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Abstract

There is widespread agreement about the
grounded nature of human learning and rep-
resentation, and the belief that computational
models of meaning need to be multimodal. In
this paper, we ask to what degree does this
belief hold in the era of models trained on bil-
lions of examples? We investigate the ability
of pre-trained vision models to represent the
semantic feature norms of concrete object con-
cepts, e.g2. a ROSE is red, smells sweet, and
is a flower. More specifically, we use prob-
ing tasks to test which properties of objects
these models are aware of. We evaluate im-
age encoders trained on image data alone, as
well as multimodally-trained image encoders
and language-only models, on predicting an ex-
tended set of the classic McRae norms and the
newer Binder dataset of attribute ratings. We
find that multimodal image encoders slightly
outperform language-only approaches, and that
image-only encoders perform comparably to
the language models, even on non-visual at-
tributes that are classified as “encyclopedic” or
“function”. These results offer new insights into
what can be learned from pure unimodal learn-
ing, and the complementarity of the modalities.

1 Introduction

Multimodal models depend on vision encoders to
provide information about the objects that are de-
picted and their properties, their spatial configura-
tion, lighting, and scene information. Recent work
has highlighted a degree of linear alignment be-
tween neural network representations of the vision
and language modalities (Merullo et al., 2023; Li
et al., 2024; Huh et al., 2024). This implies that
the respective representation spaces have similar
configurations, in terms of the local organisation
(nearest neighbours) of concepts. However, there
remains an open the question of how the differ-
ent modalities “understand” or represent the con-
cepts: which attributes are salient for a particular
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A strawberry's seeds are on the ...
The dining room chair has a broken leg.

Adding avocado to salads can enhance ...

The cat jumped gracefully onto ...

Figure 1: Given a dataset of concrete concepts, depicted
using either visual or linguistic data, that are paired
with semantic norms, we train linear probes on frozen
modality-specific representations of to understand how
well conceptual attributes can be extracted from models.

concept? In other words, how similar, in terms
of underlying attributes: is a CHAIR as seen by
a vision encoder similar to a CHAIR as encoded
by a language model? This question concerns the
complementarity of vision and language: are differ-
ent modalities distinct, or in fact convergent (Huh
et al., 2024)? Early work on distributional represen-
tations, in text-only (Baroni and Lenci, 2008; Ru-
binstein et al., 2015; Lucy and Gauthier, 2017) and
multimodal (Bruni et al., 2014; Collell and Moens,
2016) models of static word embeddings, studied
this question extensively. Recent advances in rep-
resentation learning necessitates that we revisit this
question to understand the relative representational
power of each modality in modern models.

In this paper, we investigate how vision, lan-
guage, and vision-and-language models represent
concrete object concepts in terms of their associ-
ated attributes (semantic norms). We use a linear
probing methodology to test whether model repre-
sentations make distinctions corresponding to at-



tributes associated with concepts, depicted visually
or in text. Figure 1 presents an overview of our
approach. The semantic norms cover many dif-
ferent types of attributes, from visual-perceptual
is green to functional is eaten to encyclopedic
grows on trees. Our first question is whether dif-
ferent encoders, from different modalities, capture
particular attribute types more or less well.

Secondly, the models we evaluate correspond to
a set of hypotheses about the role of language and
labelling in conceptualization and category learn-
ing, a hotly debated topic in cognitive and neu-
roscience (Waxman and Markow, 1995; Lupyan,
2012; Ivanova and Hofer, 2020; Benn et al., 2023).
At one extreme are pure vision encoders (ViT-
MAE, DINOV2) trained without any language or
category label supervision. At the other, models
like CLIP and SigLIP learn to represent the vi-
sual input by aligning it to text as batch-wise near-
est neighbours: a form of language-steered world
learning. We also evaluate text-only models that
get categories for free (via word labels) but have
to infer perceptual and other attributes from dis-
tributional semantics. Inasmuch language “carves
up the world”, visual encoders with more language
input should be better aligned with semantic norms
for English concepts.

We test these hypotheses using two concept at-
tribute datasets. The first dataset is an extension
of the classic McRae (McRae et al., 2005) seman-
tic norms with cleaned synthetic norms from the
THINGS project (Hansen and Hebart, 2022), to
create the new McRae++ dataset. The second
is a dataset of neuro-cognitive attribute ratings
from Binder et al. (2016).

Our results demonstrate strong conceptual aware-
ness in multimodal visual encoders across all at-
tribute types. Moreover, while single-modality
models behave most similarly (i.e. vision mod-
els and language models correlate most strongly
within-modality), all performant models are highly
correlated, indicating a degree of convergence,
given exposure to sufficent data of either modality.

The main contributions' of this paper include:

* Improved understanding of the conceptual
knowledge embedded in vision encoder mod-
els, ranging from self-supervised, class-
supervised, to language-supervised.

