
Seeing What Tastes Good:
Revisiting Multimodal Distributional Semantics

in the Billion Parameter Era

Anonymous ACL submission

Abstract001

There is widespread agreement about the002
grounded nature of human learning and rep-003
resentation, and the belief that computational004
models of meaning need to be multimodal. In005
this paper, we ask to what degree does this006
belief hold in the era of models trained on bil-007
lions of examples? We investigate the ability008
of pre-trained vision models to represent the009
semantic feature norms of concrete object con-010
cepts, e.g. a ROSE is red, smells sweet, and011
is a flower. More specifically, we use prob-012
ing tasks to test which properties of objects013
these models are aware of. We evaluate im-014
age encoders trained on image data alone, as015
well as multimodally-trained image encoders016
and language-only models, on predicting an ex-017
tended set of the classic McRae norms and the018
newer Binder dataset of attribute ratings. We019
find that multimodal image encoders slightly020
outperform language-only approaches, and that021
image-only encoders perform comparably to022
the language models, even on non-visual at-023
tributes that are classified as “encyclopedic” or024
“function”. These results offer new insights into025
what can be learned from pure unimodal learn-026
ing, and the complementarity of the modalities.027

1 Introduction028

Multimodal models depend on vision encoders to029

provide information about the objects that are de-030

picted and their properties, their spatial configura-031

tion, lighting, and scene information. Recent work032

has highlighted a degree of linear alignment be-033

tween neural network representations of the vision034

and language modalities (Merullo et al., 2023; Li035

et al., 2024; Huh et al., 2024). This implies that036

the respective representation spaces have similar037

configurations, in terms of the local organisation038

(nearest neighbours) of concepts. However, there039

remains an open the question of how the differ-040

ent modalities “understand” or represent the con-041

cepts: which attributes are salient for a particular042

Figure 1: Given a dataset of concrete concepts, depicted
using either visual or linguistic data, that are paired
with semantic norms, we train linear probes on frozen
modality-specific representations of to understand how
well conceptual attributes can be extracted from models.

concept? In other words, how similar, in terms 043

of underlying attributes: is a CHAIR as seen by 044

a vision encoder similar to a CHAIR as encoded 045

by a language model? This question concerns the 046

complementarity of vision and language: are differ- 047

ent modalities distinct, or in fact convergent (Huh 048

et al., 2024)? Early work on distributional represen- 049

tations, in text-only (Baroni and Lenci, 2008; Ru- 050

binstein et al., 2015; Lucy and Gauthier, 2017) and 051

multimodal (Bruni et al., 2014; Collell and Moens, 052

2016) models of static word embeddings, studied 053

this question extensively. Recent advances in rep- 054

resentation learning necessitates that we revisit this 055

question to understand the relative representational 056

power of each modality in modern models. 057

In this paper, we investigate how vision, lan- 058

guage, and vision-and-language models represent 059

concrete object concepts in terms of their associ- 060

ated attributes (semantic norms). We use a linear 061

probing methodology to test whether model repre- 062

sentations make distinctions corresponding to at- 063
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tributes associated with concepts, depicted visually064

or in text. Figure 1 presents an overview of our065

approach. The semantic norms cover many dif-066

ferent types of attributes, from visual-perceptual067

is green to functional is eaten to encyclopedic068

grows on trees. Our first question is whether dif-069

ferent encoders, from different modalities, capture070

particular attribute types more or less well.071

Secondly, the models we evaluate correspond to072

a set of hypotheses about the role of language and073

labelling in conceptualization and category learn-074

ing, a hotly debated topic in cognitive and neu-075

roscience (Waxman and Markow, 1995; Lupyan,076

2012; Ivanova and Hofer, 2020; Benn et al., 2023).077

At one extreme are pure vision encoders (ViT-078

MAE, DINOv2) trained without any language or079

category label supervision. At the other, models080

like CLIP and SigLIP learn to represent the vi-081

sual input by aligning it to text as batch-wise near-082

est neighbours: a form of language-steered world083

learning. We also evaluate text-only models that084

get categories for free (via word labels) but have085

to infer perceptual and other attributes from dis-086

tributional semantics. Inasmuch language “carves087

up the world”, visual encoders with more language088

input should be better aligned with semantic norms089

for English concepts.090

We test these hypotheses using two concept at-091

tribute datasets. The first dataset is an extension092

of the classic McRae (McRae et al., 2005) seman-093

tic norms with cleaned synthetic norms from the094

THINGS project (Hansen and Hebart, 2022), to095

create the new McRae++ dataset. The second096

is a dataset of neuro-cognitive attribute ratings097

from Binder et al. (2016).098

Our results demonstrate strong conceptual aware-099

ness in multimodal visual encoders across all at-100

tribute types. Moreover, while single-modality101

models behave most similarly (i.e. vision mod-102

els and language models correlate most strongly103

within-modality), all performant models are highly104

correlated, indicating a degree of convergence,105

given exposure to sufficent data of either modality.106

The main contributions1 of this paper include:107

• Improved understanding of the conceptual108

knowledge embedded in vision encoder mod-109

els, ranging from self-supervised, class-110

supervised, to language-supervised.111

• McRae++: a new dataset of concepts anno-112

1The datasets and code are available at: [ANONYMIZED].

