hse-cs/delPezzo
https://github.com/deeppavlov/chatsky
https://github.com/deeppavlov/chatsky
https://github.com/deeppavlov/dialog2graph
https://github.com/corl-team/verl-loras
https://github.com/corl-team/verl-loras
https://github.com/sb-ai-lab/Eco2AI
https://github.com/AIRI-Institute/GENALM
https://github.com/AIRI-Institute/GENALM
https://github.com/AIRI-Institute/eco4cast
https://github.com/Vishnu-tppr/Camouflage-AI
https://github.com/tbhvishal/Python-Weather-Info-App
https://github.com/tbhvishal/Python-Weather-Info-App
https://github.com/readytensor/rt-repo-assessment
https://github.com/D rápidamenteNanjesha/TagGenerator
https://github.com/D rápidamenteNanjesha/TagGenerator
https://github.com/stephenombuya/Code-Contribution-Analyzer
https://github.com/stephenombuya/Code-Contribution-Analyzer


An LLM-Powered Tool for Enhancing Scientific Open-Source Repositories

A.3. README style prompts

A.3.1. PRE-ANALYSIS PROMPT

TASK:
Based on the provided data about the files and the README content,
your task is to identify and return the paths to 3-5 key files that
contain the main business logic or project description.
RULES:
- Return one path per line.
- Choose the most important files that define the project’s core logic.
- Exclude files related to tests, configuration,
or assets unless they are central to the business logic.
- Exclude README files.

A.3.2. CORE FEATURES PROMPT

TASK:
Based on the provided information about the project,
generate a list of core features for the project.
Each core feature should be represented by JSON format following this structure:
{{

"feature_name": "text",
"feature_description": "text",
"is_critical": boolean

}}
RULES:
- The output should be a JSON array.
- Each element in the array should represent one core feature.
- Use double quotes for JSON formatting.
- Be sure to generate multiple core features,
each describing a different aspect of the project.
- The ’feature_name’ should describe a key aspect.
- The ’feature_description’ should be a detailed
but short explanation of the feature.

A.3.3. OVERVIEW PROMPT

TASK:
Generate a concise overview of the project by analyzing the provided data.
Your response should be a short paragraph that encapsulates the core use-case,
value proposition.
RULES:
- Focus on the project’s core purpose and its value
proposition without mentioning specific technical aspects.
- Avoid technical jargon, code snippets, or any implementation details.
- The overview should be no more than 60 words.

A.3.4. GETTING STARTED PROMPT

TASK:
You are generating the "Getting Started" section
for the README file of the project above.
Your goal is to help a new user understand how to start
using the project by analyzing the provided example files.
If you find a clear entrypoint or demonstration of how to run or integrate

7



An LLM-Powered Tool for Enhancing Scientific Open-Source Repositories

the project - use that information to generate a concise, helpful section.
If the example files are empty, contain only boilerplate code
(e.g., import statements or data definitions), or do not provide any meaningful
insight on how to use the project | return ‘null‘ in JSON instead of a section.
RULES:
- Be concise and beginner-friendly.
- Use markdown formatting with code blocks if needed.
- Prefer actual code found in the examples over assumptions.
- DO NOT make up usage instructions | rely only on provided content.
- If unsure or examples are not helpful, return "getting_started": null
- Don’t add ## Getting Started at the beginning

A.4. Article style prompts

A.4.1. FILES SUMMARY PROMPT

TASK:
Analyze the provided code repository. Your task is to summarize the following:
Purpose: The overall goal and intended function of the codebase.
Architecture: The structure of the codebase and its key components.
Functionality: What the code achieves and the main algorithms or approaches
it implements. Connection to the context: How the code reflects or supports
the methodology, key ideas, or results described in the article. Ensure
your summary is clear, concise, and omits technical implementation details.
Focus on high-level insights that help understand the codebase.
RULES:
- Avoid phrases like "This file", "The file", or "This code".
- Begin with a verb or noun.
- Do not include quotes, code snippets, bullets, or lists.
- Limit the response to 200-250 words.

A.4.2. ARTICLE SUMMARY PROMPT

TASK:
Analyze the given text, which may be a technical report or article.
Your task is to extract the following,
basing your response solely on the context provided:

Main topic: Identify the central subject of the document.
Key ideas: Highlight the primary concepts or arguments presented.
Methodology: Describe the methods or approaches used.
Working steps: Outline the significant actions or processes involved.
Results: Summarize the outcomes or findings.
Ensure your response is precise, uses concise language, and avoids
any additional information not present in the text.
RULES:
- Start with a strong, attention-grabbing statement.
- Avoid phrases like "This PDF" or "The document".
- Exclude quotes, code snippets, bullets, or lists.
- Limit the response to 200-250 words.

A.4.3. OVERVIEW PROMPT

TASK:
Outline the repository’s purpose and objectives based on the following context.
Emphasize main functionalities and goals without technical jargon.

8



An LLM-Powered Tool for Enhancing Scientific Open-Source Repositories

RULES:
- Begin with a clear statement capturing the project’s essence.
- Use 150-200 words.
- Avoid phrases like "This project" or "The repository".

A.4.4. CONTENT PROMPT

TASK:
Describe the repository’s components|including databases, models,
and other relevant parts|and explain how they interrelate to support
the project’s functionality.
RULES:
- Emphasize each component’s role in the overall project.
- Focus on high-level concepts, avoiding technical details.
- Don’t put quotes around or enclose any code.

A.4.5. ALGORITHMS PROMPT

TASK:
Detail the algorithms used in the codebase, explaining their functions.
RULES:
- Describe each algorithm’s role without technical implementation details.
- Use clear, accessible language.

A.5. Scheduler prompt

TASK:
Analyze the repository structure and README content to determine
the appropriate settings for the following options.
Generate a JSON report following this exact structure:
{{
"generate_report": boolean,
"translate_dirs": boolean,
"generate_docstring": boolean,
"ensure_license": str or None,
"community_docs": boolean,
"generate_readme": boolean,
"organize": boolean,

}}

RULES:

- Return only a valid JSON object following exactly the structure above.
- "generate_report": true if an additional user report would be helpful,
false otherwise.
- "translate_dirs": true if directory and file names
need to be translated to English.
- "generate_docstring": true if significant Python code lacks docstrings.
- "ensure_license": one of "bsd-3", "mit", "ap2" if a license
file should be generated, or None if license is alreade presented.
- "community_docs": true if community files like CODE_OF_CONDUCT.md or
PULL_REQUEST_TEMPLATE.md should be created.
- "generate_readme": true if README is missing or of low quality,
false if README is clear and sufficient.
- "organize": true if ’tests’ or ’examples’ directories are missing and should be added.

9



An LLM-Powered Tool for Enhancing Scientific Open-Source Repositories

- Do not add any explanations, comments or extra text.
- Use lowercase true/false and null exactly as JSON booleans/null.
- Your response must be valid JSON parsable by standard parsers.

10