* McRae++: a new dataset of concepts anno-

!The datasets and code are available at: [ANONYMIZED].

tated with semantic norms, drawing on data
from the McRae dataset and THINGS.

* Best practices for extracting representations
for lexical semantic probing from LLMs.

2 Related Work

Understanding and evaluating the lexical semantics
learned by language models via co-occurrence pat-
terns is a long-standing concern in distributional
semantics. A popular method for evaluating vector
representations of lexemes is the correlation be-
tween the cosine similarity of two words in model
space compared to human ratings of word similar-
ity (e.g. using MEN (Bruni et al., 2014) and Sim-
Lex (Hill et al., 2015)). However, cosine similarity
cannot uncover the underlying dimensions of mean-
ing space, or how the space distinguishes between
human-meaningful attributes. In contrast, testing
for specific semantic attributes, by predicting se-
mantic norms, can inform us about the underlying
organisation of a model’s representation space.

Baroni and Lenci (2008) were the first to use
the McRae semantic norm dataset to evaluate the
correspondence between early models of distri-
butional semantics and cognitive concepts, using
nearest-neighbors procedures. Using prediction
models similar to linear probing, Rubinstein et al.
(2015); Lucy and Gauthier (2017) test static word
embeddings and find that they encode taxonomic
properties significantly more accurately than other
types of properties, a finding we replicate. How-
ever, Sommerauer and Fokkens (2018) find that
embeddings also reliably encode attributes that cut
across taxonomic classes, such as is dangerous.
Fagarasan et al. (2015) show that semantic norms
can be predicted from word embeddings for unseen
concepts, while (Derby et al., 2019; Bhatia and
Richie, 2024) add semantic norms as additional
input to models of distributional semantics.

Conceptual attributes (either in the form of
McRae norms directly or very similar data) have
also been used to investigate the complementar-
ity of representations learned from language and
vision. While Silberer et al. (2013); Derby et al.
(2018); Derby (2022) show that multimodal repre-
sentations can improve norm prediction, i.e. that
two modalities are better than one, Bruni et al.
(2014); Collell and Moens (2016) find only slight
patterns of differences when they examine the dif-
ferences between vision and language representa-
tions in predicting different attribute types.



This latter finding (which we confirm for more
recent models) is in line with more recent work by
Li et al. (2024) and Merullo et al. (2023) which
posits a linear relationship between vision and lan-
guage encodings. These works also compare across
different vision architectures with more or less su-
pervision. Merullo et al. (2023) connect frozen
visual encoders to frozen language models with
a trained linear transform, and find that the per-
formance on image captioning correlates with the
amount of language supervision of the visual en-
coder: CLIP, trained with full captions, performs
better than a model trained on category labels, and
self-supervised BEiT, trained on image data alone,
performs worst. Alternatively, Li et al. (2024)
perform Procrustes analysis (a linear mapping)
between image representations from ImageNet-
trained vision models and language model represen-
tations for the same concepts, and find better align-
ment with larger language models, and with vision
models that have been trained on supervised classi-
fication tasks, rather than self-supervised learning.

There is less work on the semantic alignment
of vision model representations with human con-
ceptual knowledge. In the computer vision lit-
erature, Muttenthaler et al. (2023); Mahner et al.
(2024) has investigated the alignment between vi-
sion model representation spaces and human visual
similarity judgements, using the THINGS dataset
(Hebart et al., 2023). This work is directly analo-
gous to evaluating pairwise similarities of language
model representations against semantic similarity
judgements, and as such, doesn’t separate out in-
dividual concept attributes. Moreover, it assesses
representations corresponding to instances (single
images), rather than concepts (collections of in-
stances). Mahner et al. (2024) compare sparse
representations of human and model similarities,
finding that while core dimensions overlap, hu-
mans use more semantic cues, and vision models
rely more on visual cues, as well as many human-
uninterpretable cues. In a study of several vision
encoders, Muttenthaler et al. (2023) find that mod-
els trained on larger datasets and language supervi-
sion (CLIP) are more aligned with human similar-
ity than smaller label- and self-supervised models.
Finally, Suresh et al. (2024) show that image en-
coders trained to predict object attributes, rather
than object classes, are more aligned with humans.

3 Concept Attributes: Datasets

Understanding concepts via a core set of distinc-
tive attributes is a long-standing quest in cogni-
tive science (Aristotle, 4th ¢. BC / 1928; Rosch
and Mervis, 1975; Nosofsky et al., 2018; Girden-
fors, 2000). One method of discovering which
attributes are important for human categorisation
is semantic norm elicitation: participants are asked
to write down the “characteristics and attributes”
(Rosch and Mervis, 1975) or “properties” (McRae
et al., 2005) they associate with a particular concept.
Pooled over many participants, semantic norms
thus represent a concept as a set of frequently men-
tioned salient attributes. Here we use an extended
version of the McRae norms (McRae et al., 2005).