tated with semantic norms, drawing on data 113

from the McRae dataset and THINGS. 114

• Best practices for extracting representations 115

for lexical semantic probing from LLMs. 116

2 Related Work 117

Understanding and evaluating the lexical semantics 118

learned by language models via co-occurrence pat- 119

terns is a long-standing concern in distributional 120

semantics. A popular method for evaluating vector 121

representations of lexemes is the correlation be- 122

tween the cosine similarity of two words in model 123

space compared to human ratings of word similar- 124

ity (e.g. using MEN (Bruni et al., 2014) and Sim- 125

Lex (Hill et al., 2015)). However, cosine similarity 126

cannot uncover the underlying dimensions of mean- 127

ing space, or how the space distinguishes between 128

human-meaningful attributes. In contrast, testing 129

for specific semantic attributes, by predicting se- 130

mantic norms, can inform us about the underlying 131

organisation of a model’s representation space. 132

Baroni and Lenci (2008) were the first to use 133

the McRae semantic norm dataset to evaluate the 134

correspondence between early models of distri- 135

butional semantics and cognitive concepts, using 136

nearest-neighbors procedures. Using prediction 137

models similar to linear probing, Rubinstein et al. 138

(2015); Lucy and Gauthier (2017) test static word 139

embeddings and find that they encode taxonomic 140

properties significantly more accurately than other 141

types of properties, a finding we replicate. How- 142

ever, Sommerauer and Fokkens (2018) find that 143

embeddings also reliably encode attributes that cut 144

across taxonomic classes, such as is dangerous. 145

Fagarasan et al. (2015) show that semantic norms 146

can be predicted from word embeddings for unseen 147

concepts, while (Derby et al., 2019; Bhatia and 148

Richie, 2024) add semantic norms as additional 149

input to models of distributional semantics. 150

Conceptual attributes (either in the form of 151

McRae norms directly or very similar data) have 152

also been used to investigate the complementar- 153

ity of representations learned from language and 154

vision. While Silberer et al. (2013); Derby et al. 155

(2018); Derby (2022) show that multimodal repre- 156

sentations can improve norm prediction, i.e. that 157

two modalities are better than one, Bruni et al. 158

(2014); Collell and Moens (2016) find only slight 159

patterns of differences when they examine the dif- 160

ferences between vision and language representa- 161

tions in predicting different attribute types. 162
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This latter finding (which we confirm for more163