While commonly used, semantic norm data have
two important weaknesses. Firstly, they are bi-
ased towards attributes that are easily lexicalized.
Secondly, they are not complete: less-salient, but
present, attributes are often missing (e.g. TIGER
but not CAT has teeth). We thus also use a re-
cent dataset of ratings across a fixed set of at-
tributes related to sensory and neurological dimen-
sions (Binder et al., 2016).

Since we are exploring visual and linguistic rep-
resentations, the concepts we consider are concrete
objects, corresponding to English nouns. We use
the set of object concepts from THINGS (Hebart
et al., 2019), which also includes a set of quality-
controlled images for each concept.

McRae++ norms. The classic McRae semantic
norms dataset (McRae et al., 2005) contains 541
concepts and 2 524 unique norms. The norms are
classified into different types, such as ‘taxonomic’,
“functional’, ‘visual-color’, corresponding to asso-
ciated brain regions (Cree and McRae, 2003).
Hansen and Hebart (2022) extend the McRae
dataset using GPT-3 to the 1854 concepts in
THINGS (Hebart et al., 2019). The GPT-3 gen-
erated norms are sufficiently similar to human-
generated norms, in terms of their distribution
across feature types, predicted super-category struc-
ture, and concept similarity, but have greater cov-
erage in terms of concepts and features. However,
the norms are often noisy (m sorry, is vitamins),
redundant (is gray—is gray in color), or too
generic (comes in different sizes and colors).
We create a new cleaner set of semantic norms
for the THINGS concept set, with the aim is to in-
crease the set of associated concepts for each norm.
To do this, we map the GPT-3-generated Hansen



Name Feature norm Concepts
McRae has seeds { APPLE, AVOCADO, CANTALOUPE, CUCUMBER, DANDELION, GRAPE,
, LEMON, LIME, , ...} (21 concepts)
Hansen has seeds (sim: 1.0) { APPLE, BANANA, BELL PEPPER, ... } (45 concepts)
has many seeds (sim: 0.9) {POMEGRANATE} (one concept)
McRae++ has seeds {APPLE, AVOCADO, CANTALOUPE, ... BANANA, BELL PEPPER,
BERRY, ..., POMEGRANATE} (49 concepts)

Table 1: McRae++ extends the McRae norms to the THINGS concepts through the Hansen norms. In this example,
the “has seeds” McRae norm is mapped to the “has seeds” and “has many seeds” Hansen norms and inherits all
their associated concepts (in orange). We also include the original concepts in McRae that overlap with THINGS
(dark blue) and discard the others (light blue). We obtain a more complete set then either McRae or Hansen.

Name Norms N >10 Concepts Types tor movements in the upper/lower body, and are
Original dataset organized into 14 different fine-grained domains
McRae 2524 122 541 10 (vision, somatic, etc.), collapsed to 7 coarser do-
Hansen 84561 1548 1854 N/A . o

McRactt 2202 533 1854 10 mains (ser.lsory, mgtor, e?tc.). Partlclpants -used a
Binder 65 65 534 (14)/7 7-level rating scale’, which we binarize using the
Filtered variants median value for each attribute.

McRae++ 533 533 1854 10

Binder 65 65 155 7 4 Models

Table 2: Summary of norm datasets: McRae and Hansen
datasets contain many concepts and norms but few
norms that are mentioned across sufficient (> 10) con-
cepts. McRae++ more than quadruples the number of
well-represented norms. Types marks the annotation of
norms with higher-level attribute types. We use filtered
McRae++ and Binder. Filtered McRae++ contains only
norms with > 10 THINGS concepts; filtered Binder only
the concrete object concepts in THINGS.

norms to McRae norms, using cosine similarity
calculated by a sentence embedding model?®. If a
Hansen norm matches to a McRae norm (similar-
ity > 0.9), then we add all the concepts with that
Hansen norm to the matched McRae norm (Fig-
ure 1). Finally we filter out any McRae concepts
that are not in THINGS. This procedure results in
a set of 2202 feature norms, corresponding to the
feature norms in McRae with concepts in THINGS.
We then filter to only keep the feature norms with
more than 10 concepts, resulting in 533 norms.

Binder ratings. Binder et al. (2016) collected
dense ratings for 65 “experiential attributes” of
534 concepts, of which we use the 155 concepts
also found in THINGS. The experiential attributes
correspond to lower-level conceptual dimensions
such as visual brightness, somatic pain, or mo-

2all-MiniLM-L6-v2

We primarily study the performance of image en-
coder models using Vision Transformers (ViT)
backbones (Dosovitskiy et al., 2020), trained with
different amounts of linguistic supervision. Table 3
presents a high-level overview. At one extreme, we
use visual encoders trained without any label super-
vision. We also use encoders trained with object
label classification supervision, e.g. trained on the
ImageNet dataset. At the other end of the spectrum,
we use visual encoders resulting from large-scale
vision-language contrastive learning, and encoders
derived from vision-language generative pretrain-
ing. The models were chosen so the encoders are
approximately the same size, and operate over the
same patch sizes. We also evaluate text-only em-
bedding models, to compare the conceptual knowl-
edge learned from the textual modality. Table 6
shows the precise models names used in timm /
HuggingFace Transformers.

4.1 Vision-only Models

ViT-MAE (He et al., 2022) is a self-supervised
visual encoder pre-trained to reconstruct masked
image patches at the pixel level using a deep Trans-
former encoder and decoder. DINOvV2 (Oquab
et al., 2024) is also a self-supervised visual encoder

3They answered the question “To what degree do you think
of CONCEPT as having/being associated with ATTRIBUTE?”



Model Params. Dataset Size Objective Labels IN-1K
Vi-MAE 304M  ImageNet-1K 1.3M MSE N/A 85.9

Max ViTT  212M  ImageNet-1K/-21K 1.3M/14M Classification ~ Object classes 85.2/88.3
Swin-V2f  197M  ImageNet-21K 14M SimMIM N/A 87.7
DINOv2 304M  LVD 142M DINO +iBOT N/A 86.3
CLIP 304M  Private 400M Contrastive Sentences 83.9
SigLIP 400M  Private 4B Sigmoid Contr. Sentences 83.2
PaliGemma 400M  Private 1B NLL Sentences N/A

Table 3: Overview of the visual encoder models studied in this paper. The number of parameters in the visual encoder,
the type and size of the pretraining data, the pretraining objective, and, for context, the reported ImageNet1 K
classification accuracy at 224px x 224px, except where noted otherwise. T: 384px x 384px

pretrained using a combination of image-level ob-
jectives and patch-level objectives using a student
and a teacher network (Moutakanni et al., 2024).
This model is trained on a very large diverse dataset
(142M images) without labels. Swin-V2 (Liu et al.,
2022) is a self-supervised visual encoder pretrained
on ImageNet-21K to reconstruct masked image
patches using a single linear layer (Xie et al., 2022).
Max ViT (Tu et al., 2022) is a Vision Transformer
with Transformer blocks that combine convolution,
block attention, and grid-based attention. This
model is directly trained with a multi-class classifi-
cation objective on a small dataset (ImageNet-1K).

4.2 Multimodal Models

CLIP (Radford et al., 2021) has separate vi-
sual and textual encoders that are jointly op-
timized to maximize the similarity of image—
sentence pairs. SigLIP (Zhai et al., 2023) also
has separate encoders that are trained to maxi-
mize a compute-efficient contrastive sigmoid loss.
PaliGemma (Beyer et al., 2024) is a generative
vision-language model initialized from the Sigl.IP-
S0400M visual encoder and the Gemma language
model (Team et al., 2024). It is then further trained
on a multimodal conditional language modelling
task, and we use the visual encoder at the end of
this multi-stage multimodal pretraining.

4.3 Language-only Models

FastText (Mikolov et al., 2018) creates static word
embeddings by combining character n-grams em-
beddings within a white space-delimited word.
GLoVe (Pennington et al., 2014) also creates static
embeddings based on aggregated global word-word
co-occurrence statistics. For both FastText and
GLoVe we use 300D embeddings trained on Com-

mon Crawl (840B tokens). Gemma (Team et al.,
2024) is a 2B parameter causal language model
trained on 3T tokens. DeBERTa-V3 is an lan-
guage encoder trained on Wikipedia and the Books
Corpus (3.1B words) to detect replaced tokens in
sentences. CLIP (Radford et al., 2021) also has
a language encoder; we use the 151M parameter
model that was trained with the visual encoder.

S Methodology

We use trained linear probes (Alain and Bengio,
2017; Hupkes et al., 2018; Belinkov, 2022) to
measure the extent to which conceptual attributes
(McRae feature norms or Binder attribute ratings)
are evident in image and text representations. This
evaluation requires generalizing attributes to un-
seen concepts, based on a small set of positive
examples. Following standard methodology, the
linear probes are trained on top of frozen repre-
sentations, which allows us to estimate what is
captured in the representations directly.

Each attribute is learned with a separate probe.
The probes aim to separate the concepts that are
positive for a given attribute (norm, rating) from the
concepts that don’t mention the norm (McRae), or
are rated too low (Binder). Concretely, for each fea-
ture norm f, we train a linear classifier* that maps
a representation e, of a concept c to a binary label
y. For each feature norm, we generate 10 train—
test splits using 5-fold stratified cross-validation re-
peated twice, and report the average performance.

*We use a simple logistic regression function (sklearn’s
default implementation without regularization, and increasing
the maximum number of iterations to 1 000). We cannot train
more elaborate (MLP) probes since our training datasets are
very small, with few positive examples.