recent models) is in line with more recent work by164

Li et al. (2024) and Merullo et al. (2023) which165

posits a linear relationship between vision and lan-166

guage encodings. These works also compare across167

different vision architectures with more or less su-168

pervision. Merullo et al. (2023) connect frozen169

visual encoders to frozen language models with170

a trained linear transform, and find that the per-171

formance on image captioning correlates with the172

amount of language supervision of the visual en-173

coder: CLIP, trained with full captions, performs174

better than a model trained on category labels, and175

self-supervised BEiT, trained on image data alone,176

performs worst. Alternatively, Li et al. (2024)177

perform Procrustes analysis (a linear mapping)178

between image representations from ImageNet-179

trained vision models and language model represen-180

tations for the same concepts, and find better align-181

ment with larger language models, and with vision182

models that have been trained on supervised classi-183

fication tasks, rather than self-supervised learning.184

There is less work on the semantic alignment185

of vision model representations with human con-186

ceptual knowledge. In the computer vision lit-187

erature, Muttenthaler et al. (2023); Mahner et al.188

(2024) has investigated the alignment between vi-189

sion model representation spaces and human visual190

similarity judgements, using the THINGS dataset191

(Hebart et al., 2023). This work is directly analo-192

gous to evaluating pairwise similarities of language193

model representations against semantic similarity194

judgements, and as such, doesn’t separate out in-195

dividual concept attributes. Moreover, it assesses196

representations corresponding to instances (single197

images), rather than concepts (collections of in-198

stances). Mahner et al. (2024) compare sparse199

representations of human and model similarities,200

finding that while core dimensions overlap, hu-201

mans use more semantic cues, and vision models202

rely more on visual cues, as well as many human-203

uninterpretable cues. In a study of several vision204

encoders, Muttenthaler et al. (2023) find that mod-205

els trained on larger datasets and language supervi-206

sion (CLIP) are more aligned with human similar-207

ity than smaller label- and self-supervised models.208

Finally, Suresh et al. (2024) show that image en-209

coders trained to predict object attributes, rather210

than object classes, are more aligned with humans.211

3 Concept Attributes: Datasets 212

Understanding concepts via a core set of distinc- 213

tive attributes is a long-standing quest in cogni- 214

tive science (Aristotle, 4th c. BC / 1928; Rosch 215

and Mervis, 1975; Nosofsky et al., 2018; Gärden- 216

fors, 2000). One method of discovering which 217

attributes are important for human categorisation 218

is semantic norm elicitation: participants are asked 219

to write down the “characteristics and attributes” 220

(Rosch and Mervis, 1975) or “properties” (McRae 221

et al., 2005) they associate with a particular concept. 222

Pooled over many participants, semantic norms 223

thus represent a concept as a set of frequently men- 224

tioned salient attributes. Here we use an extended 225

version of the McRae norms (McRae et al., 2005). 226

While commonly used, semantic norm data have 227

two important weaknesses. Firstly, they are bi- 228

ased towards attributes that are easily lexicalized. 229

Secondly, they are not complete: less-salient, but 230

present, attributes are often missing (e.g. TIGER 231

but not CAT has teeth). We thus also use a re- 232

cent dataset of ratings across a fixed set of at- 233

tributes related to sensory and neurological dimen- 234

sions (Binder et al., 2016). 235

Since we are exploring visual and linguistic rep- 236

resentations, the concepts we consider are concrete 237

objects, corresponding to English nouns. We use 238

the set of object concepts from THINGS (Hebart 239

et al., 2019), which also includes a set of quality- 240

controlled images for each concept. 241

McRae++ norms. The classic McRae semantic 242

norms dataset (McRae et al., 2005) contains 541 243

concepts and 2 524 unique norms. The norms are 244

classified into different types, such as ‘taxonomic’, 245

‘functional’, ‘visual-color’, corresponding to asso- 246

ciated brain regions (Cree and McRae, 2003). 247

Hansen and Hebart (2022) extend the McRae 248

dataset using GPT-3 to the 1 854 concepts in 249

THINGS (Hebart et al., 2019). The GPT-3 gen- 250

erated norms are sufficiently similar to human- 251

generated norms, in terms of their distribution 252

across feature types, predicted super-category struc- 253

ture, and concept similarity, but have greater cov- 254

erage in terms of concepts and features. However, 255

the norms are often noisy (m sorry, is vitamins), 256

redundant (is gray–is gray in color), or too 257

generic (comes in different sizes and colors). 258

We create a new cleaner set of semantic norms 259

for the THINGS concept set, with the aim is to in- 260

crease the set of associated concepts for each norm. 261

To do this, we map the GPT-3-generated Hansen 262
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Name Feature norm Concepts

McRae has seeds {APPLE, AVOCADO, CANTALOUPE, CUCUMBER, DANDELION, GRAPE,
HONEYDEW, LEMON, LIME, MANDARIN, . . . } (21 concepts)

Hansen has seeds (sim: 1.0) {APPLE, BANANA, BELL PEPPER, . . . } (45 concepts)
has many seeds (sim: 0.9) {POMEGRANATE} (one concept)

McRae++ has seeds {APPLE, AVOCADO, CANTALOUPE, . . . BANANA, BELL PEPPER,
BERRY, . . . , POMEGRANATE} (49 concepts)

Table 1: McRae++ extends the McRae norms to the THINGS concepts through the Hansen norms. In this example,
the “has seeds” McRae norm is mapped to the “has seeds” and “has many seeds” Hansen norms and inherits all
their associated concepts (in orange). We also include the original concepts in McRae that overlap with THINGS
(dark blue) and discard the others (light blue). We obtain a more complete set then either McRae or Hansen.

Name Norms N → 10 Concepts Types

Original dataset

McRae 2 524 122 541 10
Hansen 84 561 1 548 1 854 N/A
McRae++ 2 202 533 1 854 10
Binder 65 65 534 (14)/7

Filtered variants

McRae++ 533 533 1 854 10
Binder 65 65 155 7

Table 2: Summary of norm datasets: McRae and Hansen
datasets contain many concepts and norms but few
norms that are mentioned across sufficient (→ 10) con-
cepts. McRae++ more than quadruples the number of
well-represented norms. Types marks the annotation of
norms with higher-level attribute types. We use filtered
McRae++ and Binder. Filtered McRae++ contains only
norms with → 10 THINGS concepts; filtered Binder only
the concrete object concepts in THINGS.