Visual concept representations. In the visual
modality, a concept is represented by images from
its THINGS concept class. The visual concept e,
is computed by averaging the embeddings extracted
from the last layer of a given vision encoder. Since
many of the vision models produce a dense grid of
embeddings, we obtain a single vector by average
pooling the embeddings spatially.

Textual concept embeddings. In the language
modality, a concept is represented by the English
noun label given by McRae. Static word em-
bedding models (GloVe, FastText) return an em-
bedding directly, using only the surface form of
the word®. Contextual language models (Gemma,
DeBERTa v3, and CLIP) require a more careful
methodology to extract meaningful vector repre-
sentations. In these results, we always average
over 10 sentences of the word in context (collected
from the GPT40 API, see Appendix C), follow-
ing (Vulié et al., 2020; Bommasani et al., 2020).
We find that each model requires a different ex-
traction technique in order to achieve reasonable
performance, see Appendix B for failed attempts
and suggestions for best practices. Briefly, the best
representations are found from mean-pooling over
multiple layers (Vuli¢ et al., 2020). For Gemma,
we obtain much better performance using only the
last token of the target word, while for the masked
language model (DeBERTa v3) we use the mean
over all concept tokens.

5.1 Evaluation and Baselines

Our main evaluation metric is F; score. Follow-
ing (Hewitt and Liang, 2019), we calculate the
selectivity of each probe as the difference between
the F; score on the correct labelling minus the ex-
pected random performance (i.e. the expected per-
formance of a probe that learned a frequency bias).
Selectivity-F; results are thus already with regard
to a random baseline. A second random baseline
is provided by the SigLLIP-Random encoder, an
untrained, randomly initialized, version of SigLIP.

6 Results

6.1 Main Results

The results for linear probe accuracy results are
shown in Table 4.

5The static embeddings for multi-word concepts are aver-
aged; homophones are not distinguished.

Model McRae++ Binder
Vision models

Random SigLIP 7.2 9.3
ViT-MAE 23.3 18.8
Max ViT (IN-1K) 24.9 10.4
Max ViT (IN-21K) 30.2 21.5
Swin-V2 314 23.9
DINOvV2 33.2 22.7
Multimodal vision models

SigLIP 37.0 25.2
PaliGemma 37.1 25.0
CLIP (image) 37.2 25.5
Language models

GloVe 840B 29.1 23.3
FastText 30.2 22.9
DeBERTa v3 30.9 25.5
CLIP (text) 30.9 21.9
Gemma 35.9 25.5

Table 4: Average F-selectivity performance of linear
probes for semantic norms on the McRae++ data and
concept attribute ratings on the Binder data, corrected
(per-probe) for random performance. Note that per-
formance for Binder seems relatively low, because the
baseline for F;-selectivity for evenly matched data is
50.0. The full results can be found on Appendix 8.

The impact of modality. Across the two datasets,
the multimodal vision encoders achieve the high-
est probing performance. However, the text-only
Gemma-2B LLM is competitive, especially on the
Binder dataset. Amongst the vision-only models,
the self-supervised models DINOv2 and Swin-V?2
are best, but worse than multimodal vision and the
better language encoders.

Effect of training data. CLIP learns repre-
sentations that are equal quality to SigLIP and
PaliGemma for predicting semantic attributes, de-
spite having seen one tenth as much data (400M vs
4-5B). Likewise, for self-supervised vision mod-
els, Swin-V2 (14M) and DINOV2 (142M) per-
form similarly. Interestingly, Swin-V2 outper-
forms label-supervised VIT-MAE (IN-21K), hav-
ing been trained on the same dataset, but with a
less-informed objective. For the language models,
training size also matters to some degree, particu-
larly on McRae++, but it is harder to disentangle
the effect of architecture and probing methodology
(see Appendix B).
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Figure 2: Pearson correlation between models based on attribute performance on the McRae++ and Binder datasets.

Correlation between model predictions. To un-
derstand the difference in model behaviour at the
level of individual attributes, we calculate pairwise
Pearson correlations between probe accuracy (Fig-
ure 2). For the McRae++ norms, and to a lesser
extent on Binder attributes, we see modality clus-
ters, where vision encoders (with the exception of
Max ViT IN-1K) are correlated with each other,
and likewise the language encoders. Correlations
are quite high overall, however, indicating that all
encoders across modalities are rather similar. Fig-
ure 3 visualizes norm prediction performance of
specific pairs of models (vision-only DINOV2 vs
text-only Gemma, CLIP image vs CLIP text), and
qualitative examples can be found in Appendix A.

6.2 Attribute Type Results

Are vision encoders better at visual-perceptual
features? Do language models encode more
functional-encyclopedic features? To answer these
questions we study performance aggregated by at-
tribute type, as given by the datasets. Figure 4
presents the McRae++ probing results per attribute
type. Among the ten types, we see that taxonomic
attributes are the easiest to predict, followed by
visual-motion, for both vision and language mod-
els. The vision models, especially the multimodal
models, generally outperform the language models,
except Gemma-2B. This makes sense for visual at-
tributes like color, but, surprisingly, this is the case
even for “encyclopedic” and “functional” attributes,

which should be easier to learn from text than from
visual inputs. The “taste” and “sound” attributes
seem easier for language models, but there are very
few norms in these categories. Results by Binder
attribute domain (App. Figs. 6 and 7) differ less
across model modalities.

Possible confounds. Since linear probes are
learned using attribute extensions (the set of posi-
tive examples of an attribute), we can’t be sure they
actually learn the attribute characteristics, and not
some closely correlated, but more visually/textually
available, attribute. For example, the two taste
attributes (tastes good and tastes sweet) have
extensions that are subsets of the food supercate-
gory, which is learnable from visual features alone
(e.g. as demonstrated by high performance on the
taxonomic is food norm for all models, including
DINOvV2). Likewise, many of the motion attributes
capture subsets of animals (eats grass). As a ini-
tial analysis, we check whether models are better at
learning attributes that coincide with taxonomic su-
percategories, as provided by the THINGS dataset.
The resulting correlations (App. Table 7) are high-
est for ViIT-MAE (0.455), DINOv2 (0.417), and
CLIP-image (0.416), a heterogenous set of models
in terms of their linear probing behaviour.

7 Conclusion

This linear probing analysis on two datasets shows
that multimodally-trained vision encoders rep-
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Figure 4: Results (F;-sel) per attribute (norm) type on the McRae++ data. The number below each type indicates
the number of norms belonging to that type. The error bars denote 95% confidence intervals using bootstrapping.
Vision models are in reddish colors, while language models are in greenish colors.

resent conceptual attributes better than single-
modality encoders. However, the single-modality
encoders still perform well. In particular, the self-
supervised DINOv2 and Swin-V2 models have
learned a comparable amount of conceptual at-
tribute knowledge, which is surprising given that
they have not been trained to distinguish between
concepts (rather than instances). Intriguingly,
label-supervision seems to be harmful for learning
human-aligned attributes, judging by the relatively
worse performance of Max ViT compared to Swin-
V2. For the language models, we find that static
embeddings perform well for this kind of concept-
level task, particularly given the efforts required to
get concept representations from Gemma-2B.
There is a long-held belief that we need
multimodally-grounded representations to over-
come the limitations of learning from only linguis-

tic data. Our results suggest that Vision and Lan-
guage encoders encode (somewhat) complemen-
tary views of concepts inasmuch same-modality
models correlate better than different-modality
models. However, overall correlations are high, in-
dicating a level of convergence. Previous claims of
modality convergence have used nearest-neighbors
measures (Huh et al., 2024; Li et al., 2024); we
show convergent convergence results using a very
different linear probing methodology.

We expect models with conceptual knowledge
organised in human-like ways, that are aware of the
semantic attributes that underlie category member-
ships, would, in turn, achieve better downstream
performance language processing tasks. In future
work, we will investigate the predictive power and
utility of our probing tasks for multimodal training.



Limitations

Linear probes Our linear probes assume that se-
mantic attributes are encoded linearly in represen-
tation space. However, it is possible that semantic
attributes are encoded as non-linear combinations:
(Sommerauer and Fokkens, 2018) see increased
probing accuracy with small MLPs compared to
a logistic regression model such as we used. Our
datasets are too small to learn MLPs without severe
overfitting.

English-only Our experiments and analyses only
concern evaluating the ability of models to pre-
dict the English semantic attributes of concepts
expressed in English. This hinders our ability to
make broader claims about the ability of models
to perform this task in other languages, or for non-
Western concrete concepts (Liu et al., 2021). In
future work, we are interested in understanding the
degree and quality of English-language influence
on visual encoder representations.

Risks We forsee no risks associated with this
research.
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A Qualitative Results

In Figure 5 we show results at the level of attributes
and concepts. The results are four attributes (has
4 legs, made of wood, is dangerous, tastes
sweet), and for each we show five random sam-
ples (concepts). For each sample we provide, the
prediction using the same model selection as at
the end of Section 6.1: that is, the best vision-
only model (DINO v2), the best language-only
model (Gemma), and the language-and-vision mod-
els (CLIP image and CLIP text). Note that the
models ingest the concept samples differently: the
vision models average embeddings over multiple
images, Gemma uses contextual sentences; so the
images and concept word in Figure 5 are shown for
illustrative purposes.

For the has 4 legs attribute we observe that
the vision models (DINO v2 and CLIP) predict as
positive for STOOL or MOLE, but are incorrectly
penalised due to the missing positive concepts. For
the is dangerous, the language models identify
predict razor as positive, and are again penalised
by an arguably missing annotation.