norms to McRae norms, using cosine similarity263

calculated by a sentence embedding model2. If a264

Hansen norm matches to a McRae norm (similar-265

ity > 0.9), then we add all the concepts with that266

Hansen norm to the matched McRae norm (Fig-267

ure 1). Finally we filter out any McRae concepts268

that are not in THINGS. This procedure results in269

a set of 2 202 feature norms, corresponding to the270

feature norms in McRae with concepts in THINGS.271

We then filter to only keep the feature norms with272

more than 10 concepts, resulting in 533 norms.273

Binder ratings. Binder et al. (2016) collected274

dense ratings for 65 “experiential attributes” of275

534 concepts, of which we use the 155 concepts276

also found in THINGS. The experiential attributes277

correspond to lower-level conceptual dimensions278

such as visual brightness, somatic pain, or mo-279

2all-MiniLM-L6-v2

tor movements in the upper/lower body, and are 280

organized into 14 different fine-grained domains 281

(vision, somatic, etc.), collapsed to 7 coarser do- 282

mains (sensory, motor, etc.). Participants used a 283

7-level rating scale3, which we binarize using the 284

median value for each attribute. 285

4 Models 286

We primarily study the performance of image en- 287

coder models using Vision Transformers (ViT) 288

backbones (Dosovitskiy et al., 2020), trained with 289

different amounts of linguistic supervision. Table 3 290

presents a high-level overview. At one extreme, we 291

use visual encoders trained without any label super- 292

vision. We also use encoders trained with object 293

label classification supervision, e.g. trained on the 294

ImageNet dataset. At the other end of the spectrum, 295

we use visual encoders resulting from large-scale 296

vision-language contrastive learning, and encoders 297

derived from vision-language generative pretrain- 298

ing. The models were chosen so the encoders are 299

approximately the same size, and operate over the 300

same patch sizes. We also evaluate text-only em- 301

bedding models, to compare the conceptual knowl- 302

edge learned from the textual modality. Table 6 303

shows the precise models names used in timm / 304

HuggingFace Transformers. 305

4.1 Vision-only Models 306

ViT-MAE (He et al., 2022) is a self-supervised 307

visual encoder pre-trained to reconstruct masked 308

image patches at the pixel level using a deep Trans- 309

former encoder and decoder. DINOv2 (Oquab 310

et al., 2024) is also a self-supervised visual encoder 311

3They answered the question “To what degree do you think
of CONCEPT as having/being associated with ATTRIBUTE?”
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Model Params. Dataset Size Objective Labels IN-1K

ViT-MAE 304M ImageNet-1K 1.3M MSE N/A 85.9
Max ViT† 212M ImageNet-1K/-21K 1.3M/14M Classification Object classes 85.2/88.3
Swin-V2† 197M ImageNet-21K 14M SimMIM N/A 87.7
DINOv2 304M LVD 142M DINO + iBOT N/A 86.3
CLIP 304M Private 400M Contrastive Sentences 83.9
SigLIP 400M Private 4B Sigmoid Contr. Sentences 83.2
PaliGemma 400M Private 1B NLL Sentences N/A

Table 3: Overview of the visual encoder models studied in this paper. The number of parameters in the visual encoder,
the type and size of the pretraining data, the pretraining objective, and, for context, the reported ImageNet1K
classification accuracy at 224px ↑ 224px, except where noted otherwise. †: 384px ↑ 384px

pretrained using a combination of image-level ob-312

jectives and patch-level objectives using a student313

and a teacher network (Moutakanni et al., 2024).314

This model is trained on a very large diverse dataset315

(142M images) without labels. Swin-V2 (Liu et al.,316

2022) is a self-supervised visual encoder pretrained317

on ImageNet-21K to reconstruct masked image318

patches using a single linear layer (Xie et al., 2022).319

Max ViT (Tu et al., 2022) is a Vision Transformer320

with Transformer blocks that combine convolution,321

block attention, and grid-based attention. This322

model is directly trained with a multi-class classifi-323

cation objective on a small dataset (ImageNet-1K).324

4.2 Multimodal Models325

CLIP (Radford et al., 2021) has separate vi-326

sual and textual encoders that are jointly op-327

timized to maximize the similarity of image–328

sentence pairs. SigLIP (Zhai et al., 2023) also329

has separate encoders that are trained to maxi-330

mize a compute-efficient contrastive sigmoid loss.331

PaliGemma (Beyer et al., 2024) is a generative332

vision-language model initialized from the SigLIP-333

So400M visual encoder and the Gemma language334

model (Team et al., 2024). It is then further trained335

on a multimodal conditional language modelling336

task, and we use the visual encoder at the end of337

this multi-stage multimodal pretraining.338

4.3 Language-only Models339

FastText (Mikolov et al., 2018) creates static word340

embeddings by combining character n-grams em-341

beddings within a white space-delimited word.342

GLoVe (Pennington et al., 2014) also creates static343

embeddings based on aggregated global word-word344

co-occurrence statistics. For both FastText and345

GLoVe we use 300D embeddings trained on Com-346

mon Crawl (840B tokens). Gemma (Team et al., 347

2024) is a 2B parameter causal language model 348

trained on 3T tokens. DeBERTa-V3 is an lan- 349

guage encoder trained on Wikipedia and the Books 350

Corpus (3.1B words) to detect replaced tokens in 351

sentences. CLIP (Radford et al., 2021) also has 352

a language encoder; we use the 151M parameter 353

model that was trained with the visual encoder. 354

5 Methodology 355

We use trained linear probes (Alain and Bengio, 356

2017; Hupkes et al., 2018; Belinkov, 2022) to 357

measure the extent to which conceptual attributes 358

(McRae feature norms or Binder attribute ratings) 359

are evident in image and text representations. This 360

evaluation requires generalizing attributes to un- 361

seen concepts, based on a small set of positive 362

examples. Following standard methodology, the 363

linear probes are trained on top of frozen repre- 364

sentations, which allows us to estimate what is 365

captured in the representations directly. 366

Each attribute is learned with a separate probe. 367

The probes aim to separate the concepts that are 368

positive for a given attribute (norm, rating) from the 369

concepts that don’t mention the norm (McRae), or 370

are rated too low (Binder). Concretely, for each fea- 371

ture norm f , we train a linear classifier4 that maps 372

a representation ec of a concept c to a binary label 373

y. For each feature norm, we generate 10 train– 374

test splits using 5-fold stratified cross-validation re- 375

peated twice, and report the average performance. 376

4We use a simple logistic regression function (sklearn’s
default implementation without regularization, and increasing
the maximum number of iterations to 1 000). We cannot train
more elaborate (MLP) probes since our training datasets are
very small, with few positive examples.