B Failures in Extracting Contextualized
Textual Representations

Concept representations can, in principle, be ex-
tracted from any language model using just the
surface-form of the concept label token(s). Here,
we report a collection of negative results for
this seemingly simple task using contextual lan-
guage models. Table 5 presents the complete re-
sults of our endeavours. Initial experiments with
the Gemma-2B language model focused on us-
ing only the static embedding layer, which re-
sulted in complete failure to train meaningful
probes (A). Closer inspection revealed that the



Model F1 sel. Five random samples per feature norm and their predictions
has 4 legs (visual: form & surface)
+ GOAT + - ANTEATER - -
DINO v2 v T v v : | v °
Gemma v ¥ v ° g ° °
CLIP (image) v \%i v v ° v
CLIP (text) v W e ° ° °
made of wood (visual: form & surface)
AXE + +  DYNAMITE - LOVESEAT - -
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CLIP (text) 47.7 v | v ° v °
is dangerous (encyclopaedic)
DYNAMITE + AXE + RAZOR — TUMBLEWEED - -
DINO v2 25.4 ° ° ° v °
Gemma 48.3 v v v ° °
CLIP (image) 37.0 v v ° ° °
CLIP (text) 375 v e v ° °
tastes sweet (taste)
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Gemma 38.7 m v ° ° v °
CLIP (image) 29.0 e v v v ° °
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Figure 5: Five random predictions of linear probes trained on four feature norms. Positive concepts are indicated by
+, negative concepts by —. The linear probes are trained on embeddings from one of the four models: DINO v2,
Gemma, CLIP image and text encoders. If a model predicts a concept as having the feature norm, we indicate this
by v; otherwise we use o. The correctness of the prediction is color-coded: green for a correct prediction, red for an
incorrect one. In the second column, we show the F1 selectivity (%) for the each of the models and feature norms.

McRae++

Model Input Seq. Layer P R Fy
A Gemma word mean 0 (emb) 21.0 100 12.8
B Gemma word (space) mean 0 (emb) 313 156 19.8
C Gemma sentences (10) mean 1 36.8 19.7 24.3
D Gemma sentences (10) mean 18 (last) 41.2 28.2 319
E Gemma sentences (10) last 18 (last) 44.5 329 36.0
F Gemma sentences (10) mean 0-6 385 23.1 273
G Gemma sentences (10) mean 0-9 40.0 249 29.1
H Gemma sentences (10) mean 9-18 45.8 30.1 34.6
I Gemma sentences (10) last  9-18 489 337 379
J  Gemma sentences (50) mean 18 (last) 40.2 28.1 31.5
K Gemma sentences (50, constr.) mean 18 (last) 39.6 27.5 309
L  DeBERTa v3 sentences (10) mean 12 (last) 244 21.8 21.9
M DeBERTa v3 sentences (10) mean (04 41.5 263 30.6
N DeBERTa v3 sentences (10) mean 0-6 441 285 329
O GPT2 sentences (10) mean 12 (last) 27.5 21.5 228
P  BERT base uncased sentences (10) mean 04 295 194 222
Q BERT base uncased sentences (10) mean 0-6 314 20.8 238

Table 5: The effects of input (isolated concept word or contextual sentences), sequence pooling (mean or last token),
and layer (individual layer or averaged over a range of layers) for the contextualised language models.
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VIT-MAE facebook/vit-mae-large

DINOv2 facebook/dinov2-large

Swin-V2 swinv2_large_window12_192.ms_in22k
Max ViT-1K  maxvit_large_tf_384.inlk

CLIP openai/clip-vit-large-patch14
SigLIP google/siglip-so40@m-patch14-224
PaliGemma google/paligemma-3b-mix-224

GLoVe glove-840b-300d

Gemma-2B google/gemma-2b

DeBERTa-v3  deberta-v3

Table 6: Precise names of the models used in this paper.

Model Correlation
Max ViT (IN-21K) 0.268
DeBERTa v3 0.268
Swin-V2 0.306
CLIP (text) 0.316
Max ViT (IN-1K) 0.326
Gemma 0.336
Random SigLIP 0.346
PaliGemma 0.371
FastText 0.374
SigLIP 0.384
GloVe 840B 0.385
CLIP (image) 0.416
DINOV2 0.417
ViT-MAE 0.455

Table 7: McRae++ dataset: Correlation between
per-norm probing performance, as measured by F-
selectivity, and the proportion of the norm’s extension
belonging to a single supercategory (i.e. the extent to
which predicting the supercategory would lead to high
precision).

Gemma-2B tokenizer tokenizes single word in-
puts, <bos>aardvark—{aard, vark}, instead of
—{_aard, vark}. In order to extract a (more use-
ful) static embedding, we needed to include a space
before the concept token in order to achieve correct
tokenization (B). Nevertheless, this approach was
still substantially below the performance that we
expected. Following Bommasani et al. (2020), we
decided to collect contextualized sentence repre-
sentations over a set of textual contexts for each
concept. We collected 50 sentences from the GPT-
40 API for each context (see Appendix C for de-
tails). These per sentence embeddings are averaged
over multiple sentences, analogous to averaging the
embeddings over multiple image instances. This
greatly improved performance compared to using
the embedding layer (C), and extracting the repre-
sentation from the last later further improved per-
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formance (D). Another improvement was obtained
by extracting the representation from the final sub-
word token of a concept, i.e. vark in the tokeniza-
tion of aardvark (E), and the final improvement
involved extracting the representation as an average
over multiple Transformer layers (I). The represen-
tations obtained from 50 sentences did not improve
performance (J). Performance was slightly reduced
using the contexts generated with the semantic
norm constraints (K), indicating the model could
use information from context sentences for this task.
With this methodology fixed, we quickly found bet-
ter representations for the DeBERTa v3 language
encoder (N), and confirmed that this would also re-
sult in marginal improvements for BERT (Q). We
also report results for BERT base (uncased) and
GPT-2 for completeness. We find that BERT base
(uncased) performs much worse than DeBERTa
v3 in similar conditions (N vs Q), and that GPT-2
also performs much worse than Gemma (O vs D).
Given these findings, we do not include BERT or
GPT-2 in our main results.

C Collecting Textual Contexts of
Concepts using the GPT-40 API

The best performance for contextualized language
models depends on having a collection of sen-
tences in which the concepts appear. In the ab-
sence of a large and naturally occurring dataset
of such sentences, we prompted the GPT-40 API
(gpt40-2024-08-06) to collect the data. We also
collected sentences with the addition constraint to
avoid using any of the positively-labelled semantic
norms for a given concept. (This was in order to
reduce the chance that the resulting embedding lit-
erally included features about the expected norm.)
Figures 8 and 9 show the prompts used. The total
cost of collecting the sentences was $26.24 and
the data will be made publicly available for future
research.

D Model Names

For reproducibility, Table 6 shows the precise
names of the models used in this paper.
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Figure 6: F; selectivity for the Binder attribute ratings. Note that raw F; score is much higher: the random baseline
(against which F; selectivity is calculated) is 50% for evenly-distributed data.
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Figure 7: Results (F;-sel) per attribute domain on the Binder data. The number below each domain indicates the
number of attributes belonging to that domain. The error bars denote 95% confidence intervals using bootstrapping.
Vision models are in reddish colors, while language models are in greenish colors.
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SYSTEM: "You are asked to write {num} short sentences about a word (to follow). Answer the
request by returning a list of numbered sentences, 1—-{num}."

USER: "Write {num} short sentences about {concept}. You must use {concept} as a noun in
each sentence."

Figure 8: The prompt used to collect textual contexts for each concept in the THINGS dataset.

SYSTEM: "You are asked to write {num} short sentences about a word (to follow). Answer the
request by returning a list of numbered sentences, 1—{num}."

USER: "Write {num} short sentences about {concept}. You must use {concept} as a noun in each
sentence. Try to avoid using the following phrases in any of the sentences: {positive_norms}"

Figure 9: The prompt used to collect constrained textual contexts for each concept in the THINGS dataset. The
constraint tried to prevent GPT4o from using the positive norms associated with a concept.

McRae++ Binder
Model P R F; Fj-sel P R F{ Fj-sel
Vision models
Random SigLIP 92 100 9.2 72 606 60.3 59.8 9.3
ViT-MAE 28.8 247 253 233 70.0 70.0 694 18.8
Max ViT (IN-1K) 28.2 292 269 249 622 61.0 61.0 10.4
Max ViT (IN-21K) 42.8 28.0 322 302 71.6 73.6 720 21.5
Swin-V2 44.5 29.0 334 314 748 752 745 23.9
DINO v2 41.5 332 352 332 738 737 732 22.7
Multimodal vision models
SigLIP 48.2 356 39.0 370 76.8 76.0 75.8 25.2
PaliGemma 48.5 356 39.1 37.1 76.0 76.1 755 25.0
CLIP (image) 46.2 37.0 39.2 372 770 76.2 76.1 25.5
Language models
GloVe 840B 36.5 29.7 31.1 29.1 74.6 741 739 23.3
FastText 40.0 29.5 323 302 74.0 741 735 22.9
DeBERTa v3 441 285 329 309 77.0 763 76.1 25.5
CLIP (text) 428 29.0 329 309 732 727 725 21.9
Gemma 48.9 33.7 379 35,9 77.0 762 76.1 25.5

Table 8: Detailed results, in terms of precision (P), recall (R), F; score and F;-selectivity score, of concept norm
linear probes on the McRae++ and Binder data.
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