5



Visual concept representations. In the visual377

modality, a concept is represented by images from378

its THINGS concept class. The visual concept ec379

is computed by averaging the embeddings extracted380

from the last layer of a given vision encoder. Since381

many of the vision models produce a dense grid of382

embeddings, we obtain a single vector by average383

pooling the embeddings spatially.384

Textual concept embeddings. In the language385

modality, a concept is represented by the English386

noun label given by McRae. Static word em-387

bedding models (GloVe, FastText) return an em-388

bedding directly, using only the surface form of389

the word5. Contextual language models (Gemma,390

DeBERTa v3, and CLIP) require a more careful391

methodology to extract meaningful vector repre-392

sentations. In these results, we always average393

over 10 sentences of the word in context (collected394

from the GPT4o API, see Appendix C), follow-395

ing (Vulić et al., 2020; Bommasani et al., 2020).396

We find that each model requires a different ex-397

traction technique in order to achieve reasonable398

performance, see Appendix B for failed attempts399

and suggestions for best practices. Briefly, the best400

representations are found from mean-pooling over401

multiple layers (Vulić et al., 2020). For Gemma,402

we obtain much better performance using only the403

last token of the target word, while for the masked404

language model (DeBERTa v3) we use the mean405

over all concept tokens.406

5.1 Evaluation and Baselines407

Our main evaluation metric is F1 score. Follow-408

ing (Hewitt and Liang, 2019), we calculate the409

selectivity of each probe as the difference between410

the F1 score on the correct labelling minus the ex-411

pected random performance (i.e. the expected per-412

formance of a probe that learned a frequency bias).413

Selectivity-F1 results are thus already with regard414

to a random baseline. A second random baseline415

is provided by the SigLIP-Random encoder, an416

untrained, randomly initialized, version of SigLIP.417

6 Results418

6.1 Main Results419

The results for linear probe accuracy results are420

shown in Table 4.421

5The static embeddings for multi-word concepts are aver-
aged; homophones are not distinguished.

Model McRae++ Binder

Vision models

Random SigLIP 7.2 9.3
ViT-MAE 23.3 18.8
Max ViT (IN-1K) 24.9 10.4
Max ViT (IN-21K) 30.2 21.5
Swin-V2 31.4 23.9
DINOv2 33.2 22.7

Multimodal vision models

SigLIP 37.0 25.2
PaliGemma 37.1 25.0
CLIP (image) 37.2 25.5

Language models

GloVe 840B 29.1 23.3
FastText 30.2 22.9
DeBERTa v3 30.9 25.5
CLIP (text) 30.9 21.9
Gemma 35.9 25.5

Table 4: Average F1-selectivity performance of linear
probes for semantic norms on the McRae++ data and
concept attribute ratings on the Binder data, corrected
(per-probe) for random performance. Note that per-
formance for Binder seems relatively low, because the
baseline for F1-selectivity for evenly matched data is
50.0. The full results can be found on Appendix 8.

The impact of modality. Across the two datasets, 422

the multimodal vision encoders achieve the high- 423

est probing performance. However, the text-only 424

Gemma-2B LLM is competitive, especially on the 425

Binder dataset. Amongst the vision-only models, 426

the self-supervised models DINOv2 and Swin-V2 427

are best, but worse than multimodal vision and the 428

better language encoders. 429

Effect of training data. CLIP learns repre- 430

sentations that are equal quality to SigLIP and 431

PaliGemma for predicting semantic attributes, de- 432

spite having seen one tenth as much data (400M vs 433

4–5B). Likewise, for self-supervised vision mod- 434

els, Swin-V2 (14M) and DINOv2 (142M) per- 435

form similarly. Interestingly, Swin-V2 outper- 436

forms label-supervised ViT-MAE (IN-21K), hav- 437

ing been trained on the same dataset, but with a 438

less-informed objective. For the language models, 439

training size also matters to some degree, particu- 440

larly on McRae++, but it is harder to disentangle 441

the effect of architecture and probing methodology 442

(see Appendix B). 443
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Figure 2: Pearson correlation between models based on attribute performance on the McRae++ and Binder datasets.

Correlation between model predictions. To un-444

derstand the difference in model behaviour at the445

level of individual attributes, we calculate pairwise446

Pearson correlations between probe accuracy (Fig-447

ure 2). For the McRae++ norms, and to a lesser448

extent on Binder attributes, we see modality clus-449

ters, where vision encoders (with the exception of450

Max ViT IN-1K) are correlated with each other,451

and likewise the language encoders. Correlations452

are quite high overall, however, indicating that all453

encoders across modalities are rather similar. Fig-454

ure 3 visualizes norm prediction performance of455

specific pairs of models (vision-only DINOv2 vs456

text-only Gemma, CLIP image vs CLIP text), and457

qualitative examples can be found in Appendix A.458

6.2 Attribute Type Results459

Are vision encoders better at visual-perceptual460

features? Do language models encode more461

functional-encyclopedic features? To answer these462

questions we study performance aggregated by at-463

tribute type, as given by the datasets. Figure 4464

presents the McRae++ probing results per attribute465

type. Among the ten types, we see that taxonomic466

attributes are the easiest to predict, followed by467

visual-motion, for both vision and language mod-468

els. The vision models, especially the multimodal469

models, generally outperform the language models,470

except Gemma-2B. This makes sense for visual at-471

tributes like color, but, surprisingly, this is the case472

even for “encyclopedic” and “functional” attributes,473

which should be easier to learn from text than from 474

visual inputs. The “taste” and “sound” attributes 475

seem easier for language models, but there are very 476

few norms in these categories. Results by Binder 477

attribute domain (App. Figs. 6 and 7) differ less 478

across model modalities. 479

Possible confounds. Since linear probes are 480

learned using attribute extensions (the set of posi- 481

tive examples of an attribute), we can’t be sure they 482

actually learn the attribute characteristics, and not 483

some closely correlated, but more visually/textually 484

available, attribute. For example, the two taste 485

attributes (tastes good and tastes sweet) have 486

extensions that are subsets of the food supercate- 487

gory, which is learnable from visual features alone 488

(e.g. as demonstrated by high performance on the 489

taxonomic is food norm for all models, including 490

DINOv2). Likewise, many of the motion attributes 491

capture subsets of animals (eats grass). As a ini- 492

tial analysis, we check whether models are better at 493

learning attributes that coincide with taxonomic su- 494

percategories, as provided by the THINGS dataset. 495

The resulting correlations (App. Table 7) are high- 496

est for ViT-MAE (0.455), DINOv2 (0.417), and 497

CLIP-image (0.416), a heterogenous set of models 498

in terms of their linear probing behaviour. 499

7 Conclusion 500

This linear probing analysis on two datasets shows 501

that multimodally-trained vision encoders rep- 502

7



Figure 3: Per feature comparison between pairs of models in terms of the F1 selectivity score. Left: DINO v2 vs
Gemma. Right: CLIP (image) vs CLIP (text).

Figure 4: Results (F1-sel) per attribute (norm) type on the McRae++ data. The number below each type indicates
the number of norms belonging to that type. The error bars denote 95% confidence intervals using bootstrapping.
Vision models are in reddish colors, while language models are in greenish colors.

resent conceptual attributes better than single-503

modality encoders. However, the single-modality504

encoders still perform well. In particular, the self-505

supervised DINOv2 and Swin-V2 models have506

learned a comparable amount of conceptual at-507

tribute knowledge, which is surprising given that508

they have not been trained to distinguish between509

concepts (rather than instances). Intriguingly,510

label-supervision seems to be harmful for learning511

human-aligned attributes, judging by the relatively512

worse performance of Max ViT compared to Swin-513

V2. For the language models, we find that static514

embeddings perform well for this kind of concept-515

level task, particularly given the efforts required to516

get concept representations from Gemma-2B.517

There is a long-held belief that we need518

multimodally-grounded representations to over-519

come the limitations of learning from only linguis-520

tic data. Our results suggest that Vision and Lan- 521

guage encoders encode (somewhat) complemen- 522

tary views of concepts inasmuch same-modality 523

models correlate better than different-modality 524

models. However, overall correlations are high, in- 525

dicating a level of convergence. Previous claims of 526

modality convergence have used nearest-neighbors 527

measures (Huh et al., 2024; Li et al., 2024); we 528

show convergent convergence results using a very 529

different linear probing methodology. 530

We expect models with conceptual knowledge 531

organised in human-like ways, that are aware of the 532

semantic attributes that underlie category member- 533

ships, would, in turn, achieve better downstream 534

performance language processing tasks. In future 535

work, we will investigate the predictive power and 536

utility of our probing tasks for multimodal training. 537

8



Limitations538

Linear probes Our linear probes assume that se-539

mantic attributes are encoded linearly in represen-540

tation space. However, it is possible that semantic541

attributes are encoded as non-linear combinations:542

(Sommerauer and Fokkens, 2018) see increased543

probing accuracy with small MLPs compared to544

a logistic regression model such as we used. Our545

datasets are too small to learn MLPs without severe546

overfitting.547

English-only Our experiments and analyses only548

concern evaluating the ability of models to pre-549

dict the English semantic attributes of concepts550

expressed in English. This hinders our ability to551

make broader claims about the ability of models552

to perform this task in other languages, or for non-553

Western concrete concepts (Liu et al., 2021). In554

future work, we are interested in understanding the555

degree and quality of English-language influence556

on visual encoder representations.557

Risks We forsee no risks associated with this558

research.559
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A Qualitative Results 819

In Figure 5 we show results at the level of attributes 820

and concepts. The results are four attributes (has 821

4 legs, made of wood, is dangerous, tastes 822

sweet), and for each we show five random sam- 823

ples (concepts). For each sample we provide, the 824

prediction using the same model selection as at 825

the end of Section 6.1: that is, the best vision- 826

only model (DINO v2), the best language-only 827

model (Gemma), and the language-and-vision mod- 828

els (CLIP image and CLIP text). Note that the 829

models ingest the concept samples differently: the 830

vision models average embeddings over multiple 831

images, Gemma uses contextual sentences; so the 832

images and concept word in Figure 5 are shown for 833

illustrative purposes. 834

For the has 4 legs attribute we observe that 835

the vision models (DINO v2 and CLIP) predict as 836

positive for STOOL or MOLE, but are incorrectly 837

penalised due to the missing positive concepts. For 838

the is dangerous, the language models identify 839

predict razor as positive, and are again penalised 840

by an arguably missing annotation. 841

B Failures in Extracting Contextualized 842

Textual Representations 843

Concept representations can, in principle, be ex- 844

tracted from any language model using just the 845

surface-form of the concept label token(s). Here, 846

we report a collection of negative results for 847

this seemingly simple task using contextual lan- 848

guage models. Table 5 presents the complete re- 849

sults of our endeavours. Initial experiments with 850

the Gemma-2B language model focused on us- 851

ing only the static embedding layer, which re- 852

sulted in complete failure to train meaningful 853

probes (A). Closer inspection revealed that the 854
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Model F1 sel. Five random samples per feature norm and their predictions

has 4 legs (visual: form & surface)
DOG + GOAT + STOOL – ANTEATER – MOLE –

DINO v2 69.7 D D D D •
Gemma 63.8 D D • • •
CLIP (image) 66.7 D D D • D
CLIP (text) 55.1 D • • • •

made of wood (visual: form & surface)
AXE + SKI + DYNAMITE – LOVESEAT – BOW –

DINO v2 50.9 • D D • •
Gemma 53.6 D • • • •
CLIP (image) 51.6 D D • • •
CLIP (text) 47.7 D D • D •

is dangerous (encyclopaedic)
DYNAMITE + AXE + RAZOR – TUMBLEWEED – MOLE –

DINO v2 25.4 • • • D •
Gemma 48.3 D D D • •
CLIP (image) 37.0 D D • • •
CLIP (text) 37.5 D • D • •

tastes sweet (taste)
PLUM + RAISIN + WATERMELON + PINEAPPLE + LAVENDER –

DINO v2 30.1 D D • • •
Gemma 38.7 D • • D •
CLIP (image) 29.0 D D D • •
CLIP (text) 32.0 D D • • D

Figure 5: Five random predictions of linear probes trained on four feature norms. Positive concepts are indicated by
+, negative concepts by –. The linear probes are trained on embeddings from one of the four models: DINO v2,
Gemma, CLIP image and text encoders. If a model predicts a concept as having the feature norm, we indicate this
by D; otherwise we use •. The correctness of the prediction is color-coded: green for a correct prediction, red for an
incorrect one. In the second column, we show the F1 selectivity (%) for the each of the models and feature norms.

McRae++

Model Input Seq. Layer P R F1

A Gemma word mean 0 (emb) 21.0 10.0 12.8
B Gemma word (space) mean 0 (emb) 31.3 15.6 19.8
C Gemma sentences (10) mean 1 36.8 19.7 24.3
D Gemma sentences (10) mean 18 (last) 41.2 28.2 31.9
E Gemma sentences (10) last 18 (last) 44.5 32.9 36.0
F Gemma sentences (10) mean 0–6 38.5 23.1 27.3
G Gemma sentences (10) mean 0–9 40.0 24.9 29.1
H Gemma sentences (10) mean 9–18 45.8 30.1 34.6
I Gemma sentences (10) last 9–18 48.9 33.7 37.9
J Gemma sentences (50) mean 18 (last) 40.2 28.1 31.5
K Gemma sentences (50, constr.) mean 18 (last) 39.6 27.5 30.9

L DeBERTa v3 sentences (10) mean 12 (last) 24.4 21.8 21.9
M DeBERTa v3 sentences (10) mean 0–4 41.5 26.3 30.6
N DeBERTa v3 sentences (10) mean 0–6 44.1 28.5 32.9

O GPT2 sentences (10) mean 12 (last) 27.5 21.5 22.8

P BERT base uncased sentences (10) mean 0–4 29.5 19.4 22.2
Q BERT base uncased sentences (10) mean 0–6 31.4 20.8 23.8

Table 5: The effects of input (isolated concept word or contextual sentences), sequence pooling (mean or last token),
and layer (individual layer or averaged over a range of layers) for the contextualised language models.
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ViT-MAE facebook/vit-mae-large
DINOv2 facebook/dinov2-large
Swin-V2 swinv2_large_window12_192.ms_in22k
Max ViT-1K maxvit_large_tf_384.in1k
CLIP openai/clip-vit-large-patch14
SigLIP google/siglip-so400m-patch14-224
PaliGemma google/paligemma-3b-mix-224
GLoVe glove-840b-300d
Gemma-2B google/gemma-2b
DeBERTa-v3 deberta-v3

Table 6: Precise names of the models used in this paper.

Model Correlation

Max ViT (IN-21K) 0.268
DeBERTa v3 0.268
Swin-V2 0.306
CLIP (text) 0.316
Max ViT (IN-1K) 0.326
Gemma 0.336
Random SigLIP 0.346
PaliGemma 0.371
FastText 0.374
SigLIP 0.384
GloVe 840B 0.385
CLIP (image) 0.416
DINOv2 0.417
ViT-MAE 0.455

Table 7: McRae++ dataset: Correlation between
per-norm probing performance, as measured by F1-
selectivity, and the proportion of the norm’s extension
belonging to a single supercategory (i.e. the extent to
which predicting the supercategory would lead to high
precision).

Gemma-2B tokenizer tokenizes single word in-855

puts, <bos>aardvark↓{aard, vark}, instead of856

↓{_aard, vark}. In order to extract a (more use-857

ful) static embedding, we needed to include a space858

before the concept token in order to achieve correct859

tokenization (B). Nevertheless, this approach was860

still substantially below the performance that we861

expected. Following Bommasani et al. (2020), we862

decided to collect contextualized sentence repre-863

sentations over a set of textual contexts for each864

concept. We collected 50 sentences from the GPT-865

4o API for each context (see Appendix C for de-866

tails). These per sentence embeddings are averaged867

over multiple sentences, analogous to averaging the868

embeddings over multiple image instances. This869

greatly improved performance compared to using870

the embedding layer (C), and extracting the repre-871

sentation from the last later further improved per-872

formance (D). Another improvement was obtained 873

by extracting the representation from the final sub- 874

word token of a concept, i.e. vark in the tokeniza- 875

tion of aardvark (E), and the final improvement 876

involved extracting the representation as an average 877

over multiple Transformer layers (I). The represen- 878

tations obtained from 50 sentences did not improve 879

performance (J). Performance was slightly reduced 880

using the contexts generated with the semantic 881

norm constraints (K), indicating the model could 882

use information from context sentences for this task. 883

With this methodology fixed, we quickly found bet- 884

ter representations for the DeBERTa v3 language 885

encoder (N), and confirmed that this would also re- 886

sult in marginal improvements for BERT (Q). We 887

also report results for BERT base (uncased) and 888

GPT-2 for completeness. We find that BERT base 889

(uncased) performs much worse than DeBERTa 890

v3 in similar conditions (N vs Q), and that GPT-2 891

also performs much worse than Gemma (O vs D). 892

Given these findings, we do not include BERT or 893

GPT-2 in our main results. 894

C Collecting Textual Contexts of 895

Concepts using the GPT-4o API 896

The best performance for contextualized language 897

models depends on having a collection of sen- 898

tences in which the concepts appear. In the ab- 899

sence of a large and naturally occurring dataset 900

of such sentences, we prompted the GPT-4o API 901

(gpt4o-2024-08-06) to collect the data. We also 902

collected sentences with the addition constraint to 903

avoid using any of the positively-labelled semantic 904

norms for a given concept. (This was in order to 905

reduce the chance that the resulting embedding lit- 906

erally included features about the expected norm.) 907

Figures 8 and 9 show the prompts used. The total 908

cost of collecting the sentences was $26.24 and 909

the data will be made publicly available for future 910

research. 911

D Model Names 912

For reproducibility, Table 6 shows the precise 913

names of the models used in this paper. 914
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Figure 6: F1 selectivity for the Binder attribute ratings. Note that raw F1 score is much higher: the random baseline
(against which F1 selectivity is calculated) is 50% for evenly-distributed data.

Figure 7: Results (F1-sel) per attribute domain on the Binder data. The number below each domain indicates the
number of attributes belonging to that domain. The error bars denote 95% confidence intervals using bootstrapping.
Vision models are in reddish colors, while language models are in greenish colors.
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SYSTEM: "You are asked to write {num} short sentences about a word (to follow). Answer the
request by returning a list of numbered sentences, 1–{num}."

USER: "Write {num} short sentences about {concept}. You must use {concept} as a noun in
each sentence."

Figure 8: The prompt used to collect textual contexts for each concept in the THINGS dataset.

SYSTEM: "You are asked to write {num} short sentences about a word (to follow). Answer the
request by returning a list of numbered sentences, 1–{num}."

USER: "Write {num} short sentences about {concept}. You must use {concept} as a noun in each
sentence. Try to avoid using the following phrases in any of the sentences: {positive_norms}"

Figure 9: The prompt used to collect constrained textual contexts for each concept in the THINGS dataset. The
constraint tried to prevent GPT4o from using the positive norms associated with a concept.

McRae++ Binder

Model P R F1 F1-sel P R F1 F1-sel

Vision models

Random SigLIP 9.2 10.0 9.2 7.2 60.6 60.3 59.8 9.3
ViT-MAE 28.8 24.7 25.3 23.3 70.0 70.0 69.4 18.8
Max ViT (IN-1K) 28.2 29.2 26.9 24.9 62.2 61.0 61.0 10.4
Max ViT (IN-21K) 42.8 28.0 32.2 30.2 71.6 73.6 72.0 21.5
Swin-V2 44.5 29.0 33.4 31.4 74.8 75.2 74.5 23.9
DINO v2 41.5 33.2 35.2 33.2 73.8 73.7 73.2 22.7

Multimodal vision models

SigLIP 48.2 35.6 39.0 37.0 76.8 76.0 75.8 25.2
PaliGemma 48.5 35.6 39.1 37.1 76.0 76.1 75.5 25.0
CLIP (image) 46.2 37.0 39.2 37.2 77.0 76.2 76.1 25.5

Language models

GloVe 840B 36.5 29.7 31.1 29.1 74.6 74.1 73.9 23.3
FastText 40.0 29.5 32.3 30.2 74.0 74.1 73.5 22.9
DeBERTa v3 44.1 28.5 32.9 30.9 77.0 76.3 76.1 25.5
CLIP (text) 42.8 29.0 32.9 30.9 73.2 72.7 72.5 21.9
Gemma 48.9 33.7 37.9 35.9 77.0 76.2 76.1 25.5

Table 8: Detailed results, in terms of precision (P), recall (R), F1 score and F1-selectivity score, of concept norm
linear probes on the McRae++ and Binder data.
